A MOLECULAR PHYLOGENY OF THE SPARIDAE

0 downloads 0 Views 5MB Size Report
Synonym: Caeso Gistel 1848. Objective Synonym: Chryseis Schinz 1822. Synonym: Chrysophris Cuvier 1829. Objective Synonym: Daurada Stark 1828.
A MOLECULAR PHYLOGENY OF THE SPARIDAE (PERCIFORMES: PERCOIDEI)

_____________

A Dissertation Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia

In Partial Fulfillment Of the Requirements for the Degree of Doctor of Philosophy

____________

Copyright ISBN: 0-599-97036-7 Thomas Martin Orrell 2000

APPROVAL SHEET This dissertation is submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy ___________________________ Thomas M. Orrell Approved 9 November 2000 ___________________________ John A. Musick, Ph.D. Committee Co-Chairman/Advisor ___________________________ John E. Graves, Ph.D. Committee Co-Chairman/Advisor ___________________________ Kimberly S. Reece, Ph.D. ___________________________ Peter A. Van Veld, Ph.D. ___________________________ Kent E. Carpenter, Ph.D. Department of Biology Old Dominion University, Norfolk, VA ___________________________ G. David Johnson, Ph.D. Division of Fishes, National Museum of Natural History Smithsonian Institution, Washington, D.C.

DEDICATION

I am dedicating this dissertation to the memory of Emo. J. Benvenuti, my grandfather, who died on 13 March 1998. He was a quiet teacher who had all the patience in the world.

ii

TABLE OF CONTENTS Page ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii GENERAL INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 CHAPTER ONE. A MOLECULAR PHYLOGENY OF THE FAMILY SPARIDAE (PERCOIDEI: PERCIFORMES) INFERRED FROM THE MITOCHONDRIAL CYTOCHROME B GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 MATERIALS AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 CHAPTER TWO. A MOLECULAR PHYLOGENY OF THE FAMILY SPARIDAE (PERCOIDEI: PERCIFORMES) INFERRED FROM THE MITOCHONDRIAL 16S RIBOSOMAL RNA GENE . . . . . . . . . . . . . . . . . . . . . . . . . 126 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 MATERIALS AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 CHAPTER THREE. COMBINED ANALYSIS OF CYTOCHROME B AND 16S MITOCHONDRIAL SEQUENCES . . . . . . . . . . . . . . 195 iii

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 MATERIALS AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 CHAPTER FOUR. RECONSTRUCTING SPARID RELATIONSHIPS WITH A SINGLE-COPY NUCLEAR DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 MATERIALS AND METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 LITERATURE CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 VITA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

iv

ACKNOWLEDGMENTS

I would like to thank my dissertation committee for their constant support throughout the duration of this study. I am especially indebted to my co-major advisors Drs. Jack Musick and John Graves for giving me encouragement, advice, guidance and funding during my time at VIMS. Dr. Kimberly Reece provided invaluable advice in the laboratory and was an unending source of molecular knowledge. I am very grateful to my outside committee members. Dr. Kent Carpenter inspired this study by suggesting that we work together on a phylogeny of the Sparidae. He generously collected the majority of the samples used in this study and afforded me numerous opportunities to collect samples as well. He graciously provided hours of advice for the completion of this project and his critical review of this dissertation contributed countless suggestions for improvement Dr. G. David Johnson furnished the framework of many of the relationships surveyed in this study. His encouragement and critical eye kept me honest. Dr. Peter Van Veld critically reviewed this dissertation and gave me many helpful suggestions over the years. I would like to thank the following individuals and organizations for their assistance in collecting specimens, without whose help this work would not have been possible: S. Almatar, L. Beckley, B.B. Collette, F. Crock, N. DeAngelis, M. DeGravelle, D. Etnier, H. Ishihara, J. Gelsleichter, A. Graham, R. Grubbs, K. Harada, Y. Iwatsuki, J. Jenke, R. Kraus, E. Massuti, K. Matsuura, L. Ter Morshuizen, P. Oliver, A.W. Paterson, J. Paxton, J. Scialdone, D. Scherrer, G. Sedberry, M. Smale, W. F. Smith-Vaniz, K. Utsugi, G. Yearsley, T. Wasaff, J.T. Williams, and the VIMS Trawl Survey. I would like v

to acknowledge the following people for laboratory assistance: J. McDowell, D. Carlini, V. Buonaccorsi, C. Morrison and K. Macdonald and all members of the VIMS fisheries genetics laboratory during my time at VIMS. I would also like to thank E.O. Wiley for numerous suggestions during this study. This research was supported by grants from: the Food and Agriculture Organization of the United Nations, Lerner Gray Fund for Marine Research from the American Museum of Natural History, an E.C. and Charlotte E. Raney Award of the American Society of Ichthyologists and Herpetologists, and by the VIMS Dean of Graduate Studies.

vi

LIST OF TABLES Table

Page

1.

Annotated list of the valid genera of the Sparidae . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.

Subfamilies of the Sparidae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.

Collection data for specimens used in cytochrome b study . . . . . . . . . . . . . . . . . 46

4.

Multiple alignment of nucleotide sequences of the cytochrome b gene . . . . . . . 48

5.

Cytochrome b nucleotide sequence characteristics . . . . . . . . . . . . . . . . . . . . . . . 72

6.

Pairwise values of mean % sequence divergence derived from uncorrected “p” genetic distance for all taxa, ingroup taxa and outgroup taxa . . . . . . . . . . . . . . . 73

7.

Pairwise values of mean % sequence divergence derived from uncorrected “p” genetic distance within and between subfamilies . . . . . . . . . . . . . . . . . . . . . . . . 74

8.

Base compositional bias calculated across all, ingroup, and outgroup taxa

9.

Multiple alignment of amino acid residues translated from the nucleotide

. . . 75

sequences of the cytochrome b gene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 10.

FAO area assignments for the Sparidae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

11.

Matrix of FAO areas and characters used during analysis of vicariance biogeography - cytochrome b data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

12.

Collection data for specimens used in 16S study . . . . . . . . . . . . . . . . . . . . . . . . 149

13.

Multiple alignment of nucleotide sequences of the partial 16S gene from the Sparidae and outgroup species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

14.

Constant, uninformative and informative characters for stems and loops . . . . . 167

15.

Non-conserved areas in multiple alignment of 16S gene . . . . . . . . . . . . . . . . . 167

16.

Mean pairwise values of percent sequence divergence based on uncorrected “p” vii

genetic distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 17.

Contribution of loops and stems to the overall sequence divergence . . . . . . . . 169

18.

Matrix of FAO areas and characters used during analysis of vicariance biogeography - 16S data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

19.

Incongruence Length Distance values between different data partitions . . . . . . 216

20.

Matrix of FAO areas and characters from dependent cytochrome b (Top) and16s (bottom) trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

21.

Collection data for specimens used in Tmo-4c4 study . . . . . . . . . . . . . . . . . . . 241

22.

Primers and Sequences used to amplify the Tmo-4c4 locus. . . . . . . . . . . . . . . 242

23.

Tmo-4c4 clone numbers sequenced for each taxon those samples direct sequenced are indicated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

24.

Multiple alignments of nucleotide sequences of the nuclear Tmo-4c4 locus . . 244

viii

LIST OF FIGURES Figure

Page

1.

Suggested phylogeny of spariform relationships redrawn from Akazaki (1962) . 10

2.

Hypothesized relationships of the Sparoidea (Sparidae, Centracanthidae, Lethrinidae and Nemipteridae) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.

Polymerase chain reaction primers used in the cytochrome b study . . . . . . . . . . 88

4.

Total substitutions at all codon positions plotted as a function of pairwise percent sequence divergence for ingroup taxa only - cytochrome b gene . . . . . . . . . . . . 90

5.

Total substitutions at the first codon position plotted as a function of pairwise percent sequence divergence for ingroup taxa only . . . . . . . . . . . . . . . . . . . . . . . 92

6.

Total substitutions at the second codon position plotted as a function of pairwise percent sequence divergence for ingroup taxa only . . . . . . . . . . . . . . . . . . . . . . . 94

7.

Total substitutions at the third codon position plotted as a function of pairwise percent sequence divergence for ingroup taxa only . . . . . . . . . . . . . . . . . . . . . . . 96

8.

Total substitutions at the third codon position and pooled first and second codon positions plotted as a function of pairwise percent sequence divergence for ingroup taxa only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.

A ratio of transitions/total substitutions and transversions/total substitutions from third codon plotted as a function of pairwise percent sequence divergence for ingroup taxa only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10.

Transitional substitutions, separated into nitrogenous base type, plotted as a functions of pairwise percent sequence divergence of ingroup taxa only . . . . . 102

11.

Frequencies of each of four bases of the cytochrome b gene for 62 taxa at all ix

codon positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 12.

Frequencies of each of four bases of the cytochrome b gene for 62 taxa at the first codon position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

13.

Frequencies of each of four bases of the cytochrome b gene for 62 taxa at the second codon position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

14.

Frequencies of each of four bases of the cytochrome b gene for 62 taxa at the third codon position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

15.

Four equally parsimonious trees - unweighted data . . . . . . . . . . . . . . . . . . . . . . 112

16.

Strict consensus of four equally parsimonious trees - unweighted data . . . . . . 114

17.

Two equally parsimonious trees - weighted data . . . . . . . . . . . . . . . . . . . . . . . . 116

18.

A strict consensus of two equally parsimonious trees from the - weighted data (transversions only third codon) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

19.

A strict consensus of 699 equally parsimonious trees from amino acid residue translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

20.

Numbered ancestral nodes of the Sparidae clade from the weighted cytochrome b consensus tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

21.

Clade of biogeographic relationships overlaid on map of the world . . . . . . . . . 124

22.

Total number of substitutions plotted as a functions of uncorrected sequence divergence -16S gene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

23.

Total number of stem substitutions plotted as a functions of uncorrected sequence divergence - 16S gene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

24.

Total number of loop substitutions plotted as a functions of uncorrected sequence divergence - 16S gene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

25.

Loop transitions were separated into functional nucleic acid classes and plotted as a function of uncorrected sequence divergence - 16S gene . . . . . . . . . . . . . . . 177

26.

Non conserved loop and conserved loop transitions plotted as a function of x

uncorrected sequence divergence - 16S gene . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 27.

Adjusted loop and stem distances plotted as a function of uncorrected sequence divergence -16S gene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

28.

Mean values and ranges of percent base composition for all, stem, loop, and nonconserved loop characters of the 16S mtDNA fragment . . . . . . . . . . . . . . . . . . 183

29.

A strict consensus of 8 equally parsimonious trees from the analysis of all columns of data from t 16S sequence data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

30.

A strict consensus of 3952 equally parsimonious trees from a weighted analysis of the 16S sequence data. All loop transitional substitutions were given a weight of 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

31.

A strict consensus of 9828 equally parsimonious trees from a weighted analysis of the 16S sequence data. Non-conservative loop transitional substitutions were given a weight of 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

32.

Numbered ancestral nodes of the Sparidae clade from the unweighted 16S consensus tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

33.

Clade of 16S biogeographic relationships overlaid on map of the world . . . . . 193

34.

Sequence divergence of each data partition plotted as a function of total sequence divergence for all pairwise comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

35.

A strict consensus of three equally parsimonious trees from a heuristic search of all cytochrome b and 16S nucleotide characters . . . . . . . . . . . . . . . . . . . . . . . . 220

36.

A single most parsimonious tree from a heuristic search of the weighted cytochrome b nucleotides (3rd codon transitions =0) and all 16S nucleotides . . 222

37.

A strict consensus of 35 equally parsimonious trees from a heuristic search of all cytochrome b amino acid residue and 16S nucleotide sequences . . . . . . . . . . . 224

38.

A strict consensus from a heuristic search of all unweighted sequences resulted in 11 equally parsimonious trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 xi

39.

A single most parsimonious tree from vicariance biogeographic analysis of the combined cytochrome b and 16S dependent data matrices yielded . . . . . . . . . . 228

40.

Total substitutions plotted as a function of sequence divergence for putative copy 1 (top) and copy 2 (bottom) of the Tmo-4c4 locus . . . . . . . . . . . . . . . . . . . . . . 251

41.

A strict consensus of 81 equally parsimonious trees from parsimony analysis of all clone sequences and characters of the Tmo-4c4 locus . . . . . . . . . . . . . . . . . 253

42.

Tree from neighbor-joining analysis of all clone sequences and characters of the Tmo-4c4 locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

xii

ABSTRACT Sparids are a diverse group of over 110 marine species whose putative six subfamilies have been defined primarily on the basis of dentition and feeding type. Monophyly of the subfamilies has not been tested, nor have the phylogenetic relationships of all sparid genera been hypothesized. I used mitochondrial DNA sequences from the complete cytochrome b gene (1140bp) and the partial 16S gene (621bp) in independent and combined analyses to test the monophyly of the Sparidae, elucidate the inter-relationships of the 33 recognized genera of the Sparidae, test the validity of the six subfamilies of the Sparidae, and test the monophyly of the Sparoidea. The cytochrome b (cyt b) analyses included 40 sparid species, ten closely related species, ten basal percoids, and two non-perciform outgroup species. A subset of these taxa was used in the independent 16S mtDNA analyses and combined analyses. The Sparidae were monophyletic in all analyses from independent and combined data sets. The centracanthid Spicara was consistently found within the sparid clade and is considered a member of the Sparidae. The monophyly of the Centracanthidae is not supported because Spicara was polyphyletic within the sparids in all analyses. These data suggest that a revision of Pagrus, Pagellus, Dentex is in order because these genera were not monophyletic in any analysis. Two mitochondrial lineages were reconstructed in all analyses, but the previously proposed six sparid subfamilies (Boopsinae, Denticinae, Diplodinae, Pagellinae, Pagrinae, and Sparinae) were not monophyletic in any analysis. This suggests that the feeding types that these subfamilies are based were independently derived multiple times within sparid fishes. There was support from the weighted cyt b analysis for a monophyletic Sparoidea, and in all cyt b analyses the Lethrinidae were sister to the Sparidae. However, the Sparoidea were not monophyletic in the independent 16S or combined analyses. Evidence from the weighted cyt b, 16S and combined analyses suggests a sister relationship between Moronidae and Lateolabrax. Biogeographic analysis revealed that there were two areas of sparid evolution: the eastern Indian Ocean - western Pacific and the western Indian Ocean Mediterranean/Atlantic. Sparids in these two areas probably arose from a Tethyan ancestor.

xiii

A MOLECULAR PHYLOGENY OF THE SPARIDAE (PERCIFORMES: PERCOIDEI)

GENERAL INTRODUCTION

The Sparidae are a diverse group of over 110 mostly neritic species whose putative six subfamilies have been defined primarily on the basis of dentition and feeding type (Smith, 1938; Akazaki, 1962). The monophyly of these subfamilies has not been tested, nor have the phylogenetic relationships of all sparid genera been hypothesized. Smith (1938) and Smith and Smith (1986) initially delineated the 33 sparid genera (Table 1) into four subfamilies based mostly on dentition (Table 2). The Boopsinae have compressed outer incisiform teeth and are typically herbivores or feed on small invertebrates. The Denticinae are typical piscivores with enlarged canines in front and smaller conical teeth behind. The Pagellinae lack canines, have small conical outer teeth, small inner molars and are usually carnivorous on small invertebrates. The Sparinae have jaws with bluntly rounded molars posteriorly, enlarged front teeth and are carnivorous, feeding on crustaceans, mollusks, and small fish. Akazaki (1962) erected two new subfamilies (Table 2), also largely defined by dentition. He moved the genera Diplodus, Archosargus, and Lagodon from the Sparinae into the Diplodinae and he moved Pagrus, Argyrops, and Evynnis from the Sparinae into the Pagrinae. Akazaki defined the Diplodinae as having six to eight anterior teeth in the jaws and obliquely projecting incisors, and the Pagrinae as those with four canines on the upper jaw, four to six canines on the lower jaw, scales on the head extending to the interorbital region, molar teeth in two series, and a reddish body. 2

3 The Sparidae have historically been a heterogenous group of fishes, often associated with the Lethrinidae, Nemipteridae, Lutjanidae, Caesionidae, and Haemulidae (Jordan and Fesler, 1893; Schultz 1953). Akazaki (1962) used osteology to define "spariform" fishes that included the Nemipteridae, Sparidae, and Lethrinidae (Figure 1). Akazaki suggested that the spariform fishes had three "stems": the primitive Nemipteridae-stem; the intermediate Sparidae-stem; and the highly specialized Lethrinidae-stem. Johnson (1980) proposed the superfamily Sparoidea to include Akazaki’s three spariform families and the Centracanthidae. He added the Centracanthidae based on maxillary-premaxillary distal articulation and other osteological characters. Johnson disagreed with Akazaki's placement of the Sparidae between the Nemipteridae and Lethrinidae and presented preliminary anatomical and osteological evidence that the Nemipteridae and Lethrinidae were more closely related to each other than they were to either the sparids or to the centracanthids (Figure 2). There has been only limited morphological analysis of the Sparidae since Regan (1913) gave the first practical definition of the family to include those species, “ in that the distal end of the praemaxillary ramus overlaps the maxillary externally”. The majority of morphological works have been regional in scope. Smith (1938) attempted to reinforce the taxonomy of South African sparids, but recognized that the: relationships between the species have never been properly investigated. Generic limits have been sadly lacking in uniformity; in some cases monotypic genera have been defined within the limits which are very narrow by contrast with others which have embraced forms so widely divergent and polymorphous as to be almost without parallel in any other families.

Akazaki (1962) provided the most complete morphological analysis of sparid relationships to date, although his treatise did not include all genera. His results inferred phylogenetic relationships of the sparids based on traditional, non-quantitative, methods.

4 Johnson (1980) better defined the relationships of the families often associated with the Sparidae. However, he was unable to examine all of the genera of sparids and the generic relationships remain untested. Similarly, few molecular studies have examined the evolutionary relationships of the Sparidae and none has employed cladistic analysis to investigate the evolutionary history of all sparid genera. Taniguchi et al. (1986) investigated 18 isozyme loci from skeletal muscle, liver, and heart tissues to infer the genetic relationships of ten species from six genera of Japanese sparids. Their results established a close genetic relationship of Japanese sparids; a genetic distance (Nei, 1978) of less than 0.01 between Japanese members of the genera Pagrus, Evynnis, Argyrops, and Dentex. A greater genetic distance (>0.013) was found between these four genera and Sparus and Acanthopagrus. Basaglia (1991) analyzed six isozymes from seven different tissues of 15 sparid species to infer phylogenetic relationships based on an “index of divergence”. Basaglia and Marchetti (1991) examined white muscle proteins in the same 15 species analyzed by Basaglia (1991) and presented a more quantitative analysis based on pairwise similarity coefficients that clustered the sparids into respective subfamilies - Boopsinae, Diplodinae, and Pagellinae. The Pagellinae Lithognathus mormyrus, clustered with the Sparinae as did the Denticinae, Dentex dentex. Garrido-Ramos et al. (1994, 1995, and 1999) used centromeric satellite DNA to elucidate the relationships of Mediterranean sparids. The later study sampled 10 taxa from four genera to infer phylogenetic relationships based on neighbor-joining and distance (UPGMA) analyses. Jean et al. (1995) examined three mitochondrial regions, the displacement loop, tRNAPhe, and 12S rRNA gene, of five taxa from two genera of Taiwanese sparids. Their resulting phylogenetic tree was based on Tamura-Nei genetic distances. Hanel and Sturmbauer (2000) used 16S rDNA sequences to examine the evolution of trophic types in Northeastern Atlantic and Mediterranean sparids. Based on an analysis of 24 taxa from 10 sparid genera, they concluded that

5 trophic types evolved more than once in sparid fishes. In this dissertation I present a rigorous phylogenetic analysis of sparid relationships. I include representatives of all valid sparid genera and use parsimony analysis of mitochondrial molecular data to infer relationships. In the first chapter I present the results of phylogenetic analyses of the complete mitochondrial cytochrome b gene for 40 sparid species, ten closely related species, ten basal percoids, and two nonperciform outgroup species. In the second chapter I show results of phylogenetic analyses of the partial mitochondrial 16S rRNA gene for 40 sparid taxa and 16 closely related percoid taxa. The third chapter provides a phylogenetic analysis from combined mitochondrial data sets using character congruence. I also investigate the biogeographic relationships of the Sparidae using the method of vicariance biogoegraphy (Brooks 1985; Wiley 1988a, b; Wiley et al., 1991). In each chapter, I have used the resulting phylogenies as dependent data to estimate the biogeographic aspect of evolution of the sparids. I have chosen to use parsimony analysis as a method to reconstruct phylogeny because it minimizes ad hoc assumptions of evolution. Under parsimony, the tree with the shortest number of steps is chosen as an estimator of phylogeny. The shortest tree has the least number of evolutionary changes required by the data to produce that tree and has the least amount of homoplastic character changes. The minimal tree should have the greatest number of shared, derived homologous characters (synapomorphies) as evidence for relationships. Outgroup species are used to determine homology of characters. In this study I have used a wide range of outgroup species to infer phylogeny. Outgroup species include those that have been classically associated with the Sparidae (Lethrinidae, Nemipteridae, Haemulidae, Lutjanidae), basal percoids (Moronidae, Lateolabrax and Centropomus) and taxa outside of Perciformes (Cyprinidae). The wide range of outgroups allowed for the testing of multiple hypotheses from these data.

6 Two types of clade support were used throughout this dissertation; nonparametric bootstrap (Felsenstein 1985) as well as total value and partitioned Bremer values (Bremer 1988). Nonparametric bootsrap employs psuedoreplicate data matrices to provide an estimate of phylogenetic signal at each node. Decay indices are a measure of support for the nodes in a given tree. The shortest unconstrained tree (or strict consensus of equally parsimonious trees) is found. A constraint statement is assigned for each node in the shortest tree or strict consensus tree. All trees, inconsistent with each constraint statement, are found. The indices are calculated for each node by comparing the length of the original shortest tree (or strict consensus) to the length of the inconsistent tree/s length at each constrained node. The additional number of steps between the original tree and the constrained tree/s becomes the index number. Additionally decay indices can be calculated for partitioned data following the method of Baker and Desalle (1997) and Baker, et al. (1998). The partitioned indices examine how each part of a partitioned dataset contributes to the decay value at a particular node. The partition value can be either positive or negative (negative values conflicting support for a node) with the sum of each node’s partitions equaling the overall decay value for that node (Sorensen 1999). In this dissertation I infer phylogenies from mitochondrial DNA, including the complete cytochrome b gene, the partial 16S gene, and from both genes in combination to: 1) test the monophyly of the Sparidae; 2) elucidate the inter-relationships of the 33 recognized genera of the Sparidae; 3) test the validity of the six subfamilies of the Sparidae; and, 4) to test the monophyly of the Sparoidea. In addition, in a final chapter to this dissertation, I give results of an attempt to infer phylogeny based on a single copy nuclear locus TMO-4c4.

7 TABLE 1. ANNOTATED LIST OF THE VALID GENERA OF THE SPARIDAE (PERCIFORMES: PERCOIDEI) Acanthopagrus Peters 1855:242 (as subgenus of Chrysophrys) Synonym: Mylio Commerson in Lacepede 1802 Archosargus Gill 1865:266 Argyrozona Smith 1938:300 (as subgenus of Polysteganus) Argyrops Swainson 1839:171 (as subgenus of Chrysophrys) Synonym: Parargyrops Tanaka 1916 Boops Cuvier 1814:91 Synonym: Box Valenciennes in Cuvier & Valenciennes 1830 Boopsoidea Castelnau 1861:25 Calamus Swainson 1839:171 (as subgenus of Chrysophrys) Synonym: Aurata Catesby 1771 Synonym: Grammateus Poey:1872 Cheimerius Smith 1938:292 (as subgenus of Dentex) Chrysoblephus Swainson 1839:171 (as subgenus of Chrysophrys) Crenidens Valenciennes in Cuvier & Valenciennes 1830:377 Cymatoceps Smith 1938:259 Dentex Cuvier 1814:92 Synonym: Synagris Klein in Walbum 1792 Synonym: Taius Jordan & Thompson 1912 Diplodus Rafinesque 1810:26 Synonym: Denius Gistel 1848 Synonym: Sargus Cuvier 1816 Synonym: Sargus Klein 1775 Evynnis Jordan & Thompson 1912:573 Gymnocrotaphus Gunther 1859:413 Lagodon Holbrook 1855:56 Synonym: Sphenosargus Fowler 1940 (as subgenus of Salema) Lithognathus Swainson 1839:172 (as subgenus of Pagellus) Oblada Cuvier 1829:185 Pachymetopon Gunther 1859:413 Synonym: Simocantharus Fowler 1933 (as subgenus of Spondyliosoma) Pagellus Valenciennes in Cuvier & Valenciennes 1830:169 Synonym: Nudipagellus Fowler 1925 (as subgenus of Pagellus) Pagrus Cuvier 1816:272 Synonym: Semapagrus Fowler 1925 (as subgenus of Pagrus) Synonym: Sparidentex Munro 1948 Petrus Smith 1938:302 Polyamblyodon Norman 1935:21 Polysteganus Klunzinger 1870:763 (as subgenus of Dentex)

8 TABLE 1 (Continued). ANNOTATED LIST OF THE VALID GENERA OF THE SPARIDAE (PERCIFORMES: PERCOIDEI) Synonym: Axineceps Smith 1938 (as subgenus of Polysteganus) Porcostoma Smith 1938:270 Pterogymnus Smith 1938:257 Rhabdosargus Fowler 1933:175 (as subgenus of Diplodus) Synonym: Austrosparus Smith 1838 Synonym: Prionosparus Smith 1942 (as subgenus of Austrosparus) Sarpa Bonaparte 1831:171 (as subgenus of Box [Boops]) Objective Synonym: Eusalpa Fowler 1925 Sparodon Smith 1938:249 Sparidentex Munro 1948:276 Sparus Linnaeus 1758:277 Objective Synonym: Aurata Oken (ex Cuvier) 1817 Synonym: Caeso Gistel 1848 Objective Synonym: Chryseis Schinz 1822 Synonym: Chrysophris Cuvier 1829 Objective Synonym: Daurada Stark 1828 Objective Synonym: Dorada Jarocki 1822 Synonym: Dulosparus Fowler 1933 (as subgenus of Sparus) Synonym: Eudynama Gistel 1848 Synonym: Pagrichthys Gill 1893:97 Spondyliosoma Cantor 1848:1032 Objective Synonym: Cantharus Cuvier 1816 Objective Synonym: Cantharusa Strand 1928 Objective Synonym: Caranthus Barnard 1927 Stenotomus Gill 1865:266 Synonym: Mimocubiceps Fowler 1944

9 TABLE 2. SUBFAMILIES OF SPARIDAE FOLLOWING AKAZAKI (1962)* AND SMITH AND SMITH (1986) Boopsinae Boops Cuvier 1814:91 Crenidens Valenciennes in Cuvier & Valenciennes 1830:377 Gymnocrotaphus Gunther 1859:413 Oblada Cuvier 1829:1851933 (as subgenus of Spondyliosoma) Pachymetopon Gunther 1859:413 Polyamblyodon Norman 1935:21 Sarpa Bonaparte 1831:171 (as subgenus of Box [Boops]) Spondyliosoma Cantor 1848:1032 Denticinae Argyrozona Smith 1938:300 (as subgenus of Polysteganus) Cheimerius Smith 1938:292 (as subgenus of Dentex) Dentex Cuvier 1814:92 Petrus Smith 1938:302 Polysteganus Klunzinger 1870:763 (as subgenus of Dentex) Sparidentex Munro 1948:276 Diplodinae* Archosargus Gill 1865:266 Diplodus Rafinesque 1810:26 Lagodon Holbrook 1855:56 Pagellinae Boopsoidea Castelnau 1861:25 Pagellus Valenciennes in Cuvier & Valenciennes 1830:169 Lithognathus Swainson 1839:172 (as subgenus of Pagellus) Pagrinae* Argyrops Swainson 1839:171 (as subgenus of Chrysophrys) Evynnis Jordan & Thompson 1912:573 Pagrus Cuvier 1816:272 Sparinae Acanthopagrus Peters 1855:242 (as subgenus of Chrysophrys) Calamus Swainson 1839:171 (as subgenus of Chrysophrys) Chrysoblephus Swainson 1839:171 (as subgenus of Chrysophrys) Cymatoceps Smith 1938:259 Porcostoma Smith 1938:270 Pterogymnus Smith 1938:257 Rhabdosargus Fowler 1933:175 (as subgenus of Diplodus) Sparodon Smith 1938:249 Sparus Linnaeus 1758:277 Stenotomus Gill 1865:266

10

Figure 1. Suggested phylogeny of spariform relationships redrawn from Akazaki (1962). Akazaki’s phylogeny was based on non-empirical analysis and should not be considered quantitative. Branch lengths in this tree do not represent degree of relatedness between taxa.

Petapodus

Nemipteridae

Scolopsis Nemipterus

Denticiniae

Sparidae

Cheimerius Dentex Cantharus Sarpa Boops

Boopsinae

Pagrinae

Pagellinae Sparinae

Diplodinae

Pagrus Argyrops Evynnis Pagellus Stenotomus Sparinae Acanthopagrus Calamus Archosargus Diplodus Lagodon Puntazzo Monotaxis

Lethrinidae

Gymnocranius Gnathodentex Lethrinus

12

Figure 2. Hypothesized relationships of the Sparidae, Centracanthidae, Lethrinidae and Nemipteridae of Akazaki (1962) top and Johnson (1980) bottom.

Akazaki 1962

Nemipteridae

Sparidae

Lethrinidae

Johnson 1980

Nemipteridae

Lethrinidae

Sparidae + Centracanthidae

CHAPTER ONE. A MOLECULAR PHYLOGENY OF THE FAMILY SPARIDAE (PERCOIDEI: PERCIFORMES) INFERRED FROM THE MITOCHONDRIAL CYTOCHROME B GENE

15

INTRODUCTION

Mitochondrial DNA (mtDNA) has proven to be useful in molecular phylogenetic studies because evolutionary relationships can be inferred among higher levels, between recently divergent groups, populations, species and even individuals (Avise, 1994). The mtDNA molecule is double stranded, circular, clonally (maternally) inherited. Most substitutions are point mutations although insertions/deletions are not rare (Avise, 1994). The mtDNA genome is relatively small (approximately 16,500 base pairs in fishes), has a high nucleotide substitution rate at synonymous sites and lacks recombination (Brown et al., 1979; Rand, 1994; Cantatore et al., 1994). The mitochondrial DNA of perciform fish is comprised of 13 protein-coding genes, two ribosomal RNA (rRNA) genes and 22 transfer RNA (tRNA) genes (Meyer, 1993). Within the mitochondrial genome, different regions evolve at different rates . Cummings et al. (1995) explored the ability of single mtDNA genes to recover the same tree/s found when using whole mtDNA genomes; assuming that whole genomic phylogenies are a better measure of the “true” phylogeny. Their findings indicated that no one gene represented all of the information expressed by the whole genome. In an ideal phylogenetic study, random or directed sampling of base pairs from across all mitochondrial genes would deduce the same tree as resulted in the analysis of the total genome; however, many constraints exclude wide-range gene sampling, and sequencing of the entire mtDNA genome from a wide-range of taxonomic representatives is even more daunting. Because each protein coding region, rRNA gene and tRNA has different functional and structural constraints, each mtDNA gene region is unique in its intrinsic

16 rate of substitution. Therefore, analysis of only single genes, partial gene regions, or both in combination has become a common approach in molecular phylogenetics. It is difficult to evaluate the usefulness of a particular gene a priori and often a pilot study must be conducted to realize a gene’s potential for inferring a phylogeny for a particular group. Examination of published sequences and phylogenies often reflect a gene’s strength and limitation, and can provide a basis for gene selection. Cytochrome c oxidase subunit I (COI) has been found to be one of the more highly conserved genes of the mitochondrial genome (Brown, 1985). For a comparison of taxonomic representatives of the order Perciformes or at the family level (less divergence time) this gene may be too conserved (not variable enough) and therefore, yield little phylogenetic information. To date COI has not been analyzed widely in fishes. The large (16S) and small (12S) subunits of mitochondrial ribosomal DNA are reasonably conserved within perciform fish and are typically used for higher level (subfamily, family, superfamily, suborder, order) analyses (Hillis and Dixon, 1991, Wiley et al., 1998). The control region or displacement loop (D-loop) of mtDNA has highly variable non-coding sites positioned between very conserved functional areas. Because reduced selection constraints in regions of D-loop, the control region is used for analysis of closely related taxa where increased variation may reflect recent evolutionary events (Lockhart et al., 1995). Other mtDNA genes such as ATPase6, ATPase8, cytochrome b or NADH(n) may be preferable for phylogenetic comparisons for taxa of intermediate divergence (generic and family level) because these gene regions are more variable than both rRNAs or COI, but are less variable than the D-loop. Of mtDNA protein-coding genes, cytochrome b (cyt b) has proven to be a robust evolutionary marker, revealing phylogenies at various taxonomic levels in fishes. Cytochrome b codes for a functionally conserved protein and can be phylogenetically informative on interspecific and intraspecific studies, but is probably best suited for

17 closely related taxa because nucleotide sequence variation is less saturated by multiple substitutions (Meyer 1993). Cytochrome b was informative in actinopterygian phylogenetic relationships (Lydeard et al., 1995; Lydeard and Roe, 1997; Schmidt et al., 1998). Cantatore et al. (1994) used cyt b sequence analysis to survey the phylogenetic relationships of five widely diverse families of perciform fishes and observed that the rate of divergence was similar to that of sharks (Martin et al., 1992; Martin and Palumbi 1993), yet slower than that of mammals and birds. Finnerty and Block (1995) demonstrated cyt b to be useful in resolving phylogenetic relationships of the perciform suborder Scombroidei and Song et al. (1998) used cyt b to assess the phylogenetic relationships among percid fishes. Zardoya and Meyer (1996) classified cyt b as a good “phylogenetic performer” among phylogenetically distant relatives. Much is known about the structure and function of cytochrome b (Esposti et al., 1993). The translated product is a transmembrane protein that forms the central catalytic subunit of ubiquinol:cytochrome c oxidase. This enzyme is a ligand that contains a heme prosthetic group. The central iron ion in the heme acts as the primary electron transport during mitochondrial respiration (Esposti et al., 1993). The cytochrome b molecule is bi-polar with five negatively charged proton input regions, four positively charged proton output regions and eight transmembrane regions (Esposti et al., 1993, Lydeard and Roe 1997). Previous studies including Irwin et al. (1991) and Lydeard and Roe (1997) have found the most variable amino acid residues in the negative side followed by the transmembrane region and the positive output region being least variable. The conservation of the positive side is likely due to a functional constraint as the positive terminus associates with an iron-sulfur subunit during ubiquinol oxidation (Esposti et al., 1993, Lydeard and Roe 1997). Cytochrome b was chosen as a molecular marker for this study because it is a coding gene likely to provide useful phylogenetic information at many taxonomic levels.

