2009, vol. 4, no. 1

6 downloads 0 Views 3MB Size Report
The Iowa Department of Transportation (DOT) is one such highway agency in the USA interested in .... tive (S), moderately sensitive (MS), or not sensitive (NS).
Contents Ivan Josifovich Leonovich

3

Halil Ceylan, Brian Coree, Kasthurirangan Gopalakrishnan Evaluation of the Mechanistic-Empirical Pavement Design Guide for Implementation in IOwa

5

Damian Beben NUMERICAL ANALYSIS OF A SOIL-STEEL BRIDGE STRUCTURE

13

Dago Antov, Kristiina Abel, Peep Sürje, Harri Rõuk, Tiia Rõivas Speed Reduction Effects of Urban Roundabouts

22

Aušra Žilinskaitė, Antanas Žiliukas buckling of double-t construction Elements for Bridges in Case of Complicated Loading

27

Roman Klementschitz, Juliane Stark COMMUTING AND CAR USE: Car park regimentations as a potential lever

31

Vytautas Grigonis, Gražvydas Mykolas Paliulis TRAFFIC RESTRICTION Policies IN Lithuanian cities based on Vilnius case study

36

Abstracts in Lithuanian

I a

Abstracts in Latvian

II b

Abstracts in Estonian

III a

The Baltic Journal of Road and Bridge Engineering, 2009, vol. 4, no. 1

The Baltic Journal of Road and Bridge Engineering, 2009, vol. 4, no. 1

The papers published in The Baltic Journal of Road and Bridge Engineering are indexed/abstracted by: • Science Citation Index Expanded (ISI Web of Science), • INSPEC (Database of Institution of Engineering and Technology), • Current Abstracts, TOC Premier (EBSCO Publishing), • TRIS (Transportation Research Information Services), • VINITI (All-Russian Scientific and Technical Information Institute of Russian Academy of Sciences), • SCOPUS (Elsevier Bibliographic Database).

2009, vol. 4, no. 1

THE JOURNAL IS DESIGNED FOR PUBLISHING PAPERS CONCERNING THE FOLLOWING AREAS OF RESEARCH: – road and bridge research and design, – road construction materials and technologies, – bridge construction materials and technologies, – road and bridge repair, – road and bridge maintenance, – traffic safety, – road and bridge information technologies, – environmental issues, – road climatology, – low-volume roads, – normative documentation,

– quality management and assurance, – road infrastructure and its assessment, – assets management, – road and bridge construction financing, – specialist pre-service and in-service training; besides, it publishes: advertising materials, reviews and bibliography, reports on conferences and workshops

The papers published in The Baltic Journal of Road and Bridge Engineering are indexed/abstracted by: Science Citation Index Expanded (ISI Web of Science)

Thomson Scientific www.isinet.com; http://scientific.thomson.com

INSPEC

Database of Institution of Engineering and Technology www.theiet.org/publishing/inspec/

Current Abstracts, TOC Premier

EBSCO Publishing www.epnet.com; http://search.epnet.com

TRIS Online

Transportation Research Information Services (TRIS) Bibliographic Database http://ntlsearch.bts.gov/tris

VINITI

Database of All-Russian Scientific and Technical Information Institute of Russian Academy of Sciences www.viniti.ru

SCOPUS

Elsevier Bibliographic Database www.scopus.com; www.elsevier.com

All papers published in Journal “The Baltic Journal of Road and Bridge Engineering” are peer-reviewed by members of Editorial Board or by its appointed experts.

The Baltic Journal of Road and Bridge Engineering 2009, vol. 4, no. 1

EDITORIAL CORRESPONDENCE including manuscripts for submission should be addressed to Prof Dr D. Čygas, Editor-in-Chief, Assoc Prof Dr D. Žilionienė, Managing Editor of “The Baltic Journal of Road and Bridge Engineering”, Dept of Roads, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania. Tel.: +370 5 274 5011, 274 4708; Fax: +370 5 274 4731. E-mail: [email protected]

http://www.bjrbe.vgtu.lt http://www.vgtu.lt/english/edition

Journal Cover Designer Donaldas Andziulis 17 March 2009. Printer’s sheets 6,75 Vilnius Gediminas Technical University Publishing House “Technika”, Saulėtekio al. 11, 10223 Vilnius, Lithuania, http://leidykla.vgtu.lt Printed by “Baltijos kopija”, Kareivių g. 13B, 09109 Vilnius, Lithuania, www.kopija.lt

THE BALTIC JOURNAL OF ROAD AND BRIDGE ENGINEERING, 2009, vol. 4, no. 1 http://www.bjrbe.vgtu.lt

International Research Journal of Vilnius Gediminas Technical University, Riga Technical University, Tallinn University of Technology, Baltic Road Association © Vilnius Gediminas Technical University, 2009

Vilnius Gediminas Technical University

Riga Technical University

Tallinn University of Technology

Baltic Road Association

2009 4(1) Editor-in-Chief Donatas ČYGAS

Vilnius

2009

EDITORIAL BOARD Editor-in-Chief Prof. Dr Donatas ČYGAS Vilnius Gediminas Technical University Saulėtekio al. 11, 10223 Vilnius, Lithuania

Editors Prof. Dr Alfredas LAURINAVIČIUS Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania

Prof. Dr Ainars PAEGLITIS Riga Technical University Azenes str. 20, 1048 Riga, Latvia

Prof. Dr Andrus AAVIK Tallinn University of Technology Ehitajate tee 5, 19086 Tallinn, Estonia

Managing Editor Assoc. Prof. Dr Daiva ŽILIONIENĖ Vilnius Gediminas Technical University Saulėtekio al. 11, 10223 Vilnius, Lithuania International Editorial Board Assoc. Prof. Dr Dago Antov, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia Dr Halil Ceylan, Center for Transportation Research and Education (CTRE), 482B Town Engineering Bldg., Iowa State University, Ames, IA 50011-3232, USA

Assoc. Prof. Dr Dainius Miškinis, The Lithuanian Road Administration under the Ministry of Transport and Communications of the Republic of Lithuania, J. Basanavičiaus g. 36/2, 03109 Vilnius, Lithuania Prof. Dr Juris R. Naudžuns, Riga Technical University, Azenes str. 20, 1048 Riga, Latvia

Assoc. Prof. Dr Julius Christauskas, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania

Dr Algis Pakalnis, State Enterprise “Transport and Road Research Institute”, I. Kanto g. 25, box number 2082, 44009 Kaunas, Lithuania

Dr Mindaugas Dimaitis, State Enterprise “Transport and Road Research Institute”, I. Kanto 25, box number 2082, 44009 Kaunas, Lithuania

Assoc. Prof. Dr Virgaudas Puodžiukas, The Lithuanian Road Administration under the Ministry of Transport and Communications of the Republic of Lithuania, J. Basanavičiaus g. 36/2, 03109 Vilnius, Lithuania

Dr Arvydas Domatas, State Enterprise “Transport and Road Research Institute”, I. Kanto g. 25, box number 2082, 44009 Kaunas, Lithuania Prof. Dr Alfredo Garcia Garcia, Polytechnic University of Valencia, Camino de Vera, s/n; 46071-Valencia, Spain Dr Inge Hoff, Research Institute “SINTEF”, Hogskoleringen 7, 7465 Trondheim, Norway Prof. Dr Sigfried Huschek, Berlin Technical University, Gustav-Meyer-Allee 25 Sekretariat: TIB 3 / 2-2, 13355 Berlin, Germany Prof. Dr Siim Idnurm, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia Prof. Dr Jozef Judycki, Technical University of Gdansk, 11/12 Narutowicza St., 80-952 Gdansk, Poland

Prof. Dr Habil. Piotr Radziszewki, Bialystok Technical University, ul. Wiejska 45A, room 27, 15-351 Białystok, Poland Prof. Dr Habil. Valentin Siljanov, Moscow State Technical University, Leningradskij av. 64, 125319 Moscow, Russia Prof. Dr Juris Smirnovs, Riga Technical University, Azenes str. 20, 1048 Riga, Latvia Prof. Dr Peep Sürje, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia Prof. Dr Habil. Dariusz Sybilski, Road and Bridge Research Institute, Jagiellonska str. 80, Warszawa, Poland Prof. Dr Andars Varhelyi, Lund University, Box 118, 22100 Lund, Sweden

Prof. Dr Habil. Gintaris Kaklauskas, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania

Assoc. Prof. Dr Janis Varna, Riga Technical University, Azenes str. 20, 1048 Riga, Latvia

Dr John Mungai Kinuthia, School of Technology, Division of Civil Engineering, University of Glamorgan, Pontypridd CF37 1 DL, UK

Assoc. Prof. Dr Atis Zarinš, Riga Technical University, Kaļķu str. 1, 1658 Riga, Latvia

Prof. Dr Habil. Ivan Leonovich, Belarussian National Technical University, Pr. Nezavisimosti 65, 220027 Minsk, Belarus

Prof. Dr Habil. Edmundas Kazimieras Zavadskas, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania

THE BALTIC JOURNAL OF ROAD AND BRIDGE ENGINEERING

2009 4(1): –12

Evaluation of the Mechanistic-Empirical Pavement Design Guide for Implementation in IOwa Halil Ceylan1, Brian Coree2, Kasthurirangan Gopalakrishnan3 1

co py

Dept of Civil, Construction and Environmental Engineering, 482B Town Engineering Building, Iowa State University, Ames, IA 50011-3232, USA E-mails: 1 [email protected]; 2 [email protected]; 3 [email protected]

on

al

Abstract. With the release of the new Mechanistic-Empirical Pavement Design Guide (MEPDG) in the USA, there is a big shift in pavement analysis and design and many state highway agencies are undertaking initiatives to implement the MEPDG. The Iowa Department of Transportation (DOT) is one such highway agency in the USA interested in implementing the MEPDG. In order to effectively and efficiently transition to the MEPDG from the current empirical approach and accelerate its adoption, the Iowa DOT needs a detailed implementation and training strategy. In support of the MEPDG implementation initiatives, sensitivity studies were conducted using the MEPDG software to identify design inputs pertaining to flexible pavements that are of particular sensitivity in Iowa. Based on a study of the MEPDG design components, the results of sensitivity analyses and past experience, this paper, which is the second of the two companion papers, presents key initiatives for implementing the MEPDG in Iowa. The need for implementing the MEPDG at Iowa DOT and the results of rigid pavement input parameter sensitivity analysis are discussed in detail in the first paper.

