A 3D Convolutional Neural Network Approach for the

2 downloads 0 Views 861KB Size Report
DaTSCAN Image Database. Experiments. Comparison. Conclusions and ..... Data augmentation: Mirroring the images to account for bilateral differences.
A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease.

7th. International Work-Conference on the Interplay between Natural and Artificial Computation, IWINAC-2017 June 20, 2017 F.J. Martinez-Murcia1 , A. Ortiz2 , J. M. Górriz1 , J. Ramírez1 , F. Segovia1 , D. Salas-Gonzalez1 , D. Castillo-Barnes1 and I.A. Illán3 1

Dept. of Signal Theory, Networking and Communications. Universidad de Granada, Spain 2 Department of Communications Engineering. Universidad de Malaga, Spain. 3

Department of Scientific Computing. Florida State University, USA.

SiPBA Signal Processing and Biomedical Applications http://sipba.ugr.es

. . . .... .... .... . . . . .

S

SI

NG

AND

BIOME

DI

CA

L

CE

AP I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Table of Contents

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease.

Introduction

F.J. Martinez-Murcia Introduction

Methodology Volume Selection Algorithm Convolutional Neural Networks Evaluation

Methodology Volume Selection Algorithm Convolutional Neural Networks Evaluation

Experimental Results DaTSCAN Image Database

Experimental Results DaTSCAN Image Database Experiments Comparison

Experiments Comparison

Conclusions and future work

Conclusions and future work

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

L

CE

AP I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Introduction

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia



Parkinsonism is the second most common neurodegenerative disease worldwide.

2

Introduction Methodology Volume Selection Algorithm Convolutional Neural Networks Evaluation

Experimental Results DaTSCAN Image Database Experiments Comparison

Conclusions and future work

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

L

CE

AP I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Introduction

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia





Parkinsonism is the second most common neurodegenerative disease worldwide.

2

Introduction Methodology Volume Selection Algorithm

Imaging: DaTSCAN ( I-ioflupane) in SPECT → in vivo assessment of DAT in the striatum. 123

Convolutional Neural Networks Evaluation

Experimental Results DaTSCAN Image Database Experiments Comparison

Conclusions and future work

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

L

CE

AP I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Introduction

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia







Parkinsonism is the second most common neurodegenerative disease worldwide.

2

Introduction Methodology Volume Selection Algorithm

Imaging: DaTSCAN ( I-ioflupane) in SPECT → in vivo assessment of DAT in the striatum. 123

Convolutional Neural Networks Evaluation

Experimental Results

Many CAD systems: Discriminating PD and CTLs, and extrapydarmidal symptoms.

DaTSCAN Image Database Experiments Comparison

Conclusions and future work

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

L

CE

AP I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Introduction

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia









Parkinsonism is the second most common neurodegenerative disease worldwide.

2

Methodology Volume Selection Algorithm

Imaging: DaTSCAN ( I-ioflupane) in SPECT → in vivo assessment of DAT in the striatum. 123

Convolutional Neural Networks Evaluation

Experimental Results

Many CAD systems: Discriminating PD and CTLs, and extrapydarmidal symptoms.

DaTSCAN Image Database Experiments Comparison

CNNs are a trend in 2D image processing.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

Introduction

Conclusions and future work

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

L

CE

AP I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Introduction

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia







Parkinsonism is the second most common neurodegenerative disease worldwide.

2

Methodology Volume Selection Algorithm

Imaging: DaTSCAN ( I-ioflupane) in SPECT → in vivo assessment of DAT in the striatum. 123

Convolutional Neural Networks Evaluation

Experimental Results

Many CAD systems: Discriminating PD and CTLs, and extrapydarmidal symptoms.



CNNs are a trend in 2D image processing.



3D CNN applied to PD.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

Introduction

DaTSCAN Image Database Experiments Comparison

Conclusions and future work

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

NG

AND

BIOME

DI

CA

L

CE

AP

Methodology

SI

I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Volume Selection Algorithm

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia

0

Introduction 20

Methodology 3

Volume Selection Algorithm Convolutional Neural Networks

40

T=0.35 T=0.32

60

Evaluation

Experimental Results DaTSCAN Image Database Experiments

80

Comparison

T=0.30

Conclusions and future work 0

20

40

60

Figure: Example of selected area for different threshold values.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

NG

BIOME

DI

CA

L

CE

I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Background

Convolution

AND

AP

Convolutional Neural Networks

SI

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease.