18 Functional constraints balance stochastic mutations at nucleotide positions across cyt b and variable rates of synonymous and nonsynonymous substitutions among codon positions contribute to the gene’s utility as an evolutionary marker. In this chapter, I present the results of phylogenetic analyses of the complete mitochondrial cytochrome b (cyt b) gene (1140 bp) for 40 sparid species, ten closely related species, ten basal percoids, and two non-perciform outgroup species. I used parsimony analyses from cyt b nucleotide and amino acid sequences to test the monophyly of the Sparidae, the validity of the six subfamilies of the Sparidae, the evolutionary relationships of the 33 genera of the Sparidae, and the monophyly of Sparoidea. A resulting phylogeny was used as the basis for analysis of the biogeographic aspects of sparid evolution.

19

. MATERIALS AND METHODS

Sampling - Following the classification of Akazaki (1962) and Smith (1986), representatives of the six subfamilies (Boopsinae, Denticinae, Diplodinae, Pagellinae, Pagrinae and Sparinae) and 33 genera of the family Sparidae were collected. Taxonomic representatives were also collected for other members of the superfamily Sparoidea (Centracanthidae, Nemipteridae and Lethrinidae), and for possible close outgroups in the Percoidei ( Haemulidae, Lutjanidae, and Caesionidae). The basal percoids Moronidae + Lateolabrax were used to root the Sparidae and related families within the perciformes. Sequences of two ostariophysins, Luxilus and Cyprinus were used as distant outgroups in this study. Collection data for each sample are provided in Table 3. When possible, specimen identifications were validated through voucher specimens deposited at museums in country-of-origin, at the National Museum of Natural History in Washington, DC (USNM), Virginia Institute of Marine Science, Gloucester Point, VA (VIMS) or at Old Dominion University, Norfolk, VA. (ODU). Museum catalog numbers and GenBank accession numbers are provided in Table 3.

Specimen Preservation - Gill tissue or white muscle tissue was collected from fresh samples or from frozen samples acquired at markets or in museum collections. Tissue was removed from frozen samples and not allowed to thaw before adding to buffer. Tissues were placed into a buffer solution of 0.25 M disodium ethylenediaminetetraacetate (EDTA), 20% dimethyl sulfoxide (DMSO), saturated sodium chloride (NaCl), pH 8.0 (Seutin et al., 1990) and stored at room temperature.

20 DNA Extraction - High molecular weight DNA was isolated from gill tissue or white muscle tissue. Approximately 0.05-0.1g of tissue was removed using sterile scalpel blades and forceps. Forceps were rinsed in 10% bleach and two changes of de-ionized water (diH20), dipped in 95% ethyl alcohol and flame sterilized between samples. Samples were placed in a 1.5ml microfuge tubes followed by protein digestion, phenol:chloroform extraction, and ethanol precipitation following Sambrook, et al. (1989) or using the tissue protocol of QIAamp® System DNA extraction kits (QIAGEN Inc, USA, Valencia CA).

Primers - The following primer pairs were used for PCR amplification in this study and were mapped against the equivalent sequence positions on the mitochondrial genome of Cyprinus carpio (GenBank Accession X61010): CYTbUnvL - L15242 (Kocher et al., 1989)/CYTbUnvH - H16458 (Cantatore et al., 1994); CYTbGludgL L15249/CYTBThrdgH - H16465 (Palumbi et al., 1991); and CYTB4xdgL - L14249 (modified from Palumbi et al., 1991)/CYTb4xdgH - H16435 (derived from consensus sequences during this study). See Figure 3 for primer sequences, location illustration and map alignment. Primers were ordered from Genosys (Genosys Biotechnologies, Inc., The Woodlands, TX). Primers sites were located within the transfer ribonucleic acids (tRNA) genes that flank either end of the mtDNA cytochrome b gene (tRNAGlu and tRNAThr).

Amplification - A 50 µl PCR amplification of cyt b was performed with 5-10 ng of each template DNA. The following reagents from the PCR Reagent System (GIBCO BRL Life Technologies, Gaithersburg, MD) were used in each reaction: 5 µl 10X PCR Buffer plus Mg [200mM Tris-HCL (pH8.4), 500 mM KCL, 15 mM MgCl2]; 1µl 10mM dNTP Mix [10mM each dATP, dCTP, dGTP, dTTP]; 50 pmols of each primer, 0.25 µl Taq DNA polymerase [5U/µl]. Either a Perkin Elmer Cetus (Norwalk, CT ) or an MJ

21 Research PTC-200 (Watertown. MA) thermocycler was used for PCR amplification with the following cycle parameters: initial denaturation [94EC for 4.0 min]; 35 cycles of [denaturation 94EC for 1.0 min, annealing 48EC-51EC (depending on sample) for 1.0 min; extension 72EC for 3.0 min]; final extension [70EC for 5 min]; icebox [4EC indefinitely].

Cloning and Sequencing - Once target sequences were selected and successfully amplified, sequence reactions were performed. The polymerase chain reaction products were cloned using the Invitrogen TA Cloning® Kit, (Invitrogen Corporation, San Diego, CA). Ligated PCR product was transformed and cloned into competent Escherichia coli. Transformed colonies were grown overnight on LB-agar plates in the presence of ampicillin and 5-bromo-4-chloro-3-indolyl-ß-D-galactoside (Xgal). Colonies with inserts were streaked on new LB-agar plates in the presence of ampicillin and Xgal. White colonies were screened for appropriate inserts using the quick screening methods from Sambrook et al. (1989). Colonies with target insert were grown in 3 mL preparations of terrific broth + ampicillin overnight (Tartof and Hobbs, 1987). Purified plasmid DNA was obtained by either standard plasmid preparation protocols (Seutin et al., 1990) or by using a PERFECTprep® kit (5Prime ÿ 3Prime, Inc. Boulder, CO) and suspended in 65Fl diH20. Sequencing was performed following the dideoxynucleotide chain termination method (Sanger et al., 1977), using manual and automated sequencing techniques. Initially, a 357 base pair fragment of the cyt b gene was amplified for 20 taxa using the primers UCYTB144F-tgggsncaratgtcntwytg and UCYTB272R-gcraanagraartaccaytc (J. Quattro - unpublished), cloned and manually sequenced. During manual reactions both strands of approximately 5Fg of plasmid DNA were sequenced using the Sequenase Version 2.0 Kit (United States Biochemical, Cleveland, OH). Primers that flank each end

22 of the plasmid insert, the M13 Reverse Primer (New England BioLabs, Beverly, MA) and the T7 Forward Promotor (GIBCO BRL Life Technologies) were used to sequence 357 base pairs of cytochrome b. Approximately 6.25 ci of the radiolabeled marker, 35S-(athio)-deoxynucleoside triphospate (New England Nuclear, Boston, MA.), was incorporated during reactions to visualize sequences on a resulting autoradiogram. Reactions were electrophoresed through a 6% polyacrylamide gel. The gel was transferred to 3 MM chromatography paper, vacuum-dried and exposed to Kodak BioMax autoradiograph film. The film was developed within 1 week following initial exposure and sequences were read directly from the autoradiogram and recorded by hand. Separate results are not included for the manual sequencing. The 357 base pair fragment explored by manual sequencing was internal to the entire gene and was re-sequenced during automated sequencing. This information was used to survey the utility of cytochrome b across selected members of the Sparidae and outgroups. Once the utility of cytochrome b was established for this group, the entire gene was sequenced for all samples using a LiCor automated sequencer. All complete sequences reported in this study were sequenced using automated techniques (no sequences reported are from manual techniques). Plasmid DNA was quantified using a DyNAQuant 200 flourometer (Amersham Pharmacia Biotech, Buckinghamshire, England) and approximately 300 fmol of plasmid DNA was used in each cycle sequencing reaction. Both forward and reverse IRD800 flourescently labeled M13 primers were used (Li-Cor, Inc. Lincoln, NE). A heat stable DNA polymerase, Thermo Sequenase TM (Amersham Pharmacia Biotech) was used to incorporate the IRD800 flourescently labeled primer during cycle sequencing. To relax structural stops during electrophoreses, 7-deaza-dGTP was used during chain building. The flourescently labeled termination reactions were then electrophoresed through a 66cm, 0.25mm thick, 4% LongRanger (FMC BioProducts, Rockland, Maine) acrylamide gel on a Li-Cor 4000L

23 automated sequencer. The resulting electronic gel image was analyzed using BaseImage V2.3 software (Li-Cor).

Sequence Alignment - Both light and heavy strand sequences were obtained for all taxa. Light strand sequences were inverted (reversed and complimented) with the heavy strand sequence. A consensus sequence from combined light and heavy strands was made for all taxa. Cytochrome b nucleic acid sequences were aligned by eye and by the Clustal feature of Gene Jockey II (Biosoft, Cambridge UK). Two cytochrome b sequences from GenBank: accession numbers X81567 (Sparidae: Boops boops) and X8156 (Moronidae Dicentrarchus labrax) were used to aid alignment. The resulting alignment introduced no gaps due to deletions or insertions and there were no inconsistent alignments between taxa. Once sequences were aligned they were assigned codon positions and the reading frames were proofed for frame-shifts. Ambiguities were referenced against the sequencing gel image and corrected as necessary. Nucleotide sequences were translated into amino acid residues using the extended mitochondrial translation table in MacCLADE 3.07 (Madisson and Madisson, 1993).

Sequence Divergence and Mutation Analysis - Mean uncorrected pairwise genetic distance (uncorrected “p” distance) was calculated using PAUP* ver 4.0b4a (Swofford, 1998) between all taxa, between ingroup taxa and between outgroup taxa. Because of the large difference in sequence divergence between ingroup and outgroup taxa, mutation analysis was restricted to ingroup taxa only. Scatter plots of transitions (Ts = AøG, CøT) and transversions (Tv = AøC, AøT, CøG, GøT) as a function of mean sequence divergence were calculated for combined codon positions and for individual codon position from ingroup taxa only.

24 Base Compositional Bias - Base compositional bias (Irwin et al., 1991) was calculated for all, ingroup and outgroup taxa, for combined codon positions, and for individual codon positions. Base compositional bias was calculated using the following formula: 4

C = (2 / 3) ∑ | ci − 0.25|, i =1

where C is the compositional bias and ci is the frequency of the ith base (Irwin et al., 1991). The bias measurements for each nucleotide base were then summed across taxa and divided by the total number of taxa for each group measured (all, ingroup, outgroup).

Phylogenetic Analysis - Parsimony analysis was performed using PAUP4.0b2* (Swofford, 1998). The most parsimonious tree (MPT), or equally parsimonious trees (EPTs) and strict consensus were obtained for each analysis. The number of constant characters, parsimony-uninformative and parsimony informative characters, tree length, consistency index and the retention index were determined. Bootstrap replicate support was conducted using PAUP* and decay values (Bremer 1988) were calculated for clade support using the program TreeRot.v2 (Sorensen 1999).

Biogeographic Analysis - A quantitative analysis of the biogeographic relationships of the Sparidae was conducted using analysis of vicariance biogeography (Brooks 1985; Wiley 1988a, b; Wiley et al., 1991). Parsimony analysis was used to reconstruct the biogeographic relationships inferred from the cytochrome b phylogeny. During biogeographic analysis, a matrix of independent data (areas of occurrence) and dependent data (phylogeny of the Sparidae) was constructed. All nodes on the original tree were labeled (terminal taxa, internal nodes=ancestral states). A list of areas of occurrence was then prepared for each taxon. To define distributional data as objectively as possible,

25 “FAO areas” were used for each taxon (FAO, 1995). The FAO areas were established by FAO (1995) as a means to provide defined distributional areas for fisheries statistical purposes. Each node was assessed for each of the areas. A binary data-matrix was developed based on the presence (1) or absence (0) of each dependent variable (node) for each independent variable (area). The data matrix was converted to a NEXUS file and analyzed with PAUP*. The resulting tree was then overlaid onto a map of the world.

26

RESULTS

Sequence Characteristics - The full 1140 nucleotide basepairs of the cytochrome b gene was sequenced for 57 taxa. Nucleotide sequences for all taxa included in this study are given in Table 4. Of the 1140 characters sampled across all taxa, 483 (42%) were constant, 115 (10%) variable characters were parsimony uninformative and 542 (48%) variable characters were parsimony informative (Table 5). Of all informative characters, 69% came from the third codon position. Third codon position bases were more variable (2 constant, 2 uninformative, 376 informative) than first codon position bases (203 constant, 49 uninformative, 128 informative) and second codon position bases (276 constant, 66 uninformative, 38 informative). Informative characters were primarily transitions in the third codon position (Ts= 68% of all substitutions) and first codon position (Ts=66% of all substitutions). Less of the informative characters were transitions in the second codon position (Ts=59%, Tv=41%).

Sequence Divergence - Mean uncorrected pairwise genetic distance (uncorrected “p” distance) is given in Table 6. between all, ingroup, and outgroup taxa. The mean uncorrected pairwise sequence divergence among all taxa was 20.22%. The mean pairwise sequence divergence between outgroup taxa was 22.73%, and the mean pairwise sequence divergence between ingroup taxa was 16.27%. Mean pairwise uncorrected sequence divergence was calculated among and between the six subfamilies of the Sparidae (Table 7). The smallest within group (subfamily) uncorrected sequence divergence was found within the subfamily Diplodinae (11.14%) and the greatest divergence was found within the subfamily Sparinae (16.58%). The smallest uncorrected

27 divergence was between the subfamilies Denticinae and Pagellinae (14.23%) and the greatest uncorrected sequence divergence was between Boopsinae and Denticinae (17.66%).

Mutation Analysis - Scatter plots of transitions and transversions as a function of mean sequence divergence were calculated for combined codon positions and for individual codon position from ingroup taxa only (Figures 4-7). Combined codon positional transitions reached a maximum number of substitutions ( > 160) at approximately 20% sequence divergence (Figure 4; Ts-All - 2nd order polynomial y = -0.3212x2 + 12.339x + 13.82, R2 = 0.2725). Combined codon positional transversions continued to increase with sequence divergence in a linear relationship (Figure 4; Tv-All - 2nd order polynomial y = -0.0176x2 + 4.0373x - 3.6503, R2 = 0.2038 ) across the entire range of sequence divergence. In graphs from codon positions one and two (Figures 5 and 6) there appeared to be a linear increase in the total number of substitutions as a function of sequence divergence. However, second order polynomial trend lines fitted only a small percentage of the variance in the data (Figures 5 and 6; 2nd order polynomials). In the first codon position, there were 30 transitions at 20% sequence divergence, but only 15 transversions at 20% sequence divergence. In the second codon position, there were very few substitutions overall (15%).

Base Compositional Bias - The overall positional bias was 0.133 (13%). The highest bias was found in the third codon position that had a bias of 0.274 (27%) and there was a strong anti-guanine bias in the third codon position with a subsequent shift to procytosine (Table 8). Cumulative frequencies of each of the four base pairs was calculated for all 62 taxa and a chi-square test of base heterogeneity were calculated for all codon positions, and for codon positions one, two and three (Figures 11 to 14). The overall codon bias was not significant (X2=166.9, df=183 p=0.798), but had a lower p value than

29 chi-square test from individual codons, reflecting the anti-guanine bias. The first codon position (X2=34.22, df=183, p > 0.995) and second codon position (X2=9.68, df=183, p > 0.995) did not demonstrate significant heterogeneity among taxa in base composition. The frequencies of the four bases in the third codon position was strongly unequal (antiguanine, pro-cytosine) and the chi-square test demonstrated significant heterogeneity among taxa in third codon position base frequency (X2=477.6, df=183, P < 0.001).

Amino Acid Translations - Nucleotide base pairs were translated into amino acid residues (Table 9) . Of 380 total residues, 190 (50%) were constant across all taxa and of the variable characters 93 (24.5%) were parsimony uninformative and 97 (25.5%) were parsimony informative across all taxa.

Phylogenetic Relationships Unweighted Data - A heuristic search of 1000 random addition replicates of the cytochrome b nucleotide data set resulted in four equally parsimonious trees (Figure 15, tree length = 6416, CI = 0.1900; RI = 0.4258, starting seed 796159554; all characters unordered and equal weight of 1; outgroup taxa Cyprinus carpio and Luxilus zonatus; branch-swapping = stepwise addition; swapping algorithm = tree bisection-reconnection; no topological restraints; character-state optimization = accelerated transformations). Bootstrap support (1000 replicates) and partitioned Bremer decay values (20, unrestricted random addition sequences per node) were calculated and are shown on a strict consensus of four equally parsimonious trees (Figure 16). In all EPTs (Figure 15) the family Sparidae formed a fully resolved clade with strong bootstrap (99%) and decay support (22) for sparid monophyly. Based on the partitioned Bremer values, 75% of the support is based on third positional changes and 25% was based on first positional changes. Included in the monophyletic Sparidae clade are two species of the centracanthid genus

30 Spicara. Pending further evidence and for the purpose of this analysis, Spicara will be considered a member of the Sparidae (see discussion for more details). Within the monophyletic Sparidae + Spicara clade, two distinct clades are educed. A Bremer decay support of 3 separates the sparid taxa in “Group I” ((((Boops boops, Crenidens crenidens), (((Oblada melanura, ((Diplodus argenteus, (Diplodus bermudensis, Diplodus holbrooki)), Diplodus cervinus)), (Lithognathus mormyrus, Pagellus bogaraveo)), ((Acanthopagrus berda, Sparidentex hasta), ((Rhabdosargus thorpei, Sparodon durbanensis), Sparus auratus)))), (((Gymnocrotaphus curvidens, (Pachymetopon aeneum, Polyamblyodon germanum)), Boopsoidea inornata), (Sarpa salpa, (Spondyliosoma cantharus, Spicara maena)))), ((Archosargus probatocephalus, Lagodon rhomboides), (Calamus nodosus, Stenotomus chrysops))) from a second clade, “Group II”, with decay support (8) for the sparid taxa (((Argyrozona argyrozona, ((Petrus rupestris, Polysteganus praeorbitalis), ((Chrysoblephus cristiceps, Cymatoceps nasutus), Porcostoma dentata))), Pterogymnus laniarius), (((((Cheimerius nufar, Dentex dentex), Pagrus auriga), (Pagellus bellottii, Pagrus pagrus)), (Argyrops spinifer, (Evynnis japonica, Pagrus auratus))), (Dentex tumifrons, Spicara alta)))). The sister group to the Sparidae are the Lethrinidae (Lethrinus ornatus, Lethrinus rubrioperculatus). However, neither Bremer decay nor bootstrap values support the lethrinids as separate from other percoids. The Nemipteridae were included with the Moronidae + Lateolabrax in an unresolved clade described here from the strict consensus tree (((Dicentrarchus labrax, Dicentrarchus punctatus), ((Morone americanus, Morone mississippiensis), Morone chrysops, Morone saxatilis)), ((Lateolabrax japonicus, Lateolabrax japonicus2), Lateolabrax latus), (Scolopsis ciliatus, Nemipterus marginatus))). The haemulids and lutjanids + caesionids form an unresolved dichotomy with a weak support (decay value 3) separating them from other percoids ((Haemulon sciurus, Pomadasys maculatus), (Caesio cuning, Lutjanus decussatus)). Strong decay support (9) and bootstrap values

31 separate Centropomus undecimalis from other percoid groups. Cyprinus carpio and Luxilus zonatus were clearly outside of the Perciformes.

Weighted Data: Transversions only Third - Saturation in the third codon position transitions occurred at the approximate mean pairwise sequence divergence within the Sparidae. Transitions at a saturated site may not reflect homologous changes between taxa and evolutionary relationships inferred from saturated sites are less likely to be reflective of phylogenetic history. Down-weighting or eliminating the contribution of saturated transitions within the analysis might decrease systematic error due to homoplasy (Swofford, Olsen, Waddell and Hillis in Hillis, et al., 1996). Although not all third codon position transitions were saturated, there is no means to separate those that are saturated from those that are unsaturated. For that reason, all third position transitions were eliminated in this analysis (even though some informative data were sacrificed). A step matrix was developed that weighted all third position transitions 0 and transversions 1 and was applied to third positions under the “Set Character Types” of the Data option of PAUP4.0b2* . A heuristic search of 1000 random addition replicates yielded two EPTs (Figures 17, tree length = 2536, CI = 0.2504, RI = 0.5816 starting seed 303516572, cytochrome b nucleotide data set using all changes at first and second position and only transversions in third position, all other parameters of this analysis as in the previous analysis). A strict consensus of both tree is shown in Figure 18 and revealed a monophyletic Sparidae and a monophyletic Sparoidea (Sparidae & Centracanthidae + Lethrinidae + Nemipteridae ) although no bootstrap support and minimal decay support (2) for the Sparoidea node was observed. The Sparoidea were sister to Lutjanidae & Caesionidae followed by Haemulidae and a clade containing Moronidae & Lateolabrax . The later clade established Lateolabrax sister to Moronidae. To date no cladistic study has established the Moronidae sister to Lateolabrax, although the relationship has been

32 hypothesized based on scale anatomy by McCully (1962) and based on morphology by Waldman (1986). Within the Sparidae, Calamus, Stenotomus and Archosargus & Lagodon were removed from their previous placement and are basal to all other Sparidae. The two distinct clades rendered in the previous analysis remained, but the relative location of certain taxa was not stable. Notably, Boops shifted in placement from Boops & Crenidens in the previous tree to (Boops & Sarpa) + (Spondyliosoma & Spicara) and Crenidens shifted to a clade with Lithognathus.

Nucleotide Translations - A heuristic search of 100 random addition replicates of the cytochrome b amino acid residues translated from the nucleotide data set resulted in 699 equally parsimonious trees (tree length = 637, CI = 0.5620, RI = 0.7082, starting seed 785084916; all characters unordered and equal weight of 1; outgroup taxa Cyprinus carpio and Luxilus zonatus; branch-swapping = stepwise addition; swapping algorithm = tree bisection-reconnection; no topological restraints; character-state optimization = accelerated transformations). Bootstrap support (100 replicates, restricted to 5000 trees searched/replicate of length > 400) and Bremer decay values (20, restricted random addition sequences per node 1000 trees searched/replicate of length > 400 ) were calculated and are shown on a strict consensus of the 699 equally parsimonious trees (Figure 19). The Sparidae were monophyletic in the consensus of all EPTs and contained two distinct clades, similar to both the nucleotide analyses. As with the unweighted nucleotide tree, Calamus nodosus was basal to all other sparids. Notable in the consensus tree was the removal of Lagodon from other western Atlantic sparids and the subsequent inclusion of Lagodon to a Spondyliosoma-Spicara clade. As expressed from the nucleotide data, the amino acids support Lethrinidae as sister to the Sparidae. The placement of the Centropomus undecimalis translation within the Nemipteridae was curious. Lateolabrax placed basal to all other percoids and was not sister to the Morone-

33 Dicentrarchus clade as supported by the nucleotide data. Clade support for sparid monophyly was strong, but there was no bootstrap support for the two distinct clades found within the sparids. Three clades (Boops boops & Sarpa salpa), (Acanthopagrus berda & Sparidentex hasta) and (Rhabdosargus thorpei & Sparodon durbanensis) had minimal support within the Sparidae and the only other structuring was limited to the clade of (Pachymetopon aeneum & Polyamblyodon germanum).

Biogeography - The monophyletic Sparidae clade within the unweighted cytochrome b phylogeny (Figure 18) was used as the source of dependent data for biogeographic analysis. The Sparidae clade was pruned from the original tree and all ancestral states were numbered (Figure 20). The geographic distribution was defined for terminal taxa using FAO areas (Table 10) and these areas were treated as independent data. Areas of occurrence were determined relative to each terminal taxa or ancestral node and coded into a binary matrix; presence=1, absence=0 (Table 11). Parsimony analysis of the data matrix resulted in a single most parsimonious tree and is overlaid on a world-wide map in Figure 21 (tree length = 102; CI =0.7549; RI = 0.8377; of 82 total characters; all characters unordered and equal weight, 5 characters were constant, 7 variable characters were parsimony uninformative, 70 variable characters were parsimony informative; 1000 replicates of random stepwise addition; 100 trees held at each step; starting seed = 1524546659; character-state optimization: Delayed transformation). All taxa were found in more than one FAO area, except the Bermuda endemic Diplodus bermudensis and the Japanese endemic Evynnis japonica. Many of the taxa were assigned to multiple areas (for example, Acanthopagrus berda). The tree was rooted to the node of southwestern Pacific Ocean and eastern Indian Ocean + western central Pacific Ocean + northwestern Pacific Ocean. The western Indian

34 Ocean/southeastern Atlantic clade was sister to eastern Atlantic/Mediterranean-Black Sea species. These were in turn sister to western Atlantic species. All Atlantic Sparidae + the western Indian Ocean/Atlantic species were sister to Pacific Ocean/eastern Indian Ocean clade. The eastern Indian Ocean - western central and northwestern Pacific taxa formed an unresolved polytomy.

35

DISCUSSION

Sequence Divergence and Codon Base Composition Bias The majority of sequence divergence was due to third codon position substitutions as seen in the plot of total substitutions from the third position as a function of uncorrected sequence divergence (Figure 7). Third positional transitional substitutions accounted for the most of the homoplasy in the cytochrome b data set. These characters were not informative for resolving relationships of more distant species in the unweighted analysis. Third positional transitions appeared to reach saturation at transversions). The partitioned Bremer values showed the majority of the support for a given clade came from the third codon position (Figure 16). In the weighted analysis, where all changes were considered from the first and second codon, and only transversions from the third position (transitions weight=0), there was an obvious reduction in the contribution of third positional support for clades and a subsequent increase in the proportion of support from first and second positions (Figure 18). The overall effect of down-weighting transitions during the weighted analysis was increased resolution for intermediate relationships. In the unweighted clade, the signal of intermediate percoid relationships was shaded by site saturation (accumulation of multiple substitutions at a site) in the third codon position. This resulted in unresolvable phylogenetic information for taxa that had divergences of the same magnitude as that of site saturation. By removing the saturated data, the

44 phylogenetic signal was derived from the more conserved codon positions, one and two, and from the less frequent transversional changes of codon position three. Conserved data possibly contained useful information of past evolutionary events that were invaluable in resolving intermediate perciform relationships. The most conserved data, derived from this study, was that of amino acid residue translations of the cytochrome b nucleotide data. The translations were informative in constructing a monophyletic Sparidae that was sister to the Lethrinidae, but were not informative in resolving percoid relationships. The two distinct groups deduced within the Sparidae revealed the inability of the current classification to define sub-structuring within the family. These groups are similar to the “Lineages 2 & 3" found in Hanel and Strumbauer’s (2000, Fig. 1.) 16S phylogeny of northeastern Atlantic and Mediterranean sparid. Clearly the subfamilies, as currently proposed, are not valid. Within each group, derived from cytochrome b, no distinct pattern could be visualized that reflects the current criteria for sub-structuring. For example, sparid Clade I contains all members of the current Boopsinae (herbivores with compressed outer incisiform teeth) and but also members of Sparinae, Pagellinae and Diplodinae. There is no external morphological character to unite members of this group, nor do they all belong to one feeding type (herbivore, carnivore and omnivore). There is no evidence overall for geographic similarity to unite all these fish, although there is some structuring within certain nodes based on geography. It is suggested from these data that feeding types evolved multiple times within the Sparidae. The phylogenetic relationships derived from the cytochrome b nucleotide data and the subsequent amino acid translations corroborate the Sparidae as monophyletic. However, none of the phylogenetic trees from these data support the division of the Sparidae into the previously defined subfamilies; the currently defined subfamilies are inadequate to explain the structuring produced from these data. Although, there were two

45 groups within the Sparidae, there is no unifying character/s within these groups to support defining them as subfamilies. Clearly a revision of the Sparidae is needed to redefine structuring between genera. The nucleotide data supported the Lethrinidae sister to the Sparidae and there was support, however minimal, for the Sparoidea..

46 TABLE 3. COLLECTION DATA FOR SPECIMENS USED. GENBANK ACCESSION NUMBER, MUSEUM COLLECTION NUMBERS AND COLLECTION LOCALITY ARE GIVEN. MUSEUM ACRONYMS ARE FOLLOWING (LEVITON ET AL., 1985 AND 1988). All TAXA Outgroup Taxa Centropomidae Centropomus undecimalis Cyprinidae Cyprinus carpio Luxilus zonatus Haemulidae Haemulon sciurus Pomadasys maculatus Lethrinidae Lethrinus ornatus Lethrinus rubrioperculatus Lutjanidae Caesio cuning Lutjanus decussatus Moronidae + (Lateolabrax) Dicentrarchus labrax Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensis Morone saxatilis Nemipteridae Nemipterus marginatus Scolopsis ciliatus Ingroup Taxa SPARIDAE Boopsinae Boops boops Crenidens crenidens Gymnocrotaphus curvidens Oblada melanura Pachymetopon aeneum Polyamblyodon germanum Sarpa salpa Spondyliosoma cantharus Denticinae Argyrozona argyrozona Cheimerius nufar Dentex dentex

GenBank Accession#

Museum Catalog#

AF240739 No Voucher X61010 U66600

Collection Locality Florida (Collected by J. Gelschlecter)

Sequences From GenBank Sequences From GenBank

AF240747 No Voucher AF240748 USNM uncat

Florida, Big Pine Key, W. of Bridge Philippines, Manila Market

AF240751 USNM 345259 Philippines, Bolinao, Luzon AF240752 USNM Uncat Australia, W. Australia CSIRO SS 8/95/45 AF240749 USNM 345193 Philippines, Iloilo Panay, Market AF240750 USNM 346695 Philippines., Northern Negros, Market X81566 AF240740 AF250741 AF240742 AF240743 AF240744 AF240745 AF045362 AF240746

Sequences From GenBank No Voucher fish market, Spain VIMS 10381 Picture Voucher, Japan Market Sample VIMS 10381 Picture Voucher, Japan Market Sample MTUF 27451 Sasebo, Nagasaki Prefecture, Japan No Voucher VIMS Trawl Survey Chesapeake Bay UT 85.91 Cherokee Reservoir, Grainger Co, TN Sequences From GenBank VIMS Uncat VIMS Trawl Survey Chesapeake Bay

AF240754 USNM 345202 Philippines, Luzon, Manila, Market AF240753 USNM 346853 Philippines, Guimaras Island, JTW 95-1

X81567 AF240699 AF240700 AF240701 AF240702 AF240703 AF240704 AF240705

Sequences From GenBank No Voucher Qatif Market, eastern Saudi Arabia RUSI 49447 Kenton-on-Sea, South Africa No Voucher Spain, Azohia, Bay of Cartagena RUSI 49672 Kenton-on-Sea, South Africa RUSI 49690 Kenton-on-Sea, South Africa RUSI 49456 Kenton-on-Sea, South Africa ODU 2782 Fiumicino Fish Market, Italy

AF240706 RUSI 58449 Durban Fish Market, South Africa AF240707 RUSI 49443 Kenton-on-Sea, South Africa AF143197 Sequences From GenBank

47 Dentex tumifrons Petrus rupestris Polysteganus praeorbitalis Sparidentex hasta Diplodinae Archosargus probatocephalus Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Lagodon rhomboides Pagellinae Boopsoidea inornata Lithognathus mormyrus Pagellus bogaraveo Pagellus bellottii Pagrinae Argyrops spinifer Evynnis japonica Pagrus auratus Pagrus auriga Pagrus pagrus Sparinae Acanthopagrus berda Calamus nodosus Chrysoblephus cristiceps Cymatoceps nasutus Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sparodon durbanensis Sparus auratus Stenotomus chrysops Centracanthidae Spicara alta Spicara maena

AF240708 AF240709 AF240710 AF240734

AMS I.36450-002 Nelson Bay, Australia

AF240716 AF240721 AF240722 AF240723 AF240724 AF240726

VIMS 010192 NSMT-P 48013 No Voucher RUSI 49680 ODU 2789 VIMS Uncat

Chesapeake Bay Sea Life Park Tokyo, Origin: Argentina. Bermuda Kenton-on-Sea, South Africa Atlantic, South Carolina Florida Keys, Bahia Honda Ocean Side

AF240711 AF240712 AF240713 AF240714

ODU 2791 ODU 2784 ODU 2785 ODU 2792

St. Sebastian Bay, South Africa Fiumicino Market, Italy Fiumicino Market, Italy R/V African, Station 17491, South Africa

AF240717 AF240725 AF240727 AF240728 AF240729

AMS I.36447-001 N. Territory, Australia

NSMT-P 47497 No Voucher ODU 2786 ODU 2790

Miyazaki, Kyushu Prefecture, Japan New Zealand, Sydney Market V. Emmanul Market, Rome, Italy Atlantic, South Carolina

AF240715 AF240718 AF240719 AF240720 AF240730 AF240731 AF240732 AF240733 AF240735 AF240736

USNM 345989 No Voucher RUSI 49441 RUSI 49445 RUSI 58450 KENT SAPL1 RUSI 49683 RUSI 49673 ODU 2787 VIMS Uncat

Philippines, Manila, Market. Atlantic S.E. Charleston, SC Kenton-on-Sea, South Africa Kenton-on-Sea, South Africa Durban, South Africa Plettenberg Bay, South Africa Ponta do Ouro, Mozambique Kenton-on-Sea, South Africa Fiumicino Market, Italy Chesapeake Bay

RUSI 49684 Kenton-on-Sea, South Africa RUSI 49686 Kenton-on-Sea, South Africa NSMT-P Uncat Shuwaik Market, Kuwait City, Kuwait

AF240737 ODU 2793 AF240738 ODU 2788

Carpenter, K.E. Fiumicino Market, Italy

MTUF-Museum of the Tokyo University of Fisheries, Tokyo, Japan; NSMT-P National Science Museum (Zoological Park) Tokyo, Japan; ODU- Old Dominion University, Norfolk, VA; RUSI- Rhodes University; J.L.B. Smith Institute of Ichthyology, Grahamstown, South Africa; UT University of Tennessee, Knoxville, TN; USNM- United States National Museum of Natural History, Washington, DC; VIMSVirginia Institute of Marine Science, Gloucester Point, VA

48 TABLE 4. MULTIPLE ALIGNMENT OF NUCLEOTIDE SEQUENCES OF THE CYTOCHROME B GENE FROM THE SPARIDAE AND OUTGROUP SPECIES. TAXONOMIC NAMES WITH A SUFFIX OF “GB” ARE FROM GENBANK AND ARE INCLUDED WITH ORIGINAL SEQUENCES FOR EASY COMPARISON.