rs

Keywords: M-E Pavement Design Guide (MEPDG), asphalt concrete, flexible pavement, calibration, rutting, cracking, sensitivity analysis.

pe

1. Introduction

A

ut

ho

r'

s

With the release of the new Mechanistic-Empirical (M-E) Pavement Design Guide (MEPDG) by 2004 National Cooperative Highway Research Program (NCHRP) “Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures” Project 1-37A in the USA, pavement design has taken a leap forward. The MEPDG provides the user with an integrated set of models (climate + traffic + materials), which through a set of empirical models projects future performance (cracking, rutting, faulting, etc.). The edition currently available for evaluation (as of Dec 2007) will change and a provisional design guide is yet to be released. Some areas of change are known even now, while others have yet to be identified and may only come to light as they are identified during the general implementation. In order to effectively and efficiently transit to the MEPDG, state Dept of Transportations (DOTs) need a detailed implementation and training strategy. In addition, pavement design input parameters must be determined locally based on their effects on pavement performance. It is suspected that it will take most states in the USA approx 3 years just to prepare to implement the MEPDG in its current form. Initiatives and strategies for implementing the MEPDG in Indiana (Nantung et al. 2005) and Texas (Uzan et al. 2005) were published recently. This pa-

ISSN 1822-427X print / ISSN 1822-4288 online http://www.bjrbe.vgtu.lt

per discusses the development of a strategic plan for implementing the MEPDG in Iowa. 2. Objectives The following are the objectives of this paper: • to conduct sensitivity analyses to determine pavement design input parameters which have a significant effect on pavement distresses for flexible pavements in Iowa; • to examine MEPDG design components related to traffic, climate, structural and non-structural elements and provide suitable implementation recommendations for each component; • to discuss the need for validating and re-calibrating the MEPDG distress models, if necessary, using available Long-Term Pavement Performance (LTPP) and Iowa DOT Pavement Management Information System (PMIS) data. 3. Sensitivity analysis – flexible pavement design inputs A sensitivity study was undertaken to evaluate and identify those input parameters related to material properties, traffic and climate that have significant or no influence on the MEPDG performance models for flexible pavement systems in Iowa. The full details of this study are reportDOI: 10.3846/1822-427X.2009.4.-12

H. Ceylan et al. Evaluation of the mechanistic-empirical pavement design guide for implementation in Iowa



ed elsewhere (Ceylan et al. 2006; Kim et al. 2005, 2006). The sensitivities of MEPDG performance measures (longitudinal cracking, alligator cracking, transverse cracking, rutting, and smoothness) to inputs were studied by either varying one input parameter or by varying input parameters per trial in a representative Iowa highway pavement structure using the MEPDG software.

to investigate the 2-way interaction among input variables in terms of their combined effect on performance. This was done by varying 2 of the varied inputs per trial run. The following input variables, with respect to their effect on performance, were studied at 2 levels of AC layer thickness (low and high): traffic distribution, tire pressure, Nominal Maximum Aggregate Size (NMAS), performance grade (PG) binder, AC thermal conductivity, and AC heat capacity. The AC layer thicknesses ranged from a “low” value of 76 mm (3 in) (standard value) to a “high” value of 203 mm (8 in).

3.1. Design input parameters

3.3. Results

on

al

co py

The MEPDG software runs for this study provided numerous charts and tables as outputs. Due to space constraints, it is difficult to present a full discussion of all the investigated input parameters in this paper. A summary of the results of MEPDG software runs is presented. Similar to the approach used in the sensitivity analysis for rigid pavement design inputs, each evaluated input parameter in this study was categorized into 1 of the 5 groups based on the visual inspection of the sensitivity plots: extremely sensitive (ES), very sensitive (VS), sensitive (S), moderately sensitive (MS), or not sensitive (NS). An overall summary of the flexible pavement sensitivity analysis results is presented in Table 2. Selected sensitivity plots are displayed in Fig. 1, with examples of inputs at different degrees of sensitivity for each performance measure. Examples of sensitivity plots illustrating the effect of input variables on flexible pavement performance at different AC thicknesses are presented in Fig. 2. The plotted data in both the Figs correspond to predicted performance measures accumulated over a 20 year design period. In general, the sensitivity of design input listed in each cell of Table 2 applies to both the pavement structures considered in this study. Interestingly, there was no input parameter that was sensitive to all the MEPDG performance measures in this study. Most of the investigated input parameters were found to be sensitive to longitudinal cracking while most were listed as NS for alligator cracking. Alligator cracking does not seem to be a critical distress in flexible pavement structures with relatively thick AC layers as considered in this study. The inputs related to material properties and climate were especially sensitive to predicted transverse cracking. In general, the binder PG, AC mix volumetric properties, climate, average annual daily truck traffic (AADTT), type of base (moduli), base layer thickness, etc. had significant impact on most of the predicted performance measures (Table 3).

A

ut

ho

r'

s

pe

rs

Two existing and typical flexible pavement structures in Iowa, one on US-20 in Buchanan County and one on I-80 in Cedar County, were considered in this study. The US-20 (Buchanan County) pavement section had 76 mm (3 in) of asphalt concrete (AC) surface over 406 mm (16 in) of AC base. A 254 mm (10 in) crushed gravel subbase course separated the AC layers and the subgrade. The pavement rested on an A-7-6 (clayey soil) classified subgrade soil. The I-80 (Cedar County) pavement structure comprised of 76 mm (3 in) of AC surface, 406 mm (16 in) of AC base resting on an A-7-6 classified subgrade soil. The design input parameters were divided into 2 groups – “fixed” input parameters and “varied” input parameters. The fixed input parameters were assigned constant values and were not changed at any time during the analyses. Each of the varied input parameters was varied over a typical range of values (varied values) to study its particular effect on performance, while “standard” values were assigned for other input parameters. A total of 20 key inputs related to material properties, traffic and climate were evaluated. A design life of 20 years was selected and a deterministic analysis (a nominal 50% design reliability) was used. Table 1 summarizes the design inputs and their values for the base or reference case. To reflect Iowa traffic conditions, the monthly adjustment factors and the vehicle class distributions were obtained from the Iowa DOT traffic database. Five cases of vehicle class distributions were investigated to study the effect of vehicle class distribution on the flexible pavement performance models. Two new climate data files, one for Buchanan County and one for Cedar County, were generated to determine the standard input values for conducting the analysis. To investigate the effect of climate on performance, Burlington in Southern Iowa (relatively warm) and Estherville in Northern Iowa (relatively cold) were chosen as varied input values. The pavement materials considered in this study could be divided into 3 major groups – AC, unbound granular aggregates, and subgrade. Most properties of AC required in the MEPDG software were investigated in this study. However, for the unbound and subgrade materials, strength-based properties were investigated using the Enhanced Integrated Climate Model (EICM) input analysis. The standard values used for the material properties matched the actual field pavement properties in Buchanan and Cedar counties as closely as possible. 3.2. Analysis The sensitivities of five MEPDG performance measures were investigated by varying each of the varied input parameter per trial run. A limited study was also conducted

4. Sensitivity analyses – summary In support of the MEPDG implementation initiatives in Iowa, sensitivity studies were conducted using the MEPDG software to identify those input factors pertaining to flexible pavements that are of particular sensitivity in Iowa. Table 3 lists the input factors which have been identified to be of significant sensitivity for Iowa. Of these, the ES inputs merit early consideration and resolution. In addition to the factors

The Baltic Journal of Road and Bridge Engineering, 2009, 4(1): 5–12 

Table 1. Flexible pavement design inputs (base case values) Input parameter

Value 20

Pavement construction month

Sep/2004

Traffic open month

Oct/2004

Initial IRI in m/km

0.6

Terminal IRI in m /km

2.71 (limit)

AC longitudinal cracking in m/km

400 (limit)

AC alligator cracking in %

25 (limit)

AC transverse cracking in m/km

190 (limit)

Permanent deformation – total in mm

19 (limit)

Permanent deformation – AC only in mm Number of lanes in design direction

6 (limit) 1168 for Buchanan County 10 928 for Cedar County 2

% of trucks in design direction

50

% of trucks in design lane

90

Operational speed in km/h

97

Mean wheel location in cm

46

al

on

2-way average annual daily truck traffic (AADTT) in vpd

co py

Design life in years

Traffic wander standard deviation in mm

254

Design lane width in m

3.65 2.6

rs

Average axle width in m Dual tire spacing in mm

305

827/827

pe

Tire pressure – single and dual tire in kPa Axle spacing – tandem, tridem, quad axle in cm

131, 125, 125

Average axle spacing in m

3.6, 4.6, 5.5

Climate data file Asphalt binder grade

r'

Asphalt surface thickness in mm

s

% of trucks

Buchanan County file/Cedar County file PG 58-28 76

Initial volumetric properties: Vbe/ Va/ VMA in %

330 (Buchanan)/406 (Cedar) NMAS 19 mm gradation – cuml % retained 19 mm: 0 – cuml % retained 9.5 mm: 22 – cuml % retained 4.75 mm: 48 – % passing 75 μm: 3 NMAS 19 mm gradation – cuml % retained 19 mm: 0 – cuml % retained 9.5 mm: 25 – cuml % retained 4.75 mm: 56 – % passing 75 μm: 3 11/7/18

Poisson’s ratio

0.25

Thermal conductivity in calories/s×cm×°C)

0.00277

Heat capacity in calorie/gram×°C)

0.23

Subbase thickness in mm

254

Type of subbase material

crushed gravel (CG)

Type of subgrade material

A-7-6

Aggregate coefficient of thermal extraction (per °C)

0.162 × 10–6

ut

ho

Asphalt base thickness in mm Surface AC aggregate gradation

33, 33, 34

A

Base AC aggregate gradation

H. Ceylan et al. Evaluation of the mechanistic-empirical pavement design guide for implementation in Iowa



Table 2. Summary of results of sensitivity analyses for flexible pavements Performance models

Flexible pavement design inputs

Cracking

Rutting

Alli.

