an investigation of sustainable urbanization and

0 downloads 0 Views 51MB Size Report
(landscape scale) methods and models for operationalizing sustainable ...... Within this manual, the foundations of ... this and other forest management success, Roosevelt published a book entitled: The ...... Kates RW, Clark WC, Corell R, Hall JM, Jaeger CC, Lowe I, McCarthy JJ, ...... Illustrator, Acrobat, Dreamweaver.
  AN  INVESTIGATION  OF  SUSTAINABLE  URBANIZATION  AND  LANDSCAPE  FORM:   THE  REPUBLIC  OF  MOLDOVA  CASE  STUDY     by     Richard  R.  Shaker     A  Dissertation  Submitted  in   Partial  Fulfillment  of  the   Requirements  for  the  Degree  of     Doctor  of  Philosophy   in  Geography     at   The  University  of  Wisconsin-­‐Milwaukee   August  2011            

  AN  INVESTIGATION  OF  SUSTAINABLE  URBANIZATION  AND  LANDSCAPE  FORM:   THE  REPUBLIC  OF  MOLDOVA  CASE  STUDY     by     Richard  R.  Shaker     A  Dissertation  Submitted  in   Partial  Fulfillment  of  the   Requirements  for  the  Degree  of     Doctor  of  Philosophy   in  Geography     at   The  University  of  Wisconsin-­‐Milwaukee   August  2011       Major  Professor    

 

 

 

 

 

Date  

  Graduate  School  Approval    

 

   

 

 

Date  

 

 

ii  

ABSTRACT   AN  INVESTIGATION  OF  SUSTAINABLE  URBANIZATION  AND  LANDSCAPE  FORM:   THE  REPUBLIC  OF  MOLDOVA  CASE  STUDY     by     Richard  R.  Shaker       The  University  of  Wisconsin-­‐Milwaukee,  2011   Under  the  Supervision  of  Christopher  A.  De  Sousa,  Ph.D.           As  we  embark  through  the  beginning  stages  of  the  21st  century,  we  have   already  seen  the  earth  stretched  beyond  its  bio-­‐capacity.    The  future  of  the  earth  and   humanity  is,  and  will  continue  to  be,  directly  affected  by  the  way  we  interact  and   behave  within  our  landscapes.    To  combat  the  ills  humanity  has  caused,  and   projected  to  continue  to  cause,  sustainable  development  (SD)  has  been  created  as  a   focal  remedy,  despite  discrepancies.    To  show  the  applicability  and  usefulness  of  SD   this  dissertation  research,  through  a  two  article  approach,  provides:  1)  a  better   understanding  of  SD  indicators  through  a  survey  of  composite  SD  indices,  and  the   creation  of  two  multimetric  SD  indices  for  local  spatial  application;  2)  local   (landscape  scale)  methods  and  models  for  operationalizing  sustainable   development  for  regional  planning  purposes;  3)  a  better  understanding  on  spatial   models  and  geographic  information  science  (GIScience)  techniques  for  sustainable   development;  4)  research  on  landscape  design  and  human  behavior  for   investigating  the  feasibility  of  sustainability;  5)  ultimately,  a  work  that  links   sustainable  development  theory  with  an  applied  application.  

 

iii  

To  date,  there  exist  no  ‘ideal’  instrument  for  achieving  sustainability  neither   on  the  regional  nor  the  local  scale.    Article  one  addresses  this  problem  by  reviewing   common  SD  indices,  and  developing  an  assessment  system  for  analyzing  and   evaluating  SD  for  use  at  the  local  scales  of  urban  planning  and  regional   development.    For  SD  spatial  assessment,  two  composite  indices  (Ecological   Demand  Index  and  Sustainability  Demand  Index)  are  created  using  a  demographic   and  health  survey  for  the  Republic  of  Moldova.    Article  two  uses  both  mean   Ecological  Demand  Index  (EDI)  and  mean  Sustainability  Demand  Index  (SDI)  from   article  one  as  evaluation  indices  of  66  landscapes  in  the  Republic  of  Moldova.    In  this   article,  non-­‐spatial,  spatial,  and  nonlinear  multivariate  statistical  models  were  used   to  investigate  relationships  found  between-­‐  landscape  form  and  population   characteristics-­‐  and  the  local  indicators  of  sustainable  development  condition.   Significant  statistical  relationships  were  found  through  this  exploration  of  SD   indicators  for  assessing  landscape  functions  for  operationalizing  SD.    Future   research  involves  evolutionary  analysis  of  human  behavior  in  relation  to  urban  and   landscape  form  using  Internet  2.0  technology.           Major  Professor    

 

 

 

 

     

 

iv  

 

 

Date  

                    ©  Copyright  by  Richard  R.  Shaker,  2011   All  Rights  Reserved                                                    

v  

TABLE  OF  CONTENTS     List  of  figures................................................................................................................................................x   List  of  tables................................................................................................................................................xii   Acknowledgements................................................................................................................................xiv   1.    Introduction............................................................................................................................................1   2.  Background..............................................................................................................................................8   2.1.    Sustainability  and  sustainable  development...................................................................8   2.2.    Measuring  sustainable  development...............................................................................13   2.3.    Landscape  ecology,  planning,  and  sustainability........................................................16   2.4.    Human  behavior  and  sustainability..................................................................................21   3.    Problem  statement............................................................................................................................22   4.    Article  1:  Assessing  sustainable  development  using  additive  household   community  and  property  composition  indices...........................................................................25     4.1.    Abstract.........................................................................................................................................25     4.2.    Introduction................................................................................................................................26     4.3.    Sustainable  development  assessment  and  monitoring............................................29     4.3.1.    Survey  of  common  sustainability  indices..........................................................31     4.3.1.1.    Gross  domestic  product  (GDP)..............................................................31     4.3.1.2.    Human  development  index  (HDI)........................................................31     4.3.1.3.    Wellbeing  (WB)............................................................................................32     4.3.1.4.    Ecological  footprint  (EF)..........................................................................32     4.3.1.5.    Environmental  sustainability  index  (ESI).........................................33     4.3.1.6.    Environmental  performance  index  (EPI)..........................................34      

vi  

4.3.1.7.    Living  planet  index  (LPI)..........................................................................34     4.3.1.8.    Green  net  national  product  (EDP)  and  SEEA...................................35     4.3.1.9.    City  development  index  (CDI)................................................................36     4.3.1.10.    Environmental  vulnerability  index  (EVI).......................................36  

 

  4.4.    Why  evaluate  sustainability  at  the  household  scale?................................................37     4.5.    The  assessment  system..........................................................................................................40     4.6.    The  assessment  criteria.........................................................................................................40         4.6.1.    Household  community  information.....................................................................42         4.6.2.    Property  composition  factors.................................................................................44         4.6.3.    The  geographic  factor................................................................................................47     4.7.    The  multimetric  assessment  process...............................................................................48     4.8.    Examples  from  the  Republic  of  Moldova........................................................................50     4.8.1.    Study  area  and  historical  context.........................................................................50     4.8.2.    Official  demographic  and  health  survey  data..................................................53     4.8.3.    Method..............................................................................................................................57     4.8.3.1.    Ecological  demand  index  (EDI).............................................................59     4.8.3.2.    Sustainability  demand  index  (SDI)......................................................64  

4.9.    Results  and  discussion............................................................................................................68     4.10.    Conclusion.................................................................................................................................71     5.    Article  2:  Regional  application  of  two  indices  of  household  demand  for  assessing   sustainable  development:  a  spatial  analysis  through  Republic  of  Moldova   landscapes................................................................................................................................................................72     5.1.    Abstract.........................................................................................................................................72     5.2.    Introduction................................................................................................................................74      

vii  

5.3.    Methods.........................................................................................................................................80    

5.3.1.    Study  site  selection......................................................................................................80   5.3.2.    Moldovan  “landscape  unit”......................................................................................85   5.3.3.    Household  ecological  demand  index  (EDI)  and  household   sustainability  demand  index  (SDI)....................................................................................88     5.3.4.    Landscape  unit  selection  and  independent  variables..................................99   5.3.5.    Data  analysis................................................................................................................104   5.4.    Mean  ecological  demand  index  (EDI)  results............................................................112   5.4.1.    Exploratory  spatial  data  analysis  ......................................................................112   5.4.2.    Non-­‐spatial,  spatial,  and  nonlinear  statistical  models..............................115   5.5.  Mean  sustainability  demand  index  (SDI)  results......................................................123   5.5.1.    Exploratory  spatial  data  analysis  ......................................................................123   5.5.2.    Non-­‐spatial,  spatial,  and  nonlinear  statistical  models..............................126   5.6.    Mean  ecological  demand  index  (EDI)  discussion.....................................................134   5.7.    Mean  sustainability  demand  index  (SDI)  discussion..............................................136   5.8.    Conclusion.................................................................................................................................139  

6.    Concluding  remarks.......................................................................................................................141     6.1.    Dissertation  recap..................................................................................................................145     6.1.1.    Article  one....................................................................................................................146   6.1.2.    Article  two....................................................................................................................148   6.2.    Future  research  paradigm..................................................................................................151     7.    Literature  cited.................................................................................................................................155   8.    Appendix  A:  MDHS  (2005:259-­‐273)  household  questionnaire..................................177   9.    Appendix  B:  EDI  and  SDI  construction  notes......................................................................195    

viii  

10.    Curriculum  vita..............................................................................................................................206                                                                                            

ix  

LIST  OF  FIGURES       Fig.  1.  Global  urban  and  rural  population  trend,  1950-­‐2030.................................................3     Fig.  2.  Hierarchical  and  pluralistic  view  of  landscape  ecology  and  its  relationship  to   sustainability.............................................................................................................................................19     Fig.  3.  Map  of  the  demographic  and  health  survey  geographic  distribution  within  the   Republic  of  Moldova  (47°24’N,  28°22’E).......................................................................................56     Fig.  4.  Spatial  distribution  of  the  10  individual  mean  SD  indicators  chosen  for  the   composite  ecological  demand  index  (EDI)  developed  in  the  Republic  of  Moldova....62     Fig.  5.  Spatial  distribution  of  the  composite  ecological  demand  index  (EDI)   developed  in  the  Republic  of  Moldova...........................................................................................63     Fig.  6.  Spatial  distribution  of  the  15  individual  mean  SD  indicators  chosen  for  the   composite  sustainability  demand  index  (SDI)  developed  in  the  Republic  of   Moldova........................................................................................................................................................66     Fig.  7.  Spatial  distribution  of  the  composite  sustainability  demand  index  (SDI)   developed  in  the  Republic  of  Moldova...........................................................................................67     Fig.  8.  Frequency  distribution  and  box  plot  showing  quartiles  of  the  (A)  composite   ecological  demand  index  (EDI),  and  (B)  composite  sustainability  demand  index   (SDI)  calculated  from  11,066  households  surveyed  in  the  Moldova  Demographic  and   Health  Survey  (2005).    Explaining  the  box  plot:  the  box  marks  the  lower  and  upper   quartiles  of  a  distribution,  and  the  length  of  the  box  is  the  interquartile  range.    The   whiskers  mark  observations  within  the  quartiles  ±  1.5  *  (interquartile  range).     Observations  beyond  the  whiskers  are  considered  outliers................................................69     Fig.  9.  Republic  of  Moldova  location  map  with  2004  land  cover     (47°24’N,28°22’E)...................................................................................................................................81     Fig.  10.  Original  multi-­‐hierarchical  land  management  structure  systematically   divided  the  Republic  of  Moldova  into  four  scales:  (A)  120  elementary  landscape   features;  (B)  74  landscape  units,  5  regions,  and  2  zones.......................................................88     Fig.  11.  Map  of  399  demographic  and  health  survey  cluster  locations  with  spatial   representation  in  66  of  74  landscape  units  within  the  Republic  of  Moldova................91     Fig.  12.  (A)  Moran’s  I  scatterplot  and  (B)  spatial  correlogram  displaying  spatial   autocorrelation  for  mean  ecological  demand  index  (EDI)..................................................114    

 

x  

Fig.  13.  (A)  Spatial  distribution  of  mean  ecological  demand  index  from  11,066   households  averaged  to  399  Thiessen  polygons;  (B)  Local  Anselin  Moran’s  I   displaying  rendered  z-­‐score  spatial  clustering  of  mean  ecological  demand  index   (EDI)............................................................................................................................................................115   Fig.  14.  (1)  Actual  versus  predicted  scatterplot  of  mean  ecological  demand  index   (EDI)  for  (A)  standard  least  squares  regression  and  (B)  artificial  neural  networks;   and,  (2)  their  corresponding  response  profile  for  multivariate  SD  landscape  form   and  population  characteristics  model..........................................................................................119     Fig.  15.  (A)  Actual  versus  predicted  scatterplot  of  mean  ecological  demand  index   (EDI)  and  estimated  simulations  autoregressive  (SAR)  model  error;  (B)  spatial   distribution  of  actual  mean  ecological  demand  index  (EDI),  estimated  mean  EDI,   SAR  model  residuals,  and  SAR  model  errors;  (C)  frequency  distribution  displaying   normal  distribution  of  SAR  model  residuals;  and  (D)  spatial  correlogram  displaying   actual  mean  EDI,  estimated  mean  EDI,  SAR  model  residuals,  and  SAR  model   errors..........................................................................................................................................................122     Fig.  16.  (A)  Moran’s  I  scatterplot  and  (B)  spatial  correlogram  displaying  spatial   autocorrelation  for  mean  sustainability  demand  index  (SDI)...........................................125     Fig.  17.  (A)  Spatial  distribution  of  mean  ecological  demand  index  from  11,066   households  averaged  to  399  Thiessen  polygons;  (B)  Local  Anselin  Moran’s  I   displaying  rendered  z-­‐score  spatial  clustering  of  mean  sustainability  demand  index   (SDI)............................................................................................................................................................126   Fig.  18.  (1)  Actual  versus  predicted  scatterplot  of  mean  sustainability  demand  index   (SDI)  for  (A)  standard  least  squares  regression  and  (B)  artificial  neural  networks;   and,  (2)  their  corresponding  response  profile  for  multivariate  SD  landscape  form   and  population  characteristics  model..........................................................................................130     Fig.  19.  (A)  Actual  versus  predicted  scatterplot  of  mean  sustainability  demand  index   (SDI)  and  estimated  conditional  autoregressive  (CAR)  model  error;  (B)  spatial   distribution  of  actual  mean  sustainability  demand  index  (SDI),  estimated  mean  SDI,   CAR  model  residuals,  and  CAR  model  errors;  (C)  frequency  distribution  displaying   normal  distribution  of  CAR  model  residuals;  and  (D)  spatial  correlogram  displaying   actual  mean  SDI,  estimated  mean  SDI,  CAR  model  residuals,  and  CAR  model   errors..........................................................................................................................................................133      

