< @ @ > @ 70 > >

2 downloads 0 Views 361KB Size Report
May 20, 1989 - Polymorphism analysis of the Hsp70 stress Gene in Broiler Chickens (Gallus gallus) of Different Breeds. Journal of Genetics and Molecular ...
(179-187) 1390 2

' + (Hsp70) * 5

; !8 J ID $ 1'

# = D E% * FG H I!

$

N O P +,!

1 AM # R

(

70 # 1@ 0! ?

C NCBI $

F

"

Q #1 S

1 ! 0(

\

#

Q @ #1 S C S 1 b!

C

R R

J

/ ? # 1$ @ / ? C

@ #1 SJ

! W

. C CU !

Hsp70

Hsp70

b#

. C4 A

%M

A; $

U

D # ^ # 1CQ

A

F

* ^R _ ` .1

4$ ' 98 %P-O 2 1Hsp .(Schlesinger, 1990) #% Q ' (- * !. U V T: %2 &7 S : 1 -. R $ 8 (- L 1 B; -7 H W XK 14>%; W T*$ G' 8 Hsp70 !8 Y' .(Nishikawa et al., 2008) % % $ Z 7 6Y# 14> Hsp70 14> (-8 ( $ D- %&8 A; @$!\$ % $ B; -7 !\[ 1(- * !.

A

.

A

#

?

$

S

Q @

# 1 I. . .

Q

C f ! /)

0! ? # 1 R ! " ' R ! ea

joining

^

dN/dS

C

O\

'

$

S (4`

E .+! [

M

]

.

1

Hsp70

/

[ $

dR Q e a .


cI! * FG $

[" U

!

R ! (Hsp70)

S

X! 4 W$ .

I]!

%M !

U C C

+

(

E

Q # 1@ 0! ? C

1@ 0! ? g C

Q

Q

.Hsp70 1

R R

A K! C

S (4

? # 1$

# 1@ 0! ?

.? '

CI , YZ .

M

[" U G

AB

[" U G !

%U # $ # 1Ca.

?

/1 #

! )VW X $ " *

neighbor-

@

. .1

() C (Hsp)

S (4:

Q (

C

! 12a

!%

1 32

2. Chaperone 3. Major Histocompatibility Complex

E-mail: [email protected]

%2 32 45 6 7$ !8 1% !/ 0 !-? @ ); > 2 -8 = < 8 ; Hsp110

Hsp104

Hsp90

(Feder & Hofmann, 1999;

1(- * !. 1 !/ 98 : Hsp70

%

Hsp60

8B- A*

4 -8 F $DE$ 8 1(- * !. ( $ .Schlesinger, 1990) !I 1(- * !. $ HI J< )K G' 8 : $5F * N $! (- L 1 4 9;: 7 4 5 M 1. Heat Shock Protein

0919-3650768 :()&*

!"#$ %&' :

*

1390 2

42

8 $ 9# $ Bp %&' .Upadhyay, 2009) 9 IL-1 %&& 2$(-8 q !b; @l A c R %7 !8 % > %/ #$!. 4 !# `ab $!8 $9 2 P @ V / Hsp70 % > $ : g X'$ % > &-E %7 !8 % > c * 5$ % ] @ 'YM$ ( $!8 8 J7$ 9;E!I r 1 ( $!8 8 . $ ] % > $ : ( $ %& 3* 6 K 1QO !- 4$D- %7 !8 !s K 9 2 P @ 'YM$ 4 W J7 98 Q 3* M @$!--f* 98 8 (- L 1 .J7$ $ : ( $ 14> ;: 7 5$ %E # 1Fa8 5$ Z5l J: 8 4$ *% t-AO* ( $ Z R $ JH] %&- 3* @ 2 P $!8 !--f* 98 Z A % > 98 %3-; > J A h 1Q2W A; $ %8 -;7 . !# );7$ b# % 8 1Z$ @ + Hsp70 # $

! "

Q

9# u-* ) $ -8 @ 2 P 5$ );7$ 8 8 Z > %* 'YM$ 1u 8 2BLAST 5$ );7$ $ : 14> %2$ * `ab / Hsp70 4 !# $ -. $!8 .(1 ] 5$ % 7 1 ) 1%2$ * ( $ 9 A !I @$ ] 14> ( $ %2$ * 98 o 8! @ 'YM$ / 5$ W J7 98 1%2$ * 8 j j 4 $ v7 $!8 Hsp70 $ : %2$ * . W J7 98 d E j 5$ );7$ 8 D- % $!OV 98 1%2$ * Hsp70 $ : 14> (-8 9 A (Tamura et MEGA4 $DE$Z! 5$ );7$ 8 W J7 ($ 4 8 ! %7 !8 $!8 . Z R $ al., 2007) Q-"_ 5$ %3-; > 1!; $ . 5$ %:!8 9"7 O 14> $ * -* &# c * $ w 1FH] Q# $ * 3 H1 I ] DnaSP $DE$Z! 5$ H W c * Indel . );7$ (Librado and Rozas, 2009) "

8 %>

) * ("

&'!