Trans.

AC layer thickness

S

NS

Nominal max size

S

NS

PG grade

ES

AC volumetric

VS

AC unit weight AC Poisson’s ratio

Roughness

AC surface

AC base

Sub-base

Sub-grade

Total

NS

NS

NS

NS

NS

NS/MS

NS

NS

NS/MS

NS

NS

NS

NS/MS

NS

NS

ES

MS/S

NS

NS

NS

MS/S

MS/S

NS

VS/ES

MS

NS

NS

NS

MS

MS/S

MS/S

NS

NS

NS/MS

NS

NS

NS

NS/MS

NS

MS/S

NS

NS

S

NS

NS

NS

S

NS

AC thermal cond.

S

NS

MS

NS/MS

NS

NS

NS

NS

NS

AC heat capacity

VS

NS

VS

MS/S

NS

NS

NS

MS/S

MS

Tire pressure

VS

NS

NS

MS

NS

NS

NS

MS

NS

AADTT

VS

MS/S

NS

ES

S

NS

S

ES

NS

Traffic distribution

VS

NS

NS

MS

NS

NS

NS

MS

NS

VS

NS

NS

S/VS

NS/MS

NS

NS

S/VS

NS

MS/S

NS

NS

NS

NS

NS

NS

NS

NS

Traffic speed Traffic wander

NS

ES

S

NS/MS

NS

NS/MS

S

S

S/VS

S/VS

NS

VS

NS/MS

NS

NS/MS

VS

MS

Base type (Mr)

MS/S

ES

NS/MS

VS

MS/S

NS

NS/MS

VS

VS/S

Subbase thickness

MS/S

NS

NS

NS

NS

NS

NS/MS

NS

NS

Subbase type (Mr)

NS

NS

NS

NS

NS

NS

NS

NS

NS

Subgrade type (Mr)

ES

MS

NS

NS

NS

NS

NS/MS

NS/MS

NS/MS

Agg. therm. coeff.

NS

NS

NS

NS

NS

NS

NS

NS

NS

on

al

VS

Base thickness

rs

Climate

co py

Long.

pe

Note: ES – extremely sensitive; VS – very sensitive; S – sensitive; MS – moderately sensitive; NS – not sensitive; designer can control directly; designer may not change, but must know

Extremely sensitive (ES) performance grade (PG) binder; type of subgrade (Mr – moduli).

A

ut

ho

r'

Flexible pavements Longitudinal cracking

s

Table 3. Input factors of significant sensitivity (flexible pavements)

Alligator cracking

type of base (Mr – moduli)

Transverse cracking

PG binder; climate data from different stations

Rutting

AADTT

Roughness

Sensitive to very sensitive (S/VS) AC layer thickness; nominal max size; AC volumetric properties; thermal conductivity; heat capacity; tire pressure; AADTT; traffic distribution; traffic velocity; climate data; base layer thickness. base thickness; AADTT. AC volumetric properties; thermal conductivity; heat capacity. Poisson’s ratio; traffic velocity; climate data from different stations; base layer thickness; type of base (Mr – moduli). climate data from different stations; type of base (Mr – moduli).

Effect of AC surface layer thickness and PG binder grading on longitudinal cracking (location – Cedar, design life – 20 years, AC(PG 58–28) – 76–203 mm, AC base (PG 58–28) – 406 mm, subgrade (A-7-6, Mr = 55.2 MPa), AADTT – 10 928);

pe

rs

on

al

Example of very sensitive input (location – Cedar, design life – 20 years, AC(PG 58–28) – 76 mm, AC base (PG 58–28) – 406 mm, subgrade (A-7-6, Mr = 55.2 MPa), AADTT – 10 928);

co py

The Baltic Journal of Road and Bridge Engineering, 2009, 4(1): 5–12 

Effect of AC surface layer thickness and tire pressure on AC surface layer rutting (location – Cedar, design life – 20 years, AC(PG 58– 28) – 76–203 mm, AC base (PG 58–28) – 406 mm, subgrade (A-7-6, Mr = 55.2 MPa), AADTT – 10 928);

A

ut

ho

r'

s

Example of sensitive input (location – Buchanan, design life – 20years, AC (PG 58-28) – 76 mm, AC base (PG58-28) – 330 mm, subbase (CG) – 76–305 mm, subgrade (A-7-6, Mr = 55.2 MPa), AADTT – 1168);

Example of insensitive input (location – Buchanan, design life – 20 years, AC (PG 58-28) – 76 mm, base – 330 mm, subbase (CG) – 254 mm, subgrade (A-7-6, Mr = 55.2 MPa)

Effect of AC surface layer thickness and NMAS on IRI (location – Cedar, design life – 20 years, AC(PG 58–28) – 76–203 mm, AC base (PG 58–28) – 406 mm, subgrade (A-7-6, Mr = 55.2 MPa), AADTT – 1168)

Fig. 1. Effect of input parameters on AC longitudinal cracking – examples for different levels of sensitivity

Fig. 2. Interactive effect of two design inputs on flexible pavement performance – some examples (location – Cedar, design life – 20 years, AC(PG 58–28) – 76–203 mm, AC base (PG 58–28) – 406 mm, subgrade (A-7-6, Mr = 55.2 MPa), AADTT – 10 928)

H. Ceylan et al. Evaluation of the mechanistic-empirical pavement design guide for implementation in Iowa

10

listed in Table 3, there are some other factors that exhibit some degree of sensitivity under certain conditions.

15 locations in Iowa. The 15 Iowa data sets may be insufficient to derive full benefit from the site-specificity that the software can provide. Further, these data sets provide historical records for between 17 months and somewhat less than 5 years. Ideally, each data set should provide, at least, 11 years of historical data. It is recommended that the Iowa DOT seek to fill the Iowa site-specific data sets with a min of 11 years (preferably 20–30 years) of continuous data in order to make the data sets more statistically representative. This may have to be done under research contract with the Iowa State University (ISU) Dept of Agronomy, which may have the best access to the necessary data.

5. Implementation recommendations The MEPDG components were closely examined to provide recommendations for implementing the MEPDG in Iowa (Coree et al. 2005). Based on the results of sensitivity analyses and past experience, implementation recommendations were made for relevant modules in the MEPDG.

5.3. Implementation recommendations for structural elements

on

al

The materials considered in the MEPDG include: Hot-Mix Asphalt (HMA), Portland Cement Concrete (PCC), stabilized materials, and subgrade and unbound materials. Each material must have its structural properties defined as input. These properties are typically the elastic (or resilient) modulus E (or E*) and the Poisson’s ratio, μ. • Since in most cases it is unlikely that project-specific material information (eg. job-mix formulae) will be available at the time of the structural design, it is recommended that the Iowa DOT determine representative input values for each specification or bid-item in the current specification.

A

ut

ho

r'

s

pe

rs

In developing the MEPDG, it was recognized that the traditionally used traffic parameters such as AADT or ESAL do not sufficiently recognize the differing effects of different axle loads and configurations on the pavement. Consequently, the use of “traffic spectra” is now recommended. In this approach, the anticipated traffic must be classified by axle type (single, tandem, tridem, etc.), and within each type, the distribution of axle weights is prescribed. Further, daily, weekly, and seasonal volume distributions are possible. In other words, the traffic spectrum approach requires a more realistic knowledge of the actual distribution of axle types, weights and occurrence in time than has been traditional. Iowa DOT is currently well-placed to use the MEPDG traffic input format. However, a number of specific recommendations are made to increase the success of implementation: • a joint committee of the Iowa DOT Design Section and Traffic Section should examine the various traffic input screens in the MEPDG software and come to an agreement on the best process to identify and transmit the data to the Design Section; • project-specific traffic data transfer to the Design Section should be made by electronic means in the required formats, allowing the MEPDG software to read and complete the traffic data input automatically; • since many highways in Iowa are low-volume traffic platforms that carry generic traffic patterns, default traffic input files should be created for different functional highway classes, leaving the detailed site-specific traffic analyses to the higher classes of highway and those with significant seasonal imbalances.

co py

5.1. Implementation recommendations for traffic

5.2. Implementation recommendations for environment In order to incorporate environmental effects within the MEPDG software, 3 elements are required: 1) a site-specific environmental data set (external), 2) a material-specific set of thermal-related properties (heat capacity, thermal conductivity, etc) (internal), and 3) the Enhanced Integrated Climatic Model (EICM) algorithm to compute the transmission of heat (and moisture) within the pavement structure. The MEPDG software incorporates a set of environmental data sets for specific locations within the USA, with

5.4. Implementation recommendations for nonstructural elements In conjunction with the structurally-related input, the MEPDG software requires a number of non-structural input values. These variously relate to the transmission of thermal energy through the material (heat capacity and thermal conductivity), the rheological properties of the asphalt binder, the specific gravity, hydraulic conductivity and degree of saturation of unbound materials, cross-sectional geometry, dowel bar diameter and spacing, pavement cross slope, etc. Sensitivity studies (discussed previously) indicate that pavement performance may be significantly sensitive to the thermal properties of the materials. Therefore, it is recommended that the Iowa DOT establish realistic thermal input values for Iowa materials (aggregates, HMA and PCC), i.e. HMA heat capacity and PCC coefficient of thermal expansion. 6. Validation and calibration of distress models The performance models in the MEPDG have been calibrated against information in the national LTPP database. Not only is that database somewhat imperfect (as it contains considerable amount of level 3 input), but the coverage of appropriate pavement types is somewhat incomplete and Iowa may not be adequately represented. It will be necessary, therefore, to validate the default calibration against Iowa data and recalibrate the default calibrations as necessary.