Pool Convolution

Pool

F.J. Martinez-Murcia

Out

Introduction

Input

Methodology Volume Selection Algorithm 4

Convolutional Neural Networks Evaluation

Experimental Results DaTSCAN Image Database Experiments Comparison



Convolution layer: Units are not traditional computational neurons → convolutions with filters. (ReLU activation f(x) = max(0, x))

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

Conclusions and future work

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

NG

BIOME

DI

CA

L

CE

I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Background

Convolution

AND

AP

Convolutional Neural Networks

SI

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease.

Pool Convolution

Pool

F.J. Martinez-Murcia

Out

Introduction

Input

Methodology Volume Selection Algorithm 4

Convolutional Neural Networks Evaluation

Experimental Results DaTSCAN Image Database Experiments Comparison





Convolution layer: Units are not traditional computational neurons → convolutions with filters. (ReLU activation f(x) = max(0, x)) Pooling layer: non-linear downsampling by keeping the maximum value

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

Conclusions and future work

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

NG

BIOME

DI

CA

L

CE

I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Background

Convolution

AND

AP

Convolutional Neural Networks

SI

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease.

Pool Convolution

Pool

F.J. Martinez-Murcia

Out

Introduction

Input

Methodology Volume Selection Algorithm 4

Convolutional Neural Networks Evaluation

Experimental Results DaTSCAN Image Database Experiments Comparison



▶ ▶

Convolution layer: Units are not traditional computational neurons → convolutions with filters. (ReLU activation f(x) = max(0, x)) Pooling layer: non-linear downsampling by keeping the maximum value Fully Connected Layer: Traditional neural networks. . . . . . . . . . . . . . . . . . . . . Softmax. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Conclusions and future work

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

L

CE

AP

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Architecture

I C AT

SIGNAL PRO

PL

Convolutional Neural Networks

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia Introduction

se

s

ron s

output

Methodology

las

ne u

2x 2x 2

16 1x 5x

00

5x

Volume Selection Algorithm

40

2x 2x 2

dense_1

pool

nc

conv_2

pool

5x

5x

5x

5x 1x 8

conv_1

5

Figure: Schema of our system. ▶

Evaluation

Experimental Results

2 convolutional layers (P = Q = R = 5, with a structure of 2 layers with K1 = 8 and K2 = 16 filters respectively, stride=1, padding=2)

.

.

.

.

.

. .

.

.

.

.

.

.

. .

Convolutional Neural Networks

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

DaTSCAN Image Database Experiments Comparison

Conclusions and future work

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

L

CE

AP

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Architecture

I C AT

SIGNAL PRO

PL

Convolutional Neural Networks

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia Introduction

se

s

ron s

output

Methodology

las

ne u

2x 2x 2

16 1x 5x

00

5x

Volume Selection Algorithm

40

2x 2x 2

dense_1

pool

nc

conv_2

pool

5x

5x

5x

5x 1x 8

conv_1

5

Figure: Schema of our system. ▶



Evaluation

Experimental Results

2 convolutional layers (P = Q = R = 5, with a structure of 2 layers with K1 = 8 and K2 = 16 filters respectively, stride=1, padding=2)

DaTSCAN Image Database Experiments Comparison

Conclusions and future work

Activation using ReLU function.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

Convolutional Neural Networks

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

L

CE

AP

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Architecture

I C AT

SIGNAL PRO

PL

Convolutional Neural Networks

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia Introduction

se

s

ron s

output

Methodology

las

ne u

2x 2x 2

16 1x 5x

00

5x

Volume Selection Algorithm

40

2x 2x 2

dense_1

pool

nc

conv_2

pool

5x

5x

5x

5x 1x 8

conv_1

5

Figure: Schema of our system. ▶

Evaluation

Experimental Results

2 convolutional layers (P = Q = R = 5, with a structure of 2 layers with K1 = 8 and K2 = 16 filters respectively, stride=1, padding=2)



Activation using ReLU function.