49 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

ATGGCAAGCCTTCGAAAAACACACCCCCTATTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAGACTCACCCCCTATTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAGACCCACCCCCTATTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAGACCCACCCCCTATTAAAAATTGCTAACCATGC ATGGCTAGCCTTCGAAAAACGCACCCCCTATTAAAAATTGCTAATCACGC ATGGCAAGCCTTCGAAAGACACACCCGCTATTAAAAATTGTTAATCATGC ATGACAAATCTTCGAAAGACTCACCCCCTCCTGAAAATTGCCAATCACGC ATGGCAAGCCTCCGAAAAACCCACCCACTATTAAAGATTGCTAATCACGC ATGGCTAGCCTTCGAAAGACTCACCCCCTATTAAAAATTGCTAATCACGC ATGGCAAGTCTCCGAAAAACGCACCCCCTATTAAAAATCGCTAACCACGC ATGACAAGCCTTCGAAAAACTCACCCCCTATTAAAAATTGCTAATCATGC ATGGCAAGCCTCCGGAAAACCCACCCACTACTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAAACCCAGCCCTTACTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAAACACACCCCCTATTAAAAATCGCCAACCACGC ATGGCAAGCCTTCGAAAAACACACCCCCTATTAAAAATCGCTAACCACGC ATGGCAAGCCTTCGAAAAACACACCCCCTATTAAAAATTGCTAACCACGC ATGGCAAGCCTACGAAAAACACACCCCCTATTAAAAATCGCCAACCACGC ATGGCAAGCCTTCGAAAGACCCACCCCTTATTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAGACACACCCCCTATTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAAACCCACCCCCTATTAAAAATCGCTAACCACGC ATGGCAAGCCTACGAAAAACACACCCCCTGCTAAAAATCGCTAACCACGC ATGGCAAGCCTTCGAAAAACACACCCCTTGTTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAGACGCACCCCCTACTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAAACGCACCCCCTATTAAAAATTGCTAATCACGC ATGGCAAGCCTCCGGAAGACTCACCCCTTATTAAAAATTGCTAATCATGC ATGGCAAGCCTTCGAAAGACCCACCCCTTATTAAAAATTGCTAACCACGC ATGGCAAGCCTCCGAAAAACCCATCCATTATTAAAAATTGCTAATCACGC ATGGCAAGCCTCCGAAAGACTCACCCCTTATTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAGACCCACCCCCTATTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAGACCCACCCCCTATTAAAAATTGCTAATCACGC ATGGCAAGCCTTCGAAAGACCCACCCCTTGTTAAAAATTGCTAATCACGC ATGGCAAGCCTTCGAAAGACGCACCCCCTATTAAAAATTGCTAACCACGC ATGGCAAGCCTTCGAAAGACCCACCCCCTATTAAAAATTGCTAACCACGC ATGGCTAGCCTCCGAAAAACTCACCCCCTCTTAAAAATCGCCAATCATGC ATGGCAAGCCTCCGAAAAACGCACCCCCTATTAAAAATTGCTAACCATGC ATGGCAAGCCTTCGAAAAACGCATCCTTTATTAAAAATTGCTAACCACGC ATGGCAAGTCTTCGAAAAACTCACCCCCTCTTAAAAATCGCCAATCACGC ATGGCAAGCCTTCGTAAGACACACCCCCTCTTAAAAATCGCTAATCACGC ATGGCAAGCCTTCGAAAGACACACCCCCTATTAAAAATTGCGAACCACGC ATGGCAAGCCTCCGAAAGACTCACCCCCTACTAAAAATTGCTAACCACGC ATGGCCAGCCTTCGAAAGACGCACCCCTTATTAAAAATTGCTAACCACGC ATGACAAGCCTTCGAAAGACACACCCTTTATTAAAAATTGCTAACCACGC ATGGCAAGCCTACGAAAAACACACCCTCTCATTAAAATCGCTAACGACGC ATGGCAAGCCTACGAAAAACCCACCCACTGATAAAAATCGCTAATGGCGC ATGGCAAGCCTACGAAARNNCCACCCCCTCCTAAAAATCGCAAACGACGC ATGGCCGCCCTCCGTAAAACACACCCCCTATTAAAAATCGCAAATCATGC ATGAGCGCCCTCCGTAAAACACACCCCCTACTAAAGATTGCAAATCACGC ATGGCAAGCCTTCGAAAAACCCACCCCCTACTAAAAATCGCAAACGACGC ATGGCAAGCCTTCGAAAAACCCACCCCCTGCTAAAAATCGCAAACGACGC ATGGCAAGCCTTCGAAAAACCCACCCCCTGCTAAAAATCGCAAACGACGC ATGGCCTCGCTTCGTAAATCGCACCCACTGCTTAAAATCGCAAACAACGC ATGGCCGCCCTTCGTAAAACACATCCCCTACTAAAAATCGCAAATGACGC ATGGCCTCGCTTCGTAAATCGCACCCACTACTTAAAATCGCAAACAACGC ATGGCCGCCCTTCGTAAAACGCACCCGCTACTAAAAATCGCAAACGACGC ATGGCCAACCCCCGAAAAACTCACCCCCTACTAAAGATTGCGAATGACGC ATGGCAAACCTTCGTAAAACCCATCCATTATTAAAGATCGCAAACGATGC ATGGCAAGCCTACGCAAAACCCACCCACTACTAAAAATTGCAAACGACGC ATGGCAAGCCTACGCAAAACCCACCCACTACTAAAAATTGCTAACGACGC ATGGCTTGCTTACGCAAAACGCACCCCCTCCTAAAAATTGCAAACGACGC ATGGCTAGCTTACGCAAGACCCATCCCCTCCTAAAAATTGCTAACGATGC ATGGCCAGCCTTCGCAAGACGCCCCCCCTCCTAATAATTGCTAACAACGC ATGGCCAGCCTTCGCAAAACTCATCCTCTCCTTAAAATCGCAAATGACGC

[50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50]

50 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

AGTAGTTGACCTACCTGCACCCTCCAACATTTCCGTTTGATGAAATTTTG ACTAGTTGACCTGCCCGCACCCTCCAACATTTCCGTCTGATGAAATTTTG AGTAGTTGACCTACCTGCACCATCAAATATTTCTGTCTGATGAAATTTCG AGTAGTTGACCTACCTGCGCCCTCCAANATTTCTGTTTGATGAAATTTTG ATTAGTTGATCTCCCTGCACCATCCAATATTTCCGTCTGATGAAATTTTG AGTAGTTGACCTACCTGCACCCTCCAACATTTCCGTCTGATGAAATTTTG ACTAGTCGACCTACCCGCCCCTTCCAATATTTCTGTTTGATGAAATTTCG AGTAGTTGACCTACCTGCACCCTCTAATATTTCTGTCTGATGAAATTTTG AGTAGTTGATCTACCTGCGCCTTCCAACATTTCCGTCTGATGAAATTTTG AGTAGTTGACCTACCTGCACCCTCCAATATTTCAGTCTGATGAAACTTTG GGTAGTTGATCTACCGGCACCCTCCAACATTTCTGTCTGATGAAATTTTG AGTAGTTGACCTACCTGCACCCTCTAATATTTCTGTCTGATGAAATTTTG AGTAGTTGACTTACCTGCACCCTCCAATATCTCTGTTTGATGAAACTTCG AGTAGTCGACCTACCTGCACCTTCCAATATTTCCGTCTGATGAAATTTTG AGTAGTCGACCTACCTGCACCTTCCAATATTTCCGTCTGATGAAATTTTG AGTAGTTGACCTACCTGCACCTTCCAATATTTCTGTTTGATGAAATTTTG AGTAGTCGACCTACCTGCACCTTCCAATATTTCCGTCTGATGAAATTTTG AGTAGTAGACCTACCTGCGCCATCGAATATTTCTGTCTGATGAAATTTTG AGTAGTCGACCTTCCTGCACCTTCCAATATTTCCGTCTGATGAAATTTTG ACTAGTCGACCTGCCCGCACCCTCCAATATTTCCGTTTGATGAAATTTTG AGTAGTTGACCTACCTGCACCATCCAATATTTCCGTTTGATGAAATTTTG AGTAGTCGATCTACCTGCACCTTCCAACATTTCCGTCTGATGAAACTTTG AGTAGTCGATCTACCTGCACCTTCTAACATTTCCGTCTGGTGGAACTTCG AGTAGTTGACCTACCTGCACCTTCCAATATTTCTGTCTGATGAAACTTTG AGTAGTTGACCTGCCTGCACCCTCTAATATTTCCGTTTGATGAAATTTTG ACTAGTTGACCTGCCTGCACCATCGAATATTTCTGTCTGATGAAATTTTG AGTAGTTGATCTACCTGCACCCTCTAATATTTCTGTCTGATGAAATTTTG AGTAGTAGACCTACCTGCACCCTCCAATATTTCTGTTTGATGAAATTTTG ACTAGTTGACCTACCTGCGCCCTCAAACATTTCTGTATGATGAAATTTTG AGTAGTTGATCTACCTGCACCCTCCAACATTTCTGTCTGATGAAATTTTG AGTAGTTGACCTACCTGCGCCTTCCAACATTTCAGTATGATGAAATTTTG AGTAGTTGACCTACCTGCACCTTCTAACATCTCTGTTTGATGGGACTTCG ACTAGTTGACCTACCTGCGCCCTCAAACATTTCTGTATGATGAAATTTTG GGTAGTGGACCTTCCTGCCCCCTCCAATATTTCAGTCTGATGAAATTTTG ACTAGTTGATCTCCCTGCGCCCTCTAATATTTCCGTCTGATGAAATTTTG AGTAGTCGACCTACCTGCGCCCTCCAATATTTCCGTCTGATGAAATTTTG AGTAGTAGACCTACCTGCCCCCTCCAACATTTCGGTCTGATGAAACTTTG AGTAATTGATCTACATGCACCCTCCAATATTTCCGTCTGATGAAATTTTG ACTAGTTGACCTCCCCGCACCCGCTAACATTTCTGTCTGATGAAATTTTG ACTCGTCGACCTACCTGCACCCTCCAACATTTCCGTCTGATGAAATTTTG CCTGGTGGATCTGCCTGCACCCTCCAATATTTCTGTTTGATGAAATTTTG ACTAGTTGACCTCCCCGCACCCTCTAACATCTCTGTCTGATGAAATTTTG ACTAGTTGACCTACCAACACCATCCAACATCTCAGCATGATGAAACTTTG ACTGGTTGACCTTCCAACACCATCAAACATCTCAGCGCTATGAAACTTCG ACTAATTGACCTCCCAGCCCCCTCCAACATCTCAGCATGATGGAACTTCG ACTTGTTGACCTGCCGGCCCCTTCAAATATTTCAGTTTGATGAAATTTCG ACTTGTTGATCTACCAGCCCCCTCCAACATTTCAGTTTGATGAAATTTCG ACTAGTCGACCTCCCTGCCCCCTCAAACATCTCAGTCTGATGAAATTTTG ACTGGTCGACCTCCCTGCTCCCTCAAACATCTCGGTCTGATGAAATTTTG ATTGGTAGACCTCCCTGCCCCCTCGAATATCTCAGTTTGATGAAACTTCG ACTCGTTGACTTACCTGCCCCCTCAAATATCTCTGTTTGATGAAACTTTG ACTTGTTGACCTGCCCGCCCCCTCAAACATCTCTGTTTGATGAAACTTTG ACTCATTGACTTACCTGCCCCCTCAAATATCTCTGTTTGATGAAACTTTG ACTTGTTGACTTACCTGCCCCTTCAAACATCTCTGTTTGATGAAATTTTG ACTAGTTGACCTCCCAGCCCCATCCAATATTTCTGTATGATGAAACTTTG ATTAATTGACCTCCCTGCCCCCTCCAACATCTCCGTATGATGAAATTTTG ACTAGTTGATCTCCCCGCACCCTCCAATATTTCAGTATGATGAAACTTTG ACTAGTTGACCTCCCCGCACCCTCTAATATTTCAGTATGATGAAACTTTG AGTCCTTGACCTTCCAGCCCCTTCAAACATCTCAGTTTGATGAAACTTCG AGTAGTCGACTTACCAGCCCCCTCTAACATTTCAGTATGATGAAACTTTG CCTCATTGATCTCCGCGCGCCCTCCAATATCTCAGCCTGATGAAACTTCG CCTAGTTGACCTACCCGCCCCCGCCAATATTTCTGCATGATGAAATTTTG

[100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100]

51 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

GGTCTCTCCTCGGTCTCTGCTTAATCTCCCAACTTCTCACAGGACTATTT GATCCCTACTTGGCCTTTGTTTAATTTCTCAACTTCTCACGGGCCTATTC GCTCCCTCCTCGGCCTCTGCCTAATCTCTCAGCTCCTTACAGGACTCTTC GTTCCCTGCTCGGCCTTTGCCTAATCTCTCAACTTCTCACAGGCCTGTTC GTTCCCTGCTTGGCCTCTGTCTTATTTCCCAGCTCCTTACAGGGCTATTC GATCCCTACTTAGCCTCTGTTTAATTTCTCAACTCCTTACAGGACTATTC GATCTCTCCTTGGTCTCTGTTTAATTTCCCAGCTCCTTACAGGCCTTTTC GCTCCCTACTGGGTCTCTGCCTAATTTCTCAACTTCTCACAGGGCTGTTC GCTCCCTGCTCGGCCTCTGCCTAATCTCCCAACTCCTCACAGGATTATTC GATCCCTACTTGGCCTTTGTTTAGTCTCCCAACTACTTACAGGACTATTC GCTCTCTGCTCGGCCTCTGTCTAATCTCTCAACTCCTCACAGGGCTATTT GCTCCCTGCTCGGCCTCTGCTTAATTTCTCAAATCCTCACAGGACTGTTC GTTCCCTCCTCGGCCTCTGCCTGATTTCCCAACTCCTCACAGGCCTATTC GATCCTTACTTGGTCTCTGCTTAATTTCTCAACTCCTTACAGGACTTTTC GATCCTTACTTGGTCTCTGCTTAATTTCTCAACTTCTTACAGGACTTTTT GATCCTTACTCGGTCTCTGCTTAATTTCTCAACTCCTTACAGGACTATTT GATCCTTACTTGGTCTCCGCTTAATTTCCCAACTTCTTACAGGACTTTTT GCTCCCTACTTGGCCTCTGCCTAATTTCTCAGCTCCTCACAGGACTGTTC GATCCCTACTTGGTCTCTGTTGAATTTCCCAACTCCTCACAGGACTATTT GGTCCCTACTTGGCCTCTGCTTAATCTCCCAACTCCTTACAGGCCTATTC GATCCCTACTTGGTCTCTGCCTCATCTCTCAACTTCTTACAGGGTTATTC GATCTTTACTCGGTCTCTGCCTAATTTCTCAACTCCTTACAGGACTATTT GATCCCTCCTTGGCCTCTGCTTAATCTCCCAACTCCTCACAGGACTATTC GATCCCTTCTTGGTCTCTGCCTAATCTCTCAACTCCTTACAGGACTATTT GATCCCTGCTCGGCCTTTGTTTAATCTCCCAACTCCTAACAGGATTATTC GCTCTCTACTCGGCCTCTGCCTAATCTCTCAGATCCTCACAGGACTATTC GCTCCTTACTCGGTCTCTGCCTAATTTCTCAACTACTCACAGGTCTTTTT GTTCCCTACTTGGCCTTTGCCTGATCTCCCAACTCCTAACAGGACTATTC GCTCCCTGCTCGGTCTTTGCCTAATCTCTCAAATCCTCACGGGGCTATTC GTTCCCTGCTCGGCCTCTGCCTAATCTCCCAACTCCTTACAGGCTTATTC GCTCCCTGCTCGGCCTTTGCCTAATCTCCCAGCTCCTCACAGGATTGTTC GATCCCTCCTTGGCCTCTGCTTAATTTCCCAGCTCCTCACAGGACTATTC GCTCCCTGCTCGGTCTTTGCCTAATCTCTCAAATCCTCACGGGGCTATTC GGTCCTTGCTGGGTCTATGCCTAATCTCGCAACTCCTAACAGGCCTATTT GATCTTTACTTGGTCTTTGCCTGATCTCCCAGCTCCTCACAGGACTATTT GGTCCCTCCTCGGTCTCTGCTTAATCTCCCAACTTCTTACAGGACTATTT GGTCCTTGCTCGGTCTATGCTTAATCTCTCAGCTCCTAACAGGGCGGTTT GATCCCTCCTCGGTCTCTGTCTAATTTCTCAGCTTCTGACAGGGCTATTC GGTCCCTACTTGGTCTTTGCCTAATTTCTCAACTCCTCACAGGACTTTTC GATCCCTCCTCGGCCTTTGTTTAATTTCCCAACTTCTTACAGGCCTGTTC GCTCCCTGCTCGGCCTTTGCCTAATCTCCCAACTCCTTACAGGCCTATTC GGTCCCTACTTGGTCTCTGTTTAATTTCCCAACTCCTCACAGGACTCTTC GATCCCTCCTAGGACTATGCTTAATTACCCAAATTTTAACCGGCCTATTC GATCCCTTCTAGGGTTGTGCTTAATCACTCAAATCCTCACCGGATTATTC GCTCCCTCCTAGGCCTCTGCTTAATTGCCCAAATTCTTACAGGCCTATTT GTTCGCTCTTAGGCCTATGCTTGATTTCCCAAATTCTTACAGGTCTATTT GCTCGCTCTTAGGCCTATGTTTGATCTCCCAAATCCTTACAGGCCTGTTT GTTCCCTTCTTGGCCTTTGCTTGATTACTCAAATCCTCACAGGGCTATTC GCTCTCTTCTTGGCCTCTGCTTGATCACTCAGATCCTCACAGGATTATTC GCTCTCTTCTAGGCCTCTGCTTGTTCACACAGATCATTACTGGGCTATTC GCTCACTCCTGGGCCTCTGCTTAATTTCCCAAATTCTCACAGGCCTATTT GCTCACTCTTGGGCCTATGTTTAATTTCTCAGATCCTTACAGGGCTATTC GCTCACTCCTTGGCCTCTGTTTGATCTCCCAAATCCTCACAGGCCTATTT GCTCACTCTTGGGCCTATGTCTAATTTCCCAAATCCTTACAGGCCTATTC GCTCCCTCCTAGGCCTCTGCCTCATTTCACAGATCGTCACCGGCCTTTTC GCTCCCTACTAGGACTTTGTCTCATTTCCCAAATCGTTACGGGACTATTC GCTCTCTACTTGGCCTTTGCTTAATTGCCCAACTCCTAACAGGACTCTTC GCTCTCTACTTGGCCTTTGCTTAATTGCCCAAATCCTAACAGGACTATTC GCTCCCTCCTTGGTCTCTGCTTAATTGCCCAAATCTTAACCGGGCTTTTC GTTCTCTTCTGGGTCTTTGCTTAATCGCTCAAATCCTAACAGGCCTGTTC GGTCTCTACTAGGTCTTTGCTTAGCCGCCCAAATTTTAACAGGCCTGTTC GGTCTCTTCTAGGCCTTTGTCTGATTGCACAACTTCTAACAGGCCTATTT

[150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150]

52 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

CTTGCTATACATTATACTTCCGATATTGCCACAGCCTTCTCCTCCGTAGC CTCGCTATACACTACACCTCAGATATCGCCACAGCATTTTCTTCTGTTGC CTTGCTATACACTACACCTCCGATATTGCCACAGCCTTCTCCTCTGTTGC CTCGCCATACACTACACCTCAGACATCGCCACAGCCTTTTCTTCTGTCGC CTCGCCATGCACTATACCTCCGATATCGCCACAGCCTTCTCTTCCGTTGC CTTGCTATACACTATACTTCAGATATCGCCACGGCCTTTTCTTCTGTCGC CTTGCTATACATTATACCCCCGACATCGCTACAGCATTTTCTTCTGTTGC CTTGCCATACATTACACCTCAGACATCGCCACAGCTTTTTCTTCCGTTGC CTTGCCATACACTACACCTCAGATATTGCCACAGCTTTTTCTTCTGTCGC CTCGCCATACACTATACCTCCGACATCGCCACAGCCTTTTCTTCGGTTGC CTTGCCATACACTATACTTCAGATATTGCCACAGCCTTTTCTTCCGTCGC CTTGCTATGCATTACACCTCGGACATTGCTACAGCCTTTTCTTCTGTCGC CTCGCTATACACTACACCTCAGACATTAACACAGCCTTCTCTTCCGTTGC CTTGCTATACACTACACCTCTGATATCGCCACAGCCTTTTCTTCCGTAGC CTTGCTATGCACTACACCTCTGATATCGCCACAGCCTTTTCTCCTGTAGC CTTGCTATACACTACACCTCTGATATCGCCACAGCCTTTTCTTCCGTAGC CTTGCTATACACTACACCTCTGGTATCGCCACAGCCTTTTCTTCTGTAGC CTTGCCATACATTATACCTCGGACATTGCCACAGCCTTTTCTTCTGTTGC CTTGCTATACATTATACCTCAGATATTGCCACAGCCTTTTCTTCCGTTGC CTCGCTATACACTACACTTCAGATATCGCTACAGCATTCTCCTCTGTTGC CTTGCTATGCATTATACCTCCGACATCGCCATAGCTTTCTCCTCCGTAGC CTCGCTATACACTACACCTCTGACATCGCCACGGCCTTTTCTTCTGTAGC CTTGCTATGCACTATACTTCAGATATTGCCACAGCCTTTTCTTCCGTTGC CTTGCTATACATTACACCTCCGATATTGCCACAGCCTTTTCCTCTGTCGC CTTGCCATACACTACACCTCAGACATTGCCACAGCCTTTTCCTCCGTCGC CTTGCCATACACTATACCTCAGACATTGCTACAGCCTTTTCTTCCGTTGC CTTGCCATACATTATACCTCAGACATTGCTACAGCCTTTTCCTCTGTTGC CTTGCCATACACTATACTTCAGATATCGCCACGGCTTTTTCTTCTGTTGC CTTGCTATACACTACACCTCAGATATTGCCACTGCCTTTTCTTCCGTCGC CTTGCCATACACTATACCTCAGACATTGCCACAGCCTTTTCTTCTGTTGC CTTGCCATACATTATACCTCAGATATCGCTACAGCCTTTTCTTCTGTCGC CTTGCTATGCACTATACTTCAGATATCGCCACAGCCTTTTCTTCCGTTGC CTTGCTATACACTACACCTCAGATATTGCCACTGCCTTTTCTTCCGTCGC CTTGCTATACACTACACTTCCGACATCGCCACAGCCTTTTCTTCTGTTGC CTCGCCATGCATTACACCTCAGACATCGCCACAGCCTTTTCTTCTGTCGC CTTGCTATACATTACACTTCCGATATCGCCACAGCTTTTTCTTCCGTAGC CTTGCAATACACTACACCTCCGACATCGCCACAGCCTTTTCATCCGTTGC CTCGCTATGCACTACACTTCCGATATCGCCACAGCCTTCTCTTCCGTAGC CTTGCCATACATTATACTTCAGACATTGCCACAGCCTTTTCTTCTGTTGC CTCGCTATGCACTATACTTCAGATATCGCAACAGCATTCTCTTCTGTTGC CTCGCCATACATTACACCTCAGACATTGCCACAGCCTTCTCTTCCGTCGC CTTGCTATACACTACACTTCGGATATTGCCACAGCCTTTTCTTCTGTTGC CTAGCCATACACTACACCTCAGACATTTCAACCGCATTCTCATCTGTTAC CTAGCTATACATTACACCTCTGACATCTCAACCGCATTTTCATCCGTCAC CTAGCCATACACTATACATCCGACATCAACATAGCATTCACCTCTGTCGC TTAGCTATACATTATACTTCAGATATCGCAACAGCCTTCTCCTCCATCGC TTGGCAATACACTACACCTCAGATATCGCTACAGCCTTCTCTTCTATCGC CTTGCAATACACTACACCTCAGATGTTGCCACCGCCTTCTCGTCCGTAGC CTTGCAATACACTACACCTCAGATGTTGCCACCGCCTTCTCGTCCGTAGC CTTGCAATACACTACACCTCGGATGTGGCAACTGCCTTTTCATCCGTGGC CTGGCTATACACTATACCTCGGACATTGCCACAGCCTTCTCTTCTGTTGC CTAGCCATGCACTATACCTCTGATATTGCCACAGCCTTCTCCTCCGTTGC CTGGCCATACACTATACCTCGGACATTGCCACAGCCTTCTCTTCTGTTGC CTAGCTATACATTATACCTCAGATATCGCTACAGCCTTCTCCTCCGTCGC CTAGCCATGCACTATACCTCTGACATCGCCACAGCCTTCTCATCCGTTGC CTTGCTATACACTACACCTCCGACATCGCTACAGCTTTCTCATCTGTTGC CTCGCCATACACTACACCTCCGACATTAGCATGGCCTTCTCATCTGTCGC CTCGCCATACACTATACATCCGACATTACCATAGCCTTCTCATCCGTCGC CTCGCAATACATTACACTTCCGACATTGCCACCGCTTTCTCCTCCGTTGC CTTGCAATACATTACACTTCTGATATCGCCACAGCATTCTCCTCTGTCGC CTTGCAATACATTACACATCTGACATTGCAACAGCATTTTCTTCCGTCGC CTTGCCATACACTATACTTCCGATATTGCAACAGCTTTCTCTTCAGTCGC

[200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200]

53 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

CCATATTTGCCGAGATGTAAATTATGGGTGGCTAATCCGAAACCTTCACG TCACATCTGCCGGGACGTTAATTACGAATGACTTATCCGAAACCTCCACG CCACATCTGCCGAGACGTAAACTACGGCTGACTAATCCGTAATCTTCACG TCACATTTGTCGAGATGTAAACTACGGCTGACTTATCCGCAACCTTCATG CCACATCTGCCGAGATGTAAACTATGGCTGACTCATCCGAAACCTACATG CCACATTTGCCGAGATGTAAACTACGGGTGACTCATCCGAAATCTTCACG CCATATTTGCCGAGACGTAAACTATGGATGACTTATTCGCAATCTCCACG TCACATTTGTCGAGACGTAAACTACGGTTGACTTATCCGCAACCTCCATG CCACATCTGTCGAGACGTAAATGATGGCTGACTCATCCGCAACCTTCATG TCACATCTGCCGAGATGTTAACTATGGGTGACTAATCCGTAACCTCCACG CCACATCTGTCGAGACGTAAATTACGGCTGACTTATCCGAAACCTTCATG CCATATTTGTCGAGACGTAAACTACGGCTGACTTATCCGCAATCTCCATG ACACATCTGTCGAGACGTAAATTACGGATGACTTATCCGCAACCTCCATG CCACATCTGCCGAGACGTAAACTACGGATGACTAATCCGAAACCTCCACG CCACATCTGCCGAGACGTAAACTACGGATGACTAATCCGAAACCTCCACG CCATATCTGCCGGGACGTAAACTACGGATGGCTTATCCGAAATCTCCATG CCACATCTGCCGAGACGTAAACTACGGATGACTAATCCGAAACCTCCACG CCATATCTGTCGAGACGTAAACTACGGCTGACTTATCCGCAATCTCCATG CCACATCTGCCGAGATGTGAACTACGGGTGGCTCATCCGTAACCTTCATG CCACATCTGTCGTGACGTAAATTACGGATGACTAATCCGAAACCTCCACG CCACATCTGTCGGGACGTAAACTACGGCTGACTTATCCGTAACCTCCACG CCACATCTGCCGAGATGTAAACTACGGATGGCTGATCCGAAACCTCCACG CCACATCTGTCGAGACGTGAACTACGGGTGACTCATCCGAAACCTTCACG CCACATCTGTCGAGACGTAAACTACGGATGGCTAATCCGAAATCTCCACG ACATATCTGTCGAGACGTAAACTACGGCTGACTTATCCGTAACCTCCATG CCATATCTGCCGAGACGTAAACTACGGCTGACTTATCCGCAATCTCCATG TCACATTTGTCGAGACGTAAACTACGGCTGACTTATCCGCAACCTTCATG ACACATTTGTCGAGACGTAAACTACGGCTGACTTATCCGTAATCTTCATG CCACATCTGTCGAGACGTAAACTATGGATGACTTATCCGCAACCTCCATG TCACATCTGCCGAGACGTAAATTATGGATGACTAATCCGCAACCTTCATG CCACATCTGTCGAGACGTAAACTACGGCTGACTTATCCGCAACCTTCATG CCACATCTGCCGAGACGTAAACTACGGATGACTCATCCGAAACCTCCACG CCACATCTGTCGAGACGTAAACTATGGATGACTTATCCGCAACCTCCATG CCATATCTGCCGGGACGTCAACTACGGATGGCTCATCCGAAACCTCCATG ACACATTTGTCGAGACGTGAATTACGGCTGACTCATCCGGAATCTCCACG CCATATCTGCCGAGATGTTAACTACGGCTGACTAATCCGAAACCTTCACG CCACATCTGTCGAGACGTGAACTACGGATGGCTTATCCGAAACCTTCATG CCACATCTGCCGAGATGTAAATTACGGATGGCTCATCCGAAACCTTCACG ACACATTTGCCGAGATGTAAATTATGGCTGACTCATCCGAAATCTTCACG TCATATTTGCCGAGACGTAAATTATGGATGACTTATCCGTAATCTTCACG ACACATCTGCCGAGACGTAAATTACGGGTGGCTCATCCGAAATCTCCACG ACACATCTGTCGAGATGTAAATTACGGCTGACTCATCCGAAATCTTCACG CCACATCTGCCGAGACGTAAATTACGGCTGACTAATCCGTAATGTACACG GCACATTTGCCGGGACGTTAACTATGGCTGACTTATCCGGAACATGCACG TCACATCTGCCGAGATGTAAACTACGGATGGCTTATCCGAAACCTCCACG ACACATTTGTCGAGATGTTAACTATGGCTGACTTATTCGTAATCTTCACG ACACATTTGTCGAGATGTCAACTATGGTTGACTTATCCGCAATCTTCACG ACATATTTGCCGCGACGTAAACTACGGCTGACTAATTCGAAATGTTCACG ACACATTTGCCGCGACGTAAACTACGGTTGACTAATTCGTAATATTCACG ACACATCTGCCGTGACGTGAACTACGGCTGACTAATTCGAAATGTCCACG ACACATTTGCCGAGACGTAAACTACGGCTGGTTAATTCGTAACCTTCATT ACACATCTGCCGAGATGTAAATTACGGCTGACTTATTTGCAACCTCCACG ACACATTTGCCGAGATGTAAACTATGGTTGATTAATTCGTAATCTTCATT ACACATTTGCCGAGATGTAAATTATGGATGACTAATTCGTAACCTTCACG CCATATCTGCCGAGACGTGAACTATGGCTGACTCATCCGAAACCTCCACG CCATATTTGCCGAGATGTAAACTTCGGCTGACTTATTCGTAATCTACATG CCACATCTGCCGAGATGTAAACTACGGTTGACTAATCCGTAATCTCCACG ACACATCTGCCGAGACGTAAACTACGGATGGCTCATCCGTAACCTACATG CCACATTTGCCGAGACGTCAACTACGGCTGGCTCATCCGCAACCTTCATG ACACATTTGCCGAGACGTTAACTATGGTTGGCTCATCCGCAACCTCCACG CCACATCTGCCGAGACGTAAATTACGGCTGACTTATCCGAAATCTTCATG CCACATCTGCCGAGACGTAAACTATGGCTGACTGATCCGCAATCTGCACG

[250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250]

