3-1. Lateral Vehicle Dynamics

301 downloads 645 Views 2MB Size Report
Modelling of Automotive Systems. 1. Lateral Vehicle Dynamics y- lateral ... Kinematic Model of Lateral Vehicle Motion: Bicycle Model. 0. are angles slip s wheel'.
Lateral Vehicle Dynamics

y- lateral

x- longitudinal Modelling of Automotive Systems

1

Kinematic Model of Lateral Vehicle Motion:

Bicycle Model

Instantaneous rolling centre

Circular radius Steering angle

Centre of gravity

Vehicle orientation (yaw angle)

Wheelbase

Major assumption : velocities at A and B are in the direction of wheels orientation, i.e. the wheel's slip angles are 0. Modelling of Automotive Systems

2

Bicycle Model 2 front wheels are represented by a single wheel at A 2 rear wheels are represented by a single wheel at B Steering angles

δf δr Assumed both front and rear wheels can be steered. For only front steering case, δ r = 0 C - centre of gravity L = l f + lr : Wheelbase of the vehicle Ψ : Orientation of the vehicle - heading angle of vehicle V : velocity of c.g.

β : Slip angle of the vehicle (angle between the motion direction and vehicle orientation) R : Circular radius O : Instantaneous rolling centre

Modelling of Automotive Systems

3

Bicycle Model Course angle of the vehicle

γ =ψ + β

Triangle OCA  π sin  − δ f  sin (δ f − β ) 2  =  lf R sin δ f cos β − sin β cos δ f

or

lf

=

cos δ f R

or

tan δ f cos β − sin β =

lf R

Triangle OCB π  sin  δ r +  sin (β − δ r ) 2 =  lr R sin β cos δ r − sin δ r cos β cos δ r = lr R

or

or sin β − tan δ r cos β =

lr R

Add both

(tan δ

f

− tan δ r )cos β =

l f + lr R Modelling of Automotive Systems

4

Bicycle Model Slip angle β

From tan δ f cos β − sin β =

lf

R l sin β − tan δ r cos β = r R

(l

f

lr tan δ f cos β − lr sin β = l f sin β − l f tan δ r cos β =

l f lr R lr l f R

tan δ r + lr tan δ f )cos β − (l f + l f )sin β = 0

tan β =

l f tan δ r + lr tan δ f lf +lf  l f tan δ r + lr tan δ f    + l l f f  

β = tan −1 

i.e. the slip angle is represented by steering angles and wheelbases.

Modelling of Automotive Systems

5

Kinematic Model of Lateral Vehicle

(tan δ

f

− tan δ r )cos β =

l f + lr R

Angular velocity ψ& =

V R

Therefore ψ& =

V (tan δ f − tan δ r )cos β l f + lr

X& = V cos(ψ + β ) Y& = V sin (ψ + β )

Modelling of Automotive Systems

6

Kinematic Model of Lateral Vehicle: consider vehicle width Limitation of the bicycle model: δo and δi in fact are different.

Modelling of Automotive Systems

7

Kinematic Model of Lateral Vehicle: consider vehicle width In the bicycle model ψ& =

V (tan δ f − tan δ r )cos β l f + lr

If the slip angle β is small, δ r = 0 ψ& =

Vδ f l f + lr

=

Vδ f L

on the other hand V ψ& = R Therfore

δf =

L R

Let δ f =

δo =

δo + δi 2

L R+

lw 2

,

=

L R

δi =

L R−

lw 2

Modelling of Automotive Systems

8

Kinematic Model of Lateral Vehicle: consider vehicle width Trapezoidal tie rod arrangement to realize

δi > δo

Modelling of Automotive Systems

9

Dynamics of Bicycle Model

Modelling of Automotive Systems

10

Dynamics of Bicycle Model x − vehiclelongitudinal axis y - vehiclelateralposition,measuredalong the vehicle lateralaxis to the point O which is the centreof rotation

X − Y global coordinates ψ - yaw angle Vx − vehicle longitudinal velocity Using Newton's Law ma y = Fyf + Fyr a y = &y& +ψ& 2 R = &y& + Vxψ& m( &y& + Vxψ& ) = Fyf + Fyr I zψ&& = l f Fyf − lr Fyr Experimental shows the lateral tyre force is proportional to the slip angle (when slip angle is small). Modelling of Automotive Systems

11

Dynamics of Bicycle Model Experimental shows the lateral tyre force is proportional to the slip angle (when slip angle is small). Slip angle of tyre : α f = δ − θ vf where δ front tyre steering angle α r = −θ vr Rear tyre Forces Fyf = 2Cα f (δ − θ vf

)

Fyr = 2Cα r (− θ vf

x

)

where Cα f , Cα r are cornering stiffness tan θ vf = tan θ vr =

V y + l f ψ& Vx V y − l rψ& Vx

Steering angle

,

Velocity angle

Slip angle α f

,

lf

ψ

y Modelling of Automotive Systems

12

Dynamics of Bicycle Model When θ vf , θ vr are small y& + l f ψ& θ vf = Vx y& − lrψ& θ vr = Vx

m ( &y& + Vxψ& ) = Fyf + Fyr I zψ&& = l f Fyf − lr Fyr y& + l f ψ&  Fyf = 2Cαf  δ − Vx  y& − lrψ& Fyr = −2Cαr Vx

  

Modelling of Automotive Systems

13

&y& + Vxψ& =

2Cαf δ m

2Cαf ( y& + l f ψ& ) 2Cαr ( y& − lrψ& ) − − mV x mV x

2Cαf ( y& + l f ψ& )  lr 2Cαr ( y& − lrψ& ) lf   + ψ&& =  2Cαf δ − Iz  Vx Vx  Iz i.e. 2Cαf δ

2(Cαf + Cαr )

(

) ψ&

(

)ψ&

 2 Cαf l f − Cαr lr  &y& = y& − Vx + −  m mV x mV x  2 Cαf l 2f + Cαr lr2 l f 2Cαf δ 2(Cαf l f − Cαr lr ) ψ&& = y& − − Iz I zVx I zVx

Modelling of Automotive Systems

 

14

Introduce state space variable,  y  y&      ψ  ψ&  The lateral equations of motion become 1 0  y  2(Cαf + Cαr ) −  y&  0 d    mV x =   0 dt ψ  0 ψ&  0 − 2(Cαf l f − Cαr lr )  I zVx 

  0 y 2 Cαf l f − Cαr lr     2Cαf 0 − Vx −   y&   mV x    +  m 0 0 1  ψ    2 Cαf l 2f + Cαr lr2     2l f Cαf 0 −  ψ&   I I zVx z  

0

(

(

Modelling of Automotive Systems

0

)

)

   δ   

15