! "

1 $ : g X'$ 5$ Z$ # !1 % - * !. %2$ *

2. Basic Local Alignment Search Tool 3. Insertion/Deletion

%

4$! $ % $ Z &' 9&R

180

1 % $!_ !-\^* JO* $ !I 3 4 -8 9# $ ] ( $ .(Rehman et al., 2009; Walter et al., 1994) 98 J A 45 F $DE$ Hsp70 J- 1$ 4 (Liew et al., 2003) % )' 1 -8 %3-; > J A F $DE$ (Neuer et al., 2000) (- ] (Yaniz et al., 2009 -2 * $ 8 4$ @ $ -K .J7$ `ab Al-Aqil & Zulkifli, 2009) !3& ' %3-; > c * $ $ Hsp70 % > $ : ( $ d A; $ 9R-; c * ( $ 9# 8% %* ); e 4$ ' 98 .J7$ R $ Q 3* 14> ( $ g X'$ 5$ %3 =&;a -* &# @$!--f* c _ !/ !8$!8 %3-; > J A R $ G' 8 % > $ : J7$ % . $ 1 $h 98 J" ( 1$!8 1 / $ -. d!)* 1 $h ( $ %3-; > Q 3* !-7 1@ )* ( $ c * J& 8 %E!M 5$ .(Lamb et al., 2009) $ !# -M Z$ H W 9 2 P % > @ R;7 ( $ !3& ' 9i$ $ 14> ( $ 5$ % / / = < 8 !; / % 1FH] c _ 9# J7$ j $D/ e $!8 .J7$ B/$!E % YX' %E !; 5 !8 G' 8 Hsp70 4> (Sugimoto et al., J7$ ( ;b&1 1 / 4> 1623 6 # 2 !--f* c _ (- L 1 .2003) (-k ( ;b&1 1 / 4W Q 3* Hsp70 1Z$ ( $ % 8 1 &7 F1 # 98 !R J7$ 4 ; . Z 98 1Z$ ( $ !;b-8 J A @$!--f* c _ (- L 1 .(Wei-Jie et al., 2009) !R 9# %; / -M Hsp70 4> J7 l 8 %K$ D% % !/ J A 8 N"*! Q2W R $ 98 4> 5 4 -8 .(Mazzi et al., 2003) J7$ j $D/ g A2$ G' 8 F- / l8 % Ni$! Hsp70 &7 @ -K m)K % Ja7 N $! ( $ 98 J A 9# 1J-7 ) 2 n V T: 4 -8 F $DE$ ( $ 9# % n ; 1 o "* $ 4 8 % $ B; -7 8 -A; 98 1J-7 ) 2 -2 * Hsp70 $ A . % %I; 8 6!;7$ @ M $ 6!;7$ 4$D1F- / /5 7 l 8 @ _ 9& ( $ 9# $ (Patir & 1 % 4 b $ %P-O N $! ( $ 1. Somatic Cell Score

181

...

9"7 O 5

14>

89A"M %& 3* %2 32 9 2 P :4$ 3 1

5$ dS dN ! A y $ :(Nei & Kumar, 2000)

4 N8$

PN (1 PN ) 4 (1 PN ) 2 S 3 P (1 PS ) V (d S ) = S 4 (1 PS ) 2 S 3

(4

V (d N ) =

(5

% DI ] $ $ 1 I ] $ * N xN8$ ( $ $$ 1 I ] $ * S %2$ * u 98 b . ; 1 %2$ * u 98 b % DI ] 7 !b-E 4 5W 5$ );7$ 8 d E J" 4 8 $ % (- L 1 . !/ 9"7 O 0/05 ;K$ {P7 89;7 ] 1Hsp c$ $ 6 7$!8 1%2$ * ( $ .JE!/ @ V Hsp !1 ] 19: c$ $ -

.

8

+"

# $

$ Hsp70

!3& ' 1FA 9# % - * !. =&;a 1Fa8 1%2$ * $ Hsp70 $ : 1(- * !. $!8 1Fa8 . ; 1 98 b U " !A* 9 2 P %> 4> cDNA %2$ * 9 A 8 1Hsp70 % - * !. =&;a 98 =&;a @ $ -K H W % > 19;7 Hsp70a1a . W J7 AB

C* &

Hsp70

-

.