54 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

CCAACGGAGCATCTTTTTTCTTCATCTGTATTTATCTTCACATTGGGCGG CCAACGGAGCATCGTTCTTCTTTATTTGCATTTATTTTCACATTGGACGA CCAATGGAGCATCCTTCTTTTTTATCTGCATTTACCTTCACATCGGACGA CCAACGGAGCATCTTTCTTCTTCATCTGCATTTATCTCCACATCGGTCGA CCAACGGAGCATCTTTCTTCTTCATCTGCATTTACCTTCACATCGGCCGA CCAACGGAGCATCTTTCTTTTTTATTTGTATTTACCTTCATATCGGGCGA CCAACGGGGCTTCCTTCTTTTTCATTTGTATTTATCTTCACATTGGACGA CCAACGGAGCATCCTTCTTTTTCATCTGCATTTACCTCCACATCGGTCGA CCAACGGAGCATCTTTCTTCTTCATTTGTATTTATCTGCACATTGGACGA CTAACGGAGCATCCTTCTTTTTTATCTGCATTTACCTCCACATCGGACGA CTAACGGAGCATCTTTCTTCTTCATTTGTATTTATCTTCACATCGGACGG CTAATGGAGCATCTTTTTTCTTCATCTGCATTTACCTTCACATCGGACGA CCAACGGAGCCTCTTTCTTCTTTATTTGTATTTACCTTCACATCGGGCGA CCAACGGAGCATCTTTCTTCTTTATTTGTATTTACCTTCACATCGGGCGA CCAACGGAGCATCTTTCTTCTTTATCTGTATTTACCTTCACATCGGGCGA CTAACGGAGCATCTTTCTTCTTTATCTGTATTTACCTCCACATCGGACGA CCAACGGAGCATCTTTCTTCTTTATCTGTATTTACCTTCACATCGGGCGA CCAATGGAGCATCTTTCTTTTTCATCTGCATCTACCTTCACATCGGACGG CCAACGGAGCATCTTTCTTTTTTATTTGTATTTATCTTCATATCGGACGA CTAACGGAGCATCATTCTTCTTTATTTGTATCTACCTTCACATCGGACGA CAAACGGAGCATCCTTCTTTTTTATTTGTATTTACCTCCATATCGGTCGG CCAACGGAGCATCCTTCTTCTTCATCTGTATTTATCTCCACATCGGACGA CCAACGGAGCATCTTTCTTTTTTATTTGTATTTATGTTCATATCGGACGA CTAATGGAGCATCTTTCTTCTTTATCTGTATTTACCTTCACATCGGACGG CTAATGGAGCATCCTTCTTCTTTATTTGCATCTACCTCCATATCGGACGG CTAATGGAGCATCTTTCTTTTTCATCTGCATCTACCTTCACATCGGACGA CCAACGGAGCATCCTTCTTTTTCATCTGCATTTACCTCCACATCGGACGA CTAACGGAGCATCCTTCTTTTTCATCTGCATCTACCTCCACATTGGCCGA CCAACGGAGCATCCTTTTTCTTCATCTGCATCTATCTTCACATCGGAGGA CCAACGGAGCATCTTTCTTCTTCATTTGCATTTATCTTCACATCGGGCGA CCAACGGAGCCTCTTTCTTCTTCATTTGCATCTACCTTCACATTGGACGA CTAACGGAGCATCTTTCTTTTTTATTTGTATTTTCCTCCATATCGGACGA CCAACGGAGCATCCTTTTTCTTCATCTGCATCTATCTTCACATCGGACGA CCAACGGAGCATCTTTCTTTTTCATTTGCATTTATTTACACATTGGCCGA CCAACGGAGCATCGTTCTTTTTCATTTGCATTTATCTTCACATTGGACGA CTAACGGAGCTTCTTTTTTCTTCATCTGTATTTACCTCCACATCGGACGA CCAATGGAGCATCCTTCTTTTTTATCTGCATTTATCTGCACATCGGCCGA CCAACGGAGCATCTTTCTTTTTTATTTGTATTTACCTCCATATCGGACGA CCAACGGGGCATCTTTCTTTTTTATTTGCATTTACCTTCACATCGGACGA CCAACGGAGCATCCTTCTTCTTCATCTGTATTTACCTTCACATTGGACGA CCAACGGTGCATCCTTCTTCTTTATTTGCATCTACCTTCACATTGGGCGG CCAACGGAGCATCTTTCTTTTTTATTTGTATTTACCTTCATATTGGGCGA CCAACGGAGCATCATTCTTCTTCATTTGCATCTACATACACATCGCCCGA CCAACGGAGCATCATTTTTCTTCATCTGTATTTACATGCACATTGCTCGT CTAACGGCGCCTCTTTCTTCTTCATCTGCATGTACCTCCACATCGGCCGA CCAATGGTGCATCTTTCTTCTTTATTTGTATTTATCTTCACATTGGCCGA CCAATGGCGCATCTTTCTTCTTTATTTGTATCTATCTTCATATTGGCCGA CCAACGGCACATCCTTCTTCTTCATCTGCATTTACATACATATTGGGCGG CCAACGGCACATCCTTCTTCTTCATTTGCATCTACATACATATCGGACGA CCAACGGCGCATCCTTCTTCTTCATTTGCATCTACATGCATATCGGGCGA CTAATGGCGCATCTCTCTTCTTCATCTGTATTTACCTTCATATCGGCCGA CCAACGGCGCATCTCTCTTTTTTATCTGCATCTACCTCCACATTGGCCGA CTAATGGCGCATCTCTCTTCTTCATCTGCATTTATCTTCATATTGGTCGA CCAACGGTGCATCTTTCTTTTTCATCTGTATTTATCTTCACATTGGCCGA CTAACGGCGCATCCTTCTTTTTCATCTGCATCTACCTCCACATCGGACGA CTAATGGTGCATCCTTCTTCTTTATTTGTATCTACCTTCACATCGGACGA CCAACGGTGCCTCCTTCTTCTTCATCTGCATCTACCTCCACATCGGCCGA CCAACGGTGCCTCCTTCTTCTTTATTTGCATCTACCTCCACATCGGCCGA CAAACGGAGCCTCCTTCTTCTTCATCTGCATCTACCTTCACATCGGCCGA CAAATGGAGCCTCCTTCTTCTTCATCTGCATCTACCTCCATATTGGCCGC CTAATGGAGCATCTTTCTTCTTTATTTGCATCTACCTTCATATCGGCCGG CTAACGGAGCCTCCTTTTTCTTTATCTGCATCTACCTCCACATCGGCCGA

[300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300]

55 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

GGACTCTACTACGGCTCCTACCTTTACAAAGAAACCTGAAATATTGGAGT GGGTTGTACTACGGCTCTTACCTCTACAAAGAGACATGAAACATTGGTGT GGGCTCTATTACGGCTCCTATCTTTATAAAGAAACATGAAACATCGGTGT GGCTTATACTATGGTTCCTACCTCTACAAAGAGACATGAAACATTGGTGT GGACTTTACTACGGCTCGTACCTTTACAAAGAAACCTGAAATATTGGGGT GGGCTTTATTACGGCTCATACCTTTATAAAGAAACATGAAATATCGGAGT GGACTATACTACGGCTCCTATCTCTACAAAGAGACATGAAATATCGGAGT GGCCTTTACTATGGCTCTTACCTCTACAAAGAGACATGAAACATTGGTGT GGTCTCTACTATGGCTCCTACCTCTACAAAGAAACATGAAATATCGGTGT GGCCTTTACTATGGGTCTTATCTTTACAAAGAAACATGAAACATTGGAGT GGCCTATACTACGGCTCCTATCTCTACAAATGGACATGAAACATTGGTGT GGCCTCTACTATGGCTCCTACCTCTACAAAGAAACATGAAACATTGGCGT GGACTCTACTACGGCTCCTACCTCTACAAAGAAACATGAAACATCGGCGT GGACTTTATTATGGCTCATACCTCTATAAAGAGACATGAAACATCGGAGT GGACTTTATTATGGCTCATACCTCTATAAAGAGACATGAAACATCGGAGT GGACTTTATTATGGCTCATACCTCTACAAAGAGACATGAAACATCGGAGT GGACTTTATTATGGCTCATACCTCTATAAAGAGACATGAAACATCGGAGT GGCCTTTACTATGGCTCTTATCTCTATAAAGAGACATGAAACATTGGTGT GGACTTTATTACGGCTCGTACCTCTACAAAGAAACATGAAATATTGGAGT GGACTTTACTATGGCTCCTACCTCTACAAAGAAACATGAAACATTGGAGT GGACTTTATTACGGCTCCTACCTCTACAAAGAAACATGAAATATTGGTGT GGACTTTATTACGGCTCTTATCTCTATAAAGAAACATGAAACATTGGAGT GGACTCTATTATGGCTCGTATCTTTACAAAGAAACATGAAACATTGGAGT GGACTCTATTACGGCTCCTATCTTTACAAAGAAACATGAAATATCGGAGT GGCCTTTATTACGGCTCTTACCTTTATAAAGAAACATGAAACATTGGTGT GGCCTCTACTACGGCTCTTATCTCTATAAAGATACATGAAATATTGGTGT GGTCTCTACTACGGCTCTTATCTCTATAAAGAGACATGAAACATTGGGGT GGCCTCTATTACGGGTCCTACCTCTATAAAGAAACGTGAAATATTGGTGT GGCCTCTACTATGGTTCCTACCTGTACAAGGAAACATGAAATATTGGTGT GGGCTCTACTATGGCTCTTACCTCTACAAAGAGACATGAAACATTGGTGT GGCCTCTACTATGGTTCTTATCTCTACAAAGAAACGTGAAACATTGGCGT GGACTCTATTATGGCTCCTATCTTTACAAAGAGACATGAGACATCGGAGT GGCCTCTACTATGGTTCCTACCTGTACAAGGAAACATGAAATATTGGTGT GGACTTTACTACGGTTCTTACCTATATAAAGAGACATGAAACATCGGGGT GGACTTTATTACGGCTCCTATCTCTACAAAGAAACATGAAATATCGGAGT GGGCTTTATTACGGCTCCTACCTCTACAAAGAAACTTGAAACATCGGAGT GGACTTTACTACGGCTCATACCCTTATAAGGTAACATGAAACATTGGAGT GGGCTCTACTACGGCTCTTATCTCTATAAAGATACATGAAACATCGGAGT GGGCTTTACTATGGCTCATATCTCTATAAAGAAACATGAAACATCGGAGT GGACTGTACTATGGCTCCTACCTCTATAAAGAAACATGAAACATCGGTGT GGGCTCTATTACGGCTCTTACCTCTACAAAGAAACATGAAACATTGGTGT GGTCTCTACTATGGCTCTTATCTCTATAAAGAGACATGAAACATCGGAGT GGCCTATACTACGGATCATACCTTTACAAAGAAACCTGAAACATTGGTGT GGCCTTTACTACGGGTCCTACCTTTATAAAGAAACCTGAAACGTTGGAGT GGCCTTTATTACGGCTCCTACCTTTACAAAGAGACCTGAAATATCGGAGT GGCCTGTACTACGGCTCATACCTGTATAAAGAAACATGAAACATCGGGGT GGCCTATATTACGGGTCATACTTATATAAAGAAACATGAAATATTGGAGT GGTCTTTACTACGGCTCCTACCTTTACAAAGAGACCTGAAACATCGGAGT GGTCTTTACTACGGCTCTTACCTGTACAAAGAGACCTGAAACATCGGAGT GGCCTTTACTATGGTTCCTACCTCTACAAAGAAACATGAAACGTCGGGGT GGTCTCTATTATGGTTCCTACCTATATAAAGAGACATGAAACATTGGGGT GGCCTTTATTACGGCTCCTATTTATACAAAGAGACATGGAACATTGGGGT GGTCTCTACTATGGCTCCTACCTATATAAAGAGACGTGAAACATTGGGGT GGTCTCTACTATGGCTCCTACTTGTATAAAGAAACGTGAAACATTGGAGT GGTTTATACTACGGCTCATACCTCTATAAAGAGACATGAAACATCGGAGT GGACTCTATTACGGCTCATACCTATATAAAGAAACATGAAACATCGGAGT GGCCTTTACTACGGCTCGTACCTCTACAAAGAGACATGAAACATTGGAGT GGCCTCTACTACGGATCATACCTTTACAAAGAGACATGAAACATTGGAGT GGTCTGTACTATGGCTCCTACCTCTACAAAGAAACTTGAAACATCGGAGT GGCCTATACTATGGATCTTACCTTTACAAAGAAACTTGAAATATCGGGGT GGCCTATATTATGGATCCTATCTCTACATAGAGACATGAAACATCGGGGT GGACTATACTACGGCTCTTACCTTTATAAAGAGACATGAAATATCGGTGT

[350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350]

56 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

CGTTCTCCTTCTCCTAGTTATAGCAACAGCCTTCGTAGGGTATGTACTCC CGTTCTCCTTCTCCTAGTAATAGCAACCGCCTTCGTAGGCTACGTCCTTC CGTCCTTCTCCTCCTTGTAATAGCAACAGCCTTCGTAGGCTATGTCCTTC CATTCTTCTTCTTCTCGTAATAGCAACAGCCTTTGTGGGCTACGTCCTCC CGTTCTCCTCCTCCTAGTTATAGGAACCGCCTTCGTAGGCTATGTTCTCC CATCCTCCTCCTCCTAGTTATAGGAACCGCCTTCGTAGGCTACGTTCTTC AATTCTCCTCCTCCTGGTAATAATAACTGCCTTCGTAGGCTACGTTCTCC TATCCTTCTCCTTCTTGTAATGGCAACAGCCTTTGTAGGCTACGTCCTCC TATTCTCCTCCTCCTCGTAATAGCAACAGCCTTCGTGGGCTATGTCCTCC CGTTCTTCTTCGCCTAGTTATAGGAACTGCCTTCGTAGGATACGTTCTTC CATTCTACTTCTTCTCGTGATAGCAACAGCCTTCGTAGGCTACGTCCTCC TATCCTTCTTCTTCTTGTAATAGCAACAGCCTTCGTAGGCTACGTTCTCC TGTCCTTCTCCTCCTTGTAATAGCGACAGCTTTCGTAGGCTACGTTCTCC CGTCCTTCTTCTCCTAGTTATGGGAACTGCTTTCGTCGGCTACGTCCTTC CGTCCTTCTTCTCCTAGTTATGGGAACTGCTTTCGTCGGCTACGTCCTTC CGTCCTTCTCCTCCTGGTCATAGGAACTGCTTTCGTCGGCTACGTCCTTC CGTCCTTCTTCTCCTAGTTATGGGAACTGCTTTCGTCGGCTACGTCCTTC CGTCCTCCTCCTCCTTGTAATAGCAACAGCCTTCGTAGGCTACGTCCTTC TATTCTTCTTCTCCTGGTTATAGGAACTGCCTTTGTAGGCTACGTCCTCC TGTCCTCCTCCTCTTAGTTATAGCAACCGCTTTTGTAGGCTACGTTCTCC TGTCCTCCTCCTTCTAGTTATAGGAACTGCCTTCGTAGGCTACGTCCTTC TGTCCTCCTGCTCCTAGTTATAGGAACTGCTTTCGTAGGTTACGTTCTTC TATTCTTCTTCTCCTAGTTATAGGAACTGCTTTCGTGGGCTACGTCCTTC TGTTCTCCTTCTTTTAGTTATAGGAACTGCCTTCGTGGGCTATGTACTCC TGTCCTCCTCCTCCTTGTAATAGCTACAGCCTTCGTAGGCTACGTTCTTC CGTCCTCCTCCTCCTTGTGATAGCAACAGCCTTCGTAGGCTACGTTCTTC AATCCTTCTTCTTCTTGTAATAGCAACAGCCTTTGTAGGCTACGTTCTTC TGTCCTCCTCCTCCTTGTAATAGCAACAGCCTTCGTAGGTTACGTCCTTC CATCCTCCTCCTCCTTGTGATAGCAACAGCCTTCGTAGGCTATGTCCTCC TATTCTCCTCCTCCTCGTGATAGCCACAGCCTTCGTAGGGTACGTCCTCC CATTCTCCTTCTCCTCGTAATAGCCACAGCTTTCGTAGGCTATGTTCTCC CATTCTTCTTCTCCTAGTCATAGGAACTGCTTTCGTAGGCTACGTCCTTC CATCCTCCTCCTCCTTGTGATAGCAACAGCCTTCGTAGGCTATGTCCTCC AGTTCTTTTACTCTTAGTAATAGGATCTGCCTTCGTTGGCTATGTCCTTC CGTTCTCCTCCTCCTAGTCATAGGAACTGCCTTCGTAGGCTATGTCCTCC TGTCCTCCTCCTCCTAGTTATAGCAACAGCCTTTGTAGGTTACGTTCTCC TGTTCTCCTTCTTTTAGTTATAGGAACTGCCTTCGTGGGCTACGTACTCC TGTCCTCCTCCTATTAGTTATAGGAACTGCTTTCGTAGGTTACGTACTCC CATTCTTCTCTTACTCGTTATAGGAACCGCCTTTGTGGGCTATGTCCTCC CGTTCTTCTTCTTCTGGTTATAGCAACTGCCTTCGTAGGCTACGTCCTCC CGTCCTTCTCCTCCTCGTAATAGCAACAGCCTTCGTAGGCTACGTCCTCC TGTACTTCTTCTCCTAGTTATAGCAACCGCCTTCGTAGGCTACGTCCTCC AGTCCTTCTACTACTAGTCATGATAACAGCCTTCGTTGGCTATGTTCTTC CGTACTACTCCTTCTAGTCATGATGACAGCCTTTGTGGGTTATGTACTCC AATCCTCCTACTACTAGTAATAATAACCGCATCCGTCGGCTATGTCCTCC AATCCTTCTCCTCTTAGTAATAATGACAGCCTTCGTAGGCTATGTGTTGC AGTGCTACTCCTCTTAGTAATAATAACAGCCTTTGTAGGTTACGTATTAC AGTCCTGCTCCTATTAGTTATAATGACTGCCTTCGTGGGCTACGTCCTCC AATTCTCCTCCTCCTAGTTATAATGACTGCCTTCGTGGGCTACGTCCTCC AGTCCTGCTCCTTTTAGTCATGATAACCGCCTTTGTAGGCTACGTCCTCC TGTTCTCCTCCTATTAGTAATAATGACAGCTTTCGTAGGCTACGTCCTAC GGTTCTTCTCCTTTTAGTAATAATAACAGCCTTCGTGGGCTACGTCCTAC CATTCTCCTTCTCCTAGTAATAATAACAGCTTTCGTAGGTTACGTCTTAC AGTTCTTCTCCTCTTAGTAATAATAACAGCTTTCGTAGGCTACGTCCTAC TGTACTCCTCCTCCTAGTTATGATAACCGCATTCGTAGGCTACGTCCTGC TATCCTCCTCCTTCTAGTAATAATAACCGCATTCGTAGGCTACGTCCTGC CGTCCTTCTTCTCCTAGTGATAGCAACTGCGTTCGTAGGCTACGTCCTAC CGTCCTGCTCCTCCTAGTAATAGCAACTGCCTTCGTAGGCTATGTACTCC CGTCCTACTCCTTCTAGTAATGATGACCGCCTTTGTAGGGGATGTCCTTC TGTCCTTCTTCTTTTAGTTATAATGACCGCCTTTGTAGGGTACGTCCTCC AATCCTGCTATTATTAGTGATAATAACAGCATTCGTCGGTTACGTCCTAC TATTCTTCTTCTTCTGGTGATAATAACAGCCTTTGTAGGTTACGTCCTCC

[400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400]

57 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

CTTGAGGTCAAATATCCTTTTGAGGAGCTACCGTAATTACCAACCTCCTA CATGAGGACAAATATCCTTCTGAGGGGCAACCGTCATTACTAACCTTCTA CATGAGGACAAATATCATTCTGAGGGGGTACTGTTATTACCAACCTTCTT CCTGAGGACAAATATCCTTCTGAGGGGCTACCGTCATTACTAACCTCCTT CATGAGGACAAATGTCCTTCTGAGGAGCGACTGTCATTACCAACCTCCTA CATGAGGACAAATATCTTTCTGAGGAGCAACCGTCATTACCAACCTCTTA CATGAGGACAGATATCCTTCTGAGGAGCAACTGTCATCACTAACCTCCTA CATGAGGACAAATATCATTCTGAGGGGCTACCGTCATCACGAATCTTCTT CCTGAGGACAAATATCCTTCTGAGGGGCCACTGTTATTACCAACCTCCTT CCTGAGGACAAATATCTTTTTGAGGGGCAACTGTAATCACTAACCTCCTC CCTGAGGGCAAATATCCTTCTGAGGGGCCACCGTCATTACTAACCTCCTC CATGAGGACAAATATCATTCTGAGGAGCTACCGTCATCACCAATCTTCTC CATGAGGACAAATGTCCTTCTGAGGGGCCACCGTCATTACCAACCTCCTC CATGAGGACAAATGTCCTTTTGAGGAGCAACCGTTATTACCAACCTCCTG CATGAGGACAAATATCCTTTTGAGGAGCAACCGTTATTACCAACCTCCTG CATGAGGACAAATGTCCTTTTGAGGAGCAACCGTTATTACCAACCTCCTA CATGAGGACAAATGTCCTTTTGAGGAGCAACCGTTATTACCAACCTCCTG CTTGAGGACAAATGTCATTCTGAGGGGCCACTGTCATTACCAACCTCCTT CATGAGGACAAATATCCTTCTGAGGAGCAACTGTCATCACTAATCTCTTA CATGAGGGCAGATATCCTTCTGAGGAGCGACCGTCATTACCAACCTCCTA CATGAGGACAAATGTTCTTCTGAGGGGCAACCGTCATCACCAACCTACTT CATGAGGACAAATATCCTTCTGAGGGGCAACCGTCATTACTAACCTCCTC CATGAGGACAAATATCCTTCTGAGGGGCAACTGTTATTACCAAACTCTTA CATGAGGACAAATGTCCTTCTGAGGGGCCACCGTCATTACTAACCTCCTG CATGAGGACAAATATCATTCTGAGGGGCTACTGTCATTACCAACCTTCTC CTTGAGGACAAATATCCTTCTGAGGAGCCACTGTCATCACTAACCTCCTT CATGAGGGCAAATATCGTTCTGAGGGGCCACCGTCATTACTAATCTCCTC CGTGAGGACAAATATCATTCTGAGGAGCCACCGTCATCACCAACCTCCTT CGTGAGGGCAAATATCCTTGTGAGGCGCGACTGTCATTACCAACCTCGTT CTTGAGGACAAATATCCTTCTGAGGAGCCACTGTTATTACCAACCTCCTT CCTGAGGACAAATATCCTTCTGAGGGGCCACCGTTATTACCAACCTACTC CATGAGGACAAATATCCTTCTGAGGGGCGACTGTTATTACCAGCCTTTTA CCTGAGGACAAATATCATTCTGAGGGGCCACTGTTATTACCAACCTCCTC CATGAGGACAGATATCTTTCTGAGGGGCAACCGTCATCACCAACCTTCTA CATGAGGGCAAATATCCTTCTGAGGGGCAACCGTCATCACCAACCTCTTA CTTGAGGGCAAATATCCTTTTGAGGGGCAACCGTTATTACTAACCTCTTG CATGAGGACAAATGTCTTTCTGAGGGGCTACCGTTATTACCAACCTTCTG CATGAGGACAAATATCTTTCTGAGGGGCAACTGTTATTACCAACCTTCTT CCTGAGGACAAATGTCATTTTGGGGAGCAACCGTCATTACTAACCTCCTC CATGAGGACAAATATCCTTTTGAGGAGCAACCGTCATTACTAACCTCCTA CATGGGGACAAATATCCTTCTGAGGCGCTACCGTCATTACCAACCTCCTT CCTGAGGACAAATGTCATTTTGAGGGGCAACCGTCATTACTAACCTCCTT CATGAGGACAAATATCCTTTTGAGGCGCCACAGTAATCACAAACCTCCTA CATGGGGCCAAATATCCTTCTGAGGTGCTACCGTTATTACAAATCTTCTA CCTGAGGACAAATATCATTCTGAGGTGCTACCGTTATCACCAACCTCCTC CCTGAGGACAAATATCTTTTTGAGGCGCTACAGTTATTACTAATCTATTA CCTGAGGACAAATATCCTTCTGAGGGGCTACAGTTATTACTAATTTATTA CATGAGGTCAAATATCCTTCTGAGGGGGCACCGTCATCACCAACCTCCTG CATGAGGGCAGATATCCTTCTGAGGGGGCACCGTCATCACTAACCTCCTG CGTGAGGCCAAATGTCTTTCTGGGGGGCCACCGTCATCACCAACCTTCTA CGTGAGGTCAAATGTCTTTCTGAGGAGCAACAGTCATCACCAATTTATTA CCTGAGGCCAAATATCTTTTTGAGGGGCAACAGTTATTACCAATTTATTA CATGAGGCCAAATGTCCTTCTGAGGGGCAACAGTCATCACCAATTTATTA CCTGAGGTCAGATATCTTTCTGAGGGGCAACAGTCATTACTAATTTATTA CGTGAGGACAAATGTCCTTCTGAGGTGCCACCGTCATCACAAACCTCCTC CATGAGGACAAATGTCCTTTTGAGGTGCTACCGTCATCACAAACCTACTC CATGAGGACAAATGTCCTTCTGAGGTGCTACCGTCATTACCAACCTCCTC CCTGAGGACAAATATCATTCTGAGGAGCCACCGTTATTACCAACCTGCTT CATGAGGACAAATGTCTTTCTGAGGGGCCACAGTCATTACAAATCTCCTA CATGAGGACAAATATCTTTCTGAGGGGCTACCGTAATTACAAACCTCCTC CATGAGGCCAAATGTCATTCTGAGGCGCCACCGTAATTACAAACCTTCTT CCTGAGGCCAAATGTCATTCTGAGGTGCAACCGTAATCACTAACCTTTTA

[450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450] [450]

58 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

TCCGCCGTCCCCTATATTCGCGGAACACTCGTCCAATGAATTTGAGGTGG TCCGCTGTCCCTTACGTTGGAGGCACCCTAGTCCAATGAATTTGAGGAGG TCCGCTGTCCCTTATGTAGGCGGTACCCTTGTTCAATGAATTTGAGGGGG TCTGCCGTCCCATATGTAGGCGGCACCCTTGTACAATGAATTTGAGGAGG TCCGCTGTCCCCTACGTCGGAGGGACCCTCGTTCAATGAATCTGGGGTGG TCCGCTGTCCCTTACATTGGCGGTACCCTCGTCCAATGAATCTGAGGGGG TCGGCTGTACCATATGTCGGGAGCACCCTAGTTCAATGAATCTGGGGAGG TCCGCCGTCCCATATGTAGGCGGCACCCTCGTTCAATGAATCTGAGGGGG TCCGCCGTTCCATATGTAGGCGGCACCCTTGTCCAATGAATCTGAGGAGG TCCGCTGTCCCCTACGTCGGCGGCACCTTCGTCCAATGAATTTGAGGCGG TCCGCCGTTCCATACGTAGGTGGCACCCTCGTCCAATGAATCTGAGGGGG TCCGCTGTCCCATATGTAGGTGGTACCCTAGTTCAATGAATTTGAGGGGG TCCGCTGTTCCCTACGTAGGCGGCACCCTTGTCCAATGAATTTGAGGGGG TCCGCCGTTCCCTACGTAGGAGGAACTCTCGTTCAATGGATCTGAGGCGG TCCGCCGTTCCCTACGTAGGAGGAACTCTCGTTCAATGAATCTGAGGCGG TCCGCCGTTCCCTACGTAGGGGGAACTCTAGTTCAATGAATCTGAGGGGG TCCGCCGTTCCCTACGTAGGAGGAACTCTCGTTCAATGGATCTGAGGCGG TCTGCCGTCCCCTATGTAGGTGGCACCCTTGTTCAATGGATCTGAGGAGG TCCGCTGTTCCCTACGTTGGTGGCACTCTCGTCCAATGAATCTGAGGAGG TCCGCTGTTCCCTACATTGGAGGCACCCTAGTCCAATGAATTTGAGGAGG TCCGCCGTCCCTTATGTTGGTGGCACCCTCGTACAATGGATCTGAGGTGG TCTGCCGTCCCCTACGTCGGAGGGACCCTCGTCCAATGGATCTGAGGGGG TCCGCTGTTCCCTACGTTGGCGGCACCCTCGTCCAATGGATCTGAGGAGG TCTGCTGTCCCCTACGTCGGTGGAACCCTCGTTCAATGAATCTGAGGCGG TCCGCCGTCCCATACGTGGGCGGCACTCTCGTTCAATGAATCTGGGGCGG TCTGCCGTTCCATATGTAGGTGGCACCCTTGTTCAATGGATTTGAGGAGG TCTGCTGTCCCATACGTGGGCGGCACCCTCGTCCAATGAATCTGAGGGGG TCCGCCGTTCCCTACGTAGGCGGTACTCTCGTTCAATGGATTTGAGGAGG TCCGCCGTCCCATATGTAGGCGGTACCCTCGTCCAATGAATTTGAGGGGG TCCGCCGTCCCATATGTGGGCGGCACCCTTGTCCAGTGAATTTGAGGTGG TCTGCCGTCCCATACGTCGGCGGCACCCTTGTCCAGTGAATTTGAGGGGG TCCGCTGTTCCCTACGTTGGCAGCACCCTCGTCCAATGAATCTGAGGAGG TCCGCCGTACCATACGTGGGTGGCACTCTCGTACAATGGATTTGAGGGGG TCCGCCGTACCCTACATCGGTGGTACTCTTGTCCAATGATTCTGAGGTGG ACCGCTGTCCCCTACGTTGGCGGCACCCTTGTCCAATGAATCTGGGGAGG TCCGCCGTCCCCTATGTTGGCGGAACACTTGTCCAATGAATTTGAGGGGG TCCGCCGTACCCTACGTCGGCGGCACTCTTGTCCAATGAATTTGGGGGGG TCCGCCGTCCCCTATGTTGGAGGCACTCTTGTCCAATGAATTTGAGGAGG TCCGCGGTTCCCTACGTCGGGGGCACTCTTGTGCAATGAATCTGAGGAGG TCAGCCGTTCCCTACGTTGGAGGCACCCTAGTTCAGTGGATCTGGGGAGG TCTGCCGTCCCATATGTAGGCGGCACCCTTGTACAATGAATCTGAGGGGG TCCGCTGTTCCTTACGTTGGAGGCACTCTTGTACAATGAATCTGAGGGGG TCTGCCGTACCATACATGGGAGACATGTTAGTCCAATGAATCTGAGGTGG TCAGCAGTGCCTTATATAGGGGACACCCTTGTACAGTGGATTTGAGGCGG TCCGCCGTACCCTACGTAGGAGACATCCTAGTCCAATGAATCTGAGGAGG TCCGCCGTACCTTATGTAGGTAATACACTAGTTCAGTGGATTTGAGGGGG TCCGCCGTACCTTATGTAGGCAACACACTAGTTCAGTGAATTTGAGGAGG TCCGCTGTACCCTACGTAGGAAACACTCTCGTCCAATGAATCTGAGGCGG TCCGCTGTTCCATATGTAGGCAACACCCTGGTCCAATGAATCTGAGGCGG TCCGCCGTCCCCTACATCGGTAACACCCTTGTCCAATGGATTTGGGGCGG TCTGCCGTCCCCTATGTAGGAAACACCCTGGTTCAATGAATCTGGGGCGG TCCGCTGTCCCCTATGTAGGGAACACCCTAGTTCAATGAATCTGAGGAGG TCCGCCGTCCCCTATGTAGGAAACACCCTAGTTCAATGGATCTGAGGTGG TCCGCTTTGCCCTATGTAGGAAACACCCTAGTTCAATGAATCTGGGGCGG TCTGCCGTTCCCTACGTCGGAAACACACTAGTCCAATGAATCTGAGGGGG TCAGCCGTCCCCTACGTTGGTAACACTCTCGTTCAATGAATCTGAGGGGG TGTGCGATCCCCTACGTGGGCAACACCCTAGTCCAATGAGTCTGAGGAGG TCTGCCATTCCATACGTCGGCAACACCCTTGTCCAATGAATCTGGGGCGG TCCGCCGTACCTTACGTTGGTAACACACTAGTTCAATGAATCTGAGGGGG TCCGCCGTCCCATACGTAGGCAACACCCTAGTTCAATGAATCTGAGGGGG TCTGCCGTCCCGTATGTCGGAAACACACTAGTTCAATGGATCTGAGGCGG TCCGCAGTCCCGTATGTCGGAAACATACTAGTCCAATGAATTTGAGGAGG

[500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500] [500]

59 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

ATTTTCAGTTGACAATGCAACCCTAACGCGCTTCTTCGCTTTCCACTTCC CTTCTCGGTAGACAACGCAACCTTAACCCGATTCTTCGCCTTCCACTTCC TTTCTCAGTAGACAATGCAACCCTAACCCGATTCTTTGCTTTCCATTTTC CTTTTCAGTAGACAACGCCACCCTCACTCGATTTTTTGCCTTCCACTTCC CTTCTCGGTAGACAATGCAACTCTAACCCGCTTCTTTGCCTTCCACTTCC ATTCTCAGTAGACAATGCAACCCTAACTCGCTTCTTTGCCTTCCATTTTC GTTTTCAGTAGACAATGCAACCTTAACCCGATTCTTTGCCTTCCACTTCC CTTTTCAGTAGACAACGCCACCCTAACCCGATTTTTTGCCTTCCATTTCC CTTCTCGGTCGATAACGCCACCCTCACACGATTCTTCGCCTTCCACTTTC GTTTTCAGTCGACAATGCAACTCTCACCCGTTTCTTTGCCTTCCACTTTC CTTTTCAGTAGATAACGCCACTCTCACACGATTCTTTACCTTCCACTTCC CTTCTCGGTAGATAATGCCACCTTAACCCGATTTTTTGCCTTCCACTTCC CTTCTCTGTAGACAACGCTACCTTAACCCGGTTCTTTGCCTTCCACTTCC ATTTTCAGTAGACAATGCAACCCTAACCCGATTCTTCGCCTTCCACTTCC GTTTTCAGTAGACAATGCAACCCTAACCCGATTCTTCGCCTTCCACTTCC GTTTTCAGTAGACAATGCGACCCTGACCCGCTTCTTTGCCTTCCACTTCC GTTTTCAGTAGACAATGCAACCCTAACCCGATTCTTCGCCTTCCACTTCC CTTTTCAGTAGACAACGCCACCTTAACTCGGTTTTTTGCCTTCCACTTCC GTTTTCAGTAGATAATGCAACACTAACCCGCTTCTTTGCCTTCCATTTTC CTTTTCAGTAGACAACGCAACCCTAACCCGGTTCTTTGCCTTCCACTTCC ATTCTCAGTAGACAATGCAACTTTAACCCGCTTCTTTGCCTTCCACTTCC ATTTTCGGTAGATAACGCCACCCTAACCCGCTTCTTTGCCTTCCACTTTC ATTTTCAGTAGATAACGCCACCTTAACCCGCTTCTTTGCCTTCCACTTTC CTTCTCAGTTGACAATGCAACCCTAACTCGCTTCTTTGCTTTCCACTTCC CTTTTCAGTAGACAACGCTACCCTAACCCGATTCTTCGCCTTCCACTTCC CTTTTCAGTAGACAATGCCACCTTAACTCGGTTCTTTGCCTTCCACTTCC CTTCTCAGTAGATAACGCCACCCTAACCCGATTTTTTGCCTTCCACTTTC CTTCTCAGTAGATAACGCTACCCTAACCCGATTCTTTGCCTTCCACTTCC CTTTTCGGTAGATAACGCCACTCTCACACGATTCTTTGCCTTCCACTTCC CTTTTCAGTAGATAACGCCACTCTCACACGATTCTTTGCCTTCCACTTCC CTTTTCAGTAGACAACGCCACCCTAACCCGATTTTTTGCCTTCCACTTCC ATTTTCAGTTGATAACGCCACCTTAACCCGCTTCTTTGCCTTCCACTTTC GTTTTCAGTAGATAACGCCACCCTCACACGATTCTTCGCCTTCCACTTCC CTTTTCAGTTGACAACGCAACCCTTACCCGCTTCTTTGCCTTCCATTTCC GTTGTCAGTTGACAACGCAACACTAACCCGCTTCTTTGCCTTCCACTTTC GTTTTCAGTTGACAACGCAACCCTAACCCGCTTCTTCGCTTTCCACTTCC CTTTTCAGTCGACAACGCAACCCTAACCCGCTTCTTTGCCTTCCACTTCC GTTTTCAGTTGATAATGCAACCCTGACCCGCTTCTTTGCCTTCCATTTCC TTTTTCAGTAGACAATGCAACCCTAACCCGTTTCTTTGCCTTCCACTTCC TTTCTCAGTCGACAACGCAACCTTAACCCGATTCTTTGCCTTCCACTTCC CTTCTCAGTAGATAACGCCACCCTAACCCGATTCTTTGCCTTCCACTTCC GTTCTCAGTAGACAATGCAACCTTAACCCGCTTCTTCGCCTTCCACTTCC GTTCTCAGTAGACAATGCAACACTAACACGATTCTTCGCATTCCACTTCC CTTTTCAGTAGATAACGCCACGTTAACACGATTCTTCGCCTTCCACTTCC CTTCTCAGTTGACAACGCAACCCTCACCCGATTCTTTGCCTTCCACTTCC CTTTTCAGTAGATAACGCCACTCTTACACGGTTCTTCGCGTTCCACTTCC GTTTTCAGTAGATAACGCCACCCTCACACGGTTCTTCGCATTCCACTTCC CTTTTCAGTAGACAATGCCACCCTTACCCGCTTCTTCGCCTTCCACTTTT TTTTTCAGTAGATAACGCCACCCTTACCCGCTTTTTCGCTTTCCACTTTC GTTTTCAGTAGATAACGCCACCCTTACCCGTTTCTTCGCTTTCCACTTCC CTTTTCAGTCGATAACGCTACACTCACACGATTCTTTGCTTTCCACTTCC CTTCTCAGTTGATAATGCCACACTCACACGATTCTTCGCTTTCCACTTCC CTTTTCAGTTGATAACGCCACACTCACACGATTCTTTGCTTTCCACTTCC CTTCTCAGTTGATAACGCCACACTCACACGATTCTTCGCTTTCCACTTCC CTTCTCTGTAGACAATGCAACGCTAACTCGCTTCTTTGCCTTCCATTTCC TTTCTCCGTTGACAACGCCACCCTCACTCGATTCTTTGCCTTCCACTTCC CTTTTCGGTAGATAACGCCACCCTCACCCGATTCTTCGCATTCCACTTCC CTTCTCAGTAGACAACGCCACCCTAACCCGCTTCTTCGCATTCCACTTCC ATTCTCAGTAGACAACGCAACACTAACCCGCTTCTACGCCCTCCACTTCC CTTTTCGGTTGACCACGCAACCCTAACCCGATTCTTCGCCTTCCACTTCT ATTCTCAGTAGATAATGCCACCCTCACCCGATTCTTTGCATTCCACTTCC CTTCTCAGTTGACCACGCCACACTCACCCGTTTCCTTACCTTCCACTTCC