       

xi  

LIST  OF  TABLES       Table  1.  Republic  of  Moldova  household  ecological  demand  index  (EDI)  metrics     and  relative  scoring  criteria................................................................................................................58     Table  2.  Republic  of  Moldova  household  sustainability  demand  index  (SDI)     metrics  and  relative  scoring  criteria...............................................................................................59     Table  3.  Pearson  product-­‐moment  correlation  coefficients  for  the  10  standardized   indices  used  in  computing  the  Republic  of  Moldova  household  ecological  demand   index  (EDI)..................................................................................................................................................70   Table  4.  Pearson  product-­‐moment  correlation  coefficients  for  the  15  standardized   indices  used  in  computing  the  Republic  of  Moldova  household  sustainability   demand  index  (SDI)................................................................................................................................71   Table  5.  Republic  of  Moldova  household  ecological  demand  index  (EDI)  metrics   displaying  discrete  scoring  criteria..................................................................................................93   Table  6.  Republic  of  Moldova  household  sustainability  demand  index  (SDI)  metrics   displaying  discrete  scoring  criteria..................................................................................................96   Table  7.  Independent  landscape  variable  summary  used  in  indicator-­‐based   statistical  assessment  of  SD  function............................................................................................100   Table  8.  Results  of  stepwise  multiple  regression  (ordinary  least  squares)  model  for   mean  household  ecological  demand  index  (EDI)  as  a  function  of  Republic  of  Moldova   landscape  form  and  population  characteristics.    (A)  Final  regression  model  showing   standardized  coefficients;  (B)  analysis  of  variance  (ANOVA)  for  overall  significance   model..........................................................................................................................................................116   Table  9.  Results  of  simultaneous  autoregression  (SAR)  multiple  regression  model   for  mean  household  ecological  demand  index  (EDI)  as  a  function  of  Republic  of   Moldova  landscape  form  and  population  characteristics.    (A)  Final  autoregressive   model  showing  standardized  coefficients;  (B)  analytical  results  for  overall   significance  of  final  spatial  model..................................................................................................121   Table  10.  Results  of  stepwise  multiple  regression  (ordinary  least  squares)  model   for  mean  household  sustainability  demand  index  (SDI)  as  a  function  of  Republic  of   Moldova  landscape  form  and  population  characteristics.    (A)  Final  regression  model   showing  standardized  coefficients;  (B)  analysis  of  variance  (ANOVA)  for  overall   significance  model................................................................................................................................127      

 

xii  

Table  11.  Results  of  conditional  autoregression  (CAR)  multiple  regression  model   for  mean  household  sustainability  demand  index  (SDI)  as  a  function  of  Republic  of   Moldova  landscape  form  and  population  characteristics.    (A)  Final  autoregressive   model  showing  standardized  coefficients;  (B)  analytical  results  for  overall   significance  of  final  spatial  model..................................................................................................132    

                                         

xiii  

ACKNOWLEDGEMENTS       This  dissertation  has  been  supported  by:  The  University  of  Wisconsin-­‐ Milwaukee  Graduate  School,  The  University  of  Wisconsin-­‐Milwaukee  Geography   Department,  and  the  United  States  Department  of  State  through  a  J.  William   Fulbright  Fellowship.        

    I  would  like  to  thank  my  advisory  committee:  Dr.  Christopher  A.  De  Sousa,  Dr.   Timothy  J.  Ehlinger,  Dr.  Changshan  Wu,  Dr.  Glen  G.  Fredlund,  and  Dr.  Woonsup  Choi   for  their  continued  support.    Furthermore,  I  would  like  to  thank  Dr.  Ghennadie   Sirodoev  and  Dr.  Igor  Sirodoev  from  the  Institute  of  Ecology  and  Geography,   Academy  of  Sciences  of  Moldova  for  their  patronage  and  expertise  during  my  time  in   the  Republic  of  Moldova.    This  international  research  would  not  have  been  made   possible  without  the  additional  resources  provided  by  the  Institute  of  Ecology  and   Geography,  Academy  of  Sciences  of  Moldova.    The  findings  and  conclusions  within   this  dissertation  research  are  those  of  the  author  and  not  to  reflect  on  the   supporting  agencies.    It  is  without  question  that  this  dissertation  could  not  have   been  made  possible  without  the  continued  encouragement  and  support  of  all  those   who  have  touched  my  life.    With  all  of  you,  I  share  my  greatest  achievement.  

 

xiv  

 

1  

1.    Introduction     We  live  on  a  planet  with  finite  resources.    Its  ability  to  support  a  thriving   diversity  of  species,  including  humans,  is  large  but  fundamentally  limited  (WWF   2008).    As  we  embark  though  the  beginning  stages  of  the  21st  century,  it  is   imperative  that  we  come  to  terms  with  the  effects  that  the  expansionist  worldview  is   having  on  the  Earth.    As  the  dominant  social  paradigm,  it  views  humans  as  cure-­‐all   capable  (Rees  1995).    Ultimately,  this  worldview  concludes  that  new  technologies   and  human  ingenuity  will  improve  human  life  and  planet  conditions  (Simon  1995).     However,  due  to  the  size  and  complexity  of  the  Earth,  the  spatial  and  temporal   effects  of  the  expansionist  worldview  are  seldom  seen  in  a  human  lifetime.    Because   of  this  mechanism,  it  makes  it  possible  for  humanity  to  “tune  out  long-­‐term  trends   over  which  (we)  have  no  control”  (White  1994)  and  let  our  preferences  guide  our   decisions,  rather  than  facts  (Jones  1996).    Despite  the  instinctual  strengths  of  the   expansionist  worldview,  an  alternative  ecological  worldview  has  emerged.    This   perspective  suggests  that  there  are  limits  to  the  ability  of  the  planet  to  support   humanity;  albeit,  that  human  activity  must  be  tempered  to  their  long-­‐term  effects  on   natural  resources  and  related  services  (Costanza  1989;  Rees  1995;  Wackernagel   and  Rees  1996).    That  if  we  are  to  avoid  self-­‐destruction,  human  behavior  and  use  of   our  planet  needs  to  be  changed  immediately  (Ehrlich  and  Ehrlich  1992).    The   ecological  worldview  recognizes  that  unconstrained  consumption  of  limited   resources  will  ultimately  lead  to  Garrett  Hardin’s  (1968)  “tragedy  of  the  commons”   and  social  chaos  (Ruckelshaus  1989).  

2  

  The  current  integrity  of  the  planet  is  being  stressed  beyond  its  biological   capacity.    The  Living  Planet  Index  (LPI)  of  global  biodiversity  has  declined  by   roughly  30  percent  since  the  1970s,  showing  a  loss  of  total  vertebrate  species   throughout  the  world  (WWF  2008).    In  1998  the  global  population  exceeded  the   Earth’s  carrying  capacity.    Carrying  capacity  is  the  largest  number  of  any  given   species  (in  this  case,  humankind)  that  a  habitat  (in  this  case,  earth)  can  support  

indefinitely  (Keiner  2004).    Humanity’s  demands,  measured  by  Ecological  Footprint   (EF),  now  exceed  the  planet’s  natural  regenerative  capacity  by  roughly  a  30  percent   overshoot;  furthermore,  it  has  been  projected  that  humanity  will  require  the   biocapacity  equal  to  two  planet  Earths  by  the  2030s  (WWF  2008).    Anthropogenic   stressors  are  projected  to  continue  to  increase  as  global  population  increases.    It  has   been  estimated  that  the  global  population  will  range  between  9  –  13  billion  by  2050   (United  Nations  2005).             We  are  now  reaching  a  landmark  in  human  history.    Until  recently,  more   people  have  lived  in  rural  areas  than  urban  areas  (Crane  and  Kinzig  2005;  UNEP   2005).    In  1900,  the  population  of  cities  worldwide  was  only  224  million  people;  by   1999,  urban  population  had  increased  to  2.9  billion  (UNPD  1999).    Scientists  have   stated  that  urban  populations  are  going  to  continue  to  increase  (Figure  1).    A  study   by  the  United  Nations  showed  that  global  urban  population  rose  from  29%  in  1950   to  49%  in  2000  (United  Nations  2005).    It  has  been  projected  by  2030  that  81%  of   Europeans  and  85%  of  North  Americans  will  live  in  urban  settings  (UNDP  2001).     Overall,  it  has  been  projected  that  developed  countries  urban  population  will  total   roughly  84%  by  2030  (UNDP  1999).    It  has  been  projected  that  by  2030  developing  

3  

  countries  urban  population  will  increase  by  20%;  albeit,  suggesting  that  80%  of   global  growth  of  urban  population  will  take  place  in  poorer  countries  from  2000  to   2030  (UNPD  2005).    According  to  a  United  Nations  Population  Division  report   (2001),  by  the  year  2015  there  will  be  58  cities  with  more  than  five  million  in   population,  that  number  up  from  39  in  2000,  and  foresee  27  so-­‐called  ‘Maga-­‐Cities’  

with  more  than  10  million  inhabitants.    The  amount  of  urban  occupied  land  area  on   Earth  is  projected  to  increase  from  0.3%  in  2000  to  0.9%  by  2030  (UNPD  1999).    

 

 

Fig.  1.  Global  urban  and  rural  population  trend,  1950-­‐2030  (From  United  Nations  2005).  

    As  the  world  becomes  more  and  more  urbanized,  it  is  imperative  that  there   becomes  better  understanding  of  the  systems  underway.    The  structure,  function,   and  dynamics  of  contemporary  ecosystems  are  profoundly  influenced  by  human  

4  

  activities  (Alberti  2005),  and  understanding  the  mechanisms  responsible  for   environmental  changes  requires  the  integration  of  both  natural  and  human   processes.    Pervasive  social,  economic,  and  ecological  changes  have  occurred  as  a   result  of  human  activities  (Alberti  2005).    A  change  in  land  cover  through  the   appropriation  of  natural  landscapes  to  provide  for  human  needs  is  one  of  the  most   pervasive  alterations  resulting  from  human  activity  (Vitousek  1994).    Specifically,  

the  transition  from  the  natural/native  landscapes  to  urban  landscapes  is  having  the   greatest  impact  on  earth.    Ecologically,  urbanization  alters  environmental  integrity   through  a  range  of  processes  including:  fragmenting  landscapes,  isolating  habitat   patches,  simplifying  biodiversity,  degrading  natural  habitats,  modifying  landforms   and  drainage  networks,  introducing  exotic  species,  controlling  and  modifying   disturbances  (e.g.,  floods,  forest  fires),  and  disrupting  energy  flow  and  nutrient   cycling  (Picket  et  al.  2000;  Alberti  et  al.  2003;  Alberti  2005).    The  EPA  (2001)   concluded  in  Our  Built  and  Natural  Environments  that  the  urban  form  directly  affects   habitat,  ecosystems,  endangered  species,  and  water  quality  through  land   consumption,  habitat  fragmentation,  and  replacement  of  natural  cover  with   impervious  surfaces.    The  synergy  effects  of  future  urbanization  are  not  completely   understood;  however,  it  has  been  stated  that  urbanization  will  continue  to   metabolizing  landscapes  surrounding  existing  cities  (Daniels  1999;  Theobald  2002;   Crump  2003).       Paralleling  global  urban  expansion,  there  is  a  necessity  for  a  sustainable   transition  toward  a  stable  human  population  with  an  increase  in  living  standards   and  the  establishment  of  long-­‐term  balance  between  human  development  needs  and  

5  

  the  planet’s  environmental  limits  (NRC  1999;  Kates  et  al.  2001;  Clark  and  Dickson   2003;  Parris  and  Kates  2003).    Besides  the  environmental  ramifications  of   urbanization,  a  major  challenge  worldwide  is  to  understand  how  changes  in  social  

organization  and  dynamics  will  impact  the  interactions  between  nature  and  society   (NRC  2001;  Kates  et  al.  2001;  Clark  and  Dickson  2003).  Close  to  a  billion  people   currently  live  in  “extreme  economic  poverty”  (less  than  1  US  dollar  a  day),  and  lack   access  to  essential  natural  resources  to  meet  basic  needs  (World  Bank  2008).    The   present  worldwide  trend  toward  urbanization  is  intimately  related  to  economic   development  and  to  profound  changes  in  social  organization,  land  use,  and  patterns   of  human  behavior  (UNMP  2004;  Crane  and  Kinzig  2005).    It  has  been  stated  that   economic  growth  is  now  increasing  the  world’s  environmental  burdens  much  faster   than  population  growth  (Hughes  and  Johnston  2005).   To  combat  the  problems  associated  with  human  population  growth,  and  its   affects  on  global  evolution,  a  paradigm  of  international  awareness  was  started  in  the   1940s.    The  inequalities  of  the  world  were  exposed  and  became  internationally   known  during  World  War  II.    After  the  end  of  World  War  II,  President  Harry  S.   Truman  (1949)  laid  the  foundations  of  international  development  with  goals  of   alleviating  poverty,  reducing  disparity,  and  improving  the  global  standard  of  living.     Internationally,  the  United  Nations  Educational,  Scientific,  and  Cultural  Organization   (UNESCO)  started  the  ecologically  sustainable  development  (SD)  discussion  at  the   1968  International  Conference  for  Rational  Use  and  Conservation  of  the  Biosphere.     In  1972,  at  the  United  Nations  Conference  on  the  Human  Environment  (UNCHE  or   Stockholm  Conference),  the  United  Nations  Environmental  Program  (UNEP)  stated  

6  

  its  mission:  “To  provide  leadership  and  encourage  partnership  in  caring  for  the  

environment  by  inspiring  information,  and  enabling  nations  and  people  to  improve   their  quality  of  life  without  compromising  that  of  the  future  generations”.    In  1983,   the  World  Commission  on  Environment  and  Development  (WCED)  or  (Brundtland   Commission)  was  created  by  UN-­‐mandate  to  develop  a  long-­‐term  environmental   strategy  for  achieving  SD  for  the  years  2000  and  beyond.    In  1987,  the  WCED   responded  to  an  emerging  global  awareness  of  social,  economic,  and  environmental   inequalities  with  the  report  Our  Common  Future  (WCED  1987).      In  this  report,  the   WCED  expressed  the  importance  of  development  that  “extends  to  all  the   opportunity  to  fulfill  their  aspirations  for  a  better  life.”    They  went  on  to  emphasize   that  the  development  must  be  “within  the  bounds  of  the  world’s  ecological  means”.     Ultimately,  the  Commission  called  for  SD  “that  meets  the  needs  of  the  present   without  compromising  the  ability  of  future  generations  to  meet  their  own  needs”   (WCED  1987).    In  1992,  an  action  plan,  called  Agenda  21,  for  SD  was  initiated  at  the   Rio  De  Janeiro  Earth  Summit  (World  Summit  on  Environment  and  Development)  to   balance  the  needs  and  aspirations  of  people  with  the  health  of  ecosystems  and   overall  integrity  of  the  Earth  (United  Nations  1992).    It  was  at  the  Rio  Earth  Summit,   that  SD  was  embraced  as  an  important  goal  worldwide.    The  UN  Millennium   Development  Goals  were  adapted  (2000),  and  reiterated  at  the  SD  summit  in   Johannesburg  (2002),  for  all  countries  to  integrate  the  principles  of  SD  into  national   policies  and  programs  (UNDSD  2002).           Although  SD  has  become  a  priority  for  many  countries  throughout  the  world,   there  remains  a  need  for  better  clarification  and  examples  of  practical  applications.    