The Baltic Journal of Road and Bridge Engineering, 2009, 4(1): 5–12

on

al

co py

in a more efficient design. It was proposed that the hierarchical design inputs should be selected in a case by case basis after a thorough evaluation of all the design modules and sensitivity analysis. Uzan et al. (2005) proposed a strategic plan for implementing the MEPDG for the Texas DOT operations which included training, laboratory testing and equipment acquisition, field forensic studies for calibration, calibration and validation of the MEPDG and additional studies. Their paper focused on implementation issues for design of new flexible pavements. A few focused studies were presented, including: 1) preliminary local calibration of the guide using 11 test sections in Texas, 2) traffic composition effect compared to that of the traditional 80 kN ESALs and of the design load, and 3) effect of the choice of the weather station and of changing the water table depth on performance of the pavement. The findings indicated that the MEPDG predicts rutting and fatigue cracking fairly closely to the data for Texas, but the model for longitudinal cracking is not as precise. Uzan et al. (2005) noted that care must be exercised when using an existing empirical design procedure, in parallel with the MEPDG. It may lead to a different design, without any mechanistic justification, and the engineer may not be able to determine which is the better design.

pe

rs

Many of the MEPDG calibrations were carried out in the mid-to-late 1990s. Since that time, more of the statesubmitted LTPP program data has passed quality screening and is now available. While it is clear that when the calibrations were undertaken, Iowa was under-represented in the LTPP database, that situation either has, or shortly will be, corrected. This will allow Iowa to undertake local validation and calibration activity. The project team recommends that the Iowa DOT validate performance predictions using available LTPP and PMIS data. This activity will require a number of steps: • identify and rank the predominant distress types in Iowa for each pavement type through an examination of the PMIS database; • select a statistically significant number of highway sections for each distress type; use of LTPP sites with these distresses is particularly encouraged; • input data appropriate to the last major construction activity on these sections, and use it to predict the development of the relevant distress to the current time; • compare the MEPDG predictions against the LTPP or PMIS measured distresses; • determine if the MEPDG accurately predicts the distress level;  if YES, the MEPDG algorithm for this distress is valid;  if NO, the MEPDG algorithm for this distress is not valid, compare the PMIS data to the MEPDG data to determine adjustment factors for recalibrating the MEPDG models.

11

7. MEPDG implementation initiatives by other highway agencies

A

ut

ho

r'

s

Iowa DOT is one of the few highway agencies that is pursuing the implementation of the MEPDG. Saeed and Hall (2003) presented Mississippi DOT’s pro-active approach to implement the MEPDG even before the MEPDG was released. The Mississippi DOT is implementing the MEPDG in two phases. An implementation plan was developed in Phase I, and actual implementation of the MEPDG occurs in Phase II. Implementation activities at Mississippi DOT include becoming familiar with the MEPDG procedure and training of staff, developing an implementation plan, conducting initial material tests on HMA, developing a traffic estimation procedure, and selection of field sections for use in local calibration of the procedure. Nantung et al. (2005) proposed implementation initiatives of the MEPDG in Indiana. A matrix of trial runs conducted using the MEPDG software suggested that a higher design level input does not necessarily guarantee a higher accuracy in predicting pavement performance. The software runs also confirmed the need for using input values obtained from local rather than national calibration. Nantung et al. (2005) indicated that the hierarchical approach to design inputs is an important feature in the MEPDG. A decision to choose a higher input level from the start of the design process in many cases may not result

8. Summary of observations The Iowa Department of Transportation (DOT) currently utilizes the empirically-based AASHTO pavement design procedures originally derived from the 1960 Road Test data. It is clear that these empirical procedures are no longer applicable to current conditions in Iowa. With the release of the new MEPDG in the US, pavement design has taken a big leap forward. In support of the MEPDG implementation initiatives at Iowa DOT, sensitivity studies were conducted using the MEPDG to identify design inputs pertaining to both rigid pavements and flexible pavements that are of particular sensitivity in Iowa as well as those factors that are of no particular sensitivity. Based on a thorough examination of the MEPDG design components, the results of sensitivity analyses and past experience, implementation recommendations were made for traffic, climate, structural and non-structural elements. Since the new design approach includes the use of mechanistic-empirical procedures and performance prediction models, in-depth knowledge about the use of design inputs for pavement designs is required. An expert system should be established to help pavement design engineers determine which design inputs to modify. The performance models in the MEPDG have been calibrated against information in the national LTPP database, which did not adequately represent Iowa. It will be necessary, therefore, to validate the MEPDG performance

H. Ceylan et al. Evaluation of the mechanistic-empirical pavement design guide for implementation in Iowa

12

References

A

ut

ho

r'

s

pe

rs

on

al

Acknowledgments The authors would like to thank the Iowa Highway Research Board for sponsoring this research and the Iowa DOT for their continued interest, help and cooperation. Special thanks to Dr. Michael Heitzman, Bituminous Materials Engineer of the Iowa DOT. Any errors of fact or opinions are those of the authors alone, and the conclusions drawn do not necessarily represent the policies of neither Iowa State University nor the Iowa DOT.

Ceylan, H.; Coree, B. J.; Gopalakrishnan, K. 2006. Strategic plan for implementing Mechanistic-Empirical Pavement Design Guide in Iowa. [CD-ROM], in Proc of the TRB 85th Annual Meeting: compendium of papers. 22–26 Jan, 2006, Washington DC, USA. Wahington DC: Transportation Research Board. 23 p. Coree, B.; Ceylan, H.; Harringtom, D. 2005. Implementing the Mechanistic-Empirical Pavement Design Guide: Implementation Plan [cited 15 Oct, 2008]. Available from Internet: . Kim, S.; Ceylan, H.; Heitzman, M. ������������������������������ 2005. Sensitivity study of design input parameters for two flexible pavement systems using the Mechanistic-Empirical Pavement Design Guide, in Proc of the 2005 Mid-Continent Transportation Research Symposium, 18–19 Aug, 2005, Ames, Iowa, USA. Available from Internet: . Kim, S.; Ceylan, H.; Gopalakrishnan, K.; Heitzman, M. 2006. Sensitivity study of Iowa flexible pavements using the Mechanistic-Empirical Pavement Design Guide [CD-ROM], in Proc of the TRB 85th Annual Meeting: compendium of papers. 22– 26 Jan, 2006, Washington DC, USA. Wahington DC: Transportation Research Board. 25 p. Nantung, T.; Chehab, G.; Newbolds, S.; Galal, K.; Li, S.; Kim, D. H. 2005. Implementation initiatives of the Mechanistic-Empirical Pavement Design Guides in Indiana, Transportation Research Record 1919: 142–151. DOI: 10.3141/1919-15 Uzan, J.; Freeman, T. J.; Cleveland, G. S. 2005. Strategic plan of the Texas Department of Transportation for implementing NCHRP 1-37A Pavement Design Guide, Transportation Research Record 1919: 152–159. DOI: 10.3141/1919-16

co py

predictions using the available LTPP and Iowa DOT PMIS data and further calibrate the models locally. A training program for pavement engineers with an emphasis on obtaining the relevant level of design inputs should be implemented. In order to adequately implement the use of the MEPDG, it will be necessary to train all Iowa DOT staff involved with the MEPDG design process. Training should also be provided for representatives from the areas of traffic, materials, PMIS and special investigations from central and district offices. In summary, it is recommended that the Iowa DOT seek to implement the MEPDG as the preferred approach to pavement design and evaluation. However, immediate implementation is neither feasible nor possible. Therefore, the Iowa DOT should seek to position itself such that general implementation is possible in approx 3 years, and allow further 2 years for full implementation.