! "

!/ !#} 1j $ J _ 9# M4 1 . W J7 98 !I @$ ] / Hsp70 1%2$ * 9i$ $ 1 ] / Hsp70 1%2$ * %&# @ Tab %> $ : ( $ % 9?KY 9# P8 .J7$ $ * ($ . % 8B- A* % > ; g X'$ 98 %/ #$!. $ $ / 1%2$ * ( $ 9# 1 % 4 b D- @$ ] ! 7 %/ #$!. (- k . 8% 5 Grosz et al. j $D/ rY: !8 .J7$ 1b % -8F-. % > 9;7 ( $ $!8 X' 3 NAE 9# (1992) 4 b > 2 -8 %* 'YM$ 1u 8 %7 !8 8 7. Fisher's Exact Test of Neutrality 8. Domain

$DE$Z! 9&-7 8 HW -* &# %2$ * 5$ );7$ D-2 W 1%2$ * 9 A JH] . W J7 98 MEGA4 5$ # # %K$ 5$ % > &-E J: B-7!* % > &-E 8 % > &-E J: B-7!* . );7$ d E 1 $DE$Z! :JE!/ Z R $ 1 9P8$ 5$ );7$ 8 1NJ j Q(i, j) = (r – 2)d(i, j) – Gd(i, k) – Gd(j, k) (1 :k j i 9: (-8 9&V E :d(i, j) x9P8$ ( $ $ A :Q(i, j) 19: Q# $ * :r J: Z$ k 9: B-7!* $!8 Q ! A . 8% j i 19: ' % * y !* ( $ 9# % # 98 % !* 1 4 b 9# ' ( !;3k # W 19: u z a; $ 8% 9: l 8 J1 " 1j5 $ . % # 98 % > &-E J: 5$ z b $ 98 R !-/9 8 100 5$ );7$ 8 Bootstrap % J7 !e#$ K 5$ 9 2 P ( $ . $ W J7 % DI ] 98 % -b ] w! 4 W J7 98 $!8 9# $!8 % - !-. % . 15 8 1 -* &# !/ );7$ % !8 38 4$ $ ; . 14> .(Tamura et al., 2007) $!8 Q 3* M z a; $ %7 !8 JH] 14> @$!--f* %7 !8 5$ D- Hsp70 $ : $ 9 - W 1 -7$ !--f* G' 8 9# -* &# !-\^* 9# -* &# @$!--f* 98 J" 5(dN) );7$ (dN/dS) 6(dS) $9; $ 9&V K 9 - W -7$ 9"7 O 3 2 N8$ 5$ );7$ 8 ! A ( $ . !/ :(Nei & Kumar, 2000) dN =

3 4 Ln (1 PN ) 4 3

(2

dS =

3 4 Ln (1 PS ) 4 3

(3

$$ $$

1 I ] J" 1 I ] J"

PN PS

.

xN8$ ( $ 98 b % DI ] 8% 98 b % DI ]

1. Neighbor-Joining 2. Maximum Composite Likelihood 3. Transition 4. Transversion 5. Nonsynonymous 6. Synonymous

1390 2

42

4$! $ % $ Z &' 9&R

ln % D/$ u* Hsp70 Hsp 70 a4l Hsp70 a4 14> %2$ * . % $ * !-/ !8 @$ ] 9 1 Hsp70 a14 a9 Hsp70 14> •&p$ %E!M 5$ . 8% 4 D/$ 5 $ $ %7 !8 @$ ] 9 1 Hsp7012b 12a @$!--f* 1 4 b 9# ; 1 4 D/$ 5 $ * %K$ Q "* G' 8 Q 3* M 9# J7$ ; !--f* ( $ .J7$ # # %K$ 98 % > !I 14> ( $ ] !3& ' G' 8 $ *% % > ;: 7 . 8% $! 1 ~ : 1(- 4 9E s$ 8 9# * 1/3 5$ Hsp70 $ : 14> % > %K$ M 9 - W -7$ # # U "2 p 8 !-f; 5 8 &-# 7/5 u-* ‚7W 9 - W -7$ !-R 5 5 pW (- -; # # %K$ 9 A . 8% !-R 5 H; $ ( $ 9# $ 4 b @$ ] (-8 W J7 98 1%2$ * ^b 5$ 9# ; 1 ƒ 2 * $ 14> gD] % > 9;7 @ A .(1Q3 ) $ • b % 3 9 -2 $ J1 " ( !;b-8 9# 1 % 4 b !I 3 8 1%2$ * 99/74) 4 $ Hsp70 a1b Hsp70 a1a (-8 %2$ * Hsp70 a13 (-8 %2$ * J1 " ( !; # ( V ( $ . 8 ( V 41/91) % $!OV j Hsp70 12b $ : g X'$ (-8 J1 " !e#$ K 9# J7$ %2 K $!8 J1 " ( !; # ( V 54/46) 4 $ $!8 % > ( $ g X'$ $!8 $ A ( $ 8 ( V 50/17) v7 . 9"7 O V 52/12 / % > $ : % $ -K

Hsp70

19 / !;b-8

/ 4 D/$ $ * 1 1 1 14 11 1 18 7 5 18 12 8 17

9; + + + + + + -

Hsp70 % >

(bp) 4> 5$ $ 1310 2079 2209 75878 16965 3984 54016 4159 10113 56743 24599 4428 15300

$ :

4> 4 . 78880126 23440335 8750920 37541878 52031202 27330608 44378550 99547281 22561557 31717566 29152707 32352578 49225204