7  

  In  The  Future  of  Sustainability,  Marco  Keiner  (2006)  states  that  the  challenges  for  

improving  the  world  now  lie  in  operationalizing  SD.    Evidence  suggests  that  SD  has  a   lack  of  applied  usefulness  because  of  its  all-­‐encompassing  theoretical  vagueness   (Voss  1997).    There  is  a  paradox  within  the  term-­‐  sustainable  growth  implies   increase  endlessly-­‐  which  is  not  possible  on  a  planet  with  a  finite  amount  of   resources  (Bartlett  2006).    Additionally,  growth  has  been  used  synonymously  with   development  in  context  to  urbanization  and  economic  prosperity  (Keiner  2006).    To   support  the  need  for  better  clarification,  Dobson  (1996)  found  roughly  300   documented  definitions  for  sustainability  and  SD.      Some  believe  that  achieving  a   common  understanding  of  SD  is  more  remote  than  ever  (Jickling  2000).    According   to  Grober  (2007)  “It  has,  some  critics  say,  the  smell  and  flexibility  of  plastics  and   feels  like  something  thoroughly  artificial.”    It  has  been  suggested  that  SD  is  too   subjective  and  ultimately  unreasonable  for  humans  to  achieve  (Kemp  and  Martens   2007).     In  order  to  better  understand  the  usefulness  and  applicability  of  SD,  this   research  is  organized  into  three  main  stages.      The  first  stage  of  this  research  is  to   critically  review  information  on  composite  indices  of  SD,  and  then  to  develop  two   composite  indices  of  SD  at  the  household  scale  for  local  spatial  assessment.    It  is   imperative  to  have  a  concise  understanding  of  the  usefulness,  needs,  and   applicability  of  current  SD  indicators  if  they  are  to  be  implemented  and  used   properly.      The  second  stage  of  this  research  is  to  give  examples  of  how  SD  can  be   operationalized  for  an  applied  practical  purpose  (in  this  case,  regional  planning).     This  step  in  the  research  required  the  collection  and  analysis  of  landscape  form  and  

8  

 

urban  design  factors,  household  community  information,  and  property  composition   parameters  for  spatial  analysis  at  the  landscape  level.    Without  a  sound  example  of   how  to  use  SD  for  a  practical  purpose,  people  will  continue  to  be  confused  on  its   usefulness  and  reluctant  to  move  theory  into  practice.    The  third  and  final  stage  of   this  research  will  investigate  the  achievability  of  SD.    This  concluding  phase  of  the   research  explores  the  relationships  between-­‐  sustainable  urbanization  and   landscape  form-­‐  and  human  behavior,  and  the  next  steps  that  need  to  be  taken  to   continue  this  research  paradigm.   2.    Background   2.1.  Sustainability  and  sustainable  development   During  the  1987  World  Commission  on  Environment  and  Development   (WCED),  the  Brundtland  Commission’s  report,  Our  Common  Future,  stated  that   global  population  had  surpassed  its  ecological  carrying  capacity.    To  bring  attention   to  this,  and  other  issues,  the  UN  General  Assembly  recognized  that  environmental   problems  were  global  in  nature,  had  economic  and  social  relationships,  and  should   be  taken  into  account  when  establishing  policies  (WCED  1987).    Within  the   Brundtland  Commission’s  report,  the  most  popularly  used  definition  of  ‘sustainable   development’  was  coined.    The  Brundtland  Commission’s  definition  of  sustainable   development  (SD)  reads  as  follows:  “Sustainable  development  is  development  that   meets  the  needs  of  the  present  without  compromising  the  ability  of  future   generations  to  meet  their  own  needs”  (WCED  1987).    The  new  buzz  word:   ‘sustainable  development’  was  later  brought  onto  the  global  stage  at  the  1992  ‘Earth   Summit’  in  Rio  de  Janeiro  when  trying  to  establish  a  balance  between  the  use  and  

9  

 

preservation  of  nature’s  potentials  and  resources  (United  Nations  1992).    However,   before  the  Brundtland  Commission  report  and  the  ‘Earth  Summit’,  the  conceptual   roots  of  SD  were  long  established.       The  roots  of  SD  can  be  traced  back  to  the  era  of  early  ‘European   Enlightenment’  (Grober  2007).    In  the  16th  century,  many  of  the  established  nations   were  using  their  woodlands  to  build  ships  to  support  their  imperialist  and   colonialist  needs.    Soon  it  was  noticed  that  woodlands  were  diminishing  and  the   future  of  their  nations  were  at  stake.    To  combat  the  diminishing  lumber  supply,  and   to  assure  England’s  economic  prosperity,  John  Evelyn  dedicated  his  time  to  creating   a  forestry  manual  called:  Sylva  (1664).    Within  this  manual,  the  foundations  of   sylvaculture  were  established.    Sylvaculture  is  the  practice  of  tree  farming  for   cultivation  purposes.    From  Evelyn  (1664)  work,  the  German  nobleman  Hanns  Carl   von  Carlowitz  developed  the  concept  of  ‘nachhaltigkeit’  or  ‘sustainable  yield’  in  his   work  call:  Sylvicultura  Oeconomica  (1713);  making  its  debut  into  print  more  than   250  years  before  the  Brundtland  Commission’s  report,  Our  Common  Future.    By  the   middle  of  the  18th  century,  the  concept  and  usage  of  ‘sustainable  yield’  was  being   applied  in  other  context.    In  Moser  (1757)  work,  “eine  nachhaltige  wirtshcaft”  the   concept  was  used  to  explain  a  sustainable  economy  in  context  to  mining  and  the   timber  industry.    Alexander  von  Humboldt  made  an  early  definition  of  ‘sustainable   yield’  popular  in  1792.    von  Humboldt  (1792),  considered  ‘sustainable  yield’:  “A   steady  and  safe  husbandry  aiming  at  the  balance  between  offspring  and  annual   consumption”.  

10  

       

As  Europe  was  applying  the  conceptual  roots  of  SD  to  almost  all  natural  

resources,  the  United  States  resources  were  being  consumed  at  an  astounding  rate.     In  Pinchot’s  (1998)  historical  work,  timber  and  other  resources  in  the  United  States   were  considered  a  virtue  and  were  consumed  without  any  management  until  the   early  1900s.      According  to  Pinchot  (1998)  “Until  1905,  not  a  single  acre  of   timberland  was  under  systematic  forest  management.”    In  1901,  Franklin  D.   Roosevelt  sent  a  letter  to  Congress  strongly  commending  the  plan  for  a  national   forest  reserve  in  the  Southern  Application  region  (New  York  Times  1901).    Due  to   this  and  other  forest  management  success,  Roosevelt  published  a  book  entitled:  The   Use  of  National  Forest  Reserves  in  1905.    In  this  book,  he  stated  that:  “The  prime   objective  of  the  forest  reserves  is  wise  use.”    While  the  forest  and  its  dependent   interests  must  be  made  permanent  and  safe  by  preventing  overcutting  or  injury  to   young  growth,  every  reasonable  effort  will  be  made  to  satisfy  legitimate  demands”   (Roosevelt  1905).    By  the  1930s  Franklin  D.  Roosevelt  was  using  the  conceptual   framework  of  ‘sustainable  yield’  to  support  his  ‘New  Deal’  plan;  combat  the  so  called   ‘Dustbowl’  and  employ  millions  through  the  Civilian  Conservation  Corp  (CCC)  to   restore  nature  and  stimulate  local  economy.    By  the  1960s  and  1970s,  there  were   environmentalist,  such  as  Rachel  Carson  and  Aldo  Leopold,  using  the  conceptual   roots  and  practicality  of  ‘sustainable  yield’  in  their  work.    “We  abuse  land  because   we  regard  it  as  a  commodity  belonging  to  us.    When  we  see  the  land  as  a  community   to  which  we  belong,  we  may  begin  to  use  it  with  love  and  respect”  (Leopold  1970).     Based  on  communal  efforts,  one  of  the  largest  historical  sustainability  hallmarks  for  

11  

  the  United  States  came  with  the  conception  of  the  ‘National  Environmental  Policy   Act  of  1969’  (USEPA  1970).              

Internationally,  after  the  end  of  World  War  II,  Truman  (1949)  laid  the  

foundations  of  international  development  with  goals  of  alleviating  poverty,  reducing   inequality,  and  improving  the  global  standard  of  living.    By  the  late  1960s,  the   concepts  of  ‘sustainability’  and  ‘sustainable  development’  were  being  proposed  and   suggested  in  international  conventions.    In  1968,  at  the  International  Conference  for   Rational  Use  and  Conservation  of  the  Biosphere,  the  United  Nations  Educational,   Scientific,  and  Cultural  Organization  (UNESCO)  started  the  ecological  sustainable   discussion.    In  1972,  at  the  United  Nations  Conference  on  the  Human  Environment   (UNCHE),  the  United  Nations  Environmental  Program  (UNEP)  proclaimed  “to   provide  leadership  and  encourage  partnership  in  caring  for  the  environment  by   inspiring,  informing,  and  enabling  nations  and  people  to  improve  their  quality  of  life   without  compromising  that  of  the  future  generations”.    In  1983,  at  the  World   Commission  on  Environment  and  Development,  the  Brundtland  Commission  set  a   goal  to:  develop  a  long-­‐term  environmental  strategy  for  achieving  SD  by  the  year   2000  and  beyond.    In  1984,  during  the  International  Conference  on  Environment   and  Economics,  it  was  concluded  that  environment  and  economics  should  be   mutually  reinforced.    In  1987,  the  Brundtland  Commission’s  report,  Our  Common   Future,  define  the  ‘sustainable  development’  and  re-­‐popularized  its  conceptual   roots.    In  1992,  at  the  United  Nation’s  Conference  on  Environment  and   Development,  SD  was  established  as  a  common  goal  for  the  160+  countries  that   attended.    In  1994,  at  the  International  Conference  on  Population  and  Development,  

12  

  it  was  stated  that:  extreme  poverty  and  environmental  resource  shortages  can   exacerbate  ethnic  and  political  divisions  globally.    In  2000,  the  eight  Millennium  

Development  Goals  were  established  for  reducing  poverty  and  improving  live  at  the   Millennium  Summit  (UNMS  2000).  In  2002,  at  the  World  Summit  on  Sustainable   Development,  the  Johannesburg  Plan  of  implementation  of  Agenda  21  though   public/private  partnerships  for  SD  was  created.         Even  though  the  term  ‘sustainable  development’  has  very  applied  roots,  it   has  lost  a  lot  of  its  applicability  due  to  discrepancy  of  its  meaning  and  overuse  of  the   term.    In  1996,  there  were  over  300  documented  definitions  for  sustainability  and   sustainable  development  (Dobson  1996).    Voss  (1997)  said  that  there  is  a  vague   substance  of  the  term  sustainability  itself,  which  leaves  much  room  for   interpretation.    One  such  problem  is  with  development  being  used  synonymously   with  urbanization  and  economic  prosperity  (Keiner  2006).    Another  common   discrepancy  is  when  SD  is  confused  with  sustainable  growth.    Sustainable  growth   implies  to  increase  endlessly,  which  is  not  possible  on  a  planet  with  a  finite  size  of   resources  (Bartlett  2006).    Some  people  believe  that  achieving  a  common   understanding  of  SD  is  more  remote  than  ever  (Jickling  2000).       Within  ‘sustainable  development’  there  is  a  debate  between  two  opposing   groups:  the  ‘ecological’  and  ‘expansionist’  worldviews.    The  ‘ecological  worldview’  is   to  avoid  self-­‐destruction;  that  human  behavior  and  use  of  our  planet  needs  to  be   changed  immediately  (Ehrlich  and  Ehrlich  1992).    The  ‘expansionist  worldview’   believes  that  new  technologies  will  improve  human  life  and  planet  conditions   exponentially  through  time  (Simon  1995).    Glasby  (2002)  argues  that  only  a  massive  

13  

 

decrease  in  world  population  and  resource  use  would  permit  long-­‐term  occupancy   of  the  earth.    Further,  it  has  been  stated  by  Hughes  and  Johnston  (2005)  “Economic   growth  is  now  increasing  the  world’s  environmental  burdens  much  faster  that   population  growth.”       With  world  environmental  issues  being  magnified,  and  globalization  affecting   economies  and  societies  at  astounding  rates,  implementation  of  SD  is  needed  now   more  then  ever.    However,  according  to  Hales  and  Prescott  (2002)  “making  progress   toward  sustainability  is  like  going  to  a  destination  we  have  never  visited  before,   equipped  with  a  sense  of  geography  and  the  principles  of  navigation,  but  without  a   map  or  compass.”    It  has  been  noted  that  the  challenges  of  SD  now  lie  in  its   operationalization  (Keiner  2006).    Albeit,  to  have  “implementation  of  initiatives  that   do  not  merely  pay  lip-­‐service  to  the  words,  but  actively  do  justice  to  the  original   concept”  (Campbell  2000).   2.2.  Measuring  sustainable  development   “A  concerted  effort  to  enhance  habitability  of  our  planet  is  unlikely  to   succeed  unless  we  know  ‘where  we  are’  and  ‘where  we  want  to  go’”  (Thomas  1972).     Since  the  industrial  revolution  of  the  18th  and  19th  centuries,  due  to  increasing   anthropogenic  stressors,  there  has  been  a  greater  push  to  monitor  the  environment   in  which  we  live  (Harris  and  Browning  2005).    By  the  early  1970s,  environmental   indicators  were  starting  to  gain  popularity.    In  the  United  States,  through  the   formation  of  the  President’s  Council  on  Environmental  Quality,  indicators  were  in   demand  to  measure  progress  towards  environmental  goals  and  pollution  control   targets  (Rogers  et  al.  1997).    The  foundations  of  indicator  development  can  be  