[550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550] [550]

60 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

TCCTCCCTTTTATTGTAGCCGCTATAACTATACTCCACCTCCTCTTCCTA TCCTTCCATTCATCGTAGCAGCAATAACTATGCTCCACCTCCTATTCCTG TCCTCCCCTTTATTGTTGCAGCCATAACTATACTTCACCTTCTCTTCTTA TTCTGCCCTTTATTGTTGCAGCCGTAACTATACTTCACCTTCTTTTCCTA TCCTCCCCTTCGTCGTTGCAGCCATGACCATGCTTCACCTCCTCTTCCTA TTCTTCCCTTTGTTGTCGCAGCCATAACCATGCTTCACCTCCTATTCCTG TTTTCCCCTTTGTTGTTGCAGCTATAACTATGCTGCACCTCCTTTTCCTA TCCTTCCCTTTATTGTCGCAGCCGTAACTATACTCCACCTTCTCTTCCTG TCCTGCCCTTTATTGTTGCAGCCATAACCATGCTTCATCTTCTTTTCTTA TCCTCCCCTTTATCGTTGCAGCTATAACTATACTCCACCTACTGTGCCTT TTCTACCCTTTATCGTTGCAGCTATAACTATACTTCACCTCCTTTTCTTA TCCTCCCCTTTATTGTTGCGGCCGTAACTATGCTCCACCTTCTTTTTCTG TTCTGCCCTTCATTGTAGCAGCCATAACCATACTTCATCTTCTTTTCTTA TTCTCCCCTTCATTGTCGCCGCCATAACCATGCTTCACCTCTTATTCCTG TTCTCCCCCTCGTTGTCGCCGCCATAACCATGCTTCACCTCTTATTCCTG TTCTTCCCTTCATTATTGCTGCCATGACCATGCTTCACCTCTTATTCCTG TTCTTCCCTTCGTTGTCGCCGCCATAACCATGCTTCACCTCTTATTCCTG TCTTCCTCTTTATTGTTGCAGCCATAATCATACTTCATCTTCTTTTCTTA TTCTTCCCTTTGTTGTCGCAGCCATAACCTTACTTCACCTACTGTTCCTG TCCTTCCATTCATCGTAGCAGCAATAACAATACTTCACCTTCTATTCCTA TCCTTCCCTTCATTGTTGCCGCTATGACAATGCTCCATCTGCTATTTCTT TCCTTCCCTTTATTGTTGCCGCCATAACTATGCTCCACCTCCTATTTTTA TCCTTCCCTTTGTTGTCGCAGCCATAACCATACTTCACCTACTATTCTTA TCCTACCCTTCGTCGTAGCCGCTATAACCATACTGCACCTCTTATTCCTT TCCTGCCCTTCATTGTTGCAGCCATAACCATACTACATCTTCTCTTCTTA TTCTACCTTTTATTGTTGCAGCCATGACTATACTTCACCTTCTTTTCTTA TCCTGCCTTTCATTGTTGCAGCCGTAACCATACTCCATCTTCTTTTCTTA TCCTTCCCTTTATTGTTGCAGCCATAACTATGCTTCACCTTCTTTTCCTA TCCTGCCCTTTATTGTTGCAGCCATGACCATGCTTCACCTTCTTTTCTTA TCCTGCCCTTTATTGTTGCAGCCATAACCATGCTTCACCTTCTTTTCTTA TCCTGCCCTTTATCGTCGCAGCCATAACCATACTTCACCTTCTTTTCCTC TCCTCCCCTTTGTTGTCGCAGCCATAACCATACTTCACCTACTATTCCCG TCCTACCATTTATCGTCGCAGCTATAACCATACTCCACCTTCTTTTCTTA TCCTCCCCTTTATTGTTGCAGCCATAACTATGCTTCACCTCCTATTCCTT TCCTTCCCTTCGTCGTTGCGGCTATAACCATACTTCATCTCCTTTTCCTG TCCTCCCCTTTATTGTTGCCGCCATGACTATACTCCACCTCCTCTTCCTA TCCTCCCCTTTATTGTTGCAGCCATGACTATGCTACACCTTCTATTCCTT TTCTCCCCTTCGTCATTGCAGCCATAACCATACTGCATCTTCTGTTCCTC TTCTTCCCTTCATTGTTGCAGCTATGACCATACTTCACCTCTTATTCCTA TCCTCCCCTTTATTGTTGCAGCAATAACTATGCTCCACCTCCTATTCCTA TTCTGCCCTTTATTGTAGCAGCCATAACTATACTTCACCTTCTTTTCTTA TCCTTCCTTTCATTGTTGCAGCCATAACCATACTTCACCTCTTATTCCTG TACTACCATTTGTTATTGCCGCCGCAACCATCATCCACCTGCTGTTCCTC TGTTCCCATTCGTCATCGCCGGCGCAACTGTTCTCCACTTACTATTTTTA TACTTCCCTTTGTAGTCGCAGCCATAATAATCCTCCATCTCTTATTCCTA TATTCCCATTCGTAATCGCTGGTGCCACAATACTACACCTCCTTTTTCTT TCTTTCCATTCGTAATTGCAGGTGCCACCCTTCTGCACCTTCTTTTCCTC TATTCCCCTTCATTATTGCGGGGGCAACCGTCATCCATCTGCTTTTCCTC TGTTCCCCTTCGTTATTGCGGGAGCAACCCTCATCCATCTGATTTTCCTC TATTCCCCTTCGTCATTGCGGGTGCAACGTTTATTCACCTGCTTTTCCTT TTTTCCCATTCATCATTGCCGCCGCCACCCTCTTACACCTCCTCTTTCTC TCTTCCCATTTGTCATCGCTGCTGCCACCGTCTTACACCTTTTGTTCCTC TTTTCCCATTCATCATTGCCGCTGCCGCTATCTTACACCTCCTCTTCCTC TCTTCCCGTTCGTCATTGCTGCTGCCACCATTTTACACCTCCTTTTCCTT TTCTCCCCTTCATCATCGCCGCCGCAACGGTCATCCACCTTCTTTTCCTC TTCTTCCACTTATCGTTACAGCTGCAACCCTAATTCACCTCTTATTCCTC TTCTACCCTTTATCATCGCAGCAGTAACCATACTCCACCTCCTATTCCTG TCCTCCCGTTCATCATTGCAGCCGTTACAATACTACACCTGCTTTTCCTC TCTCTCCATTCGTAATTGCAGCAGCCACAACACCTCACCTCCGGTTCCTA TATTCCCCTTCGTCATTGCAGCAGCCACTATACTTCACCTTCTTTTCCTC TATTCCCATTTGTCATTGCCGCTATAACCCTCCTACATTTGCTTTTCCTA TCTTCCCGTTTGTAATTGCAGCTGCTACCCTCCTTCACCTTCTGTTCCTC

[600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600] [600]

61 Aanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

CATGAAACAGGCTCAAACAATCCTCTAGGTTTAAACTCCGACACGGACAA CACGAAACAGGATCAAACAACCCCCTCGGCCTAAACTCCGACACAGACAA CACGAAACGGGCTCAAATAATCCTCTGGGCCTAAACTCAGACACAGATAA CATGAAACTGGCTCAAATAACCCCCTCGGGCTAAACTCAGACGCAGATAA CACGAAACAGGCTCAAACAACCCAATCGGCCTAAACTCTGACACAGACAA CATGAAACAGGCTCAAACAACCCCCTTGGTCTAAACTCTGACACAGACAA CACGAAACAGGCTCAAATAACCCCCTCGGCCTAAACTCCGACACAGATAA CACGAAACAGGCTCAAACAACCCCCTTGGCCTAAACTCAGACACAGACAA CATGAGACAGGTTCAAATAACCCTCTCGGCCTAAACTCAGACACAGACAA CACGAAACAGGCTCAAACAACCCCCTCGGCCTGAACTCTGACACAGACAA CATGAAACAGGCTCAAACAACCCCCTTGGTTTAAACTCAGACACAGACAA CACGAAACAGGCTCAAACAACCCCCTTGGCCTAAACTCCGACACGGACAA CACGAAACAGGCTCAAACAATCCCCTCGGCCTAAACTCAGACACAGACAA CATGAAACAGGCTCAAACAACCCCCTTGGCCTAAATTCTGACACAGACAA CATGAAACAGGCTCAAACAACCCCCTTGGCCTAAATTCTGACACAGACAA CACGAAACAGGCTCAAACAACCCCCTTGGCCTAAATTCTGATACAGACAA CATGAAACAGGCTCAAACAACCCCCTTGGCCTAAATTCTGACACAGACAA CATGAAACAGGCTCATATAATCCCCTCGGGGTAAATTCAGACACAGACAA CATGAAACAGGCTCAAACAACCCCCTTGGTCTAAACTCTGATACAGACAA CACGAAACAGGATCAAACAATCCCCTCGGCCTAAACTCCGACACAGATAA CACGAAACAGGCTCAAACAACCCCCTCGGTCTCAACTCCGACACAGATAA CATGAAACAGGCTCAAATAACCCCCTTGGCCTAAACTCTGACACAGACAA CATGAAACAGGCTCAAACAACCCCCTTGGTCTTAACTCTGATACAGATAA CATGAAACAGGTTCAAACAATCCACTCGGCCTAAATTCTGATACAGACAA CATGAAACAGGATCAAACAACCCCTTAGGCCTAAACTCAGACACAGACAA CACGAAACAGGCTCAAATAACCCTCTCGGCTTGAACTCAGATACAGACAA CACGAGACAGGCTCAAACAATCCCCTAGGTTTAAACTCAGATACAGACAA CACGAAACAGGCTCAAACAACCCCCTCGGCTTAAACTCAGACACAGACAA CACGAAACAGGCTCAAACAACCCACTCGGCTTAAACTCAGACGCGGACAA CATGAAACAGGCTCAAACAATCCCCTCGGTCTAAACTCAGACACAGACAA CACGAGACAGGTTCAAACAACCCGCTCGGCTTAAACTCAGACACAGATAA CATGACACAGGCTCAAACAACCCCCTTGGCCTTAATTCTGACACAGATAA CATGAAACAGGCTCAAACAACCCCCTAGGACTGAACTCAGACGCAGACAA CATGAAACAGGCTCTAATAACCCCCTCGGACTAAATTCTGACACAGACAA CACGAAACTGGTTCAAATAACCCCCTCGGCCTAAACTCCGACACAGATAA CACGAAACAGGCTCCAACAACCCCCTCGGCCTGAACTCCGACACAGACAA CATGAAACAGGCTCTAACAACCCCCTTGGTCTAAACTCTGACACGGACAA CATGAAACAGGCTCTAACAACCCCCTCGGCCTAAATTCTGACACAGATAA CACGAAACTGGCTCAAACAACCCCCTTGGCCTAAACTCTAACACAGACAA CATGAAACAGGCTCAAACAATCCCCTCGGCCTAAATTCTGACACAGACAA CACGAAACAGGCTCAAACAACCCTCTCGGCCTAAATTCAGACACAGACAA CACGAAACCGGGTCTAACAACCCCCTCGGCCTAAACTCTGACACAGACAA CACGAAACAGGATCAAACAACCCGATCGGACTAAACTCAGACGCAGACAA CACGAAACAGGCTCGAACAACCCTGCCGGGTTAAACTCCGACGCCGATAA CACGAAACAGGCTCAAACAACCCAATAGGCCTAAACTCCAACGTAGACAA CATCAAACGGGCTCCAATAACCCCTTAGGCCTTAACTCAGATGTAGATAA CACCAGACCGGCTCCAACAACCCCCTGGGCCTGAACTCAGACGTGGACAA CACGAAACAGGATCCAACAACCCCCTTGGCCTTAACTCCGACGCGGACAA CACGAAACAGGATCCAACAACCCCCTTGGGCTTAACTCCGAAGCGGACAA CATGAAACAGGGTCCAACAACCCCCTTGGCCTCAACTCCGACGCAGATAA CATGAGACAGGCTCCAACAATCCTCTAGGCCTCAACTCCGATGTGGATAA CATGAAACAGGGTCCAACAACCCCTTAGGCCTTAACTCTGATGTAGACAA CACGAAACAGGGTCTAATAATCCCCTAGGCCTCAACTCTGATATAGATAA CATGAGACGGGGTCCAATAATCCCTTAGGCCTCAACTCTGATGTAGATAA CACCAAACAGGCTCGAACAATCCCCTCGGCCTAAACTCAGACGCAGACAA CACGAAACAGGATCAAACAATCCCCTTGGACTGAACTCAGACGCCGACAA CACGAAACTGGGTCAAACAACCCTCTCGGCCTAAACTCAGACGCGGACAA CACGAAACAGGGTCTAACAACCCTCTAGGCCTAAACTCAGACGTAGACAA CACGAAACCGGGTCAAACAACCCCCTGGGCCTAAACTCAGACTCAGATAA CATGAGACTGGCTCAAATAACCCTTTGGGACTAAACTCAGACTCGGACAA CACGAAACAGGCTCCAACAACCCCCTAGGCCTCTCATCAGACACAGATAA CACGAAACCGGCTCAAATAACCCCCTCGGACTTAATTCTGATACAGATAA

[650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650] [650]

62 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

AATTTCTTTCCACCCATACTTCTCTTACAAAGACCTTCTAGGTTTCGCTG AATTTCATTCCACCCTTACTTCTCATACAAAGACCTCCTGGGATTCGCAG AATTTCCTTCCACCCGTACTTCTCTTACAAAGACCTACTGGGATTTGCAG AATTTCCTTCCACCCATATTTCTCTTATAAAGACTTGCTCGGGTTTGCAG AATTTCTTTCCACCCATACTTCTCTTACAAAGATTTGCTAGGATTTGCAG AATTTCTTTTCACCCATACTTCTCTTACAAAGACCTCTTAGGATTTGCAG AATCTCCTTCCATCCATACTTTTCTTACAAAGATCTCCTAGGATTTGCGG AATTGCTTTCCACCCCTACTTCTCTTACAAGGACCTACTTGGTTTCGCAG GATTTCCTTTCACCCTTACTTTTCTTACAAAGACTTACTTGGATTTGCAG AATTTCCTTCCACCCCTATTTCTCATACAAAGACCTTCTGGGCTTTGCAG AATTTCCTTCCACCCTTACTTTTCTTACAAAGACTTACTTGGATTTGCAG AATTTCTTTCCACCCTTACTTCTCTTACAAAGACCTCCTTGGATTTGCAG AATTTCTTTCCACCCATACTTTTCTTACAAAGACTTACTTGGGTTCGCAG AATTTCTTTCCACCCATACTTCTCCTACAAAGACCTTCTAGGGTTTGCAG AATTTCTTTCCACCCATACTTCTCCTATAAAGACCTTCTAGGGTTTGCAG AATTTCTTTCCACCCATACTTTTCCTACAAAGACCTTCTAGGATTTGCAG AATTTCCTTCCACCCATACTTCTCCTATAAAGACCTTCTAGGCTTTGCAG AATCTCTTTCCACCCATACTTATCTTACAAAGACCTGCTTGGTTTTGCAG AATTTCTTTTCACCCATACTTTTCTTATAAAGACGTTTTAGGATTTGCAG AATTTCATTCCACCCATACTTCTCATACAAAGACCTCCTAGGATTCGCAG AATTTCATTCCACCCATACTTTTCTTACAAGGACCTTTTAGGCTTTGCGG AATTTCTTTCCACCCATATTTCTCCTACAAAGACCTTTTAGGATTCGCAG AATTTCTTTTCACCCATATTTTTCTTACAAAGACCTTTTAGGATTTGCAG AATTTCTTTTCACCCATACTTCTCTTACAAAGACCTACTAGGATTTGCAG AATTTCCTTCCACCCATACTTTTCTTACAAAGACCTACTCGGCTTCGCAG AATCTCTTTCCACCCATATTTTTCCTACAAAGACCTGCTCGGTTTCGCAG AATCTCCTTCCACCCTTATTTCTCTTATAAAGACCTACTTGGGTTTGCAG AATCTCCTTCCACCCATATTTCTCTTATAAAGACCTACTTGGATTCGCAG GATTTCTTTCCACCCATACTTTTCTTACAAAGACTTACTTGGATTTGCAG AATTTCTTTCCACCCTTACTTTTCTTACAAGGACTTACTTGGGTTTGCAG AATTTCTTTCCACCCATACTTCTCTTACAAAGACCTGCTTGGATTTGCAG AATCTCTTTTCACCCATACTTTTCTTATAAAGACCTTTTAGGATTTGCAG AATCTCTTTTCATCCCTACTTTTCCTATAAAGACCTACTTGGGTTTGCAG AATTTCGTTCCACCCATACTTTTCTTATAAAGACCTCCTTGGATTTGCAG AATGTCATTCCATCCATACTTTTCTTACAAAGACCTGCTAGGGTTTGCAG AATTTCTTTCCACCCATACTTCTCTTATAAAGACCTCCTAGGATTTGCAG AATCTCGTTCCACCCATACTTTTCTTACAAAGATCTTCTTGGATTTGCAG AATTTCTTTCCACCCATACTCCTCATATAAAGACCTTCTTGGATTCGCAG AATTTCCTTTCACCCATACTTCTCTTACAAAGATCTGCTAGGGTTTGCAG AATTTCTTTCCACCCATACTTCTCTTACAAGGATTTATTAGGGTTCGCAG AATTTCTTTCCACCCATATTTTTCTTACAAAGACCTGCTTGGATTTGCAG AATTTCTTTCCACCCATACTTCTCTTACAAAGACCTATTGGGATTTGCAG AGTCTCTTTCCACCCGTACTTCTCATACAAAGACCTCCTTGGGTTCGTAA AATCTCCTTCCACCCTTACTTCTCCTATAAAGACCTCCTTGGCTTCGTTC AATCCCATTTCACCCCTACTTCTCCTACAAAGACCTCCTCGGCTTCGTAG AATCTCATTCCACCCCTACTTCTCATACAAAGATCTCCTAGGGTTCGCAA AATTTCATTCCACCCTTACTTCTCATACAAAGACCTTCTCGGCTTCGCAA AATCCCCTTCCACCCGTACTTCTCCTATAAAGACCTGCTCGGCTTTGCGG AATCCCTTTCCACCCGTATTTCTCCTACAAAGACCTGCTAGGATTTGCAG AATCCCCTTCCACCCGTACTTTTCCTACAAAGACCTGCTAGGGTTCGCAG AATCCCATTCCACCCCTATTTTTCATACAAAGACCTCCTAGGAGCCACAG AATCCCATTTCACCCCTACTTTTCATACAAAGACATTTTAGGCTTCGCAG AATCCCATTCCACCCCTACTTTTCATACAAAGACCTCCTAGGGTTCACAG AATTCCATTCCACCCCTATTTCTCATACAAAGATCTTTTAGGGTTCGCAG AATCTGATTCCACCCATATTTCTCATATAAAGACCTCCTAGGCTTTGCAG AATCTCATTCCACCCCTATTTGTCCTACAAAGAGGTGTTAGGCTTTGTAG AATGTCTTTCCACCCCTACTTCTCATACAAAGACCTCCTAGGCTTCGTAG AATCTCCTTCCACCCTTACTTCTCCTATAAAGACCTACTAGGCTTCGTGG AATCTCCTTCCACCCCTACTTCTCCTACAAAGACCTCCTAGGATTTGCAG AATTTCTTTCCACCCTTACTTCTCCTATAAAGACCTGCTAGGATTTGCAG AATCTCTTTCCATCCATACTTCTCCTACAAGGACCTTCTGGGCTTTGCAG AATCTCTTTCCACCCATACTTCTCATACAAAGACCTTATCGGCTTCGCAG

[700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700] [700]

63 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

GTGTGATTATTCTACTAACTTGTCTTGCACTATTCGCCCCCAATCTTCTT GTGTAATTATTTTACTAACCTGCCTCGCATTATTCGCCCCCAGCCTCTTA GTGTGATTATCCTATTAACTTGCCTCGCATTATTTGCCCCTAACCTCCTA GGGTGCTCATCTTACTAACCTGCCTCGCACTATTTTCTCCTAACCTCTTA GCGTAATTATTCTACTCACTTGCCTTGCATTATTCGCCCCCAACCTTCTA CTGTAATCATTTTACTAACCTGCCTCGCACTATTTGCCCCCAACCTCCTG GGGTAATCATTTTACTAACCTGCCTCGCACTATTTTCCCCCAACCTCTTA GCGTAATTATCTTATTAACCTGCCTCGCACTATTTGCCCCCAACCTGCTA GAGTAATTATTTTATTAACCTGCCTTGCACTATTTGCCCCCAACCTCTTA GAGTAATCATTTTACTAACCTGCCTCGCGCTATTCGCCCCCAACCTCTTA GAGTAATTATCTTATTAACCTGCCTCGCACTATTTGCTCCCAACCTCCTA GCGTCATTATCTTACTAACCTGTCTCGGACTATTTGCCCCTAACCTCTTA GCGTAATTATCTTGTTAACCTGCCTCGCACTATTTGCCCCCAATCTCCTA GTGTAATCATTCTATTAACCTGTCTTGCACTATTTGCCCCCAACCTTCTC GTGTAATCATTCTATTAACCTGTCTTGCACTATTTGCCCCCAACCTTCTC GTGTAATTATTCTATTAACCTGCCTTGCACTATTTGCCCCCAACCTCCTC GTGTAATCATTCTATTAACCTGTCTTGCACTATTTGCCCCCAACCTTCTC GCGTAATTATTTTATTAACCTGTCTAGCACTATTTGCTCCAAACCTCCTA GCGTGATCATTCTATTGACTTGCCTGGCATTATCTGCCCCCAACCTCCTA GCGTAATCATTCTACTAACCTGCCTCGCACTATTTGCCCCCAATCTCTTA GAGTAATTATTCTGTTAACCTGCCTGGCACTGTTTGCCCCCAACCTCCTT GCGTAATCATCTTACTGACCTGTCTTGCACTATTTGCCCCCAACCTTCTT GGGTAATCATTCTACTAACTTGCCTTGCATTATTTGCCCCCAACCTCCTA GCGTAATCATTCTATTAACCTGCCTTGCACTATTTGCCCCTAACCTTCTC GCGTAATTATTCTACTAACTTGTCTTGCACTATTTGCCCCTAACCTCTTG CCGTGATCATTTTATTAACTTGCCTTGCACTATTCACCCCGAACCTGCTA GCGTAGTCATTCTACTAACCTGCCTTGCATTATTTGCCCCTAACATCTTA GCGTAATTATTCTATTAACCTGTCTTGCACTATTCGCCCCCAACCTCCTG GAGTAATTATTTTATTAACCTGCCTTGCACTATTTGCCCCCAACCTCCTA GGGTAATTATCTTACTAACCTGCCTCGCACTATTTGCCCCCAACCTCTTG GCGTAATCATCCTACTAACCTGCCTTGCACTATTTGCCCCCAACCTGTTA GGGTAATCATTCTACTGACTTGCCTTGCATTATTTGCTCCCAACCTCCTG GGGTAATCATCCTATTAACCTGCCTTGCACTATTTGCCCCCAACCTCCTG GCGTAATTATGTTATTAACCTGCCTCGCTTTATTTGCCCCCAACCTACTT GCGTAATCATTTTATTAACCTGCCTTGCACTGTTTGCCCCCAACCTCCTA GCGTAATTATTCTATTAACTTGCTTAGCATTATTTGCCCCCAACCTGCTT GCGTAATTATCCTTCTCACTTGCCTTGCCTGATTTGCCCCAAACCTGCTC CTGTAATTATCTTATTAACTTGTCTTGCCCTATTCGCCCCTAATCTCCTA GCCTGCTTATTTTATTAACCTGCCTCGCATTATTCGCCCCCAACCTCCTG GCGTAAATATTTTACTAACCTGCCTCGCACTATTTGCCCCCAACCTCCTG GCGTGATTATACTACTAACCTGCCTCGCACTATTCGCCCCCAACCTCTTA CTGTAATTATCCTATTAACCTCCCTTGCTCTATTTGCCCCCAACCTTCTA TTATACTCCTAGCTCTTACACTACTAGCACTATTCTCCCCTAACTTACTA TGTTATTGCTGGCCCTCACCTCTCTAACGTTTTTCTCCCCCACCCTGCTC TTCTACTCTTCACCCTCACCTCCCTGGCCCTATTCCTGCCAAACCTCTTA TTGTTCTAATTGGATTAACTAGCCTCGCACTGTTTTCCCCTAACCTCCTA TCGTTTTAATTGGCCTAGCTAGCCTCGCACTGTTCTCCCCCAACCTGCTG TTCTTCTAACCGCACTCGCCTCGCTAGCACTATTCTCCCCCAACCTCCTG TTCTTCTAACCGCACTTGCCTCGCTAGCGCTATTCTCCCCTAACCTCCTC TCCTTTTAACCGCACTCGCCGCACTAGCGCTCTTTTCTCCGAACCTCTTA CCGTTCTAATTGGCCTCACCTCCCTCGCCTTATTCTCCCCCAACCTCCTA CCGTCCTAGTTGGCCTGACTTCTCTCGCCCTGTTCTCCCCAAACATCTTA CCGTCCTAATTAGCCTCACCTCCCTCGCCTTATTTTCTCCTAACCTCCTG CCGTCCTAATTGGTCTCACCTCTCTTGCCTTATTCTCCCCTAACCTCTTA TTCTACTTATTGCCCTCACATGCCTGGCCCTCTTCTCCCCCAACCTCCTC TACTCCTCATTGCACTCGCATGCCTAGCCCTCCTTTCCCTTAACCTGCTA TCGTACTGATCGCACTAGTCTGCCTGGCATTATTTGCCCCCAACCTTCTA TCGTTCTTATCGCACTAACCTCCCTAGCACTATTCTCACCCAACCTTCTT CAGTGTTAATTGCCCTGACCTCTCTTGCTCTCTTCTCACCCAATTTGCTA CAGTACTAATTGCTCTTACCTCCTTAGCCCTATTCTCTCCTAACCTCCTT CCGTCATCATCTTTCTTACATGCTTAGCACTATTTTCCCCCAACCTCTTA CCATTCTTATTACCCTTACTTGCCTTGCTCTCTTCTCCCCTAATCTCCTT

[750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750] [750]

64 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

GGAGACCCAGACAACTTCACCCCCGCAAACCCTCTAGTTACCCCACCCCA GGAGACCCAGACAACTTTACCCCTGCAAACCCACTAGTTACCCCACCCCA GGAGACCCAGATAACTTCACACCTGCAAATCCCCTCGTCACTCCCCCTCA GGAGATCCAGACAACTTTACCCCTGCAAATCCTCTAGTCACCCCTCCACA GGAGACCCAGACAACTTCACCCCCGCAAACCCGCTAGTCACACCACCCCA GGAGACCCCGACAACTTTACCCCAGCAAACCCACTGGTCACTCCACCCCA GGCGACCCAGATAACTTTACACCTGCAAATCCTCTAGTCACCCCTCCTCA GGAGATCCAGACAATTTCACGCCTGCAAACCCATTAGTCACTCCCCCCCA GGAGATCCAGACAATTTCACTCCTGCAAACCCACTAGTTACCCCTCCCCA GGAGACCCAGACAACTTCACCCCAGCGAATCCCCTAGTCACCCCTCCCCA GGAGACCCTGACAATTTTACCCCTGCAAACCCACTAGTTACCCCTCCCCA GGAGACCCAGACAATTTTACACCTGCAAACCCACTAGTCACACCCCCTCA GGCGACCCGGACAACTTCACCCCCGCAAACCCATTAGTTACTCCTCCCCA GGGGACCCAGACAACTTCACCCCAGCTAATCCCCTAGTCACACCACCACA GGGGACCCAGACAACTTCACCCCAGCTAATCCCCTAGTCACACCACCACA GGAGACCCAGACAACTTCACCCCAGCCAACCCTTTAGTCACACCACCACA GGGGACCCAGACAACTTCACCCCAGCTAATCCCCTAGTCACACCGCCACA GGAGACCCAGATAATTTCACCCCTGCAAACCCTCTAGTCACTCCCCCTCA GGAGACCCAGACAACTTCACCCCAGCAAACCCACTAGTTACACCACCCCA GGAGACCCGGACAACTTCACCCCTGCAAACCCCCTTGTCACCCCACCCCA GGCGACCCAGATAATTTTACCCCAGCAAACCCTCTAGTTACCCCACCCCA GGGGACCCGGATAACTTCACCCCAGCAAATCCTTTAGTCACTCCGCCCCA GGAGACCCAGACAACTTCACCCCTGCGAATCCATTAGTTACCCCTCCCCA GGAGACCCAGACAACTTCACCCCAGCAAACCCCCTAGTCACCCCTCCCCA GGAGACCCAGACAATTTTACACCAGCCAACCCACTAGTTACCCCTCCTCA GGAGACCCAGACAATTTCACCCCCGCGAACCCCCTAGTCACTCCCCCTCA GGAGACCCAGACAATTTTACGCCTGCAAACCCATTAGTTACCCCCCCCCA GGAGATCCGGACAATTTTACGCCTGCGAACCCACTGGTTACACCCCCTCA GGAGATCCAGACAACTTCACCCCTGCAAACCCCCTAGTCACCCCTCCCCA GGAGACCCAGACAATTTCACTCCTGCAAACCCGCTAGTTACCCCTCCCCA GGAGACCCAGACAATTTCACCCCTGCAAATCCATTAGTCACCCCTCCCCA GGAGACCCAGACAACTTCACCCCTGCAAATCCACTAGTTACCCCTCCCCA GGAGACCCAGACAATTTCACCCCTGCAAACCCCCTGGTCACCCCCCCCCA GGAGACCCAGATAACTTCACCCCTGCAAACCCCTTAGTTACCCCTCCCCA GGAGACCCCGACAACTTCACCCCAGCAAATCCTCTAGTTACCCCGCCCCA GGAGACCCAGATAACTTCACCCCCGCAAACCCATTAGTCACCCCTCCCCA GGGGACCCTGAGAATTTTACCCCGGCAAACCCCCTAGTCACCCCTCCCCA GGGGACCCAGACAATTTCACCCCGGCAAATCCTCTAGTTACCCCTCCTCA GGAGACCCTGACAACTTCACGCCTGCAAACCCCTTGGTCACCCCCCCCCA GGAGACCCCGATAATTTTACCCCTGCAAACCCACTAGTTACTCCACCCCA GGAGACCCGGACAACTTCACCCCCGCAAACCCCCTAGTTACCCCTCCCCA GGAGACCCCGACAATTTTACACCTGCAAATCCTTTAGTTACCCCCCCCCA GGAGACCCAGAAAACTTCACCCCCGCAAACCCTCTAGTTACACCACCCCA GGCGACCCAGAGAACTTCACCCCGGCGAACCCGCTAGTTACCCCACCGCA GGAGACCCCGACAACTTCACCCCCGCAAACCCACTAGTTACCCCACCCCA GGAGACCCAGACAATTTTACACCAGCCAATCCGCTGGTAACCCCTCCCCA GGGGACCCGGACAACTTTACACCCGCCAACCCACTCGTAACCCCGCCCCA GGTGATCCGGACAATTTCACCCCCGCAAACCCGCTAGTTACGCCCCCACA GGTGACCCGGACAATTTCACCCCTGCAAACCCATTAGTTACTCCCCCACA GGTGACCCGGATAATTTCACCCCAGCGAACCCGCTAGTCACTCCCCCACA GGGGACCCAGACAACTTCACGCCCGCCAACCCACTCGTGACGCCCCCTCA GAGCACCAAGATAACTTCACGCCAGCCAACCCCCTTGTGACTCCTCCTCA GGGGACCCAGACAACTTCACGCCTGCCAACCCACTCGTAACACCCCCTCA GGGGATCCAGATAACTTCACACCAGCCAACCCACTCGTAACGCCCCCGCA GGAGACCCAGACAATTTCACACCAGCCAACCCCTTAGTTACCCCACCTCA GGAGACCCAGACAACTTCACTCCCGCCAACCCCCTAGTGACACCACCTCA GGCGACCCAGACAACTTCACCCCAGCCAACCCCCTAGTGACTCCCCCTCA GGCGACCCAGACAACTTCACCCCCGCCAACCCCCTAGTGACACCCCCACA GGGGACCCAGACAATTTCACGCCCGCCAACCCACTAGTCACCCCTCCCCA GGTGACCCAGACAACTTCACCCCCGCCAACCCCCTGGTTACTCCGCCCCA GGAGACCCAGACAATTTCACCCCTGCAAACCCGCTAGTCACCCCACCCCA GGAGACCCCGACAATTTTACCCCAGCCAACCCGCTAGTTACCCCTCCACA