182

% > $ : 5$ X' 13 Q_$ K 9# 1 % Z > !7$!7 $ : ( $ 14> . $ ] / $!_ ; 1Z 5 !# #$!. J&' 98 $ *% % > 19a 4 8 ; . $9;E!/ ( $!8 8 8 % > $ : ( $ u > 2 -8 = < c * J)V 5 !8 $!8 5 % > !1 ?* 4$!"] $ *% %E!M 5$ .(Tavaria et al., 1996) W B1$!E $ ~ : 14> $ : g X'$ 5$ %:!8 9# 1 % 4 b 1$ 9# $9;E!/ $!_ MHC 14> 4 4 $ Hsp70 8% 1 9a % > 1 I ] @ V 98 ( $ (Rehman et al., 2009; Walter et al., 1994) %:!8 4 N"*! G' 8 d E % > @ R;7 8 $ ]B1 14> 9;7 ($ % > !; # !V ' 5$ 8 9; $ $ MHC 14> 9;7 8 98 b = < $ ]B1 %/ #$!. ( $ .((Nishikawa et al., 2008) 9;7 ( $ Q * q 1 4 b !I =&;a 14> 8 $ A; $ 9# $!k 8% !I 14> 8 % > @ V 98 • * $ R 1 =&;a 14> S ; 98 %3-; > (-8 %"-#!* c _ ;K$ % QA; 9;7 -. € ; (- L 1 .J7$ 0 $ - 8 N"*! @ R;7 ( $ 1 $ : ( $ 9# 1 % 4 b 1 ] 9i$ $ 4 !; $ _ E %* "' 98 % D/$ u* 1%2$ * 5$ % > 1%2$ * . $ Q-3b* 4 D/$ 18 $ $ 1%2$ * * 1. Duplicated

%7 !8 4> c ! 78878816 23438256 8748711 37466000 52014237 27326624 44324534 99543122 22551444 31660823 29128108 32348150 49209904

1%2$ * @ Tab -1 Z5

!# 10 23 3 26 13 23 7 11 1 17 13 15 7

] % 7 L10428.1

4> Hsp 70a2

NM_174550.1

Hsp 70

XM_589747.3

Hsp 70 a6

XM_591176.4

Hsp 70 12a

NM_001102027.1

Hsp 70 12b

NM_001167895.1

Hsp 70 a1l

NM_001114192.2

Hsp 70 a4

NM_001075148.1

Hsp 70 a5

NM_001038505.1

Hsp 70 a13

XM_865774.3

Hsp 70 a4l

NM_0010466388.1

Hsp 70 a14

NM_174345.3

Hsp 70 a8

NM_001034524.1

Hsp 70 a9

183

...

14>

89A"M %& 3* %2 32 9 2 P :4$ 3 1

87

Hsp 70 a1a in rat

80

Hsp 70 a1b in rat Hsp 70 a1a in mouse

85 Hsp 70 a1b in mouse 87

Hsp 70 in cow Hsp 70 in dog 90 51

Hsp 70 a1a in human

90 Hsp 70 a1b in human

Hsp 70a1l in human Hsp 70 a1l in cow

99

Hsp 70 a1l in dog

61

67 Hsp 70 a1l in mouse

81

25 Hsp 70 a2 in rat 23 100

Hsp 70 a2 in mouse Hsp 70 a2 in dog Hsp 70 a2 in human Hsp 70 a2 in cow

99 93

Hsp 70 a8 in dog Hsp 70 a8 in human

100 85

Hsp 70 a8 in rat Hsp 70 a8 in cow Hsp 70 a8 in mouse Hsp 70 a6 in cow

100

Hsp 70 a6 in human Hsp 70 a5 in rat

96

Hsp 70 a5 in mouse 100

Hsp 70 a5 in human

73 Hsp 70 a5 in cow

Hsp 70 a9 in dog 72 Hsp 70 a9 in cow 100

52

Hsp 70 a9 in human

49 Hsp 70 a9 in mouse 57 Hsp 70 a9 in rat

Hsp 70 a13 in rat

51

Hsp 70 a13 in mouse

58

Hsp 70 a13 in cow

100

Hsp 70 a13 in human

72 78

Hsp 70 a13 in dog Hsp 70 a14 in mouse

99

Hsp 70 a14 in rat Hsp 70 a14 in human

100

Hsp 70 a14 in cow

40

Hsp 70 a14 in dog

49

69 Hsp 70 a4 in human 83 67 99

Hsp 70 a4 in dog Hsp 70 a4 in cow Hsp 70 a4 in rat Hsp 70 a4 in mouse Hsp 70 a4l in cow