14  

  linked  back  to  Herbert  Inhaber’s  (1976)  work:  Environmental  Indices  and  Wayne   Ott’s  (1978)  work  Environmental  Indices:  Theory  and  Practice.    After  a  lull  in   indicator  research  through  the  early  1980s,  a  renaissance  came  after  their  

applicability  became  apparent  at  the  UNCED  meeting  and  Agenda  21  (Rogers  et  al.   1997).             An  indicator  is  a  single  value  from  a  single  measure  of  quantity;  whereas,  an   index  is  the  combination  or  aggregation  of  more  than  one  single  indicator  or  single   value  (Ott  1978;  WRI  1992).    According  to  Rogers  et  al.  (2008)  the  World  Bank   describes  an  indicator  as  “a  performance  measure  that  aggregates  information  into   a  usable  form.”    Indicators  are  formed  by  observed  or  estimated  data  (OECD  2002).     Indicators  are  quantitative  measures  and  only  generic  definitions  of  quality  are   used,  making  it  very  difficult  to  make  accurate  decisions  at  the  margins  (Rogers  et   al.  2008).   The  environment  in  which  we  live  is  multidimensional-­‐  influenced  by  many   different  economic,  social,  and  environmental  phenomenon  (Pezzoli  1997;  Cabezas   et  al.  2003;  Mayer  et  al.  2004).  By  accepting  the  sustainability  challenge,  countries   have  accepted  the  need  for  indicators  as  a  measuring  tool  for  SD  (Moran  et  al.  2008).     Sustainability  and  SD  indices  have  been  developed  specifically  to  help  policy-­‐makers   make  their  decisions  (Mayer  2008).    According  to  the  United  Nations  (1992)   “Indicators  of  sustainable  development  need  to  be  developed  to  provide  solid  bases   for  decision-­‐making  at  all  levels  and  to  contribute  to  a  self-­‐regulating  sustainability   of  integrated  environment  and  development  systems.”    Sets  of  sustainability   indicators,  and  manipulation  of  these  indicators  into  indices,  are  increasingly  used  

15  

  to  make  policy  decisions  (Oras  2005;  Hezri  and  Dovers  2006),  and  it  is  critical  to  

understand  strengths,  weaknesses,  scale-­‐dependence,  etc.  when  using  them  (Parris   and  Kates  2003;  Morse  and  Fraser  2005;  Ness  et  al.  2007).       Hundreds  of  different  indices  have  been  suggested  and  more  are  under   development  by  a  growing  number  of  institutions  (see  Tschirley  1997).    The   International  Institute  of  Sustainable  Development  (IISDnet)  compiled  a  list  of  SD   indicators  in  1995.    However,  it  has  been  stated,  that  the  results  are  “voluminous”   and  “not  very  well  focused”  (Rogers  et  al.  2008).    The  UN  Department  of  Economic   and  Social  Affairs-­‐  Division  for  Sustainable  Development-­‐  finalized  a  list  of  96   indicators,  including  a  subset  of  50  core  indicators,  in  their  report:  Indicators  of   Sustainable  Development:  Guidelines  and  Methodologies  (2007)  to  be  used  as  a   reference  for  countries.    It  has  been  said,  that  over  140  different  indicators  have   been  proposed  for  the  OECD  countries  (Moffatt  2008).             In  the  large  and  growing  SD  literature  there  are  two  views  on  measurement:   weak  measures  and  strong  measures  (Moffatt  2008).    With  strong  sustainability,   measures  assume  that  some  ecological  functions  and  resources  cannot  be   substituted  with  technological  or  other  man-­‐made  replacement.    The  strong   measures  are  based  on  the  assumption  that  maintaining  the  planet’s  ecology  is  vital,   and  economic  and  social  activities  have  to  remain  well  within  the  ecological  means   (Moffatt  2008).    With  weak  sustainability,  measures  assume  that  there  can  be   universal  substitution.    The  weak  measures  are  based  from  the  long-­‐standing   tradition  of  neoclassical  economics  (see  Atkinson  and  Pearce  1993;  Pearce  and   Barbier  2000).    Unfortunately,  many  of  the  sustainability  indices  were  created  with  

16  

 

similar  methods  and  from  similar  data  sources  (e.g.,  UN,  WB,).    According  to  Mayer   (2008)  “The  degree  to  which  these  indices  differ  in  their  results  using  the  same  data   is  due  to  their  assumptions,  biases,  and  methodological  disparities,  creating   confusion  for  sustainability  efforts.”    It  has  been  stated  that  SD  indicators  lie  heavy   on  environmental  needs  while  skimping  on  social  and  economic  needs  (Moldan  et   al.  2004;  Moffatt  2008).    Some  of  the  more  common  composite  sustainability  indices   are:  Gross  Domestic  Product  (GDP),  wellbeing  (WB),  happiness  (H),  human   development  index  (HDI),  dashboard  of  sustainability  (SDDSI),  and  Ecological   footprint  (EF)  (OECD  2004;  Wilson  et  al.  2007;  Mayer  2008;  Moffatt  2008;  Rogers  et   at.  2008).   2.3.  Landscape  ecology,  planning,  and  sustainability   A  paradigm  started  by  the  German  biogeographer  Carl  Troll  (1939),   Landscape  Ecology  combines  both  the  spatial  approach  of  the  geographer  and  the   functional  approach  of  the  ecologist  (Naveh  and  Lieberman  1984;  Forman  and   Godron  1986).    The  principles  of  Landscape  Ecology  are  relevant  when  addressing   the  dynamic  makeup  of  the  ever-­‐changing  landscape  that  humans  inhabit.     Landscape  Ecology,  as  defined  by  Richard  T.  T.  Forman,  (1983)  incorporates:  (1)  the   spatial  relationship  among  landscape  elements,  or  ecosystems,  (2)  the  flow  of   energy,  minerals,  nutrients,  and  species  among  the  elements,  and  (3)  the  ecological   dynamics  of  the  landscape  mosaic  through  time.    Today,  Landscape  Ecology  is   considered  to  be  an  interdisciplinary  science  drawing  from  a  variety  of  different   disciplines  (i.e.,  anthropology,  architecture,  biology,  ecology,  economics,  geography,   and  forestry).    A  key  component  of  Landscape  Ecology  addresses  anthropogenic  

17  

  effects  on  both  natural  and  built  landscapes;  furthermore,  understanding  that   human  activity  is  a  central  factor  for  shaping  the  environment  (Forman  1995;   Turner  2001).      

In  Landscape  Ecology,  the  patch  is  the  fundamental  element  of  the  landscape.     The  patch,  defined  by  Richard  Forman  (1995),  is  an  area  of  specific  type  (e.g.,   agricultural  land,  woodlot,  waterbody)  that  is  different  than  its  surrounding  types  in   a  landscape.    The  size  and  shape  of  the  patch,  its  proximity  to  other  patches,  and  its   edges  are  particularly  important  patch  characteristics  that  have  significant   ecological  and  environmental  impacts  (Forman  1995;  Turner  et  al.  2001;  Alberti   2005).    The  patch  is  the  primary  component  in  Landscape  Ecology  used  for   developing  the  analytical  metrics  in  a  land  cover  or  land  use  analysis  (McGarigal  and   Marks  1995;  McGarigal  et  al.  2002).    Urban  to  rural  gradients  provides  ecologists   with  an  opportunity  to  examine  the  urbanization  process  as  a  transformation  of   landscape  patterns  and  functions  (Huang  1998;  McGarigal  and  Cushman  2005).    One   approach  is  to  characterize  the  relationships  between  various  arrangements  of   patch  structure  and  ecosystem  functions  (Godron  and  Forman  1982;  Turner  1989;   Forman  1995;  Collinge  1996).    The  use  of  landscape  metrics  for  analyzing  spatial   patterns  has  become  quite  popular,  and  some  effort  has  been  made  to  examine  the   behavior  and  limitations  of  landscape  metrics  for  better  understanding  urbanization   (Turner  1989;  Wu  1998;  Jennerette  and  Wu  2001).       Significant  advances  in  computing,  mathematical  theory,  and  system  analysis   has  occurred  over  the  last  two  decades;  furthermore,  making  progress  in  theory  and   tool  development  for  addressing  the  level  of  complexity  associated  with  

18  

 

sustainability  (Leitão  et  al.  2006).    One  of  the  most  significant  advances  in  Landscape   Ecology  came  through  the  development  of  FRAGSTATS  in  1995.    FRAGSTATS  is   software  developed  for  computing  landscape  metrics  (McGarigal  and  Marks  1995;   McGarigal  et  al.  2002)  and  is  the  tool  of  choice  in  basic  and  applied  ecology   literature  (see  Diaz  1996;  Zorn  and  Upton  1997;  Hargis  et  al.  1998;  Tinker  et  al.   1998;  Tischendorf  2001).    FRAGSTATS  is  utilized  for  several  reasons:  (1)  it  contains   the  most  relevant  landscape  metrics,  (2)  it  supports  distribution  statistics  such  as   median,  mean,  range,  standard  deviation,  etc.,  (3)  it  includes  a  complete  user’s   guide,  (4)  inputs/outputs  are  compatible  with  a  wide  range  of  GIS  software   including  ArcGIS  (ESRI),  and  (5)  it  is  available  online  as  freeware  through  the   University  of  Massachusetts  (Leitão  et  al.  2006).             The  outcomes  of  the  1992  Rio  Earth  Summit  had  a  profound  influence  on  the   development  of  Landscape  Ecology  (Potschin  and  Haines-­‐Young  2006).    The   development  of  new  theory  and  practice  for  sustainable  landscape  planning  are  now   important  focal  points  for  landscape  ecologist  (Vos  and  Meekes  1999;  Tait  and   Morris  2000;  Saunders  and  Briggs  2002;  Antrop  2006;  Blaschke  2006;  Leitão  et  al.   2006;  Potschin  and  Haines-­‐Young  2006).      Despite  numerous  planning,   management,  conservation,  and  restoration  projects  taken  on  by  landscape   ecologists,  to  date  Landscape  Ecology  is  having  limited  impact  on  sustainable  land   use  decision  making  (Naveh  2007).    Despite  the  current  limited  impacts,  some  think   Landscape  Ecology  is  the  perfect  science  for  addressing  the  issues  of  sustainability   and  SD  (Wu  2006;  Naveh  2007).    A  heuristic  model  of  the  interaction  between   Sustainability  Science  and  Landscape  Ecology  can  be  seen  in  (Figure  2).    Landscape  

19  

 

Ecology  and  Sustainability  Science  both  focus  on  the  dynamic  interaction  between   nature  and  society  (Clark  and  Dickson  2003;  Reitan  2005).    According  to  Reitan   (2005)  they  both  involve  “the  cultivation,  integration,  and  application  of  knowledge   about  Earth  systems  gained  especially  from  holistic  and  historical  sciences  (such  as   geology,  ecology,  climatology,  oceanography)  coordinated  with  knowledge  about   human  interrelationships  gained  from  the  social  sciences  and  humanities.”    There   now  lies  a  call  for  action  from  the  science  of  Landscape  Ecology.    If  Landscape   Ecology  is  to  move  forward  as  a  discipline  that  is  relevant  to  contemporary  issues   then  it  must  be  aware  of  the  needs  of  SD  and  respond  accordingly  (Bastian  2001;   Opdam  et  al.  2002;  Wu  and  Hobbs  2002).                                                       Fig.  2.  Hierarchical  and  pluralistic  view  of  landscape  ecology  and  its  relationship  to   sustainability  (from  Wu  2006).  

20  

  Planners  and  planning  academics  have  been  exploring  the  role  of   sustainability  in  planning  theory  and  practice  (Healey  and  Shaw  1994;  Beatley  

1995;  Spain  1995;  Campbell  1996;  McDonald  1996;  Haughton  1999;  Jepson  2001;   Berke  2002;  Godschalk  2004;  Jepson  2004)  and  proposing  and  testing  tools  and   techniques  to  plan  and  build  sustainable  places  (Innes  and  Booher  2000;  Kakee   2002;  Jepson  2003;  Portney  2003).    Despite  a  plethora  of  definitions  and  debates,   and  uncertainty  about  implementation  techniques,  the  field  of  planning  increasingly   is  acknowledging  SD  as  an  influential  concept  (Godschalk  2004;  Jepson  2004).     Planning  needs  to  anticipate  future  conditions-­‐  where  we  want  to  go  and  we   can  go  (Hardi  and  Zdan  1997).    Spatial  planning  is  the  core  discipline  that  steers  the   development  of  our  present  and  future  living  space  through  social,  economic,  and   environmental  structures  (Keiner  2006).    To  be  successful  at  planning,  at  any  scale,   appropriate  methods,  procedures,  and  instruments  are  required  (Keiner  2006);   furthermore,  the  proper  choice  of  indicators  is  essential  for  monitoring  progress   towards  sustainable  spatial  development  (Presscott-­‐Allen  1997;  Bossel  1999).    In   terms  of  ‘sustainable  development,’  the  planning  community  sees  a  need  for   implementation,  but  struggles  at  putting  the  concepts  into  action.    “Along  with  the   questions  ‘should  we?’  or  ‘can  we  implement  sustainable  development?’  more  and   more  the  question  ‘how  can  we  apply  this  concept?’  dominates  the  literature”   (Chifos  2007).    To  date,  there  exist  no  ‘ideal’  planning  instruments  for  achieving   sustainability  neither  on  the  regional  nor  the  local  level  (Keiner  2006).    In  final,   policy  makers  are  now  encouraging  scientists  to  improve  models,  and  develop  new  

21  

 

techniques,  for  the  integration  of  quantitative  and  qualitative  analysis  for  regional   sustainable  development  planning  (Grosskurth  2007).       2.4.  Human  behavior  and  sustainability     The  human-­‐environmental  relationship  is  constantly  evolving.    As  science   and  technology  continue  to  advance,  we  improve  our  abilities  of  reaching   sustainability  and  sustainable  development.    However,  on  the  verge  of  making   sustainable  development  technically  operational,  we  need  to  revisit  if  human   behavior  allows  humanity  to  do  so.    Jepson  (2003)  states  that,  while  communities   are  engaging  in  the  enactment  of  policies  and  techniques  that  are  consistent  with   sustainable  development,  few  show  evidence  of  successfully  integrating  all  three   needs  (environment,  economics,  social)  of  sustainable  development.    If  humanity  is   to  avoid  the  “tragedy  of  the  commons,”  driven  by  traditional  neoclassical  economic   decision-­‐making,  there  will  need  to  be  public/communal  regulation  (Meadows  et  al.   1992).     Revisiting  the  expansionist  and  ecological  worldviews,  it  is  not  too  difficult  to   understand  why  sustainability  and  sustainably  development  is  not  forthcoming.     Each  of  us  carries  some  parts  of  both  the  expansionist  and  ecological  perspectives.     Evidence  for  the  dominant  expansionist  view  can  be  seen  all  around  us  through   consumption  levels,  economic  benefits,  individual  happiness,  and  waste  production   (Barbier  1987;  Daly  1989;  Despotakis  et  al.  1992).    On  the  other  hand,  we  have  seen   an  increase  of  sustainability  “wants”  since  Rachel  Carson’s  (1962)  Silent  Spring  and   the  formation  of  Greenpeace  (1972).  