[800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800] [800]

65 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

CATTAAACCCGAATGATATTTCCTATTTGCATACGCTATCCTACGCTCAA CATTAAACCCGAATGATACTTCCTATTTGCATACGCAATTCTCCGTTCCA TATTAAACCCGAGTGATACTTCCTGTTTGCATATGCAATTCTGCGCTCAA TATTAAGCCCGAATGATACTTTTTATTTGCATACGCAATTCTCCGCTCTA CATTAAGCCTGAGTGATACTTCCTGTTTGCCTATGCCATTCTACGCTCAA CATTAAACCCGAGTGGTACTTCTTATTTGCATACGCAATTTTACGCTCAA CATCAAGCCTGAATGATATTTCCTGTTTGCATACGCAATTCTACGATCGA TATTAAACCTGAATGATACTTCCTGTTTGGTTACGCAATTCTCCGCTCAA TATTAAACCCGAATGATACTTCCTATTTGCATACGCAATTCTCCGCTCTA CATTAAGCCTGAATGATACTTCTTATTCGCATACGCGATCCTACGCTCAA TATTAAACCCGAATGATATTTTCTATTTGCTTACGCAATTCTCCGCTCTA TATCAAGCCTGAATGATATTTCCTATTTGCATACGCAATTCTCCGGTCAA CATTAAGCCTGAGTGATATTTCCTATTTGCTTATGCAATCCTCCGCTCAA TATCAAGCCTGAATGAAACTCCCTATTTGCGTACGCGATTCTACGCTCAA TATCAAGCCTGAATGATACTTCCTATTTGCGTACGCGATTCTGCGCTCAA TATCAAGCCAGAATGATACTTCCTGTTTGCGTACGCAATTCTACGCTCGA TATCAAGCCTGAATGATACTTCCTATTTGCGTACGCGATTCTGCGCTCAA TATTAAGCCCGAATGGTATTTCCTATTTGCATACGCGATTCTACGCTCGA TATTAAGCCCGAATGATATTTCTTATTCGCGTACGCAATTCTGCGCTCAA CATTAAACCCGAATGGTACTTCCTATTCGCATACGCAATTCTCCGCTCAA TATCAAGCCTGAATGATACTTCCTGTTTGCCTACGCAATTCTACGCTCGA TATTAAGCCTGAATGATACTTCCTGTTTGCGTACGCAATTCTACGCTCAA CATTAAACCCGAATGATACTTCCTATTTGCATACGCAATTCTACGCTCAA TATTAAACCTGAATGATATTTCTTATTTGCATACGCAATCCTCCGCTCAA TATTAAACCCGAATGATACTTCCTATTTGCATACGCCATCCTGCGCTCAA TATCAAGCCCGAATGATACTTCCTATTTGCGTACGCAATTCTACGCTCAA TATCAAGCCTGAATGATATTTCTTATTTGCGTACGCAATTCTACGCTCAA TATTAAACCCGAATGATACTTCCTATTTGCGTATGCAATTCTACGCTCAA TATTAAGCCCGAATGGTATTTTCTGTTTGCATACGCAATTCTCCGCTCTA TATTAAACCCGAATGGTACTTTCTGTTTGCATACGCAATTCTCCGCTCTA CATTAAGCCCGAATGATATTTCTTATTCGCATACGCCATCCTTCGCTCAA CATTAAACCCGAGTGATACTTTCTATTTGCATACGCAATTCTACGCTCAA TATTAAACCCGAATGATACTTCCTGTTTGCGTACGCAATTCTCCGCTCTA CATTAAACCCGAATGATACTTCCTATTTGCCTATGCAATCTTACGCTCAA CATTAAACCTGAATGATACTTCTTATTTGCGTATGCTATTCTACGCTCAA TATTAAACCCGAATGGTACTTCTTATTTGCGTATGCCATCTTACGTTCAA CATCAAGCCCGAGTGATATTTCCTGTTTGCCTACGCAATCTTGCGCTCAA CATTAAGCCCGAGTGATATTTCTTATTTGCCTACGCAATTTTACGCTCAA TATTAAGCCCGAGTGATATTTTTTGTTTGCGTACGCTATTCTTCGCTCAA TATCAAGCCCGAATGATACTTCCTGTTTGCATACGCAATTCTACGCTCAA CATTAAGCCCGAATGATACTTCTTATTTGCCTATGCAATTCTCCGTTCAA TATTAAACCCGAATGATATTTCCTGTTTGCATACGCCATTCTTCGATCAA CATCAAACCAGAATGATACTTCCTATTTGCCTACGCCATCCTACGATCAA CATTCAACCCGAGTGGTACTTCTTGTTCGCCTACGCTATTATCCGGTCTA CATCAAGCCCGAATGATACTTCCTATTTGCCTACGCCATTCTCCGCTCCA TATTAAGCCCGAGTGATACTTTTTATTTGCCTACGCTATTCTTCGCTCAA TATTAAACCCGAATGATACTTTTTATTTGCTTACGCTATTCTTCGCTCCA TATTAAACCAGAGTGATATTTCCTATTTGCTTACGCCATTCTCCGATCAA TATCAAGCCAGAGTGATATTTCCTGTTTGCTTACGCCATTCTCCGATCAA CATCAAGCCAGAGTGATACTTTTTATTTGCTTACGCCATCCTACGATCAA CATTAAACCAGAATGATATTTCCTATTTGCCTACGCCAATCTTCGGTCAA CATCAAGCCAGAATGATACTTCCTGTTTGCCTATGCCATCCTTCGATCAA CATCAAGCCAGAATGATACTTCCTATTTGCCTACGCTATCCTTCGGTCAA CATTAAACCAGAATGATATTTCCTATTTGCCTACGCCATTCTTCGATCAA CATTAAGCCCGAATGATATTTCCTGTTCGCATACGCCATTCTCCGCTCAA CATTAAGCCAGAATGATATGTCCTATTCGCATACGCCATTCTCCGTTCAA TGTCAAGCCTGAATGATACTTCCTGTTTGCTTACGCCACCCTCCGGTCAA CATCAAGCCCGAATGATACTTCCTATTCGCATACGCCATTCTACGTTCGA CATTAAGCCTGAGTGATATTTCCTCTTTGCCTACGCCATTCTACGTTCAA TATTAAACCTGAATGATACTTCCTCTTTGCATACGCTATCCTTCGATCAA TATTAAGCCGGAGTGATATTTCCTATTTGCATATGCCATTCTACGGTCAA TATTAAGCCAGAGTGATACTTCCTCTTTGCGTACGCAATCCTACGATCGA

[850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850] [850]

66 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

TTCCTAATAAACTAGGAGGAGTCCTTGCCCTCTTGGCATCTATCTTAGTT TCCCTAATAAACTAGGAGGTGTCCTAGCCCTCCTAGCCTCCATTCTAGTC TTCCAAACAAACTAGGAGGTGTCCTTGCCCTCCTAGCTTCCATCCTTGTG TTCCCAACAAACTAGGGGGAGTCCTGGCCCTTCTAGCCTCCATCCTAGTC TTCCCAACAAACTAGGAGGCGTCCTAGCCCTTTTAGCTTCTATTTTAGTC TTCCCAACAAACTAGGAGGAGTCCTCGCCGTTTTAGCCTCAATTCTAGTT TTCCTAATAAACTAGGGGGCGTACTAGCACTTCTAGCCTCAATCCTTGTT TTCCAAATAAACTAGGAGGAGTCCTTGCCCTCCTAGCTTCTATTCTAGTA TCCCTAACAAATTAGGGGGAGTCCTGGCCCTCCTTGCCTCTATTCTAGTC TTCCTAACAAGCTCGGAGGAGTCCTTGCCCTCTTAGCCTCCATTCTTGTC TTCCAAATAAGCTGGGAGGAGTCCTCGCTCTCCTCGCCTCTATTCTAATC TTCCAAATAAACTAGGCGGAGTCCTGGCCCTCCTAGCTTCTATTCTGGTC TTCCGAATAAATTAGGCGGTGTCCTCGCCCTCCTCGCCTCTATTCTAGTA TCCCCAACAAACTAGGGGGAGTCCTTGCCCTCCTTGCCTCCATGCTAGTC TCCCCAACAAACTGGGGGGAGTTCTTGCCCTCCTTGCCTCCATTCTAGTC TCCCTAATAAACTAGGAGGAGTTCTTGCCCTCCTTGCCTCTATCCTAGTC TCCCCAACAAACTAGGAGGAGTTCTTGCCCTCCTTGCCTCCATTCTAGTC TTCCAAACAAACTAGGGGGAGTCCTAGCCCTTCTAGCCTCTATCCTTGTA TTCCTGACAAACTAGGGGGAGTCCTCGCTCTCCTGGCCTCCATTCTAGTT TTCCTAATAAACTAGGGGGCGTTTTAGCCCTCCTAGCCTCTATCCTAGTC TTCCTAACAAACTGGGAGGGGTCCTTGCCCTTCTGGCCTCTATCCTGGTC TTCCGAATAAACTAGGAGGAGTTCTTGCCCTCCTTGCCTCCATCCTAGTT TTCCCAACAAATTAGGAGGGGTCCTTGCCCTCCTTGCCTCCATCCTAGTC TTCCCAATAAACTCGGAGGGGTCCTTGCCCTCTTAGCCTCCATCCTAGTT TCCCAAACAAACTAGGCGGAGTCCTCGCCCTCCTAGCCTCTATTCTAGTA TTCCAAACAAACTAGGAGGAGTCCTGGCTCTTCTAGCCTCTATCCTCGTA TTCCAAATAAACTAGGTGGAGTCTTAGCCCTCCTAGCCTCCATCCTAGTA TTCCAAATAAACTGGGCGGAGTCCTAGCCCTCCTAGCCTCTATTCTAGTA TTCCAAACAAGCTGGGAGGAGTCCTGGCCCTCTTAGCCTCTATTCTAGTC TTCCAAACAAACTAGGAGGGGTCCTGGCCCTCCTTGCCTCCATCCTAGTC TCCCCAATAAACTAGGAGGAGTCCTAGCCCTCCTGGCCTCTATCTTAGTC TTCCTAACAAATTAGGAGGAGTCCTTGCCCTCCTTGCCTCCATCCTAGTC TCCCAAACAAACTAGGGGGAGTCCTAGCCCTCCTCGCATCTATTCTGGTC TTCCTAACAAGCTAGGTGGGGTACTTGCCCTATTGGCCTCCATTCTAGTC TTCCTAATAAACTAGGGGGCGTACTAGCCCTCCTAGCCTCCATTCTAGTC TTCCTAACAAGCTAGGAGGAGTTCTTGCCCTCCTGGCCTCCATCCTAGTC TCCCTAACAAACTAGGAGGAGTTCTTGCCCTACTGGCCTCAATTTTAGTC TCCCTAACAAGCTAGGAGGGGTCCTTGCCCTCTTGGCCTCTATTCTAGTC TTCCTAACAAACTAGGAGGCGTCCTAGCCCTCCTAGCTTCAATCCTAGTC TTCCAAACAAACTAGGAGGTGTCCTGGCCCTTCTGGCTTCTATCCTAGTC TTCCAAACAAACTGGGGGGAGTCCTAGCCCTTCTAGCCTCCATCCTAGTC TCCCGAATAAACTAGGAGGTGTTCTGGCCCTGCTAGCTTCAATCCTGGTC TTCCAAACAAACTCGGAGGTGTCCTTGCACTCCTATTCTCCATTCTGGTA TTCCAAACAAGCTAGGGGGAGTCCTAGCGCTATTATTCAGTATTCTAGTA TCCCAAACAAACTAGGAGGAGTACTCGCACTCCTGTCCTCGATCCTAGTC TCCCAAACAAACTAGGCGGGGTGTTGGCATTACTAGCATCTATTCTAGTA TTCCGAACAAGCTAGGCGGAGTATTGGCACTACTAGCATCTATTTTAGTA TTCCGAACAAGCTAGGTGGTGTACTAGCCCTTCTATTCTCCATCTTAGTA TTCCTAACAAACTAGGTGGTGTTTTAGCCCTCCTATTCTCCATTTTAGTG TTCCTAACAAACTAGGCGGCGTTTTAGCCCTGCTGTTTTCCATCTTAGTA TCCCTAATAAACTGGGAGGAGTTCTAGCACTACTGGCATCTATCTTAGTG TCCCCAATAAATTAGGAGGAGTGCTAGCATTACTAGCATCCATTTTAGTA TCCCTAATAAACTGGGAGGGGTTCTAGACTTACTGGCATCTATCTTAGTG TTCCTAACAAATTAGGGGGAGTGTTAGCATTACTAGCATCTATTTTAGTA TTCCGAATAAACTAGGAGGAGTTCTTGCCCTCCTGGCCTCCATCCTAGTT TGCCAAACAAACTCGGAGGAGTTTTAGCCCTACTCGCCTCAAGTCTTGTC TTCCCAACAAACTCGGAGGCGTCCTAGCCCTGCTCGCCTCAATCCTCGTG TTCCCAACAAACTAGGAGGCGTCCTAGCCCTCCTCGCCTCAATCCTAGTA TTCCCAACAAACTAGGGGGTGTCCTAGCTCTACTTGCCTCTATCCTAGTT TCCCCAATAAACTAGGGGGTGTCCTGGCCCTACTTGCTTCCATCTTAGTC TTCCAAATAAGCTGGGCGGGGTGCTCGCTTTATTAGCCTCAATCCTCGTC TTCCAAATAAACTTGGAGGTGTCTTAGCCCTTCTAGCCTCTATCCTAGTA

[900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900] [900]

67 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

CTTATGGTTGTTCCCATACTCCACACTTCCAAACAACGAAGCCTAACCTT CTCATAGTTGTCCCCATCCTTCACACCTCTAAACAACGAAGCCTAACTTT CTTATAGTCGTCCCGATCCTCCACACATCCAAACAACGAAGTCTCACATT CTAATACTCGTCCCCTTCCTTCACACATCCAAACAACGAAGTCTCACATT CTTATAGTAGTCCCACTCCTCCACACTTCTAAACAACGAAGCCTAACCTT CTTATAGTTGTCCCTATTCTTCACACCTCTAAACAACGAAGCCTAACCTT CTCATGATTGTACCAATTCTCCACACCTCTAAGCAACGAAGCCTAACCTT CTTATGGTTGTCCCCATCCTCCACACATCTAAACAACGAAGCCTTACATT CTAATAGTTGTTCCCATCCTCCACACATCTAAACAACGAAGCCTCACATT CTTATGGTTGTCCCAATCCTGCACACCTCTAAACAACGAAGCCTGACCTT CTAATACTTGTCCCCCTCCTTCACACATCTAAACAACGAAGCCTCACATT CTAATAGTTGTTCCCATCCTCCACACATCTAAACAACGAAGCCTTACATT TTGATGGTAGTTCCTATCCTTCACACCTCTAAGCAACGAAGCCTTACATT CTCATAGTGGTCCCCAGCCCCCATACCCCTAAACAACGAAGCCTTACCAG CTCATAGTTGTCCCCATCCTCCATACCTCTAAACAACGAAGCCTTACCTT CTTATAGTCGTCCCCATCCTCCACACCTCTAAACAACGAAGCCTAACCTT CTCATAGTTGTCCCCATCCTCCACACCTCTAAACAACGAAGCCTTACCTT CTAATGGTTGTTCCTATTCTCCACACATCTAAACAACGAAGCCTCACATT CTAATGGTTGTCCCCATTCTTCACACCTCTAAACAACGAAGCCTAACCTT CTTATGATTGTGCCCATTCTTCATACCTCTAAACAACGAAGTCTGACCTT CTTATAGTTGTACCAATCCTTCACACCTCTAAACAACGGAGCCTCACCTT CTTATGGTCGTCCCCATCCTCCACACCTCTAAACAACGAAGCCTAACTTT CTGATAGTTGTTCCTATCCTACATACTTCTAAGCAACGCAGCCTAACCTT CTCATGGTTGTACCCATCCTTCACACCTCCAAACAACGGAGCTTAACCTT CTCATAGTTGTACCTATTCTTCATACATCCAAACAACGAAGTCTGACCTT CTAATGGTCGTCCCCATCCTCCACACATCTAAACAGCGAAGCCTCACATT TTAATAGTTGTTCCCATTCTTCACACATCTAAGCAACGAAGCCTTACATT CTCATGGTCGTTCCCATTCTTCATACATCCAAACAACGAAGTCTAACATT CTAATAGCCGTCCCCATCCTTCACATATCTAAGCAACGAAGCCTTACATT CTGATAGTTGTCCCCATCCTCCACACATCTAAACAACGAAGCCTCACATT CTGATAGTTGTCCCCATCCTCCACACATCTAAGCAACGAAGCCTTACGTT CTGATAGTTGTTCCTACCCTACACACTTCTAAACAACGCAGCCTAACCTT CTAATAGTTGTCCCCATCCTACACACATCCAAACAGCGAAGCCTCACATT CTCATAATTGTCCCCATCCTTCACACCTCTAAACAACGAAGCCTCACTTT CTAATAGTTGTTCCCCTCCTCCACACCTCTAAACAACGAAGCCTAACCTT CTCATGGTTGTTCCCATACTCCACACTTCCAAACAACGAAGTCTAACCTT CTCGTAGTTGTCCCTGTCCTCCACACCTCCAAGCAGCGGAGCCTGACCTT CTAATGGTTGTCCCCATTCTCCACACCTCTAAACAACGAAGCCTCACCTT TTTTTGGTCGTACCTATTTTTCACACCTCTAAACAACGAAGCTTAACTTT CTTATGGTCGTCCCAATCCTGCACACCTCCAAACAACGAAGCTTAACTTT TTAATGGTTGTCCCTATTCTCCACACATCTAAACAACGAAGCCTAACATT CTCATGGTTGTGCCCATTCTTCACACCTCTAAACAACGGAGCCTAACCTT TTAATAGTAGTACCACTACTACACACCTCAAAACAACGAGGACTAACATT CTATTGGTGGTCCCCATTTTACATACCTCAAAGCAACGAGGACTAACCTT CTCATACTAGTACCCCTTCTCCACACCTCAAAACAACGAGGCCTAATATT CTTATAGTAGTACCCTATTTACATACATCAAAACAACGAAGTATAACATT CTTATAGTAGTACCCTTTTTACATACATCCAAACAACGAAGTATAACATT CTTATACTGGTCCCAATCCTCCACACATCAAAACAACGAGCCCTAACCTT CTTATACTAGTCCCCATCCTCCACACGTCAAAACAACGAGCTTTGACCTT CTTATACTAGTCCCGATCCTTCACACATCGAAACAACGAGCCCTAACTTT CTCATAACAGTACCTTTTCTCCACACATCTAAACAACGAAGCTTAACATT CTCATAGCAGTGCCTTTCCTACACACATCGAAACAACGAAGTTTAACATT CTCTTAACAGTACCTTTTCTGCATACATCCAAACAACGAAGCTTAACATT CTCATAGTAGTACCCTTTCTACATACATCAAAACAACGAAGTCTAACATT CTGATGGTAGTCCCCATCCTTCACACATCTAAACAACGAAGCCTCACCTT CTCATAGTCGTCCCCTTCCGTCATACATCTAAACAACGAAGCCTTACCTT CTCATAGTCGTACCAATCCTCCACACCTCCAAACAACGAGGACTAACGTT CTTATGGTCGTTCCCATCCTCCACACCTCTAAACAACGAGGCCTAACATT CTTATAGTGGTGCCAATTCTACACACCTCAAAACAACGAAGCCTCACATT CTTATAGTAGTTCCGATCCTCCACACCTCCAAACAACGAAGCCTTACATT CTCATGCTGGTCCCACTTCTCCACACATCCAAACAACGAAGCCTCACCTT CTTATACTAGTTCCTATCCTCCACACTTCTAAGCAACGAAGTCTAACATT

[950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950] [950]

68 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

CCGACCATTTACTCAATTCCTATTCTGAGCACTCATTGCAAATGTGGTAA CCGACCCCTTACCCAATTCCTATTCTGAGCACTCATTGCAAACGTAGCCA TCGTCCCATCACTCAGTTCCTATTCTGAGCACTCATTGCAAACGTAGCCA CCGGCCAATTTCTCAATTTCTATTCTGAATACTTATTGCTAATGTGGCCA CCGACCCGTGACCCAATTCCTATTTTGAGCACTTATTGCAAACGTAGCAA CCGACCTGCCACTCAATTCCTATTCTGAACACTCATTGCAAACGTAGCAA CCGACCTCTGACTCAGTTCTTATTCTGAGCACTTATCGCAAACGTGGTAG CCGGCCTGTCACTCAATTCCTGTTCTGAGCACTCATTGCAAATGTAGCTA CCGACCAGTAACCCAATTCCTATTTTGAGCGCTCATCGCAAATGTAGCGA CCGACCAGTTACCCAGTTCCTATTCTGAGCACTAATTGCAAACGTAGCAA CCGACCAGTGACCCAATTCCTATTCTGAACGCTCACTGCGAATGTAGCAG CCGACCTATAACTCAATTCCTGTTTTGAGCACTCATTGCAAACGTAGCAA CCGGCCATTAACCCAATTCCTGTTCTGACTGCTCATTGCAAACGTAGCAA CCGACCAGTAACCCAGATCCTATTCTGAGCACTTATTGCAAACGTAGCTA CCGACCAGTAACCCAGTTCCTATTCTGAGCACTTATTGCAAACGTAGCTA CCGACCAGTGACCCAATTCCTATTCTGAACACTTATTGCAAACGTGGCTA CCGGCCAGTAACCCAGTTCCTATTCTGAGCACTTATTGCAAACGTAGCTA TCGACCTATAACTCAATTCCTATTTTGAGCACTCATCGCAAACGTAGCAA CCGACCTGTCACCCAATTCCTGTTCTGAGCACTCATTGCAAACGTGGCAA CCGACCCCTCACCCAATTCTTATTCTGAACACTCATTGCAAATGTAGCCA CCGACCAGTGACCCAATTCTTGTTCTGAGCTCTCATTGCAAACGTAGCCA CCGACCAGTTACCCAATTCCTATTCTGAGCACTCATTGCAAACGTAGCCA CCGACCTATCACCCAGTTCCTATTCTGGGCACTCACTGCAAACGTAGCAA CCGGCCAGTTACTCAATTCTTGTTCTGAGCACTTATTGCAAACGTTGCAA CCGGCCCATAACCCAATTCCTGTTCTGAGCACTTATTGCAAACGTAGCTA TCGACCTGTCACCCAGTTCCTGTTTTGAGCACTCATTGCAAATGTAGCAA TCGACCCATAACTCAATTCCTGTTCTGAGCGCTCATTGCAAACGTAGCAA CCGACCCATAACTCAGTTCCTGTTTTGAGCGCTCATTGCAAATGTAGCAA CCGGCCAATCACCCAATTCCTTTTCTGAACGCTCATTGCAAATGTAGCAA CCGACCAATGACCCAATTCCTGTTCTGAGCACTCATGGCAAATGTAGCAA CCGGCCCGTAACCCAATTCCTATTTTGAGCACTAATTGCAAACGTAGCAA CCGGCCTATCACCCAGTTCCTATTCTGGGCACTCATCGCAAACGTAGCAA CCGACCAATAACTCAATTCCTATTCTGAGCACTAATTGCAAATGTAGCAA CCGACCAGCCACTCAATTCCTATTCTGGACGCTCATCGCCAACGTAGCAA CCGACCCATAACCCAATTCCTATTCTGAGCACTCATTGCAAACGTAGCAA CCGACCCGTTACTCAATTCCTATTCTGAGCACTTATTGCAAACGTGGCAA CCGGCCAGTTACCCAATTCCTGTTTTGAACACTCATCGCCAACGTAGCTA CCGACCAGTCACCCAATTCCTATTCTGAGCACTCGTTGCAAACGTAGCAA CCGGCCCCTAACCCAATTCTTATTCTGAACACTAATTGCAAATGTTGCAA CCGACCTATAACCCAATTCTTATTCTGAGCACTTATTGCAAACGTAGCCA TCGACCCGTGACTCAATTCCTCTTCTGAGCACTCATTGCAAACGTAGCAA CCGACCCGTGACCCAATTCTTATTCTGAACACTAGTCGCGAACGTAGCAA CCGCCCCATCACCCAATTCCTATTCTGAACCCTAGTAGCGGACATAATTA CCGGCCAATCACTCAGTTTTTATTCTGAACCTTAGTGGCAGATATAGTTA CCGACCCGCCTCACAACTCCTATTCTGAGTTCTCGTSGCAGACGTAGCCA CCGACCCGTAACACAGTTTTTATTCTGGGCTCTCGTCGCTGATGTTATAA TCGCCCCCTGACACAATTTCTATTTTGAACCCTTGTTGCGGATGTTATGG CCGACCTATTACCCAATTCCTTTTCTGAACACTCATTGCGGACGTTGCCA CCGACCAATCACGCAATTCCTCTTCTGAACACTCATCGCAGATGTCGCCA CCGGCCTATCACTCAGTTCCTCTTCTGGACGCTAATCGCAGATGTTGCCA CCGTCCATTAACCCAGCTTCTATTTTGAACCCTTATTGCAGATGTAGTAA CCGCCCGTTAACCCAGCTTCTATTTTGGGCCCTAATTGCAGACGTAGCAA CCGTCCATTAACCCAATTTCTGTTTTGAACCCTTATTGCAGATGTAATAA CCGCCCGTTAACCCAGCTTCTATTCTGAACCCTCATTGCAGATGTAGCAA CCGCCCGGTCACACAGTTCCTCTTCTGAACACTCATTGCAGACGTTGCAA CCGACCACTATCCCAACTCCTATTCTGAACACTCGTTGCCGATGTTGCCA CCGACCTGTAACTCAGTTCCTATTCTGGACCCTAATTGCAAACGTCGCCA CCGGCCCGTCACTCAATTCTTATTCTGAACCTTAATCGCAAACGTTGCCA CCGACCCTTAACCCAGTTCCTATTCTGAACACTAATTGCTAACGTCGCAA CCGGCCTTTGACCCAATTCCTGTTTTGGACCTTAATCGCCAACGTTGCCA CCGACCAATCTCCCAGTTCTTGTTTTGAGTGCTGATTGCGGACGTCGCCA CCGGCCAATTTCTCAATTCCTATTCTGAACGCTAATCGCAGACGTTGCCA

[1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000] [1000]

69 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

TTCTCACATGAATTGGAGGTATGCCAGTTGAAGAACCTTACATTATTATT TCCTAACATGAATCGGAGGAATGCCAGTTGAAGAACCATACATTATCATC TCCTCACATGAATTGGCTTTTTGCTCGTTGAAGACCCATATATTATTATT TTCTCACATGAATTGGTGGTATGCCCGTCGAAGATCCGTATATCATTATT TCCTAACCTGAATTGGAGGAATGCCAGTCGAAGAACCTTATATTATTATT TCCTGACATGAATTGGAGGAATACCAGTTGAAGAGCCCTATATCATCATT TTTTAACATGAATTGGGGGCATGCCGGTCGAAGACCCATATATTATTATT TCCTTACATGAATTGGCGGAATGCCCGTTGAAGACCCATACATTATTATT TTCTTACATGAATTGGCGGAATACCCGTCGAAGACCCATACATCATTATT TTCTTACATGAATCGGCGGGATACCAGTTGAAGAACCATACATCATCATC TTCTTACATGAATTGGCGGCATACCCGTCGAAGACCCCTATATTATCATT TCCTTACTTGAATTGGCGGAATGCCCGTTGAAGACCCATACATCATTATC TCCTTACATGAATTGGTGGAATGCCCGTTGAAGATCCATATATTATTATT TCCTCACATGAATCGGAGGAATGCCAGCCGAAGAACCTTACAAAATTATT TCCTCACATGAATCGGAGGAATACCAGTTGAAGAACCTTACATTATTATT TCCTCACATGAATCGGAGGGATACCAGTTGAAGACCCTTACATTATTATT TCCTCACATGAATCGGAGGAATACCAGTTGAAGAACCTTATATTATTATT TCCTCACATGAATCGGCGGAATGCCCGTTGAGGACCCATACATCGTTATT TCCTGACATGAATCGGAGGGATACCAGTCGAAGGGCCCTATATTATTATC TCCTAACATGAATTGGAGGGATACCAGTTGAAGACCCTTATATTATCATC TCCTCACATGAATTGGCGGAATACCTGTTGAAGAGCCTTATATCATTATT TCCTCACATGAATCGGAGGAATACCAGTCGAAGAACCTTACATTATTATC TTTTAACATGAATTGGGGGAATGCCAGTTGAAGAACCTTATATCATTATC TCCTCACATGAATTGGAGGAATACCCGTTGAAGAGCCTTACATTATTATT TCCTTACGTGAATTGGAGGAATACCAGTCGAAGATCCGTACATCGTCATT TCCTCACATGAATCGGCGGAATGCCCGTTGAAGACCCGTACATCATTATT TCCTCACATGAATTGGTGGAATACCAGTTGAAGACCCGTACATCATTATC TTCTTACATGAATTGGTGGAATGCCCGTTGAAGACCCATACATCATTATT TCCTTACATGAATTGGTGGAATGCCCGTCGAAGACCCATACATTGTCATT TCCTCACATGAATTGGCGGAATGCCTGTCGAAGACCCTTATATTGTTATT TTCTCACATGAATCGGCGGAATACCCGTTGAAGACCCTTACATTGTTATT TTTTAACATGAATTGGTGGAATGCCAGTTGAGGAACCTTATATCATTATC TTCTTACATGAATCGGAGGCATACCAGTTGAAGACCCATACATTATCATT TCCTTACATGAATTGGAGGAATGCCCGTCGAAGAACCTTACATCATTATT TTTTAACTTGAATTGGAGGAATACCAGTTGAAGAACCCTACATCATCATT TTCTCACATGAATTGGAGGCATACCAGTTGAAGAGCCTTACATTATCATT TTCTCACATGAATTGGGGGAATACCAGTCGAAGAGCCCTATATTATTATT TTCTCACATGAATCGGAGGAATGCCAGTCGAAGAGCCTTACATCATTATT TCCTGACCTGAATCGGAGGAATACCAGTTGAAGACCCCTACATTATGATT TCCTAACATGAATTGGAGGGATGCCAGTTGAAGAACCATACATTATTATC TCCTCACATGAATTGGGGGCATACCCGTCGAAGACCCATATATTGTCATC TTCTCACCTGAATCGGAGGCATACCAGTTGAAGACCCCTACATTATGATT TCCTAACATGAATTGGAGGCATACCAGTAGAGCATCCCTTCATCATTATT TTCTGACATGAATTGGGGGTATACCTGTAGAACACCCATACATTATTATT TCCTAACCTGAATCGGCGGAATACCGGTTGAACACCCCTATATCATTGTT TTCTAACTTGAATTGGAGGCATGCCCGTTGAGCACCCTTTTATTATTATC TTCTCACTTGAATTGGGGGTATGCCAGTTGAACACCCCTTTATTATTATT TTCTCACTTGAATCGGAGGCATGCCTGTTGAACACCCATTCATTATTATT TTCTCACGTGAATCGGGGGCATACCAGTTGAGCACCCATTCATTATTATT TTCTCACCTGGATCGGAGGTATGCCAGTCGAACACCCATTTATTATCATC TTCTCACTTGAATTGGAGGAATGCCTGTTGAACACCCATTTATTATTATT TCCTCACTTGAATTGGAGGAATGCCTGTCGAACATCCTTTCATTATTATT TTCTTACTTGGATTGGCGGAATGCCTGTCGAACACCCCTTCATTATTATT TTCTCACTTGAATCGGAGGAATGCCTGTTGAACACCCCTTTATTATCATC TCCTCACATGAATTGGAGGCATGCCTGTCGAACACCCCTTCATTATTATT GTCTTACATGAATCGGTGGCATGCCTGTAGAACACCCCTACATCATCATC TCCTCACTTGAATTGGCGGAATACCCGTCGAGCATCCATTCATCATCATC TCCTTACCTGAATCGGCGGAATACCCGTCGAACATCCATTCATCATCATC TTCTCACGTGAATCGGGGGAATACCCGTCGAGCACCCCTTTATCATTATC TCCTTACATGGATTGGAGGAATGCCTGTTGAGCATCCATTCATTATTATC TTCTTACATGAATTGGAGGAATGCCAGTAGAAGACCCCTACATTATCATT TTCTTACATGGATCGGGGGAATGCCCGTAGAACATCCATACATTATTATT

[1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050] [1050]