99 100 43

Hsp 70 a4l in dog Hsp 70 a4l in mouse

57 Hsp 70 a4l in human 41 Hsp 70 a4l in rat 35 42 54

Hsp 70 12a in human Hsp 70 12a in cow Hsp 70 12a in dog

100

hsp 70 12a in rat Hsp 70 12a in mouse

100

58

hsp 70 12b in rat Hsp 70 12b in mouse

99 42 48

Hsp 70 12b in human Hsp 70 12b in dog Hsp 70 12b in cow

0.1

@$ ] !I

8 4W o "* $ / Hsp70 % > $ : 1(- * !. u-; > &-E J: -1 Q3 ( I ] !1 9 - W 1 -7$ % DI ] w! 0/1)

8 13 % > $ : ( $ Indel 1 I ] % - * !. 1 ;: 7 !--f* •"7 !; # 4$D- 98 1 I ] .J7$ !;b-8 M 8 14> 8 9 A @ V 98 8 4> !1 BH !3& ' $ $ Indel 1 I ] ( $ % 7 5$ #% Q ' %1 !/ 9; " 1

9#

4 b %3-; > 1!; $ . D-2 W 5$ QV K € ; ( $ Q 3* M 9# % 1FH] Q# $ * 9# 1 % M H W … 5 * 9# 8 FH] 1359 $ w 14> ( - !-. 15 8 $!8 ! A ( $ .J7$ @ ); Z > $ * .J7$ 8 !;b-8 % . 15 8 98 J"

1390 2

42

1 $ : %& 3* !z a; $ c ] %7 !8 5$ !;b-8 J" ( $ !/$ . 8% % $ -K … $ ] % > z a; $ 8 u 5$ !; # !/$ J"e z a; $ 8u $ %e : z a; $ 8u !/$ `2 : .(Li & Huang, 2007) 1 % 4 b 14> %& 3* z a; $ c _ 1 4 b !s K t-AO* € ; %7 !8 8% $ : ( $ 14> Q 3* %M `2 : ( $ !3& ' J-"e* •"7 z a; $ c ( $ .(2 ]) JH] JE!b-. Q 3* %M 14> •"7 `2 : z a; $ . % H W !3& ' 5 7`2 : !--f* ‡-1 9# % % 1 I ] @$!--f* c _ %E!M 5$ $ #% QV K 14> % - * !. %2$ * QK$! J"e z a; $ $!8 N $! 4 ' •"7 98 % -b ] w! 4 8 (-i . . % Q 3* 8 % - * !. 1Fa8 ] -* &# % DI ] Q 3* z a; $ c ( $ c _ Q l 5$ J< )K %K$ rˆK @ V . 8% % > $ : ( $ F $DE$ z a; $ W!8 J_ J< )K % - * !. (Phuphuakrat & Auewarakul, 2003; Ngandu 8 % .et al., 2008) 1 -* &# %i R8 ] V Hsp70 % > $ : 4 b € ; ( $ %7 !8 .J7$ $ 4 b 2 Q3 4$D- 98 o 8! % -b ] w! ( !;b-8 9# 1 % 98 (- -* Q "* % % - !-. 15 8 % -b ] 98 (- -* 98 ( 5 ;-7 V 15 4$D- 98 ( 5 ;-7 % -b ] w! N7 ; . 8% V 12/48 4$DN7 ; %E!M 5$ . 8% V 11/635 ( . 15 8 6/73 ( . 98 ( - !-. 15 8 % DI ] 4$D( $ . 8% V 5/585 ( - !-. 98 ( . V ] @$!--f* 8 -* &# %i R8 ] 4$D@$!--f* 4$D- ( !;b-8 9# % > 1%2$ * j $D/ ( - !-. 15 8 % -b ] $ -* &# 98 ( 5 ;-7 -* &# Q "* . $ JA8 P $ !# CpG %K$ ~ T: 98 % > =&;a %K$ (- -* 8 4 9&-; ‰! ( 5 ;-7 -* &# 9# (- W 98 (- $ / -* &# Q "* G' 8 n "_ ; 8 @$!--f* ( $ J&' $ *% Q8 A !-R 5 .(Vignal et al., 2002; Picoult-Newberg et al.,1999)

4$! $ % $ Z &' 9&R

184

$ .

1(- * !. 9 /( $ 9 2 P %7 !8 98 (Shortle & #% u # in vitro 1N-O .Sondek, 1995) Hsp70 Hsp70

2

"

