A Computational Framework for Multiscale Structural ...

5 downloads 0 Views 42MB Size Report
Sep 14, 2007 - localized 3-D thermo-mechanical fields at structural scale ... Belytschko T., Gracie R. and Ventura G. A review of extended/generalized.
A  Computational  Framework  for  Multiscale Structural   Analysis   C.  Armando  Duarte Dept.  of  Civil  and  Environmental  Engineering Computational  Science  and  Engineering   Presented  at  Seoul  National  University   Seoul,  South  Korea,  August  2nd,  2016

Motivation:  Multiscale Structural  Analysis The  US  Air  Force  has  expended  six   decades  and  untold  resources  in  attempts   to   field  a  reusable  hypersonic  vehicle* Scientific  challenge:   “An  inability   to  computationally   capture  the  material evolution   and  degradation   within  a  structural  component”

X-­15   (1959) *[T.  G.  Eason  et  al.,  2013]

X-­51a   (2010)

Motivation:  Multiscale Structural  Analysis • The  analysis   of  hypersonic  aircrafts  involves   multiple  spatial   and  temporal   scales:  From  airframe  scale  to  sub-­assembly   scale,  panel  scale,  stiffener   scale,  connection  scale,  material  scale,  etc.

Lockheed  Martin  HTV-­3X [AFRL-­RB-­WP-­TR-­2010-­3069]

Motivation:  Multiscale Structural  Analysis • Hypersonic  aircraft  panels  are  assembled  from  sub-­components  using   hundreds  of  fasteners  or  spot  welds.   • Multiple  spatial   scales:  Panel,  stiffeners,   spot  welds.

Panel  1  to  Sub-­Structure   Attachment   [AFRL-­RB-­WP-­TR-­2012-­0280]

4

Motivation:  Multiscale Structural  Analysis • Modeling  fastened  connections  (e.g.  spot  welds)   with  point  constraints   leads  to   mesh-­dependent  results   [Szabó &  Babuska,  1991] • Are  connectors,  like   spot  welds,  critical  failure  sites? • Can  more  realistic,   3-­D  models  be  used  at  critical  regions,  while  maintaining  the   easy-­of-­use   of  point  constraints?

Panel  1  to  Sub-­Structure   Attachment   [AFRL-­RB-­WP-­TR-­2012-­0280]

5

Summary—Target  Problem  and  Overall   Strategy Goal: Develop  a  computational  framework  able  to  capture  highly   localized 3-­D  thermo-­mechanical  fields  at  structural  scale

Target  Problem: • Three-­dimensional  modeling  of  fasteners   (spot  welds)  in  a  representative  panel • Linear  and  non-­linear  (contact  and  material) • Time-­dependent  thermo-­mechanical  loads Strategy: • Formulate  a  two-­scale  Generalized  FEM  for  this  class  of  problem • Keep  global  mesh  coarse and  resolve  spot  welds  through   enrichment  functions  computed  in  parallel.   6

Outline n

Target  problem  and  strategy

n

Generalized  finite  element  methods:  Basic  ideas

n

Bridging  scales  with  GFEM: §

Global-­local   enrichments  for  localized   nonlinearities

n

Towards  modeling  fasteners  and  contact  in  built-­up  panels

n

Summary  and  main  conclusions  

7

Early  works  on  Generalized  FEMs n n n n n n n

Babuska,   Caloz and  Osborn,  1994   (Special  FEM). Duarte  and  Oden,  1995   (Hp Clouds). Babuska and  Melenk,   1995   (PUFEM). Oden,  Duarte  and  Zienkiewicz,  1996   (Hp Clouds/GFEM). Duarte,  Babuska and  Oden,  1998   (GFEM). Belytschko et  al.,  1999   (Extended  FEM). Strouboulis,  Babuska and  Copps,  2000   (GFEM).

• Basic  idea: • Use  a  partition   of  unity  to  build  Finite  Element  shape  functions • Review  paper Belytschko T.,  Gracie  R.  and  Ventura  G.  A  review  of  extended/generalized finite  element  methods  for  material  modeling,  Mod.  Simul.  Matl.  Sci.  Eng., 2009

“The  XFEM  and  GFEM  are  basically  identical methods:  the  name  generalized  finite   element  method  was  adopted  by  the  Texas  school  in  1995–1996   and  the  name   extended  finite  element  method  was  coined  by  the  Northwestern  school  in  1999.”

Generalized  Finite  Element  Method uGFEM (x) =

X

↵2Ih

|

ˆ ↵ '↵ (x) + u {z

}

e i=1 ↵2Ih

|

std FEM approx.