22  

  To  better  understand  the  interaction  of  sustainability  and  human  behavior   there  will  need  to  be  collaboration  between  different  disciplines  (e.g.,  

environmental  psychology,  education,  geography,  architecture,  social  psychology)   (Stagl  2007;  Gifford  2007).    It  is  imperative  to  understand  how  individuals  think  and   act,  if  we  are  move  closer  to  our  dream  of  operationalizing  sustainability  (Clark  and   Dickson  2003;  Gifford  2007).    Marina  Alberti  et  al.  (2003)  states  that  questions  now   should  address:  “how  do  humans  interacting  with  their  biophysical  environment   generate  emergent  collective  behaviors  (of  humans,  other  species,  and  the  systems   themselves)  in  landscapes?”    It  is  suggested  that  by  understanding  human  cognition   and  behavioral  geography,  sustainable  development  may  be  learned  (Golledge  and   Stimson  1997;  Golledge  2002;  Stagl  2007).    Jickling  (2000)  believes  that   sustainability  is  a  stepping-­‐stone  in  the  evolution  of  human  thinking.    Finally,  by   looking  at  how  humans  behave  within  the  landscape,  we  may  be  able  to  incorporate   those  wants  and  needs  into  sustainable  development  planning  and  policy-­‐making.   3.    Problem  statement   Despite  it  being  over  a  decade  since  Agenda  21  first  called  for  SD  indicators,   there  is  no  consensus  regarding  the  best  approach  for  the  design  and  use  of  SD   indicator  models  (Wilson  et  al.  2007).    As  part  of  the  ongoing  process  of  moving  SD   into  practice  many  research  organizations,  governments,  and  international  agencies   have  created  numerous  sets  of  indicators.      In  1974,  the  Organization  for  Economic   Cooperation  and  Development  (OECD)  pioneered  a  “Core  Set  of  Indicators”  for  SD  at   the  international  level.    Through  time,  other  agencies  (i.e.,  UNEP,  UNDP,  WRI,  WB,   EEA)  created  many  national  and  global  level  indicators  for  measuring  sustainability  

23  

 

and  SD.    Many  of  the  indicators  to  date  fall  under  the  physical/environmental  sphere   of  sustainability  and  still  do  not  address  the  holistic  goal  of  combining  social,   economic  and  environment  into  a  single  index.    Rogers  et  al.  (2008)  explains  this  by   saying:  we  are  good  at  measuring  physical  and  chemical  phenomena,  but  once  we   try  to  rationally  assess  the  biological,  social,  and  cultural  aspects  of  our  world,  we   have  serious  problems.    With  that  said,  I  believe  that  an  applied  geographic  review   of  composite  indices  would  better  inventory  our  current  situation  on  SD  indicators.     By  evaluating  where  we  are-­‐  we  can  move  closer  to  developing  and  improving   composite  indices  that  combine  economic,  social,  and  environmental  phenomenon.     Specifically,  a  geographic  analysis  could  help  explain  scale  limitations  of  indices,  and   other  geographical  phenomenon,  that  the  OECD  (2002),  Mayer  (2008),  and  Ness  et   al.  (2007)  suggested  affect  the  utility  of  indicators  for  decision-­‐making.             Although  some  SD  indicators  can  bridge  across  scale,  most  are  still  being   implemented  at  the  national  and  international  scales  (see  WWF  2008;  WWI  2008;   World  Bank  2008;  UNEP  2008).    It  has  been  stated  that  sustainability  indicators   have  been  embraced  by  researchers  and  policy-­‐makers  at  local,  national,  and   international  scale  (UNCED  1992;  UNCCD  1994;  Bell  and  Morse  2004);  however,   they  are  seldom  used  because  of  a  lack  of  accessibility,  understanding,  and   usefulness  by  people  who  manage  at  the  local  landscape  level  (Innes  and  Booher   2000;  Carruthers  and  Tinning  2003;  Reed  et  al.  2008).    There  is  a  growing  body  of   literature  suggesting  that  a  combination  of  local  knowledge  and  scientific   knowledge  may  empower  local  communities  to  monitor  and  manage  their  local   sustainability  needs  (e.g.,  Folke  et  al.  2002;  Thomas  and  Twyman  2004;  Reed  et  al.  

24  

 

2008).    Although  local  planning  agencies  have  access  to  a  plethora  of  local  data,  they   typically  lack  those  data  and/or  analytical  skills  specific  to  creating  a  composite   indicator  of  SD.    Assuming  that  local  data  for  creating  a  composite  index  of   sustainability  can  be  obtained,  a  remaining  issue  remains  to  its  usefulness.    Chen  at   al.  (2006)  work  showed  the  effectiveness  of  a  composite  indicator  of  SD  for  a   planning  purpose  at  the  province  level  of  China.    Successful  examples  of  SD   indicators  used  at  the  local  and  regional  planning  level  should  provide  the  necessary   framework  for  operationalizing  SD  at  the  landscape  scale.    After  providing  a   localized  example  (landscape  scale)  of  how  an  indicator  of  SD  can  be  utilized,  the   issue  of  if  SD  can  truly  be  obtained  still  remains.    By  providing  a  local  method  for   scoring  SD,  a  means  to  plan  spatially  and  temporally  for  SD  can  be  created.     However,  the  issue  remains  that  even  if  you  provide  a  strategic  plan  for  regional   sustainability,  will  humanity  behave  in  a  sustainable  fashion?    Additionally,  if  you   can  design  a  sustainable  landscape  in  which  humans  are  to  function,  will  they   interact  within  that  landscape  sustainably?    It  has  been  clarified  that  we  should   revisit  learning  processes,  understand  it  further,  and  try  and  incorporate  it  into   sustainable  management  practices  and  planning  institutions  (Stagel  2007).       In  summary,  this  dissertation  research,  through  a  two  article  approach,   provides:  1)  a  better  understanding  of  SD  indicators  through  a  survey  of  composite   SD  indices,  and  the  creation  of  two  multimetric  SD  indices  for  local  spatial   application;  2)  local  (landscape  scale)  methods  and  models  for  operationalizing  SD   for  regional  planning  purposes;  3)  a  better  understanding  on  spatial  models  and   geographic  information  science  (GIScience)  techniques  for  SD;  4)  research  on  

25  

  landscape  design  and  human  behavior  for  investigating  the  feasibility  of  

sustainability;  5)  ultimately,  a  work  that  links  SD  theory  with  an  applied  application.   4.  Assessing  sustainable  development  using  additive  household  community   and  property  composition  indices     4.1.  Abstract   To  date,  there  exist  no  ‘ideal’  instrument  for  achieving  sustainability  neither   on  the  regional  nor  the  local  scale.    This  paper  approaches  this  problem  by   developing  an  assessment  system  for  analyzing  and  evaluating  sustainable   development  (SD)  for  use  at  the  local  scales  of  urban  planning  and  regional   development.    Because  humans  are  the  major  driving  factor  of  global  change,  and   their  behaviors  are  modified  by  the  landscape  in  which  they  exist,  a  holistic   approach  is  applied  at  the  household  scale  using  multi-­‐metric  household  community   and  property  composition  indices  and  additive  construction.    The  purpose  of  this   paper  is  to  express  the  need  for  local  (e.g.,  point  level  or  disaggregated  scale)   measures  of  sustainability  that  capture  the  “triple  bottom  line”  while  remaining   understandable,  analytically  accurate,  and  operationally  uncomplicated.    Two   composite  indices  (Ecological  Demand  Index  (EDI)  and  Sustainability  Demand  Index   (SDI))  are  developed  for  SD  spatial  assessment  in  the  Republic  of  Moldova  using  a   local  demographic  and  health  survey.    Total  sample  size  and  spatial  distribution  was   11,066  households  associated  to  399  geographic  locations  throughout  the  Republic   of  Moldova,  respectively.    To  investigate  the  analytical  robustness  of  EDI  and  SDI,   central  tendency  distribution  of  index  values  and  Pearson  product-­‐moment   correlation  analysis  was  applied.    Preliminary  investigation  suggests  that  this  type   of  methodology  can  provide  the  flexibility  needed  for  producing  straightforward  

26  

  composite  indicators  of  SD  that  can  account  for  specific  local  conditions  and   priorities  with  a  country.    4.2.  Introduction  

Despite  its  complexities,  the  adaption  of  sustainable  development  (SD)  by  the   United  Nations  World  Conference  on  the  Environment  and  Development  (UNCED)   in  Rio  de  Janeiro  (1992)  marked  a  new  era  in  global  awareness.    SD,  defined  by  the   Brundtland  Report,  is  the  equitable  use  of  Earth’s  resources  that  meets  humanities   present  needs  without  compromising  the  ability  of  future  generations  to  meet  their   own  needs  (WCED  1987).    Nearly  all  societies  throughout  the  world  have  now   committed  themselves  to  SD  by  integrating  some  form  of  environmental  quality,   social  equity,  and  economic  welfare  into  their  day-­‐to-­‐day  activities.    As  such,  there  is   strong  political  desire  at  all  spatial  scales  for  the  comprehensive  assessment  of   changes  in  environmental,  social,  and  economic  conditions  for  evaluating  current   status,  measuring  progress,  and  setting  future  SD  goals.   Numerous  studies  have  shown  that  humanities  current  practices  exceed  the   natural  limits  of  the  earth  (WCED  1987;  UNEP  2005;  WWF  2008).    Besides  the   environmental  ramifications  of  human  behaviors,  major  global  challenges  remain   between  social  groups  and  the  interaction  between  societies  and  nature  (Kates  et  al.   2001;  Clark  and  Dickson  2003).    In  example  of  this,  close  to  a  billion  people  live  in   extreme  economic  poverty  (e.g.,  less  than  1  US  dollar  a  day),  and  lack  access  to   essential  natural  resources  to  meet  basic  needs  (Word  Bank  2008).    Unfortunately,   due  to  its  all-­‐encompassing  goals  and  theoretical  vagueness,  SD  has  been  found  to   be  very  difficult  to  measure.    Further,  a  paradox  is  found  within  the  term  SD;  albeit,  

27  

  to  continue  growth  indefinitely  on  a  planet  with  finite  resources  is  impossible   (Bartlett  2006).    With  over  300  working  definitions  for  sustainability  and  SD  

(Dobson  1996),  and  some  definitions  contradicting  each  other  (Goodland  and  Daly   1996),  some  feel  that  achieving  SD  is  more  remote  than  ever  (Jickling  2000).    SD  has   even  been  thought  of  as  being  too  subjective  and  ultimately  unreasonable  for   humans  to  achieve  (Kemp  and  Martens  2007).    Despite  its  flaws,  a  sustainability   concept  is  still  a  seemingly  rational  guide  to  create  a  long-­‐term,  positive  relationship   between  humanity  and  the  planet;  however,  murky  and  conflicting  goals  hamper   our  ability  to  determine  whether  this  relationship  has  been  or  will  be  achieved   (Mayer  et  al.  2004).       The  current  challenges  of  sustainability  development  now  lie  in  its   operationalization  (Keiner  2006).    Efforts  must  be  made  for  the  implementation  of   initiatives  that  do  not  merely  pay  lip-­‐service  to  the  words  but  actively  do  justice  to   its  original  roots  (e.g.,  sustainable  yield)  (Campbell  2001).    As  part  of  this  process,   numerous  researchers  and  governmental  organizations  have  developed  a  plethora   of  indicators  of  SD.    Indicators  and  composite  indicators  are  increasingly  recognized   as  useful  tools  for  policy  making,  because  they  convey  information  on  a  country’s   performance  towards  their  specific  sustainability  goals.    In  Chapter  40  of  Agenda  21   the  need  for  SD  indicators  was  articulated:  “indicators  of  sustainable  development   need  to  be  developed  to  provide  solid  bases  for  decision  making  at  all  levels  and  to   contribute  to  a  self-­‐regulatory  sustainability  of  integrated  environment  and   development  systems”  (UN  1992).    The  main  feature  of  indicators  is  their  ability  to   summarize  complex  information  of  our  dynamic  world  into  manageable  amount  of  

28  

  meaningful  information.    Despite  the  fact  it  has  been  almost  two  decades  since  

Agenda  21  first  called  for  SD  indicators,  there  remains  no  consensus  regarding  the   best  approach  to  their  design  and  use.   Hundreds  of  different  indicators  and  indices  for  measuring  SD  have  been   suggested  (Tschirley  1997),  and  over  140  different  indicators  been  proposed  for  the   Organization  for  Economic  Co-­‐operation  and  Development  (OECD)  countries   (Moffatt  2008).    Unfortunately,  many  of  these  indicators  have  quantitative  flaws  in   their  construction  or  lack  the  ability  for  implementation  at  the  operational  scale  of   local  governments.    Many  indices  differ  significantly  in  their  results  although  they   are  created  using  the  same  input  datasets,  because  of  their  assumptions,  biases,  and   methodological  disparities,  creating  confusion  for  sustainability  efforts  (Mayer   2008).    Furthermore,  current  SD  indicators  have  been  found  to  lie  heavy  on   environmental  needs  while  skimping  on  social  and  economic  needs  (Molden  et  al.   2004;  Moffatt  2008).    Overall,  the  current  status  of  sustainability  indicators  has  been   said  to  be  “voluminous”  and  “not  well  focused”  (Rogers  et  al.  2008).       To  date,  there  exist  no  ‘ideal’  planning  instruments  for  achieving   sustainability  neither  on  the  regional  nor  the  local  level  (Keiner  2006).    Recently,   policy  makers  have  started  to  encourage  scientists  to  improve  models,  and  develop   new  techniques  for  integration  of  quantitative  and  qualitative  analysis  for  local  and   regional  SD  planning  (Grosskurth  2007).    To  be  successful  at  planning  at  any  scale,   appropriate  methods,  procedures,  and  instructions  are  required  (Keiner  2006).     Specifically,  the  proper  choice  of  indicators  is  essential  for  monitoring  progress   towards  sustainable  spatial  development  (Bossel  1999;  Presscott-­‐Allen  2001);  

29  

  however,  understanding  their  strengths,  weaknesses,  scale-­‐dependencies,  data   needs,  etc.  when  employing  them  is  even  more  important  (Parris  and  Kates  2003;   Morse  and  Fraser  2005;  Ness  et  al.  2007).  