3

/01

$ : % - * !. 1%2$ * %& 3* N8$ .J7$ $ 4 b 1 Q3 % > &-E J: B-7!* 19: z b $ QO 9# Bootstrap l 8 ! A J: 9# 1 % 4 b J7$ `ab J: 9?KY 8 . 8% $ :!8 % l 8 ;'$ 5$ % > &-E $ : 1(- * !. 9# % `ab 1 Q3 n 9;7 98 * ' : %& 3* !- 98 9] * 8 Hsp70 $ 9;7 . % B- A* $DR Hsp70 12a Hsp70 12b 1%2$ * . $9;E!/ $!_ Hsp70 12b Hsp70 12a 4> %2$ * v7 98 b 1%2$ * 8 / 9;E!/ $!_ 9: ! 5 u 4 $ 98 b %2$ * 8 / . $ @$ ] !I 8 $ %# $ - 8 9&V E $ !8 $ $ : ( $ 14> !;b-8 9# Z †;7 (-2 $ . $ B- A* ; 19: 98 !-/% Hsp70 a4 Hsp70 a4l •-*!* 98 9;7 ( $ 9: 9&V E 9# 1 % $ !1$ : 9: ! 5 Q-3b* ( $ @$ ] !I / 1%2$ * (-8 %7 O 9;7 ( $ 5$ !I 9: . % 19: ! 5 j 9: ( $ .J7$ 9;E!/ $!_ Hsp70 a14 $! 1 98 v7 / 9: ! 5 u % $!OV j 9: ! 5 . !-/% $!_ !I $9: ! 5 4 $ !5 / Hsp70 a13 9# $ $!_ Hsp70 a13 !I v7 : 98 b 8 u D $9&V E 8 $9: 1%2$ * 8 9# $9: Hsp70 a9 . $ $!_ 4 $ Q-3b* $ !/ u J7$ 9;E!/ $!_ 1Hsp70 !I $ $9 /$ ] 9: ! 5 u B1 Hsp70 a5 . 1 % 9: ! 5 u 4 $ / 4W 9# 1 % Q-3b* 9-A8 . % !I @$ ] 8 %# $ †&V E 9# $9;E!/ $!_ % $DR †: Hsp70 % > $ : . $9;E F $ W B1 98 J" %# $ 1@ )* 8 / 98 o 8! % > 1%2$ * 19: ! 5 ( $ •&p$ . 1 % 4 b 4 $ 98 J" $ !;b-8 J1 " 98 !R 9# -* &# @$!--f* 5$ QV K € ; $!8 7 j u % - * !. 1%2$ * !--f*

185

...

14>

Q 3* dN/dS 0/52 * Na 0/44 0/33 0/13 0/43 0/17 0/38 0/53 0/77 0/59 0/42 0/01 0/21

M

89A"M %& 3* %2 32 9 2 P :4$ 3 1

Hsp70

dS(SE) 0/0981(0/02) * Na (0/11) 0/22(0/04) 0/51(0/04) 0/169(0/03) 0/24(0/02) 0/141(0/02) 0/2(0/03) 0/27(0/03) 0/302(0/03) 0/291 (0/03) 0/211 (0/025) 0/211 (0/03) 0/193 (0/03)

$ :

14> z a; $

dN(SE) 0/051(0/04) 0/048(0/04) 0/098(0/06) 0/171(0/06) 0/022(0/27) 0/074(0/04) 0/024(0/04) 0/077(0/04) 0/143(0/05) 0/233(0/05) 0/171 (0/05) 0/088 (0/04) 0/003 (0/04) 0/042 (0/04)

pS 0/092 0/903 0/191 0/235 0/152 0/154 0/129 0/181 0/227 0/216 0/241 0/184 0/184 0/171

%7 !8 € ; -2 pN 0/049 0/046 0/092 0/153 0/022 0/071 0/024 0/073 0/13 0/176 0/153 0/121 0/003 0/042

] %>

19;7

Hsp70 a1a Hsp70 a1b Hsp70 12a Hsp70 12b Hsp70 a2 Hsp70 a4 Hsp70 a5 Hsp70 a1l Hsp70 a13 Hsp 70 a6 Hsp 70 a14 Hsp 70 a4l Hsp 70 a8 Hsp 70 a9

*: Not applicable

=&;a

1%2$ *

Hsp70 % >

c$ $ 98 9] * 8 1J _ ( $ . ; 1 Q- # 8!# c ! 244 -* &# K 5$ 1 !/ ! 5 =&;a J1 " %7 !8 . $ 9 $ $ 2169 -* &# K * j 4 $ v7 / Hsp70 $ : 14> (-8 1 % 4b $ ; tM ] % $!OV j 9# P 1 . 8 J< )K Q # M 98 9# @$!--f* ( !;b-8 J7$ $ 4 b 3 Q3 $ w 4> % H; $ % $ ;8$ 1J _ -* &# ; tM ( $ 9# 1 % 4 b @$!--f* ( $ .J7$ !;b-8 . $ 8 Q 3* M !;b-8 @$!--f* J7 l 8 %K$ !-/ !8 tM ( $ 1Fa8 8 98 b 9# 8 % > 9 ]!* Q8 _ !-p J7 (- .