↵i (x)

m↵ XX

{z

GFEM enriched approx.

= '↵ (x)L↵i (x)

Linear   FE  shape function

ˆ↵, u ˜ ↵i 2 R3 u

}

• Allows  construction  of  shape  functions   incorporating  a-­priori  knowledge  about  solution

Enrichment function

GFEM  shape function

˜ ↵i '↵ (x)L↵i (x), u

Discontinuous enrichment [Moes et  al.,   1999]

ωα [Oden,  Duarte  &  Zienkiewicz,  1996]

Bridging  Scales  with  Global-­Local   Enrichment  Functions* Enrichment  functions  computed  from  solution  of  local  boundary  value   problems:  Global-­Local  enrichment  functions n

Linear  FE  s hape function n

n

GFEM  s hape function

Enrichment  =  Numerical   solutions  of  BVP

*[Duarte  and  Kim,  2008]

n

n

Idea: Use  available  numerical  solution  at  a   simulation  step  to  build  shape  functions  for  next   step  (quasi-­static,  transient,  non-­linear,  etc.) Enrichment  functions  are  produced  numerically   on-­the-­fly  through  a  global-­local  analysis Use  a  coarse mesh  enriched  with  Global-­Local   (GL)  functions GFEMgl =  GFEM  with  global-­local  enrichments

10

Bridging  Scales  with  Global-­Local   Enrichment  Functions Available online at www.sciencedirect.com

Comput. Methods Appl. Mech. Engrg. 197 (2008) 487–504 www.elsevier.com/locate/cma

Analysis and applications of a generalized finite element method with global–local enrichment functions C.A. Duarte *, D.-J. Kim Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 2122 Newmark Laboratory, 205 North Mathews Avenue, Urbana, IL 61801, USA Received 30 November 2006; received in revised form 2 June 2007; accepted 7 August 2007 Available online 14 September 2007

Abstract This paper presents a procedure to build enrichment functions for partition of unity methods like the generalized finite element method and the hp cloud method. The procedure combines classical global–local finite element method concepts with the partition of unity approach. It involves the solution of local boundary value problems using boundary conditions from a global problem defined on a coarse discretization. The local solutions are in turn used to enrich the global space using the partition of unity framework. The computations at local problems can be parallelized without difficulty allowing the solution of large problems very efficiently. The effectiveness of the approach in terms of convergence rates and computational cost is investigated in this paper. We also analyze the effect of inexact boundary conditions applied to local problems and the size of the local domains on the accuracy of the enriched global solution. Key aspects of the computational implementation, in particular, the numerical integration of generalized FEM approximations built with global–local enrichment functions, are presented. The method is applied to fracture mechanics problems with multiple cracks in the domain. Our numerical experiments show that even on a serial computer the method is very effective and allows the solution of complex problems. Our analysis also demonstrates that the accuracy of a global problem defined on a coarse mesh can be controlled using a fixed number of global degrees of freedom and the proposed global–local enrichment functions. ! 2007 Elsevier B.V. All rights reserved.

• 117   citations • Adopted  by  researchers  at   o National   Laboratories   (AFRL,   Sandia) o Universities   in  the  USA,   Germany,  Spain,  Brazil,   India

Keywords: Generalized finite element method; Extended finite element method; Meshfree; Global–local; Fracture mechanics; Multiple cracks

1. Introduction The effectiveness of partition of unity methods like hp clouds [25,26], generalized [7,19,20,32,40,49,50], and extended [10,34] finite element methods relies, to a great extent, on the proper selection of enrichment functions. Customized enrichment functions can be used to model local features in a domain like cracks [15,21,34,35, 39,41,55], edge singularities [20], boundary layers [17], inclusions [54], voids [50,54], microstructures [33,47], etc., instead of strongly refined meshes with elements faces/ *

Corresponding author. Tel.: +1 217 244 2830; fax: +1 217 333 3821. E-mail address: [email protected] (C.A. Duarte).

edges fitting the local features, as required in the finite element method. This has lead to a growing interest on this class of methods by the engineering community. The generalized/extended FEM has the ability to analyze crack surfaces arbitrarily located within the mesh (across finite elements). Fig. 1b shows the representation of a three-dimensional crack surface using the generalized finite element method presented in [23,45]. The generalized FEM enjoys, for this class of problems, the same level of flexibility and user friendliness as meshfree methods while being more computationally efficient. In simple two-dimensional cases, a crack can be accurately modeled in partition of unity methods using enrichment functions from the asymptotic expansion of the