This  paper  describes  a  procedure  for  monitoring  SD  using  data  collected  at   the  household  scale.    My  contention  is  that  by  carefully  monitoring  the  household   community  and  their  corresponding  property  composition,  one  can  rapidly  assess   the  sustainability  status  for  local  geographic  areas.    In  short,  carefully  planned   monitoring  and  assessment  can  rapidly  and  relatively  inexpensively  serve  as  an   exploratory  assessment  of  local  SD  quality  that  could  be  used  in  a  variety  of   planning  objectives  in  line  with  a  country’s  specific  local  conditions  and  priorities.     Where  impaired  locations  of  sustainability  are  suggested  by  household  monitoring,   a  more  detailed  assessment  program  can  be  implemented  in  search  of  causative   agent(s)  for  remediation.   4.3.  Sustainable  development  assessment  and  monitoring   Due  to  growing  environmental  awareness,  by  the  early  1970s  environmental   measuring  tools  were  starting  to  gain  popularity.    According  to  Thomas  (1972)  “A   concerted  effort  to  enhance  habitability  of  our  planet  is  unlikely  to  succeed  unless   we  know  where  we  are  and  where  we  want  to  go.”    In  response  to  measuring   progress  towards  environmental  goals  and  pollution  control  targets,  the   foundations  of  indicator  development  can  be  linked  back  to  Herbert  Inhaber’s   (1976)  Environmental  Indices  and  Wayne  Ott’s  (1978)  Environmental  Indices:  Theory   and  Practice.    Although  a  lull  in  indicator  research  occurred  through  the  1980s,  a  

30  

 

renaissance  came  after  their  applicability  became  apparent  for  measuring  progress   towards  SD  at  the  (UNCED)  in  Rio  de  Janeiro  (1992)  (Rogers  et  al.  1997).   An  indicator  is  a  single  value  from  a  single  measure  of  quantity;  whereas  an   index  is  the  combination  or  aggregation  of  more  than  one  single  indicator  or  single   value  (Ott  1978).    The  World  Bank  (2008)  describes  an  indicator  as  “a  performance   measure  that  aggregates  information  into  a  usable  form”.    Formed  by  observed  or   estimated  data,  indicators  are  quantitative  measures  that  only  use  generic   definitions  of  quality  making  it  very  difficult  to  make  accurate  decisions  at  the   margins  (Rogers  et  al.  2008).    Sustainability  indicators  are  increasingly  recognized   as  useful  tools  for  policy  making  and  public  communication  of  otherwise  complex   and  complicated  information  (Singh  et  al.  2009).    Although  there  remains  debate  on   its  theoretical  design,  we  now  see  sustainability  moving  from  an  abstract  concept  to   a  measurable  state  of  dynamic  human-­‐environmental  systems  (Mayer  2008).             For  practical  purposes,  the  variety  of  SD  indicators  poses  a  huge  problem  for   policy  makers  and  scientists  alike.    Although  there  are  a  number  of  initiatives  for   compiling  and  understanding  SD  measures,  there  remains  no  subset  of  key  variables   for  measuring  sustainability  at  neither  global  nor  local  scales  (Keiner  2006).    At  the   global  scale,  studies  have  demonstrated  that  sustainability  indicators  do  not  rank   countries  consistently  (Mayer  2008),  and  there  is  a  lack  of  clear  direction  in  how  to   best  approach  measuring  SD  (Wilson  2007).    At  the  local  scale  there  remain  even   fewer  active  SD  indicator  initiatives.    A  main  reason  for  the  lack  of  local  SD  measures   is  due  to  the  established,  or  accepted,  sustainability  indicator  data  requirements;   albeit,  many  of  the  popular  SD  indicators  can  only  be  calculated  at  the  country  scale  

31  

  and  are  not  transformable  to  local  scales.    Until  there  is  clear  analytical   understanding  of  how  data  are  collected,  aggregated,  classified,  and  weighted,  SD  

indicators  risk  being  ineffective  or  even  counterproductive.    It  is  an  underlying  goal   of  the  author,  through  this  paper,  not  to  create  more  indicators  but  to  develop  a   flexible  and  transferable  method  for  measuring  SD  at  the  local  scale  that  can  fit  in-­‐ line  with  a  country’s  specific  local  conditions,  needs,  and  priorities.         4.3.1.  Survey  of  common  sustainability  indices   Since  Agenda  21,  a  plethora  of  different  measures  of  development  have   emerged  to  calculate  the  sustainability  of  locations.    Of  that  suite,  ten  common   indices  widely  used  for  assessing  SD  are  briefly  summarized  in  this  section.   4.3.1.1.  Gross  domestic  product  (GDP)   Gross  Domestic  Product  (GDP)  is  one  of  the  most  well  known  indicators  for   measuring  sustainability  at  the  global  scale  (Shaker  2010a).    GDP  represents  a   metric  where  economic  growth  is  considered  the  ultimate  driver  of  SD  (Beckermann   1992;  CEC  2001;  OECD  2001).    The  neo-­‐liberal  economic  stance  implies  that  strong   economic  growth  is  the  best  development  strategy  to  improve  environmental  health   (Economist  2000).    GDP  is  calculated  from  the  addition  of  private  consumption,   gross  investment,  governmental  spending,  and  exports  minus  imports.    Due  to  the   scale  of  input  data  aggregation  and  how  imports  and  exports  are  measured,  GDP  is   seldom  operationalized  at  scales  other  than  the  national  level.   4.3.1.2.  Human  development  index  (HDI)   The  Human  Development  Index  (HDI)  is  currently  the  most  popular  scientific   based  indicator  for  measuring  SD  (Shaker  2010a).    HDI,  the  product  of  a  noble  prize  

32  

 

associated  with  SD,  has  been  reported  annually  as  part  of  the  Human  Development   Report  of  the  United  Nations  Development  Programme  (UNDP  2005).    HDI  consists   of  three  equally  weighted  sub-­‐indices  (e.g.,  life  expectancy  index,  education  index,   and  a  GNP  index)  that  are  aggregated  by  an  arithmetic  mean  (Böhringer  and  Jochem   2007).    Because  HDI  used  a  surrogate  of  GDP  in  its  calculation,  this  index  is  seldom   operationalized  at  scales  other  than  the  national  level.   4.3.1.3.  Wellbeing  (WB)    

 

The  Wellbeing  Assessment  (WB),  developed  by  Prescott-­‐Allen  (2001),  is  

based  on  the  assumption  that  a  healthy  environment  is  necessary  for  healthy   humans.    The  WB  index  is  the  arithmetic  mean  of  the  Human  Well-­‐Being  Index   (HWI)  and  an  Ecosystem  Wellbeing  (EWI).    The  HWI  is  based  on  36  indicators  and   the  EWI  is  based  on  51  indicators  (Böhringer  and  Jochem  2007).    The  aggregation  of   the  indicators  from  the  HWI  and  EWI  is  conducted  by  a  weighted  arithmetic  mean   Presscott-­‐Allen  (2001),  although  the  derivation  of  the  weights  is  not  explained  in   detail  (Böhringer  and  Jochem  2007).    With  87  sub-­‐metrics  employed,  WB  could  be   at  risk  of  having  multiple  metrics  statistically  redundant  of  each  other.    Albeit,  this   many  data  requirements  make  WB  difficult  to  operationalize  at  any  scale  for  SD   assessment.   4.3.1.4.  Ecological  footprint  (EF)   The  Ecological  Footprint  (EF)  was  originally  conceived  as  a  simple  and   elegant  method  for  comparing  the  sustainability  of  resource  use  among  different   populations  (Rees  1992).    The  most  basic  rendition  of  EF  is  based  on  the   quantification  of  land  and  water  required  to  keep  a  national  living  standard  into  

33  

  infinity  thereby  assuming  certain  technological  improvements  (Wackernagel  and  

Rees  1997).    As  humans  continue  to  metabolize  the  available  biomass  on  the  planet,   less  is  available  for  use  in  providing  for  other  goods  and  services  (Harberl  et  al.   2004).    EF  captures  the  total  amount  of  energy  used  or  consumed  by  a  system,  and   presents  it  as  the  area  (in  hectares)  required  for  photosynthesizing  organisms  to  fix   that  amount  of  solar  energy,  and  to  absorb  the  amount  of  waste  produced  by  the   system  (Rees  2002).    EF  calculates  total  consumption  by  summing  indicators  for   imports  and  domestic  production,  then  subtracting  exports  (Mayer  2008).    These   indicators  measure  the  number  of  hectares  used  in  six  major  categories:  croplands;   grazing  land;  forestland  for  wood  and  non-­‐wood  products;  marine  fisheries;  housing   and  infrastructure;  and  forestland  necessary  for  absorbing  domestic  CO2  emissions   (Wackernagel  et  al  2002).    With  over  60  input  data  requirements,  although  it  can  be   presumed  that  this  has  been  accounted  for,  EF  could  be  at  risk  of  having  metric   redundancy.    Albeit,  this  many  data  requirements  make  EF  difficult  to  operationalize   at  any  scale  for  SD  assessment.   4.3.1.5.  Environmental  sustainability  index  (ESI)   The  Environmental  Sustainability  Index  (ESI),  a  2005  pilot  project,  quantifies   the  likelihood  that  a  country  will  be  able  to  preserve  valuable  environmental   resources  effectively  over  the  period  of  several  decades  (Esty  et  al.  2005).    The  ESI   focuses  on  the  environmental  dimension  of  sustainability,  and  when  calculated  in   2005  it  covered  five  major  components  through  the  use  of  21  indicators;  the  21   indicators  are  derived  from  76  input  variables  (Böhringer  and  Jochem  2007).    To   date,  ESI  has  only  assessed  SD  at  the  national  scale.    Due  to  the  scale  of  contributing  

34  

  data  aggregation,  it  would  be  hard  to  operationalize  ESI  at  scales  other  than  the   national  level.     4.3.1.6.  Environmental  performance  index  (EPI)   Complementing  the  ESI,  the  Esty  Research  Group  developed  another  pilot  

project  with  the  creation  of  the  Environmental  Performance  Index  (EPI).    According   to  Esty  et  al.  (2006)  “The  EPI  is  designed  to  address  the  need  for  gauging  policy   performance  in  reducing  environmental  stresses  on  human  health  and  promoting   ecosystem  vitality  and  sound  natural  resource  management.    The  EPI  focuses  on   current  on-­‐the-­‐ground  outcomes  across  a  core  set  of  environmental  issues  tracked   through  six  policy  categories  for  which  all  governments  are  being  held  accountable.”     The  EPI  is  based  on  a  proximity-­‐to-­‐target  approach  which  measures  country   performance  against  an  absolute  target  established  by  international  agreements,   national  principles,  or  scientific  agreement  (Esty  et  al.  2006).    The  EPI  scores  range   from  zero  to  100,  with  100  being  linked  to  the  target  and  the  minimum  value  of  zero   characterizing  the  worst  competitor  in  the  field  (Böhringer  and  Jochem  2007).    To   date,  EPI  has  only  assessed  SD  at  the  national  scale.    Due  to  the  scale  of  input  data   aggregation,  it  would  be  hard  to  operationalize  EPI  at  scales  other  than  the  national   level.   4.3.1.7.  Living  planet  index  (LPI)   The  World  Wildlife  Fund  (WWF)  (1998)  developed  the  Living  Planet  Index   (LPI)  to  measure  the  changing  state  of  the  world’s  global  biodiversity  over  time  (Loh   et  al.  2005).    LPI  was  first  designed  to  measure  trends  in  over  2000  populations  of   more  than  1100  species  of  vertebrates  in  terrestrial,  freshwater  and  seawater  

35  

 

ecosystems.    The  dataset  now  contains  roughly  3000  population  time  series  for  over   1000  species  (Loh  et  al.  2005).    The  LPI  provides  a  sub-­‐index  for  each  of  the  three   aforementioned  ecospheres:  for  every  species  within  an  ecosphere,  the  ratio   between  its  populations  in  pairs  of  consecutive  years  is  calculated.    The  initial  aim   was  to  make  the  LPI  as  holistic  and  representative  as  possible  with  respect  to   vertebrate  class,  geography,  and  biome  (Loh  et  al.  2005).    The  geometric  mean  of   these  measurements  of  different  species  multiplied  with  the  index  value  of  the   former  year  then  delivers  the  biodiversity  index  for  the  respected  sphere  with  1970   serving  as  the  base  year  (Böhringer  and  Jochem  2007).    The  geometric  mean  of   these  indices  is  the  LPI.    Due  to  the  scale  of  input  data  aggregation,  and  its  design,  it   would  be  hard  to  operationalize  LPI  at  scales  other  than  large  geographic  areas  (e.g.,   oceans,  regions,  biomes).   4.3.1.8.  Green  net  national  product  (EDP)  and  SEEA   The  Green  Net  National  Product,  or  more  commonly  known  as  the   Environmentally  Adjusted  Net  Domestic  Product  (EDP)  has  been  developed  within   the  scope  of  the  System  of  Integrated  Environmental  and  Economic  Accounting   (SEEA)-­‐  UNEP  2000  and  UN  et  al.  2003).    Following  inter  alia  Hanley  (2000)  three   different  versions  of  the  EDP  can  be  distinguished:  (1)  the  EDPI  which  deducts  the   depreciations  of  natural  resources  caused  by  their  extraction  from  the  net  national   income  (NNI);  (2)  the  EDPII,  which  deducts  from  the  NNI  the  costs  necessary  to   reach  the  same  state  of  the  environment  at  the  end  of  the  period  as  existed  at  the   beginning  of  the  period;  and  (3)  the  EDPIII,  which  deducts  the  costs  of   environmental  pressure  and  destruction  (calculated  by  willingness-­‐to-­‐pay  