Received 24 January 2008; accepted 12 February 2009

THE BALTIC JOURNAL OF ROAD AND BRIDGE ENGINEERING

2008 4(1): I a–I b

Abstracts in Lithuanian Ceylan, H.; Coree, B.; Gopalakrishnan, K. 2009. Mechaninio-empirinio dangų projektavimo vadovo Ajovos valstijoje vertinimas, The Baltic Journal of Road and Bridge Engineering 4(1): 5–12. Santrauka. Parengus naująjį dangų mechaninio-empirinio projektavimo vadovą (MEDPV), dangų skaičiavimas ir projektavimas labai pasikeitė, o daugelis valstybinių kelių įmonių ėmėsi iniciatyvos šiam vadovui perimti. Viena iš tokių įmonių yra Ajovos transporto departamentas. Norint pereiti nuo dabartinių empirinių metodų prie MEDPV ir paspartinti vadovo perėmimą, Ajovos transporto departamentui reikalinga išsami mokymo strategija. Palaikant šią iniciatyvą, MEDPV kompiuterine programa buvo atlikta nestandžiųjų dangų įvesties parametrų jautrumo analizė. Remiantis MEDPV projektavimo komponentų tyrimais, jautrumo analizės rezultatais ir ankstesne patirtimi, šiame straipsnyje, kuris yra antrasis straipsnis šia tema, supažindinama su departamento pastangomis šiam mokymui MEDPV Ajovos valstijoje. MEDPV įgyvendinimo poreikis Ajovoje ir standžiųjų dangų įvesties parametrų jautrumo analizės rezultatai pateikti pirmajame straipsnyje „Standžiųjų kelių dangų projektavimas Ajovos valstijoje, naudojant mechaninio-empirinio kelių dangų projektavimo vapdovą“ BJRBE 2008, 3(4): 219–225. Reikšminiai žodžiai: mechaninio-empirinio dangų projektavimo vadovas (MEDPV), asfaltbetonis, nestandžioji kelio danga, kalibravimas, vėžėtumas, pleišėjimas, jautrumo analizė. Beben, D. 2009. Plieninės pralaidos konstrukcijos skaitmeninė analizė, The Baltic Journal of Road and Bridge Engineering 4(1): 13–21. Santrauka. Straipsnyje aprašyta plieninės pralaidos, išbandytos veikiant realioms apkrovoms (užpilant gruntą ir veikiant statinėms apkrovoms), skaitmeninė analizė. Palyginti šio bandymo ir laboratorinių skaičiavimų rezultatai. Gruntu užpiltos plieninės konstrukcijos dažniausiai naudojamos pralaidoms vietiniuose keliuose ar net magistralėse, taip pat geležinkelio viadukams, o pastaruoju metu ekologiniams objektams ar tuneliams statyti (gyvulių pralaidos, antžeminės gyvūnų perėjos). Nestandžiųjų konstrukcijų įrengimo iš gofruoto plieno lakštų technologija pagrįsta plieno konstrukcijos ir aplinkinių gruntų sąveika, taip pat įvertinamas apkrovų paskirstymas į aplinkinius gruntus. Modeliuojant tikrąsias apkrovas šio tipo pralaidose, vietoje nepaprastai brangių ir ilgai trunkančių eksperimentinių bandymų galima taikyti skaičiavimo modelį su sąsajos elementais. Reikšminiai žodžiai: plieninė pralaida, užpylimas, gofruotas lakštas, skaitmeninė analizė, bandymas apkrova. Antov, D.; Abel, K.; Sürje, P.; Rõuk, H.; Rõivas, T. 2009. Greičio mažinimo poveikis žiedinėse miesto sankryžose, The Baltic Journal of Road and Bridge Engineering 4(1): 22–26. Santrauka. Saugus eismas yra viena iš svarbiausių kelių eismo problemų daugelyje šalių, taip pat ir Baltijos valstybėse. Didelį susirūpinimą saugaus eismo požiūriu kelia miesto sankryžų saugumas. Kadangi daugelis sankryžų yra prastos ir nesaugios formos, jas būtina modernizuoti. Daugelyje pasaulio šalių žiedinės sankryžos tampa vis populiaresnės, dažnai manoma, kad tai yra pagrindinis miesto teritorijoje sankryžos tipas. Estijoje, kaip ir daugumoje kitų Europos šalių, žiedinės sankryžos pastaraisiais metais įrengiamos vis dažniau. Tai daro įtaką užsienio šalių patirtis, t. y. mažas avaringumas, puikios eismo sąlygos ir greičio mažinimo galimybės. Tačiau Estijos specialistai turi tam tikrų abejonių dėl galimo pralaidumo ribojimo, sunkiasvorių transporto priemonių ir didelių autobusų eismo ribojimų, o kartais dėl dviratininkų, pėsčiųjų ir neįgaliųjų saugumo. Šiuo metu Estijoje nėra išsamių statistinių duomenų apie esamų žiedinių sankryžų skaičių, jų įrengimo tempus ar projektavimą. Šio straipsnio tikslas yra nusta­ tyti veiksnius, galbūt darančius įtaką vairuotojų pasirenkamam greičiui žiedinėse sankryžose. Gauti duomenys rodo, kad esminis veiksnys, veikiantis vairuotojo pasirenkamą greitį, yra esamas žiedinės sankryžos žiedo skersmuo. Reikšminiai žodžiai: saugus eismas, žiedinė sankryža, greitis. Žilinskaitė, A.; Žiliukas, A. 2009. Sudėtingai apkraunamų tiltų konstrukcijos dvitėjinių elementų klupdymas, The Baltic Journal of Road and Bridge Engineering 4(1): 27–30. Santrauka. Straipsnyje nagrinėjamas sudėtingai apkrautų dvitėjinių elementų stabilumas, kai juos veikia lenkimo momentas ir papildomas sukimo momentas. Paprastai lenkiant ilgus ir mažų skerspjūvio matmenų elementus veikia lenkimo ir susisukimo momentai. Čia dar įvertintas ir papildomas sukimo momentas, kuris gali atsirasti konISSN 1822-427X print / ISSN 1822-4288 online http://www.bjrbe.vgtu.lt

I b strukcijose nuo išorinių poveikių: nesimetrinės apkrovos, vėjo ir temperatūros. Klasikiniai sprendiniai analizuojami įvairiuose straipsniuose ir monografijose, o inžineriniai sprendiniai standartuose neteikia šio sudėtingo apkrovimo pavyzdžių. Tad darbe siūlomas energinis būdas, kaip apskaičiuoti kritines lenkimo jėgas ir papildomų sukimo momentų vertes. Gautos analitinės išraiškos patvirtinamos eksperimentiškai ir rodo jų priimtinumą. Reikšminiai žodžiai: klupdymas, dvitėjinis elementas, sudėtingas apkrovimas, lenkimas, sukimas. Klementschitz, R.; Stark, J. 2009. Kelionė į darbą ir atgal automobiliu: automobilių statymo reglamentavimas kaip galima paskata, The Baltic Journal of Road and Bridge Engineering 4(1): 31–35. Santrauka. Austrijos Vienos miesto Gamtos išteklių ir taikomųjų mokslų universiteto Transporto studijų institutas Vienos, Žemosios Austrijos ir Burgenlando provincijų užsakymu atliko tyrimą, kokią įtaką automobilių statymo darbo vietoje reglamento įvedimas turės darbuotojų judrumui. Apklausų telefonu pagal pirmenybių teikimo metodą (angl. Stated Preference Technique) rezultatai parodė, kad stovėjimo vietų skaičiaus ribojimas ir automobilių statymo kompanijai priklausančiose stovėjimo aikštelėse privalomojo apmokestinimo įvedimas yra efektyvi priemonė įgyvendinant strateginius miesto tikslus. Abiem atvejais tuo pat metu būtina riboti ir ilgą stovėjimą miesto gatvėse. Tai padėtų išvengti automobilių srauto didėjimo ieškant laisvų stovėjimo vietų. Reikšminiai žodžiai: automobilių statymo reglamentavimas, kelionė į darbą ir iš darbo, transporto priemonės pasirinkimas, pirmenybių teikimo analizė, judrumo valdymas, kompanijos automobilių stovėjimo aikštelė. Grigonis, V.; Paliulis, G. M. 2009. Eismo ribojimo politika Lietuvos miestuose remiantis Vilniaus miesto pavyzdžiu, The Baltic Journal of Road and Bridge Engineering 4(1): 36–44. Santrauka. Straipsnyje pateikiami eismo ribojimo Vilniaus Senamiestyje galimybių studijos rezultatai. Kasmet augantys transporto srautai siaurose Vilniaus Senamiesčio gatvėse sukelia aplinkos saugos, eismo saugumo, ekonominių ir socialinių problemų. Straipsnyje apžvelgiama pasaulinė žemės naudojimo ir transporto strategijų patirtis, aprašomi tyrimai, atlikti Vilniaus Senamiestyje, pateikiama šių tyrimų analizė. Remiantis tyrimų rezultatais siūloma strateginių šios problemos sprendimo būdų dėl eismo organizavimo Vilniaus Senamiestyje, parengtas šių siūlymų pagrindimas. Papildomai straipsnyje išsamiau analizuojami tokie strateginiai siūlymai: Senamiesčio aplinkkeliai, kilpinis ir mokamas įvažiavimas į Senamiesčio zoną. Reikšminiai žodžiai: Vilniaus Senamiestis, transporto ir žemės naudojimo strategijos, tranzitinis transportas, eismo organizavimas, eismo ribojimas, mokamas važiavimas.