70 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

GGTCAAATCGCCTCTCTCACCTACTTCTCCCTCTTCCTAGTTATTATCCC GGCCAAGTTGCCTCCCTAACCTACTTCTCCCTCTTCCTAATTATTATTCC GGTCAAATTGCATCCCTAACCTACTTCGCCCTCTTCTTACTTATCATACC GGCCAAATTGCATCTCTCACCTACTTCGCACTCTTCCTGTTTATCATTCC GGCCAAATTGCATCCCTAACCTACTTCTCGCTCTTCTTACTTATTATTCC GGCCAAATTGCATCCCTAACCTATTTTTCCATCTTCCTAATTATTATCCC GGTCAAATCGCATCACTAACCTATTTCTCCCTCTTCTTAATTATTATTCC GGCCAAATTGCTTCCCTCACCTATTTTGCTCTCTTCCTGCTAATTATACC GGTCAAATTGCATCCCTCACCTACTTTGCTCTCTTCCTATTTATCATCCC GGTCAAGTTGCATCCCTAACTTACTTCTCCCTCTTCCTAATTATTATCCC GGGCAAATTGCATCCCTCACCTACTTCGCTCTTTTCCTATTTATTAATAC GGCCAGATCGCTTCCCTCACTTACTTTGCGCTTTTCCTGTTTATCTTCCC GGCCAGATCGCATCCCTTACGTACTTCGCCCTTTTCCTAATTATTATTCC GGCCAAATCGCATCCCTCACCAACATCTCCCTCTTCCTAGTTGTTAACCC GGCCAAATCGCATCCCTCACCTACTTCTCCCTCTTCCTAGTTGTTATCCC GGCCAAATTGCATCCCTCACCTACTTCTCCCTTTTCCTAGTCATTATCCC GGCCAAATCGCATCCCTCACCTACTTCTCCCTCTTCCTAGTTGTTATCCC GGTCAAATTGCATCCCTTACTTACTTTGCTCTTTTCTTGCTTATCATCCC GGCCAAATTGCATCCCTAACCTACTTTTCCCTCTTCCTAGTCATTATCCC GGCCAGATTGCTTCCCTGACCTACTTCTCCCTCTTCCTAATTATTATCCC GGTCAAATTGCATCCCTAACCTATTTCTCCCTCTTCCTTGTAGTCATACC GGCCAAATCGCATCCCTCACCTATTTCTCCCTCTTCCTAGTAATCATCCC GGCCAAATTGCGTCTTTAACCTACTTTTCCCTCTTTCTAATCATTATCCC GGCCAAGTCGCATCCCTAACCTACTTTTCCCTCTTTTTAGTTATTATCCC GGTCAAATCGCATCCCTTACATACTTTGCTCTCTTCCTGCTTATTATCCC GGTCAAATTGCATCCCTGACTTATTTTGCCCTTTTCCTACTTATCATACC GGCCAGATTGCCTCCCTTACCTACTTTGCTCTCTTTCTGTTCATCATCCC GGCCAAATCGCATCCCTTACCTACTTCGCCCTTTTCCTGCTTATTATTCC GGCCAAATTGCATCCCTCACCTACTTCGCCCTTTTCCTCTTTATTATTCC GGTCAAGTTGCATCCCTCACCTACTTCGCTCTTTTCCTGTTTATTATTCC GGCCAAATTGCATCTCTTACCTACTTCGCCCTATTCCTATTCATTATCCC GGTCAAATTGCGTCCTTAACTTACTTCTCCCTCTTTCTAATCATTATCCC GGACAAATTGCATCTCTTACCTACTTCGCTCTTTTCCTATTTATTATACC GGCCAAGTGGCATCCCTATCTTACTTCTCCCTCTTCCTAATTATCATGCC GGCCAAGTCGCATCCCTAACCTACTTTTCACTATTCCTAGTTATTATTCC GGCCAAATCGCATCTCTTACCTATTTCTCCCTCTTCCTAGTTATCATCCC GGCCAGGTTGCATCTCTAACGTACTTCTCCCTCTTCCTCATTATCATACC GGCCAAGTTGCATCACTAACCTACTTCTCTCTTTTCCTAGTCATTATTCC GGCCAAATTGCATCCGTGACGTACTTATCCCTCTTCCTAATTATTATCCC GGCCAAATCGCATCCTTAACCTACTTCGCCCTCTTCCTAATTATTATCCC GGACAAGTCGCATCCCTAACTTATTTCGCTCTCTTCTTACTCATTATCCC GGTCAAGTCGCATCCCTAACCTACTTCTCCTTATTTCTCATTATCATCCC GGACAAATTGCATCCGTCCTATACTTCGCACTATTCCTCATTTTTATGCC GGCCAAGTCGCCTCAGTTCTGTACTTTGCATTATTCCTCCTCCTTGCCCC GGACAAATCGCATCCCTCCTCTACTTCCTACTATTCTTAGTGCTCATACC GGCCAAGTTGCTTCCTTACTGTATTTCCTCTTGTTCCTTGTCTTCATCCC GGCCAAGTTGCCTCCTTATTGTATTTCCTCTTATTCCTGGTCCTCATCCC GGACAAATCGCTTCTCTACTCTACTTCCTTATTTTTTTAGTACTATTCCC GGACAAATCGCTTCTCTACTCTACTTCCTTATTTTTCTAGTCCTCTTTCC GGACAATTAGCTTTTTTGTTTTATTTCTTTATCTTCTTAGTGTTATTCCC GGCCAAATCGCCTCGCTCTTATATTTTCTTCTTTTCCTCGTGCTCATACC GGCCAAATCGCCTCTCTCCTGTACTTTCTTCTCTTTCTTGTTTTTATACC GGCCAAATCGCCTCCCTCTTATATTTTCTTCTTTTTCTTGTATTTATACC GGCCAAGTCGCCTCACTCTTATACTTCCTTCTCTTCCTTGTTTTCATACC GGACAAGTCGCCTCCTTCCTGTACTTCTTCCTATTCCTAGTCTTCACGCC GGCCAAATTGCCTCTTTTCTGTACTTCTCCCTATTTTTAGTCCTGTTCCC GGACAAATCGCCTCCGTCCTGTACTTCTTGTTATTCCTAGTCCTCACCCC GGACAAATCGCCTCCGTTCTATACTTCCTACTATTCCTAGTGTTCGCCCC GGCCAAATCGCCTCCCTGCTCTACTTCTCCCTCTTCCTAATCATCACCCC GGCCAGATTGCCTCACTGCTTTACTTTTCACTCTTCCTAATCATCACACC GGCCAAGTCGCATCTGTCCTCTATTTCTCCATTTTCTTGGTCTTCATGCC GGCCAAATCGCATCAGTACTTTATTTCTCTATCTTCCTCCTCCTAATACC

[1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100] [1100]

71 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Porcostoma dentata Pterogymnus laniarius Polyamblyodon germanum Polysteganus praeorbitalis Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

TGCAGCGGCAACAGTGGAAAACAAGGTACTAGGCTGACAA TACAGTAGCCATAGTAGAAAACAAAGTATTAGGTTGACAA TGCGACAGCATTAGTAGAAAATAAAGTCTTAGGCTGACAA TGTAGCAGCACTCGTAGAAAACAAAGTGCTGGGCTGTAAC TATAGCAGCAACTTTAGAAAACAAAGTACTAGGCTGACAA CGCAACAGCAATTTTAGAGAACAAAGTACTAAACTGGTAA TGTAACAGCCACAGTGGAAAATAAGGTGCTAGGCTGACAA TGTTGCCGCATTAGCAGAAAACAAGGTATTAGGCTGACAA TGCAGCAGCATTAGCAGAGAACAAAGTACTAGGCTGACAA TACAGCAGCAGCTGTAGAGAACAAAGTCCTAGGCTGACAA TGCAGCAGCACTAGTAGAAAACAAAATGCTAGGCTGACAA TGTCACAGCATTAGTAGAAAACAAAGTATTAGGCTGACAA CACAACAGCGTTAGCAGAAAATAAAATATTAAGTTTACAA AGCCGCAGCAGTTTTAGAAAACAAGGTGTTAGGCTGACAA TGCCGCAGCAGTTTTAGAAAACAAAGTGTTAGGCTGACAA TGCTGCAGCAACTATAGAAAACAAGGTATTAGGCTGACAG TGCCGCAGCAGTTTTAGAAAACAAAGTGTTAGGCTGACAA CGCAACAGCATTAGTAGAGAACAAAGTACTTGGCTGACAA CGCAGCAGCAACTATGGAAAACAAAGTGCTAGGCTGGCAA CATAGCAGCCACGGTGGAAAATAAAATACTAAGCTGACAA CGCGGCTGCAGCCATTGAAAACAAAGTACTAGGCTGACAG TGCCGCAGCAGTGATAGAAAACAAAGTATTAGGCTGACAA CGCAACAGCGACCATTGAAAATAAAATGCTAGGCTGACAG CGCAGCAGCAACGATGGAAAATAAAGTGTTAGGCTGACAG CGCCACAGCACTAGCAGAAAACAAAGTGTTAGGCTGACAA CACAGCAGCATTAGTAGAAAACAAAGTGCTAGGTTGACAA TGTCACAGCAATAGCAGAGAACAAAGTACTAGGCTGACGA TGCCACAGCATTAGTAGAAAATAAAGTGTTAGGCTGACAA TACAGCAGCACTGGCAGAAAACAAAATGCTAGGCTTACAA TGCAGCAGCACTAGCAGAAAATAAAGTGCTAGGCTGACAA CGCAGCAGCACTAGCAGAAAACAAAGTGCTAGGCTGACAA TGCAACAGCAACCATTGAAAATAAAATGCTAGGCTGACAA TGCAGCAGCACTAGTAGAAAACAAAGTCCTAGGCTGACAA AGCCGCAGCAACTTTAGAAAATAAAGTCCTAGGCTGACGG TGCAGCAGCAACTTTAGAAAATAAAGTATTAGGCTGACAA TACAGCAGCAACTATAGAGAACAAAGTGTTAGGCTGACAA AGCTGCAGCAACCCTGGAAAATAAGGCCCTAGGCTGGCAG CGCCGCAGCCACTATGGAAAACAAAGTCTTAGGCTGACAA CACAGCAGCAACCTTAGAAAATAAAGTTTTAGGCTGGCAA CGCGACAGCCACAGTAGAAAACAAAGTGTTAGGCTGATAA CACAGCAGCGTTAGCAGAAAACAAAGTTTTAGGCTGGAAA TACAGCAGCAACTTTAGAAAATAAAGTCTTAGGCTGACGA ACTAGCAGGATGGTTAGAAAATAAAGCACTAAAATGAGCT ACTTGCAGGATGAGCAGAGAACAAGGCATTGAAATGAGCT ACTGGCAGGCTGATGGGAAAATAAACTCTTAAACTGGCAA CGTTGTTGGAGAATTAGAGAACAAAGCTTTAGAGTGGCTT TGTTGTCGGGGAGCTAGAAAACAAAGCTTTAGAGTGACTT GCTAGCGGGCTGACTAGAAAATAAAGCTCTCGGATGAACT CGTGGCGGGCTGATTAGAAAATAAGGCTCTCGGATGAACT TCTAGCAGGCTGATTAGAAAATAAAGCTCTTGGATGAACT CATGGCCGGCGAATTAGAAAACAAAGCTCTAGGGTGACTT CATTGCAGGGGAACTAGAGAATAAAGCCCTAGAATGACTT TATTGCCGGCGAATTAGAAAACAAGGCCCTAGGATGATCC CATTGTAGGCGAACTAGAAAATAAGGCTCTAGAATGACTT ACTAGCAAGCTGGCTTGAGAACAAAGCACTCGGATGAGCC GCTAGCAGGCTGACTCGAGAACAAAGTAATAGGCTGGTCC CTTAGCAGGATGACTAGAAAACAAAGCCCTCGGATGAGTC ACTAGCAGGATGACTAGAAAACAAAGCCCTTGGATGGCTT GGCTGCAGGCTGATTCGAAAACAAGTCACTAGGATGACGA CGCCGCAGGCTGATTTGAAAACAAGTCACTAGGATGGCGA TCTCGTAGGAGCAGTAGAAAATAAAGTTATAGGCTGAACA CTTGCAGGATGAGCAGGGAATAAAATCCTTCGCTGAGCAT

[1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140] [1140]

72

TABLE 5. CYTOCHROME B NUCLEOTIDE SEQUENCE CHARACTERISTICS Total Characters=1140

1st Codon

2nd Codon

3rd Codon

Totals

Characters

380

380

380

1140

Constant Characters

203

276

2

483 (42%)

Uninformative Characters

49

66

2

115 (10%)

Informative Characters

128

38

376

542 (48%)

% of Informative - Ts

66%

59%

68%

% of Informative - Tv

34%

41%

32%

73

TABLE 6. PAIRWISE VALUES OF MEAN % SEQUENCE DIVERGENCE DERIVED FROM UNCORRECTED “P” GENETIC DISTANCE FOR ALL TAXA, INGROUP TAXA AND OUTGROUP TAXA Groups All Ingroup Taxa Outgroup Taxa Sparidae -vs- All Lutjanidae -vs- All Haemulidae -vs- All Nemipteridae -vs- All Lethrinidae -vs- All Centracanthidae -vs- Lutjanidae Centracanthidae -vs- Haemulidae Centracanthidae -vs- Nemipteridae Centracanthidae -vs- Lethrinidae Haemulidae -vs- Lutjanidae Haemulidae -vs- Nemipteridae Haemulidae -vs- Lethrinidae Lethrinidae -vs- Lutjanidae Lethrinidae -vs- Nemipteridae Lutjanidae -vs- Nemipteridae Sparidae -vs- Centracanthidae Sparidae -vs- Haemulidae Sparidae -vs- Lethrinidae Sparidae -vs- Lutjanidae Sparidae -vs- Nemipteridae Lutjanidae Haemulidae Lethrinidae Nemipteridae Sparidae

Uncorrected %Divergence Number of Standard Distance Comparisons Deviation 0.2022 20.22 N=1891 0.1627 16.27 N=861 0.2273 22.73 N=190 0.2306 23.06 N=880 0.2120 21.20 N=121 0.2249 22.49 N=121 0.2366 23.66 N=121 0.2252 22.52 N=121 0.1993 19.93 N=4 0.2213 22.13 N=4 0.2287 22.87 N=4 0.2239 22.39 N=4 0.2002 20.02 N=4 0.2377 23.77 N=4 0.2248 22.48 N=4 0.1982 19.82 N=4 0.2327 23.27 N=4 0.2296 22.96 N=4 0.1646 16.46 N=84 0.2238 22.38 N=84 0.2244 22.44 N=84 0.2098 20.98 N=84 0.2338 23.38 N=84 0.1228 12.28 N=1 0.1833 18.33 N=1 0.1702 17.02 N=1 0.2281 22.81 N=1 0.1627 16.27 N=861

0.0419 0.0209 0.0187 0.0274 0.0169 0.0153 0.0117 0.0118 0.0120 0.0099 0.0144 0.0072 0.0141 0.0082 0.0161 0.0063 0.0113 0.0061 0.0158 0.0122 0.0076 0.0111 0.0097 N/A N/A N/A N/A 0.0209

74 TABLE 7. PAIRWISE VALUES OF MEAN % SEQUENCE DIVERGENCE DERIVED FROM UNCORRECTED “P” GENETIC DISTANCE WITHIN AND BETWEEN SUBFAMILIES Boopsinae

Denticinae

Diplodinae Pagellinae

Pagrinae

Sparinae

Boopsinae Mean % Divergence 14.95 Standard Deviation

2.194

Pairwise

28

Denticinae Mean % Divergence 17.66

14.22

Standard Deviation

2.187

2.115

Pairwise

48

15

Diplodinae Mean % Divergence 14.83

16.94

11.14

Standard Deviation

2.987

3.653

2.588

Pairwise

48

36

15

Mean % Divergence 14.83

14.23

15.14

16.02

Standard Deviation

1.920

2.099

3.764

0.387

Pairwise

32

24

24

6

Mean % Divergence 17.32

14.65

17.31

16.62

13.61

Standard Deviation

2.110

1.647

3.972

2.045

1.280

Pairwise

40

30

30

20

10

Mean % Divergence 16.62

16.49

16.28

16.77

16.96

16.58

Standard Deviation

1.951

2.612

3.026

2.0216

2.397

2.353

Pairwise

88

66

66

44

55

55

Pagellinae

Pagrinae

Sparinae

75 TABLE 8. FOLLOWING (IRWIN ET AL., 1991) BASE COMPOSITIONAL BIAS, THE UNEQUAL PROPORTIONS OF THE FOUR BASES (A, C, G, AND T), WAS CALCULATED ACROSS ALL, INGROUP, AND OUTGROUP TAXA ALL Codons

First Codon

Second Codon

Third Codon

Taxon

A

C

G

T

A1

C1

G1

T1

A2

C2

G2

T2

A3

C3

G3

T3

Acantho berd

25.0

29.5

14.9

30.6

23.9

27.4

26.3

22.4

20.0

25.5

13.9

40.5

31.1

35.5

4.5

28.9

Archosarg pro

25.9

31.4

14.7

28.0

23.9

26.3

26.3

23.4

20.0

25.3

13.9

40.8

33.7

42.6

3.9

19.7

Argyrops spin

24.5

30.0

15.1

30.4

23.7

27.1

26.3

22.9

20.0

25.0

13.9

41.1

29.7

37.9

5.0

27.4

Argyroz argy

23.4

30.3

15.5

30.8

23.2

27.4

26.3

23.2

20.0

25.0

13.9

41.1

26.9

38.5

6.3

28.2

Boops boops

24.5

31.4

15.5

28.6

23.7

27.1

26.3

22.9

20.0

25.3

14.2

40.5

29.7

41.8

6.1

22.4

Boopsoid ino

26.1

29.2

14.6

30.0

25.5

25.5

25.5

23.4

20.3

25.5

13.7

40.5

32.6

36.6

4.7

26.1

Calamus nod

25.1

28.6

15.6

30.7

25.0

26.8

25.0

23.2

20.3

25.0

13.7

41.1

30.0

33.9

8.2

27.9

Cheimer nuf

24.1

30.4

15.7

29.7

23.4

27.4

27.4

21.8

20.0

25.3

14.2

40.5

28.9

38.7

5.5

26.8

Chrysobl cris

24.5

30.5

15.2

29.8

23.7

26.3

27.1

22.9

20.0

25.8

13.9

40.3

29.7

39.5

4.5

26.3

Crenid crenid

24.6

31.4

15.9

28.2

23.4

26.6

27.4

22.6

20.0

25.5

14.7

39.7

30.3

42.1

5.5

22.1

Cymatoc nas

24.9

30.3

14.7

30.1

24.7

27.4

25.3

22.6

20.0

25.8

14.2

40.0

30.0

37.6

4.7

27.6

Dentex dent

24.4

29.9

15.4

30.3

23.9

26.8

26.6

22.6

20.0

25.0

14.2

40.8

29.2

37.9

5.5

27.4

Dentex tumif

24.3

31.1

15.3

29.3

25.0

25.8

25.3

23.9

20.3

25.3

13.7

40.8

27.6

42.4

6.8

23.2

Diplodus arg

25.5

31.7

15.9

26.9

24.5

27.1

27.4

21.1

20.5

26.1

14.7

38.7

31.6

41.8

5.5

21.1

Diplodus berm

24.6

31.0

15.6

28.8

22.9

27.4

27.6

22.1

20.0

25.3

14.2

40.5

31.1

40.3

5.0

23.7

Diplodus cerv

25.0

30.3

15.5

29.2

24.5

26.6

26.3

22.6

20.0

25.5

14.2

40.3

30.5

38.7

6.1

24.7

Diplodus holb

24.6

31.1

15.7

28.6

22.9

27.1

27.6

22.4

19.7

25.3

14.5

40.5

31.1

41.1

5.0

22.9

Evynnis japo

24.3

28.9

15.9

30.9

23.4

26.3

27.1

23.2

20.0

25.0

13.9

41.1

29.5

35.5

6.6

28.4

Gymno curvid

24.6

28.7

16.4

30.3

23.4

26.1

27.4

23.2

19.7

25.8

14.7

39.7

30.8

34.2

7.1

27.9

Lagod rhomb

26.1

31.8

14.5

27.6

25.5

27.1

24.7

22.6

20.0

25.5

13.9

40.5

32.9

42.6

4.7

19.7

Lithogna mor

23.4

30.5

16.5

29.6

23.4

27.1

27.4

22.1

20.0

25.0

14.2

40.8

26.8

39.5

7.9

25.8

Oblada melan

24.7

30.8

15.7

28.8

23.7

26.3

27.1

22.9

20.0

25.3

14.2

40.5

30.5

40.8

5.8

22.9

Pachy aenum

24.9

29.0

15.6

30.4

25.0

25.5

26.1

23.4

20.0

25.8

14.2

40.0

29.7

35.8

6.6

27.9

Pagellus acar

24.6

29.7

15.5

30.1

23.4

25.8

27.4

23.4

20.0

25.5

14.2

40.3

30.5

37.9

5.0

26.6

Pagellus bell

25.1

30.6

15.3

29.0

23.7

26.8

26.8

22.6

20.0

25.8

13.9

40.3

31.6

39.2

5.0

24.2

Pagrus aurat

24.4

30.3

15.6

29.7

24.2

26.8

26.3

22.6

20.0

25.8

13.7

40.5

28.9

38.2

6.8

26.1

Pagrus auriga

24.9

28.9

15.5

30.7

24.2

25.3

26.8

23.7

19.7

25.5

14.2

40.5

30.8

35.8

5.5

27.9

Pagrus pagru

24.7

29.7

15.5

30.0

23.9

27.4

26.6

22.1

20.0

25.5

13.9

40.5

30.3

36.3

6.1

27.4

Petrus rupest

23.9

31.0

16.2

28.9

24.5

26.3

26.6

22.6

20.0

25.8

13.7

40.5

27.4

40.8

8.4

23.4

Polyam germ

24.5

30.0

15.4

30.1

24.7

26.1

26.1

23.2

19.5

26.1

14.5

40.0

29.2

37.9

5.8

27.1

Polysteg pra

25.3

31.2

15.6

27.9

23.7

27.9

26.6

21.8

20.0

25.5

13.9

40.5

32.1

40.3

6.3

21.3

Porcost denta

23.7

30.6

16.1

29.6

23.4

27.1

27.1

22.4

20.0

25.8

13.9

40.3

27.6

38.9

7.4

26.1

Pterogy laniri

24.1

31.9

15.7

28.2

23.4

26.6

27.1

22.9

20.0

25.8

13.9

40.3

28.9

43.4

6.1

21.6

Rhabdo thorp

23.9

30.4

15.7

30.0

23.7

25.5

26.1

24.7

19.7

25.8

14.5

40.0

28.2

40.0

6.6

25.3

Sarpa salpa

25.0

30.4

15.7

28.9

23.4

26.8

26.8

22.9

20.0

25.5

14.2

40.3

31.6

38.9

6.1

23.4

Spariden hast

24.2

30.5

15.4

29.8

24.2

25.5

26.6

23.7

20.0

25.8

13.9

40.3

28.4

40.3

5.8

25.5

Sparod durb

22.5

31.1

17.8

28.6

23.4

26.8

27.1

22.6

19.7

26.1

14.7

39.5

24.2

40.5

11.6

23.7

Sparus auratus

24.0

30.0

15.8

30.2

23.7

26.3

27.1

22.9

20.3

25.8

13.9

40.0

28.2

37.9

6.3

27.6

76 Spondyl can

24.4

29.4

15.8

30.4

24.5

25.8

25.3

24.5

20.0

25.5

14.2

40.3

28.7

36.8

7.9

26.6

Stenotom chr

25.4

30.3

15.4

28.9

24.5

26.1

26.3

23.2

20.3

25.8

13.9

40.0

31.6

38.9

6.1

23.4

Spicara alta

24.2

32.0

16.0

27.8

23.4

26.6

27.1

22.9

20.0

25.8

13.9

40.3

29.2

43.7

6.8

20.3

Spicara smar

24.5

29.7

15.4

30.4

24.2

25.8

26.1

23.9

19.7

26.3

13.7

40.3

29.5

37.1

6.3

27.1

Cyprinus carp

29.7

30.0

14.1

26.1

25.3

26.6

25.3

22.9

20.0

25.0

13.2

41.8

43.9

38.4

3.9

13.7

Luxilus zonat

24.1

29.0

18.0

28.9

23.7

24.2

26.3

25.8

19.7

26.1

13.7

40.5

28.9

36.8

13.9

20.3

Centropo und

25.8

34.9

14.2

24.7

22.6

29.7

25.3

22.1

21.1

22.9

13.4

42.4

33.7

52.1

3.9

9.7

Dicentra labr

24.8

26.0

16.4

32.8

23.2

24.5

26.3

26.1

20.5

23.9

13.7

41.8

30.8

29.5

9.2

30.5

Dicentra pun

24.3

27.8

16.6

31.3

22.6

25.5

26.3

25.5

20.3

23.7

13.9

42.1

30.0

34.2

9.5

26.3

Lateolab jap1

23.5

32.3

16.1

28.1

23.7

27.6

26.1

22.6

19.7

25.3

13.9

41.1

27.1

43.9

8.4

20.5

Lateolab jap2

23.0

31.7

16.7

28.7

24.2

26.8

25.8

23.2

19.7

25.3

13.9

41.1

25.0

42.9

10.3

21.8

Lateolab latus

22.3

31.0

17.7

29.0

22.9

25.0

26.6

25.5

19.7

25.3

13.7

41.3

24.2

42.6

12.9

20.3

Morone ameri

24.0

30.2

15.6

30.2

23.2

27.1

25.3

24.5

20.3

25.5

13.4

40.8

28.7

37.9

8.2

25.3

Morone chrys

24.1

29.6

16.1

30.2

22.4

25.3

27.1

25.3

20.8

25.3

12.9

41.1

29.2

38.2

8.4

24.2

Morone missi

24.2

29.6

14.9

31.3

24.2

25.8

23.9

26.1

20.3

25.3

13.4

41.1

28.2

37.6

7.4

26.8

Morone saxa

24.9

28.3

15.4

31.4

22.4

25.3

26.6

25.8

20.3

25.0

13.2

41.6

32.1

34.7

6.3

26.8

Haemul sciur

23.3

34.5

16.0

26.2

23.2

28.2

26.3

22.4

20.0

25.5

13.9

40.5

26.8

49.7

7.6

15.8

Pomad macu

24.5

31.3

15.4

28.9

22.6

27.6

26.3

23.4

20.0

24.7

14.5

40.8

30.8

41.6

5.3

22.4

Caesio cunin

23.8

34.4

16.5

25.4

22.4

28.2

27.6

21.8

19.7

24.2

14.5

41.6

29.2

50.8

7.4

12.6

Lutjanus decu

25.1

34.2

14.9

25.8

23.2

28.4

26.6

21.8

19.7

24.7

13.7

41.8

32.4

49.5

4.5

13.7

Lethrinus orna

23.9

33.6

16.1

26.4

23.4

27.4

25.8

23.4

20.0

27.1

14.2

38.7

28.4

46.3

8.2

17.1

Lethrinus rubr

23.2

31.1

16.0

29.8

23.4

26.1

25.8

24.7

19.7

26.3

13.9

40.0

26.3

40.8

8.2

24.7

Scolops ciliat

24.0

30.6

15.1

30.3

24.2

29.2

24.7

21.8

21.1

25.5

13.2

40.3

26.8

37.1

7.4

28.7

Nemipt margi

24.1

30.2

16.6

29.1

23.7

25.0

26.3

25.0

18.9

25.5

13.9

41.6

29.7

40.0

9.5

20.8

MEAN

24.5

30.6

15.7

29.2

23.8

26.6

26.4

23.3

20.0

25.4

14.0

40.6

29.7

39.7

6.7

23.8

SD

1.02

1.56

0.74

1.56

0.75

1.05

0.80

1.17

0.32

0.62

0.39

0.69

2.75

4.07

2.03

4.32

ALL BIAS

0.133

0.042

0.215

0.274

IN BIAS

0.132

0.042

0.212

0.267

OUT BIAS

0.134

0.041

0.220

0.288

All Codons

First Codon

Second Codon

Third Codon

77 TABLE 9. MULTIPLE ALIGNMENT OF AMINO ACID RESIDUES TRANSLATED FROM THE NUCLEOTIDE SEQUENCES OF THE CYTOCHROME B GENE FROM THE SPARIDAE AND OUTGROUP SPECIES. TAXONOMIC NAMES WITH A SUFFIX OF “GB” ARE FROM GENBANK AND ARE INCLUDED WITH ORIGINAL SEQUENCES FOR EASY COMPARISON.

78 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIVNHAVVDLPAP1NI1VWWNFG1LL2LCLI1QLLTGLF MTNLRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLV1QLLTGLF MT2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF MA2LRKTQPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLRLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCWI1QLLTGLF MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWDFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHAVVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGRF MA2LRKTHPLLKIANHAVIDLHAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHALVDLPAPANI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MT2LRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QLLTGLF MA2LRKTHPLIKIANDALVDLPTP1NI1AWWNFG1LLGLCLITQILTGLF MA2LRKTHPLMKIANGALVDLPTP1NI1ALWNFG1LLGLCLITQILTGLF MA2LRKTHPLLKIANDALIDLPAP1NI1AWWNFG1LLGLCLIAQILTGLF MAALRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF M2ALRKTHPLLKIANHALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF MA2LRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLITQILTGLF MA2LRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLITQILTGLF MA2LRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLFTQIITGLF MA1LRK1HPLLKIANNALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF MAALRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF MA1LRK1HPLLKIANNALIDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF MAALRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLI1QILTGLF MANPRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLI1QIVTGLF MANLRKTHPLLKIANDALIDLPAP1NI1VWWNFG1LLGLCLI1QIVTGLF MA2LRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLIAQLLTGLF MA2LRKTHPLLKIANDALVDLPAP1NI1VWWNFG1LLGLCLIAQILTGLF MACLRKTHPLLKIANDAVLDLPAP1NI1VWWNFG1LLGLCLIAQILTGLF MA2LRKTHPLLKIANDAVVDLPAP1NI1VWWNFG1LLGLCLIAQILTGLF MA2LRKTPPLLMIANNALIDLRAP1NI1AWWNFG1LLGLCLAAQILTGLF MA2LRKTHPLLKIANDALVDLPAPANI1AWWNFG1LLGLCLIAQLLTGLF

[50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50] [50]

79 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYEWLIRNLHANGA1FFFICIYFHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYTPDIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNDGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DINTAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF1PVAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1GIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIAMAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYVHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGG LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIFLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DI1TAF11VTHICRDVNYGWLIRNVHANGA1FFFICIYMHIAR LAMHYT1DI1TAF11VTHICRDVNYGWLIRNMHANGA1FFFICIYMHIAR LAMHYT1DINMAFT1VAHICRDVNYGWLIRNLHANGA1FFFICMYLHIGR LAMHYT1DIATAF11IAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11IAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DVATAF11VAHICRDVNYGWLIRNVHANGT1FFFICIYMHIGR LAMHYT1DVATAF11VAHICRDVNYGWLIRNIHANGT1FFFICIYMHIGR LAMHYT1DVATAF11VAHICRDVNYGWLIRNVHANGA1FFFICIYMHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLH1NGA1LFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLICNLHANGA1LFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLH1NGA1LFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNFGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DI2MAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DITMAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR LAMHYT1DIATAF11VAHICRDVNYGWLIRNLHANGA1FFFICIYLHIGR

[100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100]

80 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGGTVITNLL GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLRLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKWTWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQMFFWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMGTAFVGYVLPWGQM1FWGATVITKLL GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKDTWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1LWGATVITNLV GLYYG1YLYKETWDIGVILLLLVMGTAFVGYVLPWGQM1FWGATVIT2LL GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMG1AFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YPYKVTWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKDTWNIGVVLLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMGTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNVGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMMTA1VGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGGTVITNLL GLYYG1YLYKETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGGTVITNLL GLYYG1YLYKETWNVGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMATAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMMTAFVGDVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVVLLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYMETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGATVITNLL GLYYG1YLYKETWNIGVILLLLVMMTAFVGYVLPWGQM1FWGATVITNLL

[150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150] [150]

81 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

1AVPYIRGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAVTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFL 1AVPYIGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFL 1AVPYVG2TLVQWIWGGF1VDNATLTRFFAFHFLFPFVVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAVTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTFVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLCL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFTFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAVTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPLVVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIIAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLFLFIVAAMIMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTLLHLLFL 1AVPYIGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAVTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVG2TLVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFP 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYIGGTLVQWFWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL TAVPYVGGTLVQWIWGGL1VDNATLTRFFAFHFLLPFVVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFVIAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYVGGTLVQWIWGGF1VDNATLTRFFAFHFLLPFIVAAMTMLHLLFL 1AVPYMGDMLVQWIWGGF1VDNATLTRFFAFHFLLPFVIAAATIIHLLFL 1AVPYMGDTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAGATVLHLLFL 1AVPYVGDILVQWIWGGF1VDNATLTRFFAFHFLLPFVVAAMMILHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAGATMLHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAGATLLHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFIIAGATVIHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAGATLIHLIFL 1AVPYIGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAGATFIHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFIIAAATLLHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAAATVLHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFIIAAAAILHLLFL 1ALPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAAATILHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLLPFIIAAATVIHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLLPLIVTAATLIHLLFL CAIPYVGNTLVQWVWGGF1VDNATLTRFFAFHFLLPFIIAAVTMLHLLFL 1AIPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLLPFIIAAVTMLHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFYALHFL1PFVIAAATTPHLRFL 1AVPYVGNTLVQWIWGGF1VDHATLTRFFAFHFLFPFVIAAATMLHLLFL 1AVPYVGNTLVQWIWGGF1VDNATLTRFFAFHFLFPFVIAAMTLLHLLFL 1AVPYVGNMLVQWIWGGF1VDHATLTRFLTFHFLFPFVIAAATLLHLLFL

[200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200] [200]

82 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAP2LL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DADKI1FHPYF1YKDLLGFAGVLILLTCLALF1PNLL HETG1NNPIGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAAVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALF1PNLL HETG1NNPLGLN1DTDKIAFHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLGLFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1YNPLGVN1DTDKI1FHPYL1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDVLGFAGVIILLTCLAL1APNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAAVIILLTCLALFTPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVVILLTCLALFAPNIL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DADKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HDTG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DADKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIMLLTCLALFAPNLL HETG1NNPLGLN1DTDKM1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIILLTCLAWFAPNLL HETG1NNPLGLN1DTDKI1FHPY11YKDLLGFAAVIILLTCLALFAPNLL HETG1NNPLGLN1NTDKI1FHPYF1YKDLLGFAGLLILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVNILLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAGVIMLLTCLALFAPNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLLGFAAVIILLT1LALFAPNLL HETG1NNPIGLN1DADKV1FHPYF1YKDLLGFVIMLLALTLLALF1PNLL HETG1NNPAGLN1DADKI1FHPYF1YKDLLGFVLLLLALT1LTFF1PTLL HETG1NNPMGLN1NVDKIPFHPYF1YKDLLGFVVLLFTLT1LALFLPNLL HQTG1NNPLGLN1DVDKI1FHPYF1YKDLLGFAIVLIGLT2LALF1PNLL HQTG1NNPLGLN1DVDKI1FHPYF1YKDLLGFAIVLIGLA2LALF1PNLL HETG1NNPLGLN1DADKIPFHPYF1YKDLLGFAVLLTALA1LALF1PNLL HETG1NNPLGLN1EADKIPFHPYF1YKDLLGFAVLLTALA1LALF1PNLL HETG1NNPLGLN1DADKIPFHPYF1YKDLLGFAVLLTALAALALF1PNLL HETG1NNPLGLN1DVDKIPFHPYF1YKDLLGATAVLIGLT1LALF1PNLL HETG1NNPLGLN1DVDKIPFHPYF1YKDILGFAAVLVGLT1LALF1PNIL HETG1NNPLGLN1DMDKIPFHPYF1YKDLLGFTAVLI2LT1LALF1PNLL HETG1NNPLGLN1DVDKIPFHPYF1YKDLLGFAAVLIGLT1LALF1PNLL HQTG1NNPLGLN1DADKIWFHPYF1YKDLLGFAVLLIALTCLALF1PNLL HETG1NNPLGLN1DADKI1FHPYL1YKEVLGFVVLLIALACLALL1LNLL HETG1NNPLGLN1DADKM1FHPYF1YKDLLGFVVVLIALVCLALFAPNLL HETG1NNPLGLN1DVDKI1FHPYF1YKDLLGFVVVLIALT1LALF1PNLL HETG1NNPLGLN1D1DKI1FHPYF1YKDLLGFAAVLIALT1LALF1PNLL HETG1NNPLGLN1D1DKI1FHPYF1YKDLLGFAAVLIALT1LALF1PNLL HETG1NNPLGL11DTDKI1FHPYF1YKDLLGFAAVIIFLTCLALF1PNLL HETG1NNPLGLN1DTDKI1FHPYF1YKDLIGFAAILITLTCLALF1PNLL