36  

  methods).    In  these  methods,  aggregation  takes  place  by  simply  adding  up  the   monetarized  vales  (Singh  et  al.  2009).    Although  the  number  of  countries  that  are   implementing  SEEA  to  calculate  EDP  (Böhringer  and  Jochem  2007),  this  SD  index   requires  many  input  variables  and  would  remain  hard  to  operationalize  at  scales   other  than  the  national  level.   4.3.1.9.  City  development  index  (CDI)   The  City  Development  Index  (CDI)  suggested  by  the  United  Nations  Centre  

for  Human  Settlements  (HABITAT)  consists  of  five  sub-­‐indices:  (1)  an  infrastructure   index,  which  builds  on  four  (equally  weighted)  indicators  as  percentages  of   households  which  are  connected  to  clean  water,  canalization,  electricity  and  a  phone   network  (without  mobiles);  (2)  a  twofold  (equally  weighted)  waste  index,  which  is   composed  of  the  percentage  of  untreated  sewage  in  total  wastewater  and  the   percentage  of  disposal  of  solid  waste  in  total  solid  waste;  (3)  a  twofold  diversely   weighted  health  index,  which  considers  the  life  expectancy  and  the  infant  mortality   rate;  (4)  a  twofold  (equally  weighted)  education  index  which  is  calculated  by  adding   the  percentages  of  literacy  and  combined  enrolment;  and  (5)  a  city  product  index,   which  is  based  on  the  logarithmic  value  of  the  city’s  GDP  (Böhringer  and  Jochem   2007).    Although  the  CDI  has  been  applied  to  cities,  regions,  and  country  scales,  for   SD  assessment  (Böhringer  and  Jochem  2007)  the  input  data  requirements  needed,   and  its  computational  complexities,  make  it  difficult  to  operationalize.   4.3.1.10.  Environmental  vulnerability  index  (EVI)   The  Environmental  Vulnerability  Index  (EVI)  comprises  of  32  indicators  of   hazards,  8  indicators  of  resistance,  and  10  indicators  tat  measure  damage  (SOPAC  

37  

 

2005).    The  EVI  scale  for  normalization  ranges  between  a  value  of  1(indicating  high   resilience/low  vulnerability)  and  7  (indicating  low  resilience/high  vulnerability)   (Singh  et  al.  2009).    The  50  indicators  in  total  are  given  equal  weights  and  then   aggregated  by  an  arithmetic  mean  (EVI  2005).    Although  the  EVI  has  been  applied  to   235  countries  (SOPAC  2005),  this  index  would  be  hard  to  operationalize  at  scales   other  than  the  national  level  due  to  large  data  requirements.   4.4.  Why  evaluate  sustainability  at  the  household  scale?   Household  communities  reflect  SD  condition  since  they  are  sensitive  to   changes  in  a  wide  array  of  environmental,  social,  and  economic  factors.    Many   phenomenon  related  to  sustainability  have  been  used  or  proposed  as  indicators  of   SD,  but  no  single  aspect  of  the  human-­‐environmental  system  has  emerged  as  the   favorite  for  policy-­‐makers  or  sustainability  scientists.    Indeed,  in  the  best   circumstances,  a  SD  monitoring  program  should  be  based  on  an  integrated  approach   involving  the  use  of  several  well-­‐documented  SD  indicators  at  multiple  spatial  and   temporal  scales.    However,  limited  funds  and  time  for  assessment,  and  planetary   conditions  argue  for  a  more  aggressive  approach.   Global  scale  analysis  contrasting  and  comparing  different  countries  progress   towards  SD  has  most  frequently  been  found  throughout  the  sustainability  literature,   implying  that  this  scale  is  ideal  for  SD  monitoring  programs.    Although  most  input   data  employed  at  the  national  scale  directly  or  indirectly  related  to  humans  at  a   more  local  level,  households  are  rarely  used  in  comprehensive  sustainability   monitoring.    Many  efforts  to  use  households  in  monitoring  programs  have  been   directed  with  the  “bottom-­‐up”  approach  to  addressing  the  needs  of  sustainability.    

38  

  Although  these  programs  (e.g.,  environmental  education)  are  highly  valued  and  

needed,  they  lack  the  quantitative  scoring  mechanism  needed  to  reach  benchmarks   or  specific  goals.    Other  household  scale  initiatives,  such  as  carbon  cycling  analysis,   are  quantifiable,  but  remain  complex  and  skimping  on  the  social  and  economic   needs  of  sustainability.               Comparative  studies  of  countries  at  the  regional  and  global  scales  have  been   widely  used  in  monitoring  SD  because  of  the  availability  of  their  theoretical  and   quantitative  substructure  that  allows  for  a  holistic  integration  of  environmental,   social,  and  economic  measures.    However,  the  national  scale  has  major  deficiencies   for  operationalizing  SD.    For  example,  at  this  spatial  scale  the  measures  typically   require  mass  quantities  of  input  data  from  multiple  data  sources;  they  entail   specialized  quantitative  expertise;  they  are  difficult  and  time-­‐consuming  to  sample,   sort,  and  calculate;  background  metadata  is  often  lacking  for  sub-­‐metrics  recreation   or  deduction;  the  results  are  not  transferable  for  local  SD  initiatives;  and  the   findings  are  difficult  to  translate  into  values  meaningful  to  the  general  public.                

Households,  on  the  other  hand,  have  numerous  advantages  as  the  scale  for  

SD  monitoring  programs.    These  advantages  include:   1.  Many  countries  throughout  the  world  have  household  data  collection   methods  (e.g.,  U.S.  Census  Bureau)  in  place  for  local  policy  and  inventory   needs.       2. Household  communities  generally  include  a  range  of  inhabitants  that   represent  a  variety  of  societal  levels  (e.g.,  children,  adults,  elderly);  all  of   which  require  a  different  amount  of  resources  that  affect  progress  towards   SD.     3.  Humans,  with  their  position  at  the  top  of  the  trophic  system,  make   household  evaluation  an  integrated  view  of  their  direct  human-­‐ environmental  interaction.  

39  

 

4. Household  related  information  is  easy  to  identify.    Technicians  require   relatively  little  training,  and  most  samples  question  can  be  evaluated  in  the   field  without  compromising  the  integrity  of  the  households  under  study.    

 

5. Environmental,  social,  and  economic  effects  can  be  equally  be  evaluated   through  household  community,  their  associated  property  information,  and   relative  location.     6. The  general  public  can  easily  relate  to  statements  about  conditions  of   household  communities.   7. Households  are  typically  present,  even  in  the  most  remote  and  inhospitable   places  in  the  world.  

  8. Finally,  the  results  of  studies  using  households  can  be  directly  related  to  the   Millennium  Development  Goals  and  Agenda  21  local  action  plan  put  forth  by   the  United  Nations.           A  number  of  disadvantages  of  monitoring  households  can  also  be  cited.     These  include  the  selective  nature  of  sampling,  human  mobility,  objectivity  of   respondents,  infrastructure  cost,  and  human  power  needed  for  field  sampling.    But   these  disadvantages  are  associated  with  all  human  based  surveys  and  methods  have   been  developed  to  account  for  their  shortcomings.    The  objective  here  is  not  to   imply  that  humans  are  easy  to  sample  or  identify  their  corresponding  information.     Rather,  the  goal  is  to  emphasize  that,  on  a  comparative  basis,  training  periods  for   household  composition  and  property  surveys  are  likely  to  be  shorter  and  the   technology  required  is  less  sophisticated  than  other  scales  for  assessing  and   monitoring  SD.    Obviously,  all  monitoring  programs  are  expensive  and  time   consuming,  but  it  is  hoped  that  the  methodology  presented  here  can  even  be  flexible   enough  for  implementation  using  local  household  surveys  already  in  existence.    My   purpose  here  is  to  suggest  that  regular  use  of  household  surveys  will  improve  the   status  of  local  SD  monitoring  and  assessment  programs.  

40  

  4.5.  The  assessment  system  

Over  the  last  several  years,  I  have  been  working  in  Eastern  Europe  with  the   objective  of  developing  a  SD  monitoring  system  that  uses  humans  as  the  response   variable  for  addressing  local  and  regional  SD  needs.    The  purpose  of  this  paper  is  to   outline  that  system  as  well  as  provide  a  few  samples  of  its  use.    At  this  point,  I  urge   caution  in  transferring  this  method  in  wholesale  fashion  without  further  testing  and   addressing  local  needs.    With  that  said,  I  hope  that  this  manuscript  will  stimulate   other  sustainability  scientists  to  react  to  the  local  call  for  action  in  similar  fashion,   perhaps  even  trying  to  adapt  the  method  presented  here  in  other  geographic  areas,   thereby  aiding  in  its  improvement.     I  initially  set  out  to  develop  a  system  with  discrete  classes  (e.g.,  excellent,   good,  fair,  poor)  to  evaluate  a  household  communities  demand  for  sustainability.     However,  as  I  worked  with  the  assessment  system  for  a  time,  I  found  it  necessary  to   do  away  with  discrete  classes  and  rank  the  measures  of  sustainability  from  low  to   high  using  an  interval  level  of  measurement.    Some  of  the  terms  used  in  the   forthcoming  descriptions  are  qualitative  at  best.    Effective  implementation  of  local   sustainable  development  monitoring  programs  is  in  it  infancy;  albeit,  there  remains   much  in  the  lines  of  establishing  standardized  quantitative  methods  for  local  SD   assessment  initiatives.   4.6.  The  assessment  criteria   Prior  efforts  to  monitor  and  evaluate  the  “triple  bottom  line”  of  sustainability   typically  involved  use  of  many  different  criteria,  often  combined  into  an  index.     Although  SD  is  a  globally  accepted  concept,  and  many  indexes  have  been  developed  

41  

  (e.g.,  Human  Development  Index,  Ecological  Footprint)  to  measure  progress   towards  sustainability,  there  still  exist  issues  for  operationalization,  such  as   development  of  tools  and  the  appropriate  geographic  scale  for  helping  to  assess,   achieve,  and  monitor  sustainability  (Chan  and  Haung  2004).    As  sustainability   interests  move  away  from  the  global  scale  towards  empirical  policy  and  planning   initiatives  at  the  local  scales,  it  is  necessary  to  understand  the  complexity  of  

interactions  in  human  and  natural  systems  (Nijkamp  and  Vreeker  2000).    Because   the  principles  of  SD  call  for  an  integration  of  information  related  to  environmental   quality,  social  equity,  and  economic  welfare  in  decision  making  (Kelly  1998),  this   research  assesses  sustainability  through  a  systems  approach  of  additive  household   community  and  property  composition  parameters.    The  parameters  have  been   chosen  based  on  their  local  relevance  to  environmental  quality,  social  equity,  and   economic  welfare,  and  can  be  grouped  broadly  into  two  sets:  (1)  Household   Community  Information  and  (2)  Property  Composition  Factors.   The  choice  of  household  community  information  and  property  composition   factors  as  primary  criteria  is  crucial  for  measuring  the  degree  of  local  sustainability.     Specific  choice  in  metrics  needs  to  be  tailored  to  those  measures  that  are  significant   to  local  sustainability  goals  and  incorporate  geographical  relevance  into  their   methodology.    For  example,  the  travel  cost  of  a  domestic  product  found  within  a   country  like  Romania  is  not  what  you  would  find  in  the  United  States;  albeit,  many   of  the  domestic  goods  found  in  the  United  States  must  travel  farther  than  other   countries  because  population  density  is  geographically  sparse.    Because  most   national  datasets  track  within  their  corresponding  political  borders,  a  degree  of  

42  

  environmental,  social,  and  economic  geographical  relevance  is  maintained   regionally.    As  a  country  increases  in  geographic  complexity  (e.g.,  area,  elevation,  

location)  it  may  be  important  to  assign  scores  to  metrics  based  on  a  more  similar  or   localized  geographic  region  within  a  country.    With  that  said,  location  of  individual   households  is  necessary  for  accounting  for  the  human-­‐environmental  relationship   needed  for  properly  evaluating  SD.       4.6.1.  Household  community  information   The  household  community  (e.g.,  family  members  living  in  a  home)  provides   pertinent  information  for  measuring  local  progress  towards  sustainability.     Although  this  research  does  not  attempt  to  control  the  set  of  household  community   indicators  for  index  creation,  number  of  household  members,  income,  education,   and  public  health  can  serve  as  goal  categories  pertinent  to  SD  and  related  to   indicators  commonly  found  in  local  datasets.   Number  of  household  members,  or  household  richness,  is  related  to  all  three   aspects  of  sustainability  (environmental  quality,  social  equity,  and  economic   welfare).    In  general,  as  the  number  of  household  members  increases  the  amount  of   resources  consumed  also  increases;  however,  the  efficiency  of  more  people  sharing   resources  ultimately  decreases  ecological  demand  per  person.    In  example,  if  you   have  two  equal  sized  houses  in  the  same  location,  one  with  five  people  and  the  other   with  three  people,  the  house  with  five  people  splits  heating  costs  five  ways  apposed   to  three  making  it  more  efficient.    Social  equity  increases  as  the  number  of   household  members  increases.    In  example,  the  more  people  providing  food  for  the   household  increases  the  likelihood  of  overall  enhanced  household  fitness  through  

43  

  burden  sharing.    Number  of  members  within  a  household  increases  overall  

economic  welfare  due  to  cost  sharing.    Although  there  is  some  complexity  here  with   number  of  household  members  working  or  not  working,  in  general  the  more  people   within  a  household  will  provide  more  working  aged  members  for  burden  sharing.   In  combination  with  number  of  household  members,  a  measure  of  income  for   neoclassical  economically  driven  societies  is  potentially  the  most  important   category  in  measuring  SD.    In  regards  to  environmental  quality,  income  allows  the   means  for  the  further  consumption  of  resources;  the  greater  the  amount  of  income  a   household  community  has,  the  greater  the  amount  of  resources  that  that  household   community  will  consume  through  purchase.    Because  greater  income  provides  more   purchasing  power,  a  greater  level  of  household  needs  can  be  met  with  higher  levels   of  income.    With  greater  amounts  of  household  income  comes  a  greater  amount  of   local  economic  ability  and  stimulation.    Poverty  and  material  deprivation  are  quite   often  accompanied  by  an  incapability  of  full  participation  in  social  life,  due  to   inadequate  access  to  employment,  education,  health  resources,  etc.  (Rodríguez-­‐Pose   and  Fratesi  2004).   Education  at  the  household  community  scale  is  highly  related  to  measuring   SD.    Environmentally,  a  higher  degree  of  education  would  provide  a  higher  degree  of   environmental  education  and  thus  an  overall  more  logical  use  of  natural  resources.     With  a  higher  degree  of  education  we  would  also  find  a  greater  amount  of  social   equity,  and  economic  welfare,  respectively.    Ultimately,  education  is  the   fundamental  building  block  in  which  social  and  economic  opportunities  are  built.  