THE BALTIC JOURNAL OF ROAD AND BRIDGE ENGINEERING

2009 4(1): II a–II b

Abstracts in Latvian Ceylan, H.; Coree, B.; Gopalakrishnan, K. 2009. Mehāniski – empīriskās ceļa segu projektēšanas rokasgrāmatas izvērtējums ar nolūku ieviest Aiovā, The Baltic Journal of Road and Bridge Engineering 4(1): 5–12. Kopsavilkums. Ar jaunās mehāniski – empīriskās ceļa segu projektēšanas rokasgrāmatas (MECSPR) iznākšanu ASV, ceļa segu aprēķinos un projektēšanā ir notikušas lielas izmaiņas un daudzas valsts ceļu aģentūras izrāda iniciatīvu MECSPR ieviešanā. Aiovas transporta departaments ir viena šādām autoceļu aģentūrām ASV, kas ir ieinteresēta ieviest MECSPR. Lai efektīvi un lietpratīgi pārietu no eksistējošās empīriskās metodes uz MECSPR un paātrinātu tās pārņemšanu, Aiovas Transporta departamentam nepieciešama detalizēta ieviešanas un apmācības stratēģija. Papildus MECSPR ieviešanas aktivitātēm, izmantojot MECSPR programmas, tika veiktas jutīguma analīzes. To nolūks bija identificēt nestingo ceļa segu projektēšanai nepieciešamos datus, jo tām ir sevišķa nozīme Aiovā. Dotais raksts, kas ir otrais divu rakstu sērijā un kas balstīts uz studijām par MECSPR projektēšanas komponentēm, jutīguma analīzes rezultātiem un agrāko gadu pieredzi, prezentē galvenās iniciatīvas MECSPR ieviešanā Aiovā. Pirmajā rakstā detalizēti diskutēti jautājumi par MECSPR ieviešanas nepieciešamību Aiovas Transporta departamentā un par stingo ceļa segu ievades parametru jutīguma analīzes rezultātiem. Atslēgvārdi: Mehāniski –empīriskā ceļa segu projektēšanas rokasgrāmata (MECSPR), asfaltbetons, nestinga ceļa sega, kalibrēšana, risu veidošanās, plaisu veidošanās, jutīguma analīze. Beben, D. 2009. Grunts-tērauda tilta konstrukciju skaitliskā analīze, The Baltic Journal of Road and Bridge Engineering 4(1): 13–21. Kopsavilkums. Raksts iepazīstina ar grunts-tērauda tilta skaitlisko analīzi, kā arī pilna izmēra pārbaudi izmantojot reālu slodzi (grunts aizpildījumu un veicot statisko slogošanu). Rakstā salīdzināti analītiskā aprēķina un pārbaudes rezultāti. Grunts–tērauda tilti visbiežāk atrodas uz vietējas nozīmes autoceļiem, tos var izmantot arī kā dzelzceļa viaduktus, vai automaģistrāļu tiltus, kā arī pēdējā laikā tos izmanto ekoloģisku objektu vai tuneļu būvniecībai (pārvadi vai tuneļi dzīvniekiem). No rievotām tērauda loksnēm (CSP) veidotu elastīgo konstrukciju pielietošanas metodika ir balstīta uz čaulas un grunts mijiedarbību, kā arī ņem vērā slodzes sadalījumu gruntī. Kustīgās slodzes iedarbības modelēšanai, šāda tipa tiltiem, ļoti dārgo un laikietilpīgo eksperimentālo testu vietā tiek izmantots aprēķina modelis ar saskarsmes elementiem. Atslēgvārdi: grunts-tērauda tilts, grunts aizpildījums, rievota tērauda loksne, skaitliskā analīze, pārbaude ar slodzi. Antov, D.; Abel, K.; Sürje, P.; Rõuk, H.; Rõivas, T. 2009. Ātruma samazinājuma efekts izmantojot lokveida ceļu mezglus pilsētvidē, The Baltic Journal of Road and Bridge Engineering 4(1): 22–26. Kopsavilkums. Ceļu drošība daudzās valstīs, tai skaitā arī Baltijas valstīs, ir viena no nopietnākajām ceļu satiksmes problēmām. Viena no satraucošākajām problēmām ceļu satiksmes drošībā ir ceļu mezglu drošība pilsētvidē. Tā kā daudzi ceļu mezgli līdz pat šodienai ir slikti un nedroši, tad pastāv nepieciešamība tos rekonstruēt par moderniem ceļu mezgliem. Lokveida ceļu mezgli daudzās pasaules valstīs kļūst aizvien populārāki un bieži tos uzskata par vienu no galvenajiem ceļu mezglu tipiem pilsētvidē. Igaunijā, tāpat kā lielākajā daļā Eiropas valstu, lokveida ceļu mezgli pēdējos gados, pateicoties ārzemju pieredzei, kas apliecinājusi to izcilo satiksmes drošības līmeni, satiksmes norisi veidu un satiksmes mierināšanas īpašības, ir kļuvuši aizvien populārāki. Tomēr Igaunijā vēl pastāv šaubas par caurlaides spējas potenciālajiem ierobežojumiem, satiksmes ierobežojumiem smagajām mašīnām un reizēm par satiksmes drošības uzlabojumiem gājējiem, velosipēdistiem un cilvēkiem ar īpašām vajadzībām. Igaunijā nav apkopojošu statistikas datu par lokveida ceļa mezglu skaitu, to turpmāko izaugsmi un projekta risinājumiem. Dotā raksta mērķis bija noskaidrot kādi faktori varētu ietekmēt transportlīdzekļa vadītāja ātruma izvēli pie lokveida ceļu mezgliem. Iegūtie dati ļauj secināt, ka par galveno ātruma izvēles kritēriju uzskatāms lokveida ceļu mezgla iekšējais diametrs. Atslēgvārdi: ceļu drošība, lokveida ceļu mezgls, ātrums.

ISSN 1822-427X print / ISSN 1822-4288 online http://www.bjrbe.vgtu.lt

II d II b Žilinskaitė, A.; Žiliukas, A. 2009. Tiltu dubult-t veida konstrukciju elementu ļodze komplicētas slogošanas gadījumā, The Baltic Journal of Road and Bridge Engineering 4(1): 27–30. Kopsavilkums. Rakstā analizēta dubult-t veida elementa stabilitāte komplicētas slogošanas gadījumā, ietverot lieces un papildus vērpes momentu. Vienkāršas lieces gadījumā garos elementos un elementos ar mazu šķērsgriezuma laukumu rodas lieces un vērpes momenti. Šajā rakstā ir ievērtēts papildus vērpes moments, ko konstrukcijā var izraisīt tādi ārējie efekti, kā nesimetriska slodze, vējš un temperatūras izmaiņas. Daudzos rakstos un pētījumos analizētie standartos dotie klasiskie un inženiertehniskie risinājumi, bet netiek apskatīti komplicēta slogojuma gadījumi. Tādēļ, šajā rakstā ir ierosināts izmantot enerģētisko metodi, lai noteiktu kritiskā lieces spēka un papildus lieces momenta vērtības. Analītiskie iegūtie vienādojumi ir eksperimentāli pārbaudīti un uzrādījuši pieņemamu rezultātu sakritību. Atslēgvārdi: ļodze, dubult-t veida elementi, komplicēta slogošana, liece, vērpe. Klementschitz, R.; Stark, J. 2009. Ceļš uz darbu un vieglā auto izmantošana: auto stāvvietu disciplīna kā potenciāls rīks, The Baltic Journal of Road and Bridge Engineering 4(1): 31–35. Kopsavilkums. Lejasaustrija, Burgenlande kā arī Vīnes province bija uzticējušas Dabas resursu un dzīves zinātņu universitātes (Vīne, Austrija) Transporta studiju institūtam veikt analīzi par to, kā ieviešot disciplīnu autostāvvietās pie darba vietas tiek ietekmēta darbinieku mobilitāte. Balstoties uz rezultātiem, kas iegūti no telefona intervijām, kas veiktas atbilstoši noteiktās izvēles analīzes metodei, noskaidrots, ka gan ierobežojot stāvvietu skaitu, gan ieviešot obligāto maksu par stāvēšanu kompāniju īpašumā esošajās stāvvietās ir iegūts iedarbīgs līdzeklis, kas atbalsta pilsētas politiku. Lai nepasliktinātu rezultātu, vienlaicīgi ar abu augstākminēto gadījumu realizāciju jāaizliedz ilglaicīgā stāvēšana uz ielām. Tas atļauj izvairīties no satiksmes palielināšanās, kas saistīta ar brīvas stāvvietas meklējumiem (eksistējošajā situācijā vairāk nekā 50% respondentu varētu izvairīties no pasākuma tādā veidā). Atslēgvārdi: stāvvietu disciplīna, ceļš uz darbu, transporta veida izvēle, noteiktās priekšrocības analīze, mobilitātes vadība, kompānijas stāvvieta. Grigonis, V.; Paliulis, G. M. 2009. Satiksmes ierobežojumu politika Lietuvas pilsētās balstoties uz Viļņas piemēra, The Baltic Journal of Road and Bridge Engineering 4(1): 36–44. Kopsavilkums. Rakstā atainoti Viļņas Vecpilsētas (Lietuva) satiksmes ierobežojumu stratēģiju tehniski ekonomiskā pamatojuma rezultāti. Satiksmes plūsmas ikgadējais pieaugums Viļņas Vecpilsētas šaurajās ielās palielina apkārtējās vides, satiksmes drošības, ekonomiskās un sociālās problēmas. Rakstā sniegta pasaules praksē izmantoto zemes izmantošanas un transporta stratēģiju analīze, Viļņas Vecpilsētas satiksmes plūsmu izpētes dati un to analīzes rezultāti. Kā turpinājumu iepriekš minētajai izpētei, raksts ataino satiksmes organizācijas stratēģiskos priekšlikumus un izstrādāto priekšlikumu pamatojumu. Rakstā iekļauti arī plašāk analizētie stratēģiskie priekšlikumi par vecpilsētas apkārtceļiem, apvedceļiem un maksas iebrauktuvēm. Atslēgvārdi: Viļņas Vecpilsēta, transporta un zemes izmantošanas stratēģija, tranzīta satiksme, satiksmes organizācija, satiksmes ierobežojumi, maksa par ceļa lietošanu.