[250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250] [250]

83 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLAVLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFGYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILI GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWN1LFAYAILR1IPNKLGGVLALLA1MLV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPDKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPENFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPENFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLF1ILV GDPENFTPANPLVTPPHIQPEWYFLFAYAIIR1IPNKLGGVLALLF2ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALL11ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLF1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLF1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLF1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYANLR1IPNKLGGVLALLA1ILV EHQDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLDLLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYVLFAYAILR1MPNKLGGVLALLA12LV GDPDNFTPANPLVTPPHVKPEWYFLFAYATLR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV GDPDNFTPANPLVTPPHIKPEWYFLFAYAILR1IPNKLGGVLALLA1ILV

[300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300] [300]

84 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

LMVVPMLHT1KQR2LTFRPFTQFLFWALIANVVILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPLTQFLFWALIANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPITQFLFWALIANVAILTWIGFLLVEDPYIII LMLVPFLHT1KQR2LTFRPI1QFLFWMLIANVAILTWIGGMPVEDPYIII LMVVPLLHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPATQFLFWTLIANVAILTWIGGMPVEEPYIII LMIVPILHT1KQR2LTFRPLTQFLFWALIANVVVLTWIGGMPVEDPYIII LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEDPYIII LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEDPYIII LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII LMLVPLLHT1KQR2LTFRPVTQFLFWTLTANVAVLTWIGGMPVEDPYIII LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEDPYIII LMVVPILHT1KQR2LTFRPLTQFLFWLLIANVAILTWIGGMPVEDPYIII LMVVP2PHTPKQR2LT2RPVTQILFWALIANVAILTWIGGMPAEEPYKII LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPVTQFLFWTLIANVAILTWIGGMPVEDPYIII LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEDPYIVI LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEGPYIII LMIVPILHT1KQR2LTFRPLTQFLFWTLIANVAILTWIGGMPVEDPYIII LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPITQFLFWALTANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEDPYIVI LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEDPYIII LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEDPYIII LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEDPYIII LMAVPILHM1KQR2LTFRPITQFLFWTLIANVAILTWIGGMPVEDPYIVI LMVVPTLHT1KQR2LTFRPITQFLFWALIANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEDPYIII LMVVPILHT1KQR2LTFRPMTQFLFWALMANVAILTWIGGMPVEDPYIVI LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEDPYIVI LMIVPILHT1KQR2LTFRPATQFLFWTLIANVAILTWIGGMPVEEPYIII LMVVPLLHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEEPYIII LMVVPMLHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEEPYIII LVVVPVLHT1KQR2LTFRPVTQFLFWTLIANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPVTQFLFWALVANVAILTWIGGMPVEEPYIII FLVVPIFHT1KQR2LTFRPLTQFLFWTLIANVAILTWIGGMPVEDPYIMI LMVVPILHT1KQR2LTFRPMTQFLFWALIANVAILTWIGGMPVEEPYIII LMVVPILHT1KQR2LTFRPVTQFLFWALIANVAILTWIGGMPVEDPYIVI LMVVPILHT1KQR2LTFRPVTQFLFWTLVANVAILTWIGGMPVEDPYIMI LMVVPLLHT1KQRGLTFRPITQFLFWTLVADMIILTWIGGMPVEHPFIII LLVVPILHT1KQRGLTFRPITQFLFWTLVADMVILTWIGGMPVEHPYIII LMLVPLLHT1KQRGLMFRPA1QLLFWVLVADVAILTWIGGMPVEHPYIIV LMVVPYLHT1KQR2MTFRPVTQFLFWALVADVMILTWIGGMPVEHPFIII LMVVPFLHT1KQR2MTFRPLTQFLFWTLVADVMVLTWIGGMPVEHPFIII LMLVPILHT1KQRALTFRPITQFLFWTLIADVAILTWIGGMPVEHPFIII LMLVPILHT1KQRALTFRPITQFLFWTLIADVAILTWIGGMPVEHPFIII LMLVPILHT1KQRALTFRPITQFLFWTLIADVAILTWIGGMPVEHPFIII LMTVPFLHT1KQR2LTFRPLTQLLFWTLIADVVILTWIGGMPVEHPFIII LMAVPFLHT1KQR2LTFRPLTQLLFWALIADVAILTWIGGMPVEHPFIII LLTVPFLHT1KQR2LTFRPLTQFLFWTLIADVMILTWIGGMPVEHPFIII LMVVPFLHT1KQR2LTFRPLTQLLFWTLIADVAILTWIGGMPVEHPFIII LMVVPILHT1KQR2LTFRPVTQFLFWTLIADVAILTWIGGMPVEHPFIII LMVVPFRHT1KQR2LTFRPL1QLLFWTLVADVA2LTWIGGMPVEHPYIII LMVVPILHT1KQRGLTFRPVTQFLFWTLIANVAILTWIGGMPVEHPFIII LMVVPILHT1KQRGLTFRPVTQFLFWTLIANVAILTWIGGMPVEHPFIII LMVVPILHT1KQR2LTFRPLTQFLFWTLIANVAILTWIGGMPVEHPFIII LMVVPILHT1KQR2LTFRPLTQFLFWTLIANVAILTWIGGMPVEHPFIII LMLVPLLHT1KQR2LTFRPI1QFLFWVLIADVAILTWIGGMPVEDPYIII LMLVPILHT1KQR2LTFRPI1QFLFWTLIADVAILTWIGGMPVEHPYIII

[350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350] [350]

85 Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boopsGB Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentexGB Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spondyliosoma cantharus Stenotomus chrysops Spicara alta Spicara maena Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labraxGB Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensisGB Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus

GQIA1LTYF1LFLVIIPAAATVENKVLGWQ GQVA1LTYF1LFLIIIPTVAMVENKVLGW3 GQIA1LTYFALFLLIMPATALVENKVLGWQ GQIA1LTYFALFLFIIPVAALVENKVLGCN GQIA1LTYF1LFLLIIPMAATLENKVLGWQ GQIA1LTYF1IFLIIIPATAILENKVLNWQ GQIA1LTYF1LFLIIIPVTATVENKVLGWQ GQIA1LTYFALFLLIMPVAALAENKVLGWQ GQIA1LTYFALFLFIIPAAALAENKVLGWQ GQVA1LTYF1LFLIIIPTAAAVENKVLGWQ GQIA1LTYFALFLFINTAAALVENKMLGWQ GQIA1LTYFALFLFIFPVTALVENKVLGWQ GQIA1LTYFALFLIIIPTTALAENKML2LQ GQIA1LTNI1LFLVVNPAAAVLENKVLGWQ GQIA1LTYF1LFLVVIPAAAVLENKVLGWQ GQIA1LTYF1LFLVIIPAAATMENKVLGWQ GQIA1LTYF1LFLVVIPAAAVLENKVLGWQ GQIA1LTYFALFLLIIPATALVENKVLGWQ GQIA1LTYF1LFLVIIPAAATMENKVLGWQ GQIA1LTYF1LFLIIIPMAATVENKML2WQ GQIA1LTYF1LFLVVMPAAAAIENKVLGWQ GQIA1LTYF1LFLVIIPAAAVMENKVLGWQ GQIA1LTYF1LFLIIIPATATIENKMLGWQ GQVA1LTYF1LFLVIIPAAATMENKVLGWQ GQIA1LTYFALFLLIIPATALAENKVLGWQ GQIA1LTYFALFLLIMPTAALVENKVLGWQ GQIA1LTYFALFLFIIPVTAMAENKVLGWR GQIA1LTYFALFLLIIPATALVENKVLGWQ GQIA1LTYFALFLFIIPTAALAENKMLGLQ GQIA1LTYF1LFLIIIPATATIENKMLGWQ GQIA1LTYFALFLFIMPAAALVENKVLGWQ GQVA1LTYFALFLFIIPAAALAENKVLGWQ GQIA1LTYFALFLFIIPAAALAENKVLGWQ GQVA1L1YF1LFLIIMPAAATLENKVLGWR GQVA1LTYF1LFLVIIPAAATLENKVLGWQ GQIA1LTYF1LFLVIIPTAATMENKVLGWQ GQVA1LTYF1LFLIIMPAAATLENKALGWQ GQVA1LTYF1LFLVIIPAAATMENKVLGWQ GQIA1VTYL1LFLIIIPTAATLENKVLGWQ GQIA1LTYFALFLIIIPATATVENKVLGWQ GQVA1LTYFALFLLIIPTAALAENKVLGWK GQVA1LTYF1LFLIIIPTAATLENKVLGWR GQIA1VLYFALFLIFMPLAGWLENKALKWA GQVA1VLYFALFLLLAPLAGWAENKALKWA GQIA1LLYFLLFLVLMPLAGWWENKLLNWQ GQVA1LLYFLLFLVFIPVVGELENKALEWL GQVA1LLYFLLFLVLIPVVGELENKALEWL GQIA1LLYFLIFLVLFPLAGWLENKALGWT GQIA1LLYFLIFLVLFPVAGWLENKALGWT GQLAFLFYFFIFLVLFPLAGWLENKALGWT GQIA1LLYFLLFLVLMPMAGELENKALGWL GQIA1LLYFLLFLVFMPIAGELENKALEWL GQIA1LLYFLLFLVFMPIAGELENKALGW1 GQVA1LLYFLLFLVFMPIVGELENKALEWL GQVA1FLYFFLFLVFTPLA2WLENKALGWA GQIA1FLYF1LFLVLFPLAGWLENKVMGW1 GQIA1VLYFLLFLVLTPLAGWLENKALGWV GQIA1VLYFLLFLVFAPLAGWLENKALGWL GQIA1LLYF1LFLIITPAAGWFENK1LGWR GQIA1LLYF1LFLIITPAAGWFENK1LGWR GQVA1VLYF1IFLVFMPLVGAVENKVMGWT GQIA1VLYF1IFLLLMPLQDEQGMK1FAEH

[380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380] [380]

86 TABLE 10. FAO AREA ASSIGNMENTS FOR THE SPARIDAE USED IN THIS STUDY. FAO AREAS WERE ESTABLISHED BY FAO (1995) TAXON

FAO Area

Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boops Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentex Dentex tumifrons Diplodus argenteum Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellottii Pagrus auratus Pagrus auriga Pagrus pagrus Petrus rupestris Polyamblyodon germanum Polysteganus praeorbitalis Porcostoma dentata Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparodon durbanensis Sparidentex hasta Sparus auratus Spicara maena Spicara alta Spondyliosoma cantharus Stenotomus chrysops

8, 7, 10, 12 3, 6, 5 4, 8, 7, 10, 12 4, 8 2, 1, 9, 4 4, 8 3, 6 4, 8 4, 8 4, 8 4, 8 2, 1, 9 7, 10, 12 6, 5 6 2, 1, 9, 4 3, 6 10 4, 8 3, 6 2, 1, 9, 4, 8 2, 1, 9, 4 4, 8 2, 1, 9 1, 9, 4 7, 10, 12, 11 2, 1, 9, 4 3, 2, 6, 1, 9, 5 4,8 4,8 4, 8 4, 8 4, 8 4, 8 2, 1, 9, 4, 8 4, 8 8, 7 2, 1, 9 2, 1, 9 1, 4 2, 1, 9, 4 3, 6

1-Atlantic, Eastern Central; 2-Atlantic, Northeast; 3-Atlantic, Northwest; 4-Atlantic, Southeast; 5-Atlantic, Southwest; 6-Atlantic, Western Central; 7-Indian Ocean, Eastern; 8-Indian Ocean, Western; 9-Mediterranean and Black Sea; 10-Pacific, Northwest; 11-Pacific, Southwest; 12-Pacific, Western Central

87 TABLE 11. MATRIX OF FAO AREAS AND CHARACTERS. FAO AREAS WERE TREATED AS INDEPENDENT DATA AND TAXA PLUS ANCESTRAL NODES WERE TREATED AS DEPENDENT DATA DURING PARSIMONY ANALYSIS. CHARACTERS ARE DEFINED BELOW (AN=ANCESTRAL NODE). CHARACTERS AREAS

.........1.........2.........3.........4.........5.........6.........7.........8.. 1234567890123456789012345678901234567890123456789012345678901234567890123456789012

Atlantic, Eastern Central

0000100000010001000011011011000000100111101011100110110001000000111111101101111111

Atlantic, Northeast

0000100000010001000011010011000000100110101011100110110001000000001111101101111111

Atlantic, Northwest

0100001000000000100100000001000000000000010000011110110001000000000011101111111000

Atlantic, Southeast

0011110111100001001011101010111111110001101111100110111111111111111111101101111111

Atlantic, Southwest

0100000000000100000000000001000000000000000000001110110001000000000011101111111000

Atlantic, Western Central

0100001000000110100100000001000000000000010000011110110001000000000011101111111000

Indian, Ocean Eastern

1010000000001000000000000100000000001000000000000001110001000000110000111101111011

Indian, Ocean Western

1011010111100000001010100000111111111000001111100001111111111111011101101101111011

Mediterranean/Black Sea

0000100000010001000011011011000000100110101011100110110001000000001111101101111100

Pacific, Northwest

1010000000001000010000000100000000000000000000000001110001000000110000111101111000

Pacific, Southwest

0000000000000000000000000100000000000000000000000000000000000000000000011101110000

Pacific, Western Central

1010000000001000000000000100000000000000000000000001110001000000110000111101111000

1 Acanthopagrus berda; 2 Archosargus probatocephalus; 3 Argyrops spinifer; 4 Argyrozona argyrozona; 5 Boops boops; 6 Boopsoidea inornata; 7 Calamus nodosus; 8 Cheimerius nufar; 9 Chrysoblephus cristiceps; 10 Crenidens crenidens; 11 Cymatoceps nasutus; 12 Dentex dentex; 13 Dentex tumifrons; 14 Diplodus argenteus; 15 Diplodus bermudensis; 16 Diplodus cervinus; 17 Diplodus holbrooki; 18 Evynnis japonica; 19 Gymnocrotaphus curvidens; 20 Lagodon rhomboides; 21 Lithognathus mormyrus; 22 Oblada melanura; 23 Pachymetopon aeneum; 24 Pagellus bogaraveo; 25 Pagellus bellottii; 26 Pagrus auratus; 27 Pagrus auriga; 28 Pagrus pagrus; 29 Petrus rupestris; 30 Polyamblyodon germanum; 31 Polysteganus praeorbitalis; 32 Porcostoma dentata; 33 Pterogymnus laniarius; 34 Rhabdosargus thorpei; 35 Sarpa salpa; 36 Sparodon durbanensis; 37 Sparidentex hasta; 38 Sparus auratus; 39 Spicara maena; 40 Spicara alta; 41 Spondyliosoma cantharus; 42 Stenotomus chrysops; 43 AN1; 44 AN2; 45 AN3; 46 AN4; 47 AN5; 48 AN6; 49 AN7; 50 AN8; 51 AN9; 52 AN10; 53 AN11; 54 AN12; 55 AN13; 56 AN14; 57 AN15; 58 AN16; 59 AN17; 60 AN18; 61 AN19; 62 AN20; 63 AN21; 64 AN22; 65 AN23; 66 AN24; 67 AN25; 68 AN26; 69 AN27; 70 AN28; 71 AN29; 72 AN30; 73 AN31; 74 AN32; 75 AN33; 76 AN34; 77 AN35; 78 AN36; 79 AN37; 80 AN38; 81 AN39; 82 AN40

88

FIGURE 3. PCR primers and their relative sequence map alignment relative to the mitochondrial genome of Cyprinus carpio (GenBank Accession X61010) are given. The graphic represents the location of these primers on the heavy and light strand of tRNA Glu and tRNA Thr that flank Cytochrome b gene in perciform fishes. The following primer pairs were used for PCR: CYTbUnvL (L15242)/CYTbUnvH (H16458); CYTbGludgL (L15249)/CYTBThrdgH (H16465); and CYTB4xdgL (L14249)/CYTb4xdgH (H16435).

CYTbGludgL-TGACTTGAARAACCAYCGTTG-L15249 CYTb4XdgL-TGAYWTGAARAACCAYCGTTG-L15249

CYTbUnvL-CGAACGTTGATATGAAAAACCATCGTTG-L15242 5'AATTCTTGCTCAGACTTTAACCGAGACCAATGACTTGAAGAACCACCGTTGTTATTCAACTACAAGAACCAC 3' | L15219 (TRNA -GLU Cyprinuis carpio 15219-15287)

CYTbGludgL CYTb4xdgL CYTbUnvL

tRNA-Glu

Cytochrome b

tRNA-Thr CYTB4XdgR CYTbUnvH CYTbThrdg-H

H16434(TRNA-THR Cyprinus carpio 16434-16505) | 3'GCGCTAGGGAGGAATTTAACCTCCGATCTTCGGATTACAAGACCGATGCTTTTAGGCTAAGCTACTAGGGCA5' CYTB4xdgH-TGRVNCTGAGCTACTASTGC-H1643 5 CYTBUnvH-ATCTTCGGTTTACAAGACCGGTG-H16458 CYTBThrdgH-CTCCAGTCTTCGRCTTACAAG-H16565

90

FIGURE 4. Total substitutions at all codon positions plotted as a function of pairwise percent sequence divergence for ingroup taxa only. All data derived from cytochrome b nucleotide sequences. Second order polynomials were fitted to the data (Ts: y = -0.3212x2 + 12.339x + 13.82, R2 = 0.2725 and Tv: y = -0.0176x2 + 4.0373x - 3.6503, R2 = 0.2038). Key: Ts-All =Transitions all codon positions Tv-All =Transversions all codon positions Poly. (Ts-All) = polynomial line fitted to transitions from all codon positions Poly. (Tv-All) = polynomial line fitted to transversions from all codon positions

180 160

Total Substitutions

140 120 100 80 60 40 20 0 0

5

10

15

20

%Sequence Divergence (Uncorrected) Ts-All

Tv-All

Poly. (Ts-All)

Poly. (Tv-All)

25

92

FIGURE 5. Total substitutions at the first codon position plotted as a function of pairwise percent sequence divergence for ingroup taxa only. All data derived from cytochrome b nucleotide sequences. Second order polynomials were fitted to the data (Ts: y = -0.0082x2 + 1.0262x + 3.3566, R2 = 0.1291 and Tv: y = 0.0203x2 - 0.2574x + 3.6401, R2 = 0.0678). Key: Ts-1st = Transitions 1st codon position Tv-1st = Transversions 1st codon position Poly. (Ts-1st) = polynomial line fitted to transitions from 1st codon position Poly. (Tv-1st) = polynomial line fitted to transversions from 1st codon position

35

30

Total Substitutions

25

20

15

10

5

0 0

5

10

15

20

% Sequence Divergence (Uncorrected) Ts-1st

Tv-1st

Poly. (Ts-1st)

Poly. (Tv-1st)

25

94

FIGURE 6. Total substitutions at the second codon position plotted as a function of pairwise percent sequence divergence for ingroup taxa only. All data derived from cytochrome b nucleotide sequences. Second order polynomials were fitted to the data (Ts: y = 0.0121x2 - 0.2146x + 3.1507, R2 = 0.0396 and Tv: y = 0.0764x + 0.478, R2 = 0.0127). Key: Ts-2nd = Transitions 2nd codon position Tv-2nd = Transversions 2nd codon position Poly. (Ts-2nd) = polynomial line fitted to transitions from 2nd codon position Poly. (Tv-2nd) = polynomial line fitted to transversions from 2nd codon position

9 8

Total Susbtitutions

7 6 5 4 3 2 1 0 0

5

10

15

20

% Sequence Divergence (Uncorrected) Ts-2nd

Tv-2nd

Poly. (Ts-2nd)

Linear (Tv-2nd)

25

96

FIGURE 7. Total substitutions at the third codon position plotted as a function of pairwise percent sequence divergence for ingroup taxa only. All data derived from cytochrome b nucleotide sequences. Second order polynomials were fitted to the data (Ts: y = -0.2707x2 + 11.417x - 4.4675, R2 = 0.4766 and Tv: y = 0.1607x2 + 1.0435x 9.5465, R2 = 0.7008). Key: Ts-3rd = Transitions 3rd codon position Tv-3rd = Transversions 3rd codon position Poly. (Ts-3rd) = polynomial line fitted to transitions from 3rd codon position Poly. (Tv-3rd) = polynomial line fitted to transversions from 3rd codon position

160

140

Total Substitutions

120

100

80

60

40

20

0 0

5

10

15

20

% Sequence Divegence (Uncorrected) Ts-3rd

Tv-3rd

Poly. (Ts-3rd)

Poly. (Tv-3rd)

25

98

FIGURE 8. Total substitutions at the third codon position and pooled first and second codon positions plotted as a function of pairwise percent sequence divergence for ingroup taxa only. All data derived from cytochrome b nucleotide sequences. Second order polynomials were fitted to the data (Ts-Tv3rd: y = -0.11x2 + 12.46x - 14.014, R2 = 0.9402 and Ts-Tv1st+2nd: y = 0.0261x2 + 0.5738x + 11.025, R2 = 0.1537). Key: Ts-Tv1st+2nd = All substitutions 1st and 2nd codon positions Ts-Tv3rd = All substitutions 3rd codon position, Poly. (Ts-Tv1st+2nd) = polynomial line fitted to all substitutions from the 1st and 2nd codon positions Poly. (Ts-Tv3rd) = polynomial line fitted to all substitutions from the 3rd codon position

250

Substitutions

200

150

100

50

0 0

5

10

15

20

% Sequence Divergence (Uncorrected) Ts+Tv 1st+2nd

Ts+Tv3rd

Poly. (Ts+Tv3rd)

Poly. (Ts+Tv 1st+2nd)

25

100

FIGURE 9. A ratio of transitions/total substitutions and transversions/total substitutions from third codon plotted as a function of pairwise percent sequence divergence for ingroup taxa only. All data derived from cytochrome b nucleotide sequences. Key: Ts/Ts+Tv = Ratio of transitions to total substitutions from the 3rd codon position Tv/Ts+Tv = Ratio of transversions to total substitutions from the 3rd codon position Poly. (Ts/Ts+Tv) =Polynomial line fitted to the ratio of transitions to total substitutions from the 3rd codon position Poly. (Tv/Ts+Tv) =Polynomial line fitted to the ratio of transitions to total substitutions from the 3rd codon position

1 0.9

% of Total Substitutions

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0

5

10

15

20

% Sequence Divergence (Uncorrected) Ts/Ts+Tv

Tv/Ts+Tv

Poly. (Ts/Ts+Tv)

Poly. (Tv/Ts+Tv)

25

102

FIGURE 10. Transitional substitutions, separated into nitrogenous base type, purines (AøG) and pyrimidines (CøT) plotted as a functions of pairwise percent sequence divergence of ingroup taxa only. All data derived from cytochrome b nucleotide sequences.

120

100

Transitions

80

60

40

20

0 0

5

10

15

% Sequence Divergence (Uncorrected) AG

CT

20

25

104

FIGURE 11. Frequencies of each of four bases of the cytochrome b gene for 62 taxa at all codon positions. The relative frequency of each base was not equal and a chi-squared test of heterogeneity among taxa from all codon positions was slightly significant (X2 = 166.9 df==183 P=0.798).

Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boops Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentex Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellotti Pagrus auratus Pagrus auriga

A

Pagrus pagrus

Taxon

Petrus rupestris

C

Polyamblyodon germanum Polysteganus praeorbitalis

G

Porcostoma dentata

T

Pterogymnus laniarius Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spicara alta Spicara maena Spondyliosoma cantharus Stenotomus chrysops Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labrax Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensis Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus MEAN

0%

20%

40%

60%

Cumulative Frequency

80%

100%

106

FIGURE 12. Frequencies of each of four bases of the cytochrome b gene for 62 taxa at the first codon position. The relative frequency of each base was not equal, but a chisquared test did not demonstrate heterogeneity among taxa in the first codon position base frequencies X2 =34.22, df=183, P > 0.995).

Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boops Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentex Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellotti Pagrus auratus Pagrus auriga Pagrus pagrus

A1

Taxon

Petrus rupestris Polyamblyodon germanum

C1

Polysteganus praeorbitalis

G1

Porcostoma dentata Pterogymnus laniarius

T1

Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spicara alta Spicara maena Spondyliosoma cantharus Stenotomus chrysops Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labrax Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensis Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus MEAN

0%

20%

40%

60%

Cumulative Frequency

80%

100%

108

Figure 13. Frequencies of each of four bases of the cytochrome b gene for 62 taxa at the second codon position. The relative frequency of each base was not equal (anti-guanine, pro-thymine), but a chi-squared test did not demonstrate heterogeneity among taxa in the second codon position base frequencies X2=9.68, df=183, P >0.995).

Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boops Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentex Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellotti Pagrus auratus Pagrus auriga Pagrus pagrus

Taxon

Petrus rupestris

A2

Polyamblyodon germanum Polysteganus praeorbitalis

C2

Porcostoma dentata

G2

Pterogymnus laniarius

T2

Rhabdosargus thorpei Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spicara alta Spicara maena Spondyliosoma cantharus Stenotomus chrysops Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labrax Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensis Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus MEAN 0%

10%

20%

30%

40%

50%

60%

Cumulative Frequency

70%

80%

90%

100%

110

FIGURE 14. Frequencies of each of four bases of the cytochrome b gene for 62 taxa at the third codon position. The relative frequency of each base was not equal (anti-guanine, pro-cytosine) and a chi-squared test demonstrated significant heterogeneity among taxa in the third codon position base frequencies (X2=477.59, df=183, P< 0.001

Acanthopagrus berda Archosargus probatocephalus Argyrops spinifer Argyrozona argyrozona Boops boops Boopsoidea inornata Calamus nodosus Cheimerius nufar Chrysoblephus cristiceps Crenidens crenidens Cymatoceps nasutus Dentex dentex Dentex tumifrons Diplodus argenteus Diplodus bermudensis Diplodus cervinus Diplodus holbrooki Evynnis japonica Gymnocrotaphus curvidens Lagodon rhomboides Lithognathus mormyrus Oblada melanura Pachymetopon aeneum Pagellus bogaraveo Pagellus bellotti Pagrus auratus Pagrus auriga Pagrus pagrus

Taxon

Petrus rupestris

A3

Polyamblyodon germanum Polysteganus praeorbitalis

C3

Porcostoma dentata

G3

Pterogymnus laniarius Rhabdosargus thorpei

T3

Sarpa salpa Sparidentex hasta Sparodon durbanensis Sparus auratus Spicara alta Spicara maena Spondyliosoma cantharus Stenotomus chrysops Cyprinus carpio Luxilus zonatus Centropomus undecimalis Dicentrarchus labrax Dicentrarchus punctatus Lateolabrax japonicus Lateolabrax japonicus2 Lateolabrax latus Morone americanus Morone chrysops Morone mississippiensis Morone saxatilis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Lethrinus ornatus Lethrinus rubrioperculatus Nemipterus marginatus Scolopsis ciliatus MEAN 0%

20%

40%

60%

Cumulative Frequency

80%

100%

112

FIGURE 15. Four equally parsimonious trees, unweighted data

Tree One

Tree Three

Cyprinus carpio Luxilus zonatus Centropomus undecimalis Caesio cuning Lutjanus decussatus Haemulon sciurus Pomadasys maculatus Scolopsis ciliatus Nemipterus marginatus Lateolabrax latus Lateolabrax japonicus Lateolabrax japonicus2 Dicentrarchus labrax Dicentrarchus punctatus Morone chrysops Morone saxatilis Morone americanus Morone mississippiensis Lethrinus ornatus Lethrinus rubrioperculatus Pterogymnus laniarius Argyrozona argyrozona Petrus rupestris Polysteganus praeorbitalis Porcostoma dentata Chrysoblephus cristiceps Cymatoceps nasutus Dentex tumifrons Spicara alta Argyrops spinifer Evynnis japonica Pagrus auratus Pagellus bellottii Pagrus pagrus Pagrus auriga Cheimerius nufar Dentex dentex Archosargus probatocephalus Lagodon rhomboides Calamus nodosus Stenotomus chrysops Sarpa salpa Spondyliosoma cantharus Spicara maena Boopsoidea inornata Gymnocrotaphus curvidens Pachymetopon aeneum Polyamblyodon germanum Boops boops Crenidens crenidens Acanthopagrus berda Sparidentex hasta Sparus auratus Rhabdosargus thorpei Sparodon durbanensis Lithognathus mormyrus Pagellus bogaraveo Oblada melanura Diplodus cervinus Diplodus argenteus Diplodus bermudensis Diplodus holbrooki

Cyprinus carpio Luxilus zonatus Centropomus undecimalis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Scolopsis ciliatus Nemipterus marginatus Lateolabrax latus Lateolabrax japonicus Lateolabrax japonicus2 Dicentrarchus labrax Dicentrarchus punctatus Morone chrysops Morone saxatilis Morone americanus Morone mississippiensis Lethrinus ornatus Lethrinus rubrioperculatus Pterogymnus laniarius Argyrozona argyrozona Petrus rupestris Polysteganus praeorbitalis Porcostoma dentata Chrysoblephus cristiceps Cymatoceps nasutus Dentex tumifrons Spicara alta Argyrops spinifer Evynnis japonica Pagrus auratus Pagellus bellottii Pagrus pagrus Pagrus auriga Cheimerius nufar Dentex dentex Archosargus probatocephalus Lagodon rhomboides Calamus nodosus Stenotomus chrysops Sarpa salpa Spondyliosoma cantharus Spicara maena Boopsoidea inornata Gymnocrotaphus curvidens Pachymetopon aeneum Polyamblyodon germanum Boops boops Crenidens crenidens Acanthopagrus berda Sparidentex hasta Sparus auratus Rhabdosargus thorpei Sparodon durbanensis Lithognathus mormyrus Pagellus bogaraveo Oblada melanura Diplodus cervinus Diplodus argenteus Diplodus bermudensis Diplodus holbrooki

Tree Two

Tree Four

Cyprinus carpio Luxilus zonatus Centropomus undecimalis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Scolopsis ciliatus Nemipterus marginatus Lateolabrax latus Lateolabrax japonicus Lateolabrax japonicus2 Dicentrarchus labrax Dicentrarchus punctatus Morone chrysops Morone saxatilis Morone americanus Morone mississippiensis Lethrinus ornatus Lethrinus rubrioperculatus Pterogymnus laniarius Argyrozona argyrozona Petrus rupestris Polysteganus praeorbitalis Porcostoma dentata Chrysoblephus cristiceps Cymatoceps nasutus Dentex tumifrons Spicara alta Argyrops spinifer Evynnis japonica Pagrus auratus Pagellus bellottii Pagrus pagrus Pagrus auriga Cheimerius nufar Dentex dentex Archosargus probatocephalus Lagodon rhomboides Calamus nodosus Stenotomus chrysops Sarpa salpa Spondyliosoma cantharus Spicara maena Boopsoidea inornata Gymnocrotaphus curvidens Pachymetopon aeneum Polyamblyodon germanum Boops boops Crenidens crenidens Acanthopagrus berda Sparidentex hasta Sparus auratus Rhabdosargus thorpei Sparodon durbanensis Lithognathus mormyrus Pagellus bogaraveo Oblada melanura Diplodus cervinus Diplodus argenteus Diplodus bermudensis Diplodus holbrooki

Cyprinus carpio Luxilus zonatus Centropomus undecimalis Haemulon sciurus Pomadasys maculatus Caesio cuning Lutjanus decussatus Scolopsis ciliatus Nemipterus marginatus Lateolabrax latus Lateolabrax japonicus Lateolabrax japonicus2 Dicentrarchus labrax Dicentrarchus punctatus Morone americanus Morone mississippiensis Morone chrysops Morone saxatilis Lethrinus ornatus Lethrinus rubrioperculatus Pterogymnus laniarius Argyrozona argyrozona Petrus rupestris Polysteganus praeorbitalis Porcostoma dentata Chrysoblephus cristiceps Cymatoceps nasutus Dentex tumifrons Spicara alta Argyrops spinifer Evynnis japonica Pagrus auratus Pagellus bellottii Pagrus pagrus Pagrus auriga Cheimerius nufar Dentex dentex Archosargus probatocephalus Lagodon rhomboides Calamus nodosus Stenotomus chrysops Sarpa salpa Spondyliosoma cantharus Spicara maena Boopsoidea inornata Gymnocrotaphus curvidens Pachymetopon aeneum Polyamblyodon germanum Boops boops Crenidens crenidens Acanthopagrus berda Sparidentex hasta Sparus auratus Rhabdosargus thorpei Sparodon durbanensis Lithognathus mormyrus Pagellus bogaraveo Oblada melanura Diplodus cervinus Diplodus argenteus Diplodus bermudensis Diplodus holbrooki

114

FIGURE 16. Strict consensus of four equally parsimonious trees from the unweighted data. A heuristic search of 1000 random addition replicates on the cytochrome b nucleotide data set resulted in four equally parsimonious trees. (tree length=6416, CI=0.1900, RI=0.4258). Subfamilies are labeled as follows (BO=Boopsinae, DE=Denticinae, DI=Diplodinae,PA=Pagrinae,PE=Pagellinae, and SP=Sparinae).

Figure key is as follows: “N” = Node D

= Total Decay Value at “N”

1st = Partitioned Decay at 1st Codon at “N” 2nd = Partitioned Decay at 2nd Codon at “N” 3rd = Partitioned Decay at 3rd Codon at “N” B

= Bootstrap Support Value at “N”

17(

98

3.0 3.9 10.1

)

2.5 4.0 ) 5( -1.5

100

8.2

9(

1.0 1.5 6.5

4.5 ) 23(10.2 14(

74

) 23(

0.9 2.4 19.8

)

1.3 0.4 12.3

)

9.5 3.0 13.5

)

26(

100

98 100

68

1.5

3 (-2.0) 3.5

73

3.5

0.0 ) 21(17.5 6.5

17( 4.0 )

100 95

6.5

0.0

0.0 ) 5( 5.0

70 0.0

0.0 ) 3( 3.0

88

-0.1

98

55 1.0 ) 3(-1.0 3.0

8( 0.5 ) 7.6

-0.5 2.0 ) < 12( 10.5 < 1.0

3(-1.0 ) 3.0

54

-4.2

) 4(-1.0 9.2 9( 6( 6.0

22( -0.4 )

-1.0 1.0 7.0

99

)

-3.0 0.0 12.0

)