Max-pooling after every convolutional layer, with block size 2 × 2 × 2.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

Convolutional Neural Networks

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

DaTSCAN Image Database Experiments Comparison

Conclusions and future work

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

L

CE

AP

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Architecture

I C AT

SIGNAL PRO

PL

Convolutional Neural Networks

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia Introduction

se

s

ron s

output

Methodology

las

ne u

2x 2x 2

16 1x 5x

00

5x

Volume Selection Algorithm

40

5x

2x 2x 2

dense_1

pool

nc

conv_2

pool

5x

5x

5x 1x 8

conv_1

5

Figure: Schema of our system. ▶

Evaluation

Experimental Results

2 convolutional layers (P = Q = R = 5, with a structure of 2 layers with K1 = 8 and K2 = 16 filters respectively, stride=1, padding=2)



Activation using ReLU function.



Max-pooling after every convolutional layer, with block size 2 × 2 × 2.



Final dense layer (MLP). .

.

.

.

.

. .

.

.

.

.

.

.

. .

Convolutional Neural Networks

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

DaTSCAN Image Database Experiments Comparison

Conclusions and future work

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

NG

AND

BIOME

DI

CA

L

CE

AP

Convolutional Neural Networks

SI

I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Training

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease.

Training Error 0.4

F.J. Martinez-Murcia Introduction

Error Rate

0.3

Methodology Volume Selection Algorithm

0.2

6

Convolutional Neural Networks Evaluation

0.1

Experimental Results DaTSCAN Image Database Experiments

0.0

Comparison

0

100

200

300 400 # of iterations

500

600

Conclusions and future work

Figure: Evolution of the training error of the network (PD vs CTL) in function of the number of iterations. ▶

Dropout in training with probability p = 0.5.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

NG

AND

BIOME

DI

CA

L

CE

AP

Convolutional Neural Networks

SI

I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Training

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease.

Training Error 0.4

F.J. Martinez-Murcia Introduction

Error Rate

0.3

Methodology Volume Selection Algorithm

0.2

6

Convolutional Neural Networks Evaluation

0.1

Experimental Results DaTSCAN Image Database Experiments

0.0

Comparison

0

100

200

300 400 # of iterations

500

600

Conclusions and future work

Figure: Evolution of the training error of the network (PD vs CTL) in function of the number of iterations. ▶

Dropout in training with probability p = 0.5.



Data augmentation: Mirroring the images to account for bilateral differences. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

L

CE

AP I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Evaluation

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia



Introduction

10-Fold stratified cross validation

Methodology Volume Selection Algorithm Convolutional Neural Networks 7

Evaluation

Experimental Results DaTSCAN Image Database Experiments Comparison

Conclusions and future work

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

L

CE

AP I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Evaluation

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia Introduction



10-Fold stratified cross validation



Training: iterations over the augmented training set.

Methodology Volume Selection Algorithm Convolutional Neural Networks 7

Evaluation

Experimental Results DaTSCAN Image Database Experiments Comparison

Conclusions and future work

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

L

CE

AP I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Evaluation

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia Introduction



10-Fold stratified cross validation



Training: iterations over the augmented training set. Parameters: Sensitivity, specificity and accuracy, or confusion matrix.



Methodology Volume Selection Algorithm Convolutional Neural Networks 7

Evaluation

Experimental Results DaTSCAN Image Database Experiments Comparison

Conclusions and future work

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

L

CE

AP I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Evaluation

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia Introduction



10-Fold stratified cross validation



Training: iterations over the augmented training set. Parameters: Sensitivity, specificity and accuracy, or confusion matrix.





Methodology Volume Selection Algorithm Convolutional Neural Networks 7

DaTSCAN Image Database

Experiment 1: PD vs CTL diagnosis. Effect of subvolume selection threshold T.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

Evaluation

Experimental Results

. .

Experiments Comparison

Conclusions and future work

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

L

CE

AP I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Evaluation

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia Introduction



10-Fold stratified cross validation



Training: iterations over the augmented training set. Parameters: Sensitivity, specificity and accuracy, or confusion matrix.