THE BALTIC JOURNAL OF ROAD AND BRIDGE ENGINEERING

2009 4(1): III a–III b

Abstracts in ESTONIAN Ceylan, H.; Coree, B.; Gopalakrishnan, K. 2009. Mehhanistlik-empiirilise katendiarvutusjuhendi (MechanisticEmpirical Pavement Design Guide) hindamine kasutuselevõtuks Iowas, The Baltic Journal of Road and Bridge Engineering 4(1): 5–12. Kokkuvõte. Uue mehhanistlik-empiirilise katendiarvutusjuhendi (MEPDG) valmimisega USA-s on suuresti muutunud katendi analüüsi ja projekteerimise alused ja paljud osariigid on otsustanud MEPDG juurutada. Iowa Maanteeamet (Iowa DOT) on üks neist. Selleks, et efektiivselt üle minna MEPDG kasutamisele vajab Iowa detailset juurutamis- ja koolitamisstrateegiat. MEPDG juurutamiseks viidi läbi tundlikkusuuringud kasutades MEPDG tarkvara projekteerimise lähteandmete kindlaksmääramiseks elastsete katendite arvutamiseks. Käesolev artikkel on teine kahest järgnevast artiklist, mis käsitleb MEPDG juurutamisvajadust Iowas, kasu juurutamisest ja elastse katendi arvutuse lähteandmete tundlikkusuuringust. Vastavad tulemused jäiga katendi arvutuse kohta on esitatud esimeses juba ilmunud artiklis. Võtmesõnad: mehhanistlik-empiiriline katendiarvutusjuhend (MEPDG); asfaltbetoon; elastsne katend; kalibreerimine; roopad; pragunemine; tundlikkusanalüüs. Beben, D. 2009. Pinnas-terassilla arvanalüüs, The Baltic Journal of Road and Bridge Engineering 4(1): 13–21. Kokkuvõte: Artikkel esitab pinnas-terassilla arvanalüüsi, mida katsetati ka tegelikes tingimustes (tagasitäite ajal ja staatilise koormuse all). Artiklis on esitatud ka arvutus- ja katsetulemuste võrdlus. Pinnas-teraskonstruktsioone ehitatakse sildadena peamiselt kohalikel teedel, samuti ka raudteeviaduktidena, või isegi ka kiirteesildadena ning viimasel ajal ka ökotunnelitena või – viaduktidena loomadele. Korfreeritud terasplaatidest elastsete konstruktsioonide kasutamise tehnoloogia põhineb terakonstruktsiooni ja täitepinnase omavahelises koostoimes ja võtab samuti arvesse koormuse mõju pinnasele. Sellistes sildades tekkivate koormuste simuleerimiseks arvuti abil saab kasutada vastavat arvutusmudelit selle asemel, et tegeleda aega nõudvate ja kallite eksperimentaalsete katsetega. Võtmesõnad: pinnas-terassild, tagasitäide, korfreeritud plaat, arvanalüüs, koormuskatse. Antov, D.; Abel, K.; Sürje, P.; Rõuk, H.; Rõivas, T. 2009. Linna ringristmike liikluskiirust vähendav mõju, The Baltic Journal of Road and Bridge Engineering 4(1): 22–26. Kokkuvõte. Liiklusohutus on teeliikluse üks kõige tõsisemaid probleeme paljude maades, kaasa arvatud ka Balti riikides. Üks probleeme on liiklusohutus linnaristmikel. Kuna paljud ristmikud on endiselt väga halva ja ohtliku kujuga, tuleb need rekonstrueerida kaasaegsel viisil. Ringristmikud muutuvad maailmas üha populaarsemaks ja sageli peetakse neid üheks linnaristmiku põhitüübiks. Nii nagu enamikes Euroopa riikides on ka Eestis ringristmikud muutunud tänu välismaisele positiivsele kogemusele (suurepärased õnnetusandmed, liikluse sujuvus ja liikluse rahustamine) viimastel aastatel üha populaarsemaks. Kuid siiski on Eestis olnud mõningaid kahtlusi nende võimaliku läbilaskevõime, suurte veokite ja busside piirangute ja jalakäijate, jalgratturite ja invaliidide liiklusohtuse seisukohalt. Ringristmike arvu, kasvu ja projekteerimise kohta Eestis üldine statistika puudub. Käesoleva artikli eesmärgiks oli välja selgitada, millised tegurid mõjutavad juhtide liikluskiiruse valikut ringristmikel. Kogutud andmete alusel me saame järeldada, et põhiliseks liikluskiirust mõjutavaks teguriks ringristmikel on sisemise ringi diameeter. Võtmesõnad: liiklusohutus, ringristmik, kiirus. Žilinskaitė, A.; Žiliukas, A. 2009. Topelt-T sillaelementide nõtkumine raskes koormusolukorras, The Baltic Journal of Road and Bridge Engineering 4(1): 27–35. Kokkuvõte��. Käesolev artikkel analüüsib topelt-T elementide stabiilsust raskes koormusolukorras painde- ja väändemomendi rakendumisel. Lihtsal paindel on pikad elemendid ja väikese ristlõikega elemendid allutatud painde- ja väändemomentidele. Siin on samuti hinnatud lisaväändemomenti, mis võib tekkida ehitamisel eritingimustes: ebasümmeetriline koormus, tuul ja temperatuur. Klassikalisi lahendusi on analüüsitud mitmetes artiklites ja uuringutes ja standardites esitatud insenerilahenduste näited ei käsitle sellist keerulist koormusolukorda. Seetõttu esitab käesolev artikkel meetodi, millega arvutada kriitlised paindejõud ja lisaväändemomendi väärtused. Saadud analüütilised seosed on kontrollitud eksperimentaalselt ja tulemused on tunnistatud vastuvõetavaks. ISSN 1822-427X print / ISSN 1822-4288 online http://www.bjrbe.vgtu.lt

III b Võtmesõnad: nõtkumine, topelt-T element, raske koormusolukord, paine, vääne. Klementschitz, R.; Stark, J. 2009. Commuting and car use: car park regimentations as a potential lever, The Baltic Journal of Road and Bridge Engineering 4(1): 31–35. Kokkuvõte. Transpordiuuringute Instituudile, Loodusressursside ja Loodusteaduste Ülikoolile Viinis Austrias tegid Viini, Alam-Austria ja Burgenlandi provintsid ülesandeks uurida, kuidas mõjutab parkimise piiramine liikluskäitumist. Telefoniküsitluste tulemuste alusel saab öelda, et nii parkimiskohtade vähendamine ja tasulise parkimise rakendamine firmade parklates on linna transpordipoliitika eesmärkide saavutamise mõjusaks vahendiks. Samuti tuleb paralleelselt vähendada võimalust pikaajaliseks tänavaparkimiseks, kuna ligi 50 % küsitletuist kasutaksid uues olukorras seda võimalust. Võtmesõnad: parkimispiirang, töölesõit, mooduse valik, eelistusanalüüs, mobiilsuse juhtimine, firma parkla. Grigonis, V.; Paliulis, G. M. 2009. Liikluspiirangute poliitika Leedu linnades tuginedes Vilniuse uuringule, The Baltic Journal of Road and Bridge Engineering 4(1): 36–44. Kokkuvõte. Artikkel käsitleb Vilniuse vanalinna liikluspiirangute põhimõtete uuringut. Liiklussagdeuse kasv Vilniuse vanalinna kitsastel tänavatel suurendab keskkonna, liiklusohutuse, majanduslikke ja sotsiaalseid probleeme. Artiklis on esitatud teiste riikide maakasutuse ja transpordistrateegiate analüüs, Vilniuse vanalinna liiklusvoogude analüüs ja uuringutulmuste analüüs. Eelnimetatud uuringu tulemusena on artiklis esitatud üldised strateegiad ja ettepanekud liikluspiiranguteks linnades – ümbersõiduteed, vanalinna sissesõidu maksustamine. Võtmesõnad: Vilniuse vanalinn, transpordi ja maakasutuse strateegiad, transiitliiklus, liikluskorraldus, liikluspiirangud, tee maksustamine.

THE BALTIC JOURNAL OF ROAD AND BRIDGE ENGINEERING

2009 4(1)

Turinys Ivan Josifovich Leonovich.......................................................................................................................................................3 Halil Ceylan, Brian Coree, Kasthurirangan Gopalakrishnan Mechaninio-empirinio dangų projektavimo vadovo Ajovos valstijoje vertinimas.........................................................5 Damian Beben Plieninės pralaidos konstrukcijos skaitmeninė analizė.................................................................................................... 13 Dago Antov, Kristiina Abel, Peep Sürje, Harri Rõuk, Tiia Rõivas Greičio mažinimo poveikis žiedinėse miesto sankryžose............................................................................................... 22 Aušra Žilinskaitė, Antanas Žiliukas Sudėtingai apkraunamų tiltų konstrukcijos dvitėjinių elementų klupdymas............................................................... 27 Roman Klementschitz, Juliane Stark Kelionė į darbą ir atgal automobiliu: automobilių statymo reglamentavimas kaip galima paskata........................... 31 Vytautas Grigonis, Gražvydas Mykolas Paliulis Eismo ribojimo politika Lietuvos miestuose remiantis Vilniaus miesto pavyzdžiu.................................................... 36

SATURS

Ivan Josifovich Leonovich.......................................................................................................................................................3 Halil Ceylan, Brian Coree, Kasthurirangan Gopalakrishnan Mehāniski – empīriskās ceļa segu projektēšanas rokasgrāmatas izvērtējums ar nolūku ieviest Aiovā........................5 Damian Beben Grunts-tērauda tilta konstrukciju skaitliskā analīze......................................................................................................... 13 Dago Antov, Kristiina Abel, Peep Sürje, Harri Rõuk, Tiia Rõivas Ātruma samazinājuma efekts izmantojot lokveida ceļu mezglus pilsētvidē................................................................. 22 Aušra Žilinskaitė, Antanas Žiliukas Tiltu dubult-t veida konstrukciju elementu ļodze komplicētas slogošanas gadījumā................................................. 27 Roman Klementschitz, Juliane Stark Ceļš uz darbu un vieglā auto izmantošana: auto stāvvietu disciplīna kā potenciāls rīks............................................. 31 Vytautas Grigonis, Gražvydas Mykolas Paliulis Satiksmes ierobežojumu politika Lietuvas pilsētās balstoties uz Viļņas piemēra......................................................... 36

ISSN 1822-427X print / ISSN 1822-4288 online http://www.bjrbe.vgtu.lt

SISUKORD

Ivan Josifovich Leonovich.......................................................................................................................................................3 Halil Ceylan, Brian Coree, Kasthurirangan Gopalakrishnan Mehhanistlik-empiirilise katendiarvutusjuhendi (Mechanistic-Empirical Pavement Design Guide) hindamine kasutuselevõtuks Iowas.......................................................................................................................................5 Damian Beben Pinnas-terassilla arvanalüüs................................................................................................................................................ 13 Dago Antov, Kristiina Abel, Peep Sürje, Harri Rõuk, Tiia Rõivas Linna ringristmike liikluskiirust vähendav mõju............................................................................................................. 22 Aušra Žilinskaitė, Antanas Žiliukas Topelt-T sillaelementide nõtkumine raskes koormusolukorras..................................................................................... 27 Roman Klementschitz, Juliane Stark Commuting and car use: car park regimentations as a potential lever.......................................................................... 31 Vytautas Grigonis, Gražvydas Mykolas Paliulis Liikluspiirangute poliitika Leedu linnades tuginedes Vilniuse uuringule.................................................................... 36

The Baltic Journal of Road and Bridge Engineering Address of Editorial Board: Prof Dr D. Čygas, Assoc Prof Dr D. Žilionienė, Dept of Roads, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania. Tel.: +370 5 274 5011, 274 47 08; Fax: +370 5 274 4731. E-mail: [email protected]