$ :

1 -* &# %i R8 ] V -2 Q3 Hsp70

+"

$

1%2$ * † ]!* †R-; % - * !. 1Fa8 †)-< Z$ # !1 9# ; 1 4> !8 J< )K . $ H' !8 $ 4> 4W 5$ -2 * (- * !. %V : 1Fa8 % 7 4> u !3& ' 5$ cYM$ JH] !s % # 4> 4W N7 * 9# % - * !. =&;a Hsp70 % > $ : % - * !. =&;a 1Fa8 .J7$ Hsp70 % > $ : .J7$ $ 4 b 3 Q3 ATPase 1Z 8 % - * !. Fa8 97 Q n * ' (- W H; $ 9 - W -7$ 380 M 8 domain 9 - W -7$ 159 8 Peptide-binding domain Fa8 H; $ 9 - W -7$ 98 8 C-terminal domain

1390 2

42

DNA

15 -# ( -; -1 Q-"_ 5$ ATP 98 = < JE Hsp90 15$! D $ . * B 5$!-] 1(- * !. 89; 8 Q-"_ 5$ %3 > 2 -8 BH =&;a !-e3* H W A; $ !I 1(- * !. 98 T*$ z a; $ bE $ H' 98 $ % )' 1(- * !. #% # $ Fa8 ( $ 9# % 1%2$ * !--f* Z ' JH] (Loovers et al., 2007; Hwang et J7$ '$ .al., 2010)

ATPase domain

4$! $ % $ Z &' 9&R

186

@$!--f* (Salisbury et al., 2003) !I 19;E ( $ !; # !-\^* . $9; $ Q 3* M $ 5 1J-2 E $!8 5 1(- * !. -2 * tM . 8 @$!--f* ( $ l 8 J&' $ *% &7 =&;a ATPase Fa8 # # 1%2$ * 5$ 5 Fa8 @$!--f* Q 3* M 9# 8% Hsp70 (- * !. 5$ .J7$ J< )K - 8 8 1 $ !; # QT; 1(- * !. •&p$ ;: 7 ( $ 9#% R W

Peptide-binding domain

C-terminal domain

3’UTR

5’UTR

% > =&;a ( 8%

1J _ 9&-7 98 # Hsp70 % - * !. =&;a 1Fa8 -3 Q3 $ : ( $ 14> ;: 7 -* &# @$!--f* 1 4 b 14 3-.)

z a; $ % > $ : ( $ =&;a 19;7 Q 3* 9# 4 8 !s † b 9# J7$ 9;E!/ @ V `2 : Q 3* M 9)-< ( $ J-"e* 14> ( $ !3& ' 9 /( $ %& 3* !- 5$ %1 /W 9#% R W 5$ .J7$ 8 1$ : H W %3 > 2 -8 = < BHE -&# FA 14> j5 $ 8 % > 9;7 u 4$ 8 % > $ : ( $ J $ $9' D @ $ -K !3& ' %& 3* @ 2 P . !-/ $!_ !? $ *% / U V T:

5

4

Hsp70

% > q $ : 9# 1 % 4 b !s K † 2 P % 5 !# %/ #$!. 8 =&;a g X'$ 5$ / u 5$ 9# J7$ Q-3b* ; %3 > 2 -8 = < 9# `ab (- L 1 . $ • b 9-2 $ %2$ * 15 8 % -b ] -* &# @$!--f* 4$D- ( !;b-8 w 4> % H; $ % $ ;8$ 1J _ 9# ( - !-. !# `ab t-AO* ( $ %E!M 5$ . 8% J7$ $

REFERENCES 1. 2. 3. 4. 5. 6. 7. 8.

9.

Al-Aqil, A. & Zulkifli, I. (2009). Changes in heat shock protein 70 expression and blood characteristics in transported broiler chickens as affected by housing and early age feed restriction. Journal of Poultry Science, 88, 1358-1364. Feder, M. E. & Hofmann, G. E. (1999). Heat Shock Proteins, Molecular Chaperones and the Stress Response: Evolutionary and Ecological Physiology. Annual Review of Physiology, 61, 243-82. Grosz, M. D., Womack, J. E. & Skow, L. C. (1992). Syntenic conservation of HSP70 genes in cattle and humans. Genomics, 14, 863-868. Hwang, C. Y., Holl, J., Rajan, D., Lee, Y., Kim, S., Um, M., Kwon, K. S. & Song, B. (2010). Hsp70 interacts with the retroviral restriction factor TRIM5alpha and assists the folding of TRIM5alpha. Journal of Biological Chemistry, 10: 7827-37. Lamb, M., Okimoto, R., Brown, M. & Rosen-krans, C. (2009). Associations between Cattle Breed and Heat Shock Protein 70 Gene. University of Arkansas Division of Agriculture, 58, 205-206. Li, Y. & Huang, J. F. (2007). Identification and Molecular Evolution of Cow CENP-A Gene Family. Journal of Mammalian Genome, 19, 139-143. Librado, P. & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Journal of Bioinformatics, 25, 1451-1452. Liew, P. K., ZulkiPi, I., Hair-Bejo, M., Omar, A. R. & Israf, D. A. (2003). Effects of Early age Feed Restriction and Heat Conditioning on Heat Shock Protein 70 Expression, Resistance to Infectious Bursal Disease, and Growth in Male Broiler Chickens Subjected to Heat Stress. Journal of Poultry Science, 82, 1879-1885. Loovers, H. M., Guinan, E. & Jones, G. W. (2007). Importance of the Hsp70 ATPase Domain in Yeast

187

...