Methodology Volume Selection Algorithm Convolutional Neural Networks 7

DaTSCAN Image Database

Experiment 1: PD vs CTL diagnosis. Effect of subvolume selection threshold T.

Experiments Comparison

Conclusions and future work

Experiment 2: Include SWEDD subjects.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

Evaluation

Experimental Results

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

NG

AND

BIOME

DI

CA

L

CE

AP

Experimental Results

SI

I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



DaTSCAN Image Database

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease.

The Parkinson’s Progression Markers Initiative ▶



F.J. Martinez-Murcia Introduction

Data used in the preparation of this article were obtained from the Parkinson’s Progression Markers Initiative (PPMI) database (www.ppmi-info.org).

Methodology Volume Selection Algorithm Convolutional Neural Networks

Database selected: 301 DaTSCAN images (111 CTL, 32 SWEDD and 158 PD).

Evaluation

Experimental Results 8

DaTSCAN Image Database Experiments Comparison

Conclusions and future work

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

NG

AND

BIOME

DI

CA

L

CE

AP

Experimental Results

SI

I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



DaTSCAN Image Database

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease.

The Parkinson’s Progression Markers Initiative ▶





F.J. Martinez-Murcia Introduction

Data used in the preparation of this article were obtained from the Parkinson’s Progression Markers Initiative (PPMI) database (www.ppmi-info.org).

Methodology Volume Selection Algorithm Convolutional Neural Networks

Database selected: 301 DaTSCAN images (111 CTL, 32 SWEDD and 158 PD).

Evaluation

Experimental Results 8

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

DaTSCAN Image Database Experiments

Spatially normalized using a custom template using SPM-8.

Comparison

Conclusions and future work

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

NG

AND

BIOME

DI

CA

L

CE

AP

Experimental Results

SI

I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



DaTSCAN Image Database

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease.

The Parkinson’s Progression Markers Initiative ▶







F.J. Martinez-Murcia Introduction

Data used in the preparation of this article were obtained from the Parkinson’s Progression Markers Initiative (PPMI) database (www.ppmi-info.org).

Methodology Volume Selection Algorithm Convolutional Neural Networks

Database selected: 301 DaTSCAN images (111 CTL, 32 SWEDD and 158 PD).

Evaluation

Experimental Results 8

Comparison

Conclusions and future work

Simple data augmentation: mirroring (over the sagital plane) of the DaTSCAN images to account for asymmetrical dopaminergic deficit.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

DaTSCAN Image Database Experiments

Spatially normalized using a custom template using SPM-8.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

NG

AND

BIOME

DI

CA

L

CE

AP

Experimental Results

SI

I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Experiment 1: Effect of the threshold T on the accuracy obtained (PD vs CTL).

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease.

Histogram vs Accuracy

1.00

F.J. Martinez-Murcia

20000 Introduction

0.95

Methodology

15000

Volume Selection Algorithm

0.90 Accuracy

Convolutional Neural Networks

0.85

10000

Evaluation

Experimental Results

0.80

DaTSCAN Image Database

5000

9

0 0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Experiments Comparison

0.75

Conclusions and future work

0.70

1.0

Figure: Accuracy obtained at each threshold, compared with the histogram of the image.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

NG

AND

BIOME

DI

CA

L

CE

AP

Experimental Results

SI

I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Experiment 1: Effect of the threshold T on the accuracy obtained (PD vs CTL).

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease.

0

F.J. Martinez-Murcia Introduction

20

Methodology Volume Selection Algorithm

40

Convolutional Neural Networks

T=0.35 T=0.32

60

Evaluation

Experimental Results DaTSCAN Image Database 10

Experiments Comparison

80

T=0.30 0

20

40

Conclusions and future work

60

Figure: Illustration of the different subvolumes selected with different T.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

NG

AND

BIOME

DI

CA

L

CE

AP

Experimental Results

SI

I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Experiment 1: Effect of the threshold T on the accuracy obtained (PD vs CTL).