Instructions to Contributors General. The Journal publishes original unpublished research articles on road and bridge engineering. English is the language of articles. For the Editorial Board, two manuscript copies of good quality and an electronic copy prepared by MS Word editor and of Times New Roman type should be submitted following the requirements presented below. The text of the article should be printed by Single interval on pages of 210×297 mm format with the print area of 170×245 mm each. The volume of an article is up to 8 pages (none the less 4 pages). The pagination is made by an ordinary pencil below on the right. The authors should sign the second copy of the article. On a separate page and on the second copy the data concerning authors are to be presented: name, surname, working place and its address, telephone (home, job), fax, E-mail. When the authors include more than one researcher, a person responsible for corresponding with the Editorial Board of the Journal should be indicated. Structure of the Article. An article should include the following parts: heading, the authors’ names and surnames, name and address of their working places, summary, keywords, introduction (the object and goal of research, the methods applied, the review of literature and its analysis, etc. should be characterised), the main text, conclusions or a generalisation, list of references, and abstracts. Appendices may be added; they are placed before the list of references. Acceptance and Corrections. Every article is reviewed by 2 members of the Editorial Board or by its appointed experts. The accepted article should be corrected by the author taking into account the remarks of the reviewers or editors or the motives explained why the remarks have been disregarded. The printed copy and the electronic copy of the corrected article are to be presented to the Editorial board not later than in a fortnight after obtaining the review. Together the author returns the manuscript of the reviewed article. Style. To achieve uniformity and consistency in publications, the Journal editorial staff uses certain standard reference works for guidance. In matters of spelling, definition, and compounding of words, Technical Dictionary of Road Terms and the PIARC Lexicon of Road and Traffic Engineering (http://termino.piarc.org), is generally followed. Published standards of scholarly organizations are accepted in questions of usage of technical terms. Authors should avoid jargon, undefined acronyms, use of personal pronouns, and sexist language in their papers. The Article Design 1. The heading of the article should be printed 60 mm below the sheet top by capital letters of 12 pt Bold type and centred. There is a Single line interval between the heading and the author’s name. 2. The names and surnames of the author or co-authors should be printed by small letters of 11 pt Bold type and centred. Below the author’s surname, the name of institution (represented by the author or co-authors) is printed in 10 pt Italic, its address, the author’s Email are written and centred. Different institutions represented by the authors are recorded in foot-notes. 3. Abstract and keywords are printed in Single interval of 9 pt type in one column and after the institution address the margins of 30 mm and interval of three lines below the institution address are left. Words Abstract and Keywords are printed in Bold. The volume of the abstract cannot be less than 600 typographic signs. Between the abstract and keywords there should be an interval of one line. The keywords should include 6-10 items. 4. Introduction, main text and conclusions are to be printed in 10 pt type Single interval into two columns at the distance of 1 line from keywords. Between the two columns a space of 6 mm is to be left. The first line of the paragraph is to be shifted by 7 mm from the left margin. The last page of the article is to be filled not less than by 70%.

5. Mathematical dependences, their notations in the text and other symbols should be written in Equation Editor 3 Italic 10 pt type, the indexes by 7 pt, sub indexes by 6 pt. Matrices are written in square brackets, vectors by Bold-Regular 10 pt type. All the numerals, including index numbers, are presented in Regular type. Formulas are centred. They are numbered by Arabic numerals in round brackets and aligned right. Between a formula and text there should be an interval of one line. 6. Figures and tables should be put in the place where they are mentioned; and they are centred. Larger tables and figures may be put at the top of a sheet or at the bottom across the whole breadth. Figures are drawn by computer and additionally presented by one of these fails: *.jpg, *.tif, *.wmf ar *.pcx. Photos (coloured and blackand-white type) should be of good quality, clear and suitable for reproduction. The numbers of figures and tables (for instance, Fig. 1., Table 3.) and inscriptions below are written in 9 pt of Regular type. Figures and tables are separated from the text by one-line interval. 7. The headings of introduction, chapters and sub-chapters are printed by small letters in 10 pt Bold-Regular type and aligned left. The introduction, headings of chapters and conclusions are numbered by one Arabic numeral and sub-chapters by two numerals. The titles of chapters and sub-chapters should be separated from the text by one-line interval. 8. The name of the author of the source, the year of publication and pages should be presented in the text in brackets. The list of references is given after conclusions. The word References is spelled in small letters of 10 pt Bold-Regular type on the left side and the list of references in 9 pt. The references are to be presented in alphabetical order, in original language, translation into English is given in square brackets, as follows: Bazant, Z. P. 1969. Thermodynamic theory of concrete deformation at variable temperature and humidity. Report No. 69-11. Division of Structural Engineering and Structural Mechanics, University of California at Berkeley. 100 p. Journal of Technology Education [online]. 1989. Blacksburg: Virginija Polytechnic Institute and State University [cited 15 March 1995]. Available from Internet: . ISSN 1045–1064. Petkevičius, K.; Christauskas, J. 2006. Asphalt concrete quality assurance during production, The Baltic Journal of Road and Bridge Engineering 1(3): 151–156. Sivilevičius, H. 2005. The analysis of the new asphalt concrete mixing plant batchers and their smart control systems, in Proc of the 6th International Conference “Environmental Engineering”: selected papers, vol. 2. Ed. by Čygas, D.; Froeh­ner, K. D. May 26–27, 2005, Vilnius, Lithuania. Vilnius: Technika, 775–782. Бункин, И. Ф. 2002. Автоматизация управления производством асфальтобетонов [Bunkin, J. F. Automatic control of asphalt con­crete production]: реферат докторской диссертации. Москва. Do not use footnotes to the text. Incorporate the information into the text or delete the notes. Do not use appendices. Include pertinent material in the paper itself or, where necessary, include a note that background material, such as derivation of formulas, specifications, or survey forms, is available from the author or in another report, which should be cited in the reference list. Metrication. Contributors are encouraged to provide measurements in SI (metric) units. The measurement unit of the original research should be followed by the equivalent conversion in paren­theses.

World

LT76 7044 0600 0031 7763; Swift Code: CBVI LT2X

Information: Assoc Prof Dr Daiva Žilionienė Phone +370 (5) 274 4708 Fax +370 (5) 274 4731 E-mail [email protected] Internet www.bjrbe.vgtu.lt

THE JOURNAL IS DESIGNED FOR PUBLISHING PAPERS CONCERNING THE FOLLOWING AREAS OF RESEARCH: – road and bridge research and design, – road construction materials and technologies, – bridge construction materials and technologies, – road and bridge repair, – road and bridge maintenance, – traffic safety, – road and bridge information technologies, – environmental issues, – road climatology, – low-volume roads, – normative documentation,

– quality management and assurance, – road infrastructure and its assessment, – assets management, – road and bridge construction financing, – specialist pre-service and in-service training; besides, it publishes: advertising materials, reviews and bibliography, reports on conferences and workshops

The papers published in The Baltic Journal of Road and Bridge Engineering are indexed/abstracted by: Science Citation Index Expanded (ISI Web of Science)

Thomson Scientific www.isinet.com; http://scientific.thomson.com

INSPEC

Database of Institution of Engineering and Technology www.theiet.org/publishing/inspec/

Current Abstracts, TOC Premier

EBSCO Publishing www.epnet.com; http://search.epnet.com

TRIS Online

Transportation Research Information Services (TRIS) Bibliographic Database http://ntlsearch.bts.gov/tris

VINITI

Database of All-Russian Scientific and Technical Information Institute of Russian Academy of Sciences www.viniti.ru

SCOPUS

Elsevier Bibliographic Database www.scopus.com; www.elsevier.com

All papers published in Journal “The Baltic Journal of Road and Bridge Engineering” are peer-reviewed by members of Editorial Board or by its appointed experts. The Baltic Journal of Road and Bridge Engineering 2009, vol. 4, no. 1

EDITORIAL CORRESPONDENCE including manuscripts for submission should be addressed to Prof Dr D. Čygas, Editor-in-Chief, Assoc Prof Dr D. Žilionienė, Managing Editor of “The Baltic Journal of Road and Bridge Engineering”, Dept of Roads, Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania. Tel.: +370 5 274 5011, 274 4708; Fax: +370 5 274 4731. E-mail: [email protected]

http://www.bjrbe.vgtu.lt http://www.vgtu.lt/english/edition

Journal Cover Designer Donaldas Andziulis 17 March 2009. Printer’s sheets 6,75 Vilnius Gediminas Technical University Publishing House “Technika”, Saulėtekio al. 11, 10223 Vilnius, Lithuania, http://leidykla.vgtu.lt Printed by “Baltijos kopija”, Kareivių g. 13B, 09109 Vilnius, Lithuania, www.kopija.lt

THE BALTIC JOURNAL OF ROAD AND BRIDGE ENGINEERING, 2009, vol. 4, no. 1 http://www.bjrbe.vgtu.lt

International Research Journal of Vilnius Gediminas Technical University, Riga Technical University, Tallinn University of Technology, Baltic Road Association © Vilnius Gediminas Technical University, 2009

Contents Ivan Josifovich Leonovich

3

Halil Ceylan, Brian Coree, Kasthurirangan Gopalakrishnan Evaluation of the Mechanistic-Empirical Pavement Design Guide for Implementation in IOwa

5

Damian Beben NUMERICAL ANALYSIS OF A SOIL-STEEL BRIDGE STRUCTURE

13

Dago Antov, Kristiina Abel, Peep Sürje, Harri Rõuk, Tiia Rõivas Speed Reduction Effects of Urban Roundabouts

22

Aušra Žilinskaitė, Antanas Žiliukas buckling of double-t construction Elements for Bridges in Case of Complicated Loading

27

Roman Klementschitz, Juliane Stark COMMUTING AND CAR USE: Car park regimentations as a potential lever

31

Vytautas Grigonis, Gražvydas Mykolas Paliulis TRAFFIC RESTRICTION Policies IN Lithuanian cities based on Vilnius case study

36

Abstracts in Lithuanian

I a

Abstracts in Latvian

II b

Abstracts in Estonian

III a

The Baltic Journal of Road and Bridge Engineering, 2009, vol. 4, no. 1

The Baltic Journal of Road and Bridge Engineering, 2009, vol. 4, no. 1

The papers published in The Baltic Journal of Road and Bridge Engineering are indexed/abstracted by: • Science Citation Index Expanded (ISI Web of Science), • INSPEC (Database of Institution of Engineering and Technology), • Current Abstracts, TOC Premier (EBSCO Publishing), • TRIS (Transportation Research Information Services), • VINITI (All-Russian Scientific and Technical Information Institute of Russian Academy of Sciences), • SCOPUS (Elsevier Bibliographic Database).

2009, vol. 4, no. 1