0045-7825/$ - see front matter ! 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.cma.2007.08.017

11

GFEMgl for  Problems  with  Localized  Non-­ Linearities • Model  Problem:   Simulation  of  propagating  cracks  using  cohesive   fracture  models tcoh ft b

Γ Gt

Non-­linear  traction-­ separation  law

C0

ΩG

tG = t

Cohesive(crack( Γ

coh

CDk

Ccoh

Γ Gu

u

uG = u

Find u 2 H 1 (⌦G ), such that 8 u 2 H 1 (⌦G ) Z

⌦G

=

Z

rs ( u) : ⌦G

(u) dV +

u · b dV +

Z

t G

Z

coh

[[u]] · tcoh ([[u]]) dS + ⌘

u · t¯ dS + ⌘

Z

u G

Z

u G

u · u dS

¯ dS u·u 12

Global-­Local  Enrichments  for  Problems   with  Localized  Non-­Linearities • Three-­Point  Bending  Beam P, u 80

Expected crack path

150 50

stress-free crack

50

50

700 All lengths in [mm]



Bi-­linear  intrinsic  CZM  [ Park  et  al.  2 008]  

Typical  FEM  discretization  [Park  et  al.  2008]  

Goals: • Solve  problem  on  a  coarse  global  mesh. • Few  non-­linear  iterations   at  global  scale. 13

Global-­Local  Enrichments  for  Problems   with  Localized  Non-­Linearities* Let unG 2 SnG (⌦) be a GFEM approximation of global problem at load step n. Global-local enrichments are used in the definition of SnG (⌦).

Compute a rough and cheap estimate of global solution at next load step. Define un+1 G,0 =

n+1 n n uG

un+1 G,0 is used to prescribe boundary conditions for a non-linear local problem as defined next. *[Jongheon Kim  and  C.A.  Duarte,  ijnme,  2015]

14

Global-­Local  Enrichments  for  Problems   with  Localized  Non-­Linearities § Solve  following   non-­linear   local   problem  at  load  step  n+1  using,  e.g.,  hp-­GFEM

n+1 n+1 n+1 Find un+1 2 S (⌦ ) such that, 8 u 2 S L L L L L (⌦L )

Z

⌦L

+ +⌘

un+1 : L

rs

Z

Z

L\

(

un+1 dV + L

u t L \( G [ G )

u L\ G

un+1 L

)

Z

coh

n+1 coh [[un+1 ]] · t ([[u L L L ]]) dS + ⌘

un+1 · un+1 dS = L L

¯ dS + ·u

Z

L\

(

Z

⌦L

u t L \( G [ G )

)

un+1 · b dV + L un+1 L

·

[tn+1 G



Z

t L\ G

un+1 G,0



Z

u L\ G

n+1 un+1 · u dS L L

un+1 · t¯ dS L

+ un+1 G,0 ] dS 15

Global-­Local  Enrichments  for  Problems  with   Localized  Non-­Linearities • Global  space  enriched  with  non-­linear  local  solution

n+1 ↵ (x)

= '↵ (x)un+1 L (x)

n+1 gl,n+1 gl FEM un+1 (x) 2 S ' u , ↵ 2 I (⌦ ) = S + ↵ G ↵ G G G 9 8 n+1, (x) > u ↵ uL > > > = < n+1, where ugl,n+1 (x) = , u↵ , v ↵ , w ↵ 2 R v ↵ uL (x) ↵ > > > > ; : n+1, w ↵ uL (x)

• Discretization   spaces  updated  on-­the-­fly   with  global-­local   enrichment  functions

16

Global-­Local  Enrichments  for  Problems  with   Localized  Non-­Linearities • Linear global  problem  at  load  step  n+1 n+1 n+1 n+1 Find un+1 2 S (⌦ ) such that, 8 u 2 S G G G G G (⌦G )

Z

⌦G

=

Z

un+1 : G

rs ⌦G

un+1 dV + G

un+1 · b dV + G

Z

t G

Z

coh

n+1 n+1 n+1 [[un+1 G ]] · CD (uL )[[uG ]] dS + ⌘

un+1 · t¯ dS + ⌘ G

Z

u G

Z

u G

un+1 · un+1 dS G G

¯ dS un+1 ·u G

The  cohesive   secant  matrix  is  given  by Cn+1 D

2

n+1, CD =4 0 0

0 n+1, CD 0

3

0 5 0 n+1, CD

where n+1, CD

n+1 t> t