14>

89A"M %& 3* %2 32 9 2 P :4$ 3 1

Prion Propagation. Journal of Genetics, 175, 621-630. 10. Mazzi, M., Carmen, A., Ferro, A. J., Ines, T., Ferro, M., José, M., Savino, V., Augusto, D., Coelho, A. & Macari, M. (2003). Polymorphism analysis of the Hsp70 stress Gene in Broiler Chickens (Gallus gallus) of Different Breeds. Journal of Genetics and Molecular Biology, 26, 275-281. 11. Nei, M. & Kumar, S. (2000). Molecular evolution and phylogenetics. New York: Oxford University Press. (pp. 51-72) 12. Neuer, A., Spandorfer, D. S., Giraldo, P., Dieterle, S., Rosenwaks, Z. & Witkin, S. (2000). The Role of Heat Shock Proteins in Reproduction. European Society of Human Reproduction and Embryology, 6, 149-159. 13. Ngandu, N., Scheffler, K., Moore, P., Woodman, Z., Martin, D. & Seoighe, C. (2008). Extensive purifying selection acting on synonymous sites in HIV-1 Group M sequences. Virology Journal, 5, 160171. 14. Nishikawa, M., Takemoto, S. & Takakura, Y. (2008). Heat Shock Protein Derivatives for Delivery of Antigens to Antigen Presenting Cells (Mini review). International Journal of Pharmaceutics, 354, 2327. 15. Patir, H. & Upadhyay, R. C. (2009). Purification, characterization and expression kinetics of heat shock protein 70 from Bubalus bubalis (Article in press). Journal of Research in Veterinary Science, 88, 258262. 16. Picoult-Newberg, L., Ideker, T. E., Pohl, M. G., Taylor, S. L., Donaldson, M. A., Nickerson, D. A. & Boyce-Jacino, M. (1999). Mining SNPs from EST Databases. Journal of Genome Research, 9, 167-174. 17. Phuphuakrat, A. & Auewarakul, P. (2003). Heterogeneity of HIV-1 Rev response element. AIDS Research and Human Retroviruses, 19, 569–574. 18. Rehman, S. U., Sameer, A. S., Zahoor, l., Syeed, N., Nanda, M. S., Hafiz, A., Shah, Z. A. & Siddiqi, M. A. (2009). Polymorphic analysis of MHC linked Heat Shock Protein 70 genes: Their susceptibility and prognostic implication in Kangri cancer cases of Kashmiri population. Indian Journal of Human Genetics, 15, 65-71. 19. Salisbury, B. A., Pungliya, M., Choi, J. Y., Jiang, R., Jenny Sun, X. & Stephens, J. C. (2003). SNP and haplotype variation in the human genome. Mutation Research, 526, 53–61. 20. Schlesinger, J. M. (1990). Heat Shock Proteins. Journal of Biological Chemistry, 265, 12111-12114. 21. Shortlea, D. & Sondek, J. (1995). The Emerging Role of Insertions and Deletions in Protein Engineering. Journal of Current Opinion in Biotechnology, 6, 387-393. 22. Sugimoto, M., Furuoka, H. & Sugimoto, Y. (2003). Deletion of one of the Duplicated Hsp70 Genes Causes Hereditary Myopathy of Diaphragmatic Muscles in Holstein-Friesian Cattle. Journal of Animal Genetics, 34, 191-197. 23. Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Journal of Molecular Biology and Evolution, 24, 1596-1599. 24. Tavaria, M., Gabriele, T., Kola, I. & Anderson, R. L. (1996). A hitchhiker's guide to the human Hsp70 family. Cell stress and chaperones, 1, 23-28. 25. Vignal, A., Milan, D., San-Cristobal, M. & Eggen, A. (2002). A Review on SNP and other Types of Molecular Markers and their use in animal Genetics. Journal of Genetic Selection and Evolution, 34, 275-305. 26. Walter, L., Rauh, F. & Gunther, E. (1994). Comparative Analysis Of The Tree Major Histocompatibility Complex-Linked Heat Shock Protein 70 (hsp70) Genes of the Rat (abstract). Journal of Immuno Genetics, 40, 325-330. 27. Wei-Jie, C., Qiu-Ling, L., Chang-Fa, W., Hong-Mei, W., Jian-Bin, L., Yan-Ming, S. & Ji-Feng, Z. (2009). Genetic Polymorphism of HSP70-1 Gene and its Correlation with Resistance to Mastitis in Chinese Holstein. Journal of Hereditas (Beijing), 31, 169-174. 28. Yaniz, J. L., Lopez-Gatius, F., Almeria, S., Carretero, T., Garcia-Ispierto, I., Serrano, B., Smith, R. F., Dobson, H. & Santolaria, P. (2009). Dynamics of heat shock protein 70 concentrations in peripheral blood lymphocyte lysates during pregnancy in lactating Holstein-Friesian cows. Journal of Theriogenology, 72, 1041-1046.