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia Introduction Methodology Volume Selection Algorithm Convolutional Neural Networks Evaluation

Experimental Results DaTSCAN Image Database 11

Experiments Comparison

Conclusions and future work

Figure: Area selected with a threshold T = 0.35.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

NG

AND

BIOME

DI

CA

CE

I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Experiment 1: Accuracy and filters obtained (PD vs CTL).

Act ivat ions (15t h slice) of Layer 1

L

AP

Experimental Results

SI

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease.

Act ivat ions (7t h slice) of Layer 2

F.J. Martinez-Murcia 1.0

0.5

0.8

0.4

0.6

0.3

0.4

0.2

0.2

0.1

0.0

0.0

Introduction Methodology Volume Selection Algorithm Convolutional Neural Networks Evaluation

Experimental Results DaTSCAN Image Database 12

Experiments Comparison

Conclusions and future work

Figure: Summary of the activations in the first and second layers, after feeding a normal control patient with a threshold T = 0.35.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

NG

AND

BIOME

DI

CA

CE

I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Experiment 1: Accuracy and filters obtained (PD vs CTL).

Act ivat ions (15t h slice) of Layer 1

L

AP

Experimental Results

SI

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease.

Act ivat ions (7t h slice) of Layer 2

F.J. Martinez-Murcia 1.0

0.5

0.8

0.4

0.6

0.3

0.4

0.2

0.2

0.1

0.0

0.0

Introduction Methodology Volume Selection Algorithm Convolutional Neural Networks Evaluation

Experimental Results DaTSCAN Image Database 12

Experiments Comparison

Conclusions and future work

Figure: Summary of the activations in the first and second layers, after feeding a normal control patient with a threshold T = 0.35.

0.955 accuracy (0.961 sensitivity)! .

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

NG

AND

BIOME

DI

CA

L

CE

AP

Experimental Results

SI

I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Experiment 2: Inclusion of SWEDD.

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia 0

1

2 140

0

94

27

4

Introduction Methodology

120

Volume Selection Algorithm Convolutional Neural Networks

Act ual Label

100

Evaluation

1

13

1

2

80

Experimental Results DaTSCAN Image Database

60

13

Experiments Comparison

2

4

4

152

40

Conclusions and future work

20 Predict ed Label

Figure: Confusion Matrix after including SWEDD subjects .

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

NG

AND

BIOME

DI

CA

L

CE

AP

Experimental Results

SI

I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Experiment 2: Inclusion of SWEDD.

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease.

0

F.J. Martinez-Murcia Introduction

20

Methodology Volume Selection Algorithm

40

Convolutional Neural Networks

T=0.35 T=0.32

60

Evaluation

Experimental Results DaTSCAN Image Database 14

Experiments Comparison

80

T=0.30 0

20

40

Conclusions and future work

60

Figure: Illustration of the different subvolumes selected with different T.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

NG

AND

BIOME

DI

CA

L

CE

AP

Experimental Results

SI

I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Comparison

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease.

Type 3D CNN 3D CNN (incl. SWEDD) 2D CNN1 ICA2 EMD3 Textures4 VAF-SVM

Accuracy 0.955 ± 0.044 0.820 ± 0.068 0.951 ± 0.035 0.928 ± 0.055 0.950 ± 0.048 0.970 ± 0.046 0.800 ± 0.071

Sensitivity 0.961 ± 0.066 0.965 ± 0.047 0.909 ± 0.091 0.951 ± 0.069 0.972 ± 0.062 0.831 ± 0.093

F.J. Martinez-Murcia

Specificity 0.945 ± 0.076 0.941 ± 0.052 0.961 ± 0.090 0.948 ± 0.072 0.968 ± 0.052 0.747 ± 0.112

Introduction Methodology Volume Selection Algorithm Convolutional Neural Networks Evaluation

Experimental Results DaTSCAN Image Database Experiments

Table: Comparison of this and other approaches for PD diagnosis

15

Comparison

Conclusions and future work

1 DOI:

10.1007/978-3-319-39687-3_24 10.1016/j.neucom.2013.01.054 3 DOI: 10.1016/j.eswa.2012.11.017 4 DOI: 10.1016/j.cmpb.2013.03.015 2 DOI:

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

CE

AP I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Conclusions



L

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease.

We have proposed a simple CNN-based CAD for the diagnosis of PD.

F.J. Martinez-Murcia Introduction Methodology Volume Selection Algorithm Convolutional Neural Networks Evaluation

Experimental Results DaTSCAN Image Database Experiments Comparison 16

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Conclusions and future work

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

L

CE

AP I C AT

SIGNAL PRO

PL



We have proposed a simple CNN-based CAD for the diagnosis of PD.



Novelty: the usage of 3D convolutions for high-dimensional medical imaging.

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Conclusions

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia Introduction Methodology Volume Selection Algorithm Convolutional Neural Networks Evaluation

Experimental Results DaTSCAN Image Database Experiments Comparison 16

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Conclusions and future work

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

CE

AP I C AT

SIGNAL PRO

PL



We have proposed a simple CNN-based CAD for the diagnosis of PD.



Novelty: the usage of 3D convolutions for high-dimensional medical imaging.

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Conclusions



L

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia Introduction Methodology Volume Selection Algorithm

The system achieves state-of-the-art performance in the PD vs CTL, but not in SWEDD subjects.

Convolutional Neural Networks Evaluation

Experimental Results DaTSCAN Image Database Experiments Comparison 16

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Conclusions and future work

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

CE

AP I C AT

SIGNAL PRO

PL



We have proposed a simple CNN-based CAD for the diagnosis of PD.



Novelty: the usage of 3D convolutions for high-dimensional medical imaging.



.

.

.

. .

.

.

.

.

.

.

. .

SID

AD DE GR

AN

AD

F.J. Martinez-Murcia Introduction Methodology Volume Selection Algorithm Convolutional Neural Networks Evaluation

Experimental Results

Value of the T in the subvolume selection, which eliminates other regions than the striatum, where significant differences in SWEDD could be found → computational cost.

.

SiPBA

ER

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease.

The system achieves state-of-the-art performance in the PD vs CTL, but not in SWEDD subjects.

.

IV

A

U

N



IONS



Conclusions



L

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

DaTSCAN Image Database Experiments Comparison 16

. .

.

. .

.

.

.

.

.

17

Conclusions and future work

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

CE

AP I C AT

SIGNAL PRO

PL



We have proposed a simple CNN-based CAD for the diagnosis of PD.



Novelty: the usage of 3D convolutions for high-dimensional medical imaging.





IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Conclusions



L

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia Introduction Methodology Volume Selection Algorithm

The system achieves state-of-the-art performance in the PD vs CTL, but not in SWEDD subjects.

Convolutional Neural Networks Evaluation

Experimental Results

Value of the T in the subvolume selection, which eliminates other regions than the striatum, where significant differences in SWEDD could be found → computational cost.

DaTSCAN Image Database Experiments Comparison 16

Conclusions and future work

Regardless of the SWEDD detection ability, the approach seems very promising → more complex architectures → management of more complex problems.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

L

CE

AP I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Future Work

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia Introduction Methodology



Volume Selection Algorithm

Extend the complexity of this preliminary CNN architecture to enhance the detection of extrapyramidal symptoms.

Convolutional Neural Networks Evaluation

Experimental Results DaTSCAN Image Database Experiments Comparison 17

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Conclusions and future work

Dept. of Signal Theory, Networking and Communications Universidad de Granada

S

SI

NG

AND

BIOME

DI

CA

L

CE

AP I C AT

SIGNAL PRO

PL

IV

SiPBA

ER

SID

AD DE GR

AN

AD

A

U

N



IONS



Future Work

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease. F.J. Martinez-Murcia Introduction Methodology





Volume Selection Algorithm

Extend the complexity of this preliminary CNN architecture to enhance the detection of extrapyramidal symptoms.

Convolutional Neural Networks Evaluation

Experimental Results

Use preprocessing tools such as intensity normalization.

DaTSCAN Image Database Experiments Comparison 17

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

17

Conclusions and future work

Dept. of Signal Theory, Networking and Communications Universidad de Granada

Thank you for your attention!

SiPBA Signal Processing and Biomedical Applications http://sipba.ugr.es

. . . .... .... .... . . . . .