44  

 

Public  health,  as  a  category  goal  for  measuring  local  sustainability  needs,  can   provide  a  strong  avenue  for  measuring  the  often-­‐overlooked  social  components  of   SD.    Public  health  indicators  can  give  a  great  indication  of  the  local  status  of  the   environment.    In  example,  if  there  is  higher  rates  of  “blue-­‐baby”  syndrome  being   recorded  in  an  area,  it  would  be  environmental  crucial  to  investigate  nitrate  levels  in   groundwater.    Likewise,  social  equity  is  improved  when  lower  levels  of  public  health   related  illnesses  are  recorded.    Economically,  lower  levels  of  public  health  related   illnesses  would  decrease  the  amount  of  medical  infrastructure  and  maintenance   needed.   4.6.2.  Property  composition  factors   Along  with  household  community  information,  property  composition  factors   (e.g.,  household  building  material)  provide  pertinent  information  for  measuring   local  progress  towards  sustainability.    Although  this  research  does  not  attempt  to   control  the  set  of  property  composition  indicators  for  index  creation,  household   shelter  composition,  amount  of  land  occupied,  transportation  related  property  (e.g.,   automobile),  and  major  appliances  and  other  significant  household  material  goods   can  serve  as  goal  categories  pertinent  to  SD  and  related  to  indicators  commonly   found  in  local  datasets.   Household  shelter  composition  (e.g.,  wall  materials,  number  of  rooms)  is   related  to  all  three  aspects  of  sustainability  (environmental  quality,  social  equity,   and  economic  welfare).    In  general,  the  stronger  the  materials  used  to  build  a   household  dwelling  the  better  it  will  be  in  terms  of  meeting  the  needs  of   sustainability.    In  example,  a  condominium  complex  made  out  of  steel  and  cement  

45  

 

would  be  more  sustainable  overall  than  a  freestanding  house  made  out  of  adobe  and   wood.    Although  there  could  be  some  debate  about  this  indicator,  an  environmental   quality  example  is  that  the  condominium  allows  for  households  to  share  walls   making  heating  and  cooling  of  the  internal  space  of  the  individual  household  shelter   more  energy  efficient  than  a  freestanding  house.    Socially,  the  stronger  the   household  structure  is,  as  in  the  case  of  the  condominium  complex,  the  more   unfailing  the  shelter  is  for  long-­‐term  inhabitation.    Economically,  although  the  initial   cost  of  the  condominium  complex  is  significantly  more  expensive,  it  is  a  better  long-­‐ term  economic  investment  than  the  freestanding  house  made  from  adobe  and  wood.         Amount  of  land  occupied  by  a  household  community  is  relevant  to  measuring   SD.    Specifically  to  the  “triple  bottom  line”  of  SD,  amount  of  land  occupied  is  most   directly  important  to  measuring  the  environmental  and  economic  needs  of   sustainability.    Environmentally,  amount  of  land  occupied  by  a  household  has  a   direct  influence  on  waste  assimilation  and  food  production.    In  both  cases,  the  more   land  available  for  a  household  community  to  utilize  the  more  positive  influence  on   SD.    Amount  of  land  owned  in  neoclassical  economic  driven  societies  is  applicable  to   financial  equity,  which  is  directly  related  to  economic  welfare;  albeit,  the  more  land   a  household  community  owns  the  more  economic  and  social  stability  they  also  have.     Local  production  base  from  local  land  resources  are  linked  with  global  economies   and  the  consequence  for  local  goods  production  is  a  decrease  in  imports  and   increase  in  exports  creating  multiplier  effects  in  the  local  economy  (Wong  2002).     Transportation  interconnected  property  is  related  to  all  three  aspects  of   sustainability  (environmental  quality,  social  equity,  and  economic  welfare).    Within  

46  

  this  category  goal  of  SD,  transportation  property  (e.g.,  number  of  automobiles  

owned)  allows  for  quantifying  household  community  mobility  and  the  external  cost   associated  with  it.    Environmentally,  the  more  transportation  property  owned  by  a   household  community,  such  as  a  car  or  truck,  increases  demand  on  ecosystem   services  negatively  affecting  SD.    In  example,  if  a  household  community  owns   multiple  automobiles  the  more  likely  they  will  drive  themselves  and  not  select  mass   transit  for  their  mobility  needs  increasing  their  use  on  nonrenewable  resources.     Socially,  transportation  related  property  has  a  positive  influence  on  SD.    Household   communities  that  own  transportation  property  provide  improved  means  for  and   flexibility  with  mobility,  thus  improving  their  social  equity  component  of  SD.     Economically,  in  most  neoclassical  economic  societies,  transportation  related   property  is  also  applicable  to  financial  equity,  which  is  directly  related  to  economic   welfare.                           Major  appliances  and  other  significant  household  material  goods  (e.g.,   computer,  television)  can  provide  further  indication  of  all  three  aspects  of   sustainability  (environmental  quality,  social  equity,  and  economic  welfare).     Environmentally,  major  appliances  and  other  significant  household  material  goods   put  a  considerable  demand  on  nonrenewable  resources  thus  decreasing  objectives   related  to  SD.    Socially  and  economically,  major  appliances  and  other  significant   household  material  goods  provide  positive  indication  of  SD.    In  example,  computer   technology  provides  a  means  for  self-­‐education,  communication,  information   storage  and  analysis,  thus  improving  the  household  communities  social  equity  and   economic  welfare  components  of  SD.  

47  

  4.6.3.  The  geographic  factor  

Because  landscapes  have  been  viewed  and  taught  as  if  their  sole  purpose  is   for  building  materials,  instead  of  living  or  life-­‐supporting  agents,  landscape   resources  have  been  progressively  degraded  by  the  actions  of  humans.    Success  in   halting  and  reversing  this  degradation  requires  understanding  of  social  and  human-­‐ environmental  cohesion  through  new  approaches  to  evaluating  and  analyzing  SD  at   local  scales.    The  first  law  of  geography  states  that  things  that  are  near  are  more   similar  (spatially  autocorrelated)  than  things  that  are  farther  apart  (Tobler  1970;   Fortin  and  Dale  2005).    When  investigating  local  SD  conditions  it  is  essential  to   understand  that  many  different  processes  influence  natural  and  social  systems  over   space.    Although  progress  has  been  made  to  incorporate  space  into  surveying   techniques  much  remains  (e.g,  disaggregating  data)  for  improving  SD  spatial   analysis.    Aggregated  data  to  political  boundaries  may  be  irrelevant  or  misleading   for  sustainability  research  (Mayer  2008).    The  flow  of  people,  commodities,  and   pollution  across  national  boundaries  can  be  substantial  (Panayotou  2000),  and   indices  calculated  at  the  national  scale  can  underestimate  the  “leakage”   phenomenon.  (Mayer  2008).    It  should  be  noted,  political  boundaries  do  affect   sustainability  to  the  degree  to  which  domestic  laws  affect  movement  of  people,   goods,  services,  etc.             Geographic  location  of  household  community  residence  is  highly  interrelated   to  all  three  aspects  of  sustainability  (environmental  quality,  social  equity,  and   economic  welfare).    In  all  three  aspects  of  SD,  the  closer  a  household  is  to  a   significant  resource  centers  and  large  population  (e.g.,  cities)  the  greater  the  

48  

  improvement  of  SD.    Environmentally,  a  decrease  in  distance  to  a  resource  center   would  decrease  direct  and  indirect  travel  cost  associated  with  dependency  on   nonrenewable  fossil  fuels.    Socially,  a  decrease  in  distance  to  a  resource  center  

would  decrease  risk  associated  with  travel  cost.    In  example,  in  a  medical  emergency   chance  of  survival  drastically  improves  with  a  decrease  in  wait  time  for  emergency   response  personnel.    Economically,  a  decrease  in  distance  to  a  resource  center   would  decrease  added  cost  associated  with  receiving  production  materials  and   delivering  goods  to  markets  and  consumers.     4.7.  The  multimetric  assessment  process   A  variety  of  qualitative  and  quantitative  indices  have  been  used  in  measuring   progress  towards  sustainable  development,  but  it  has  been  multimetric   (composite)  indicators  that  have  been  most  widely  applied  and  shows  the  most   promise  for  incorporating  all  three  standard  dimensions  of  sustainability  into  a   single  decomposable  indicator  of  local  SD.    Although  there  are  many  different   analytical  techniques  available  (see  Böhringer  and  Jochem  2007;  Mayer  2008;   Singh  et  al.  2009),  an  additive,  or  multimetric,  approach  was  developed  here   specifically  due  to  its  ease  of  assessment  and  management  of  sustainability  quality.     Operationally  defining  the  indices  employed  by  data  availability,  components  of   sustainability  were  evaluated  based  on  their  potential  stress  against  an  ideal   reference  condition  found  within  the  dataset.    Because  this  method  is  designed  to   be  flexible  and  transferable  to  different  datasets,  no  ideal  subset  of  metrics  has   been  chosen  at  this  time.    However,  the  combination  of  metrics  chosen  is  designed   to  reflect  environmental  quality,  social  equity,  and  economic  welfare  insights  from  

49  

  individual,  population,  household  community,  property  composition,  and   geographic  perspectives.  

If  we  are  serious  in  developing  a  single  composite  index  as  a  measure  of  SD,   then  it  is  clear  that  environmental,  social,  and  economic  indicators  have  to  be   combined  (Moffatt  2008).    A  composite  index  is  an  aggregation  of  indicators  that   have  no  common  unit  of  measurement  and  no  obvious  way  to  assign  weights  to   them.    Every  composite  index  should  be  considered  a  model,  created  for  a  specific   purpose,  with  its  construction  following  a  series  of  useful  and  generally  accepted   steps  (Kondyli  2010).    These  steps  include  the  following  (Jocobs  et  al.  2004;  OECD   2005;  Kondyli  2010):       1.

2.  

 

 

 

Formulation  of  a  theoretical  framework:  provide  a  sound  basis  for  selecting   and  combining  single  indicators  into  a  meaningful  SD  composite  index.    The   theoretical  framework  must  accurately  define  the  SD  phenomena  targeted   to  be  measured.     Data  selection:  the  SD  indicators  used  should  be  selected  based  on  their   analytical  soundness,  measurability,  and  their  relationship  to  each  other.     Use  of  proxy  variables  should  be  considered  when  data  are  scarce.    

3.

Multivariate  analysis:  this  encompasses  a  wide  variety  of  methods,  which   can  be  distinguished  into  two  main  categories:  exploratory  and   confirmatory  analyses.    In  exploratory  analyses,  the  overall  structure  of  the   indicators  is  examined.    In  confirmatory  analyses,  the  purpose  is  not  to   describe  but  rather  to  examine  specific  assumptions  based  upon  already   developed  theoretical  frameworks.  

4.

Accounting  for  missing  data:  three  methods  are  available  for  cases  with   missing  data:  a)  omission  of  cases  with  missing  data,  b)  replacement  with   mean,  median,  regression,  or  other  single  imputation,  c)  advanced  multiple   imputation  algorithm  (e.g.,  Monte  Carlo  method).  

5.

Data  normalization:  indicators  should  be  normalized  for  comparability.    A   variety  of  techniques  for  normalization  are  available  related  to  index   creation  (see  OECD  2005).      

50  

  6.

Weighting:  weighting  indicators  greatly  influence  the  overall  output  of  the   composite  indicator.    When  constructing  the  SD  composite  index,  indicators   should  be  weighted  either  according  to  an  underlying  theoretical   framework  or  based  on  empirical  analysis  from  expert  knowledge  and/or   stakeholder  input.    In  general,  there  are  three  ways  to  assign  weights  to   indicators  within  an  index:  to  use  statistical  models,  b)  to  adopt   participatory  methods,  or  c)  to  assign  equal  weights.  

7.

Aggregation:  the  aggregation  of  the  SD  indicators  can  be  linear,  geometric,   or  based  on  multi-­‐criteria  analysis.    In  both  linear  and  geometric   aggregation,  weights  express  trade-­‐offs  between  indicators;  multi-­‐criteria   analysis  assures  non-­‐compensability  by  finding  a  compromise  between  two   more  legitimate  goals.      

8.

Robustness  analysis:  The  results  rendered  from  the  SD  composite  index  are   due  to  the  culmination  of  the  methods  (e.g.,  normalization,  weighting)  used   in  its  creation.    Therefore,  it  is  important  to  determine  whether  the  values   of  each  SD  composite  index  are  affected  by  the  uncertainty  that  might   characterize  the  data  and/or  weighting  scheme.  

9.

Analysis  of  SD  composite  index  structure:  Because  a  SD  composite  indices   are  summary  indicators,  a  decomposition  to  their  individual  parts  may   result  in  a  better  understanding  of  performance  and  therefore  helping  to   address  a  locations  specific  SD  conditions  and  goals.  

 

 

 

 

10. Presentation  and  dissemination  of  results:  A  composite  SD  index  must  be   able  to  provide  accurate  information  to  any  interested  party  (e.g.,  planners,   policy  makers)  in  the  sustainability  process.    A  variety  of  techniques  (e.g.,   maps,  interactive  websites)  have  developed  for  the  dissemination  and   presentation  of  the  SD  composite  index  results.  

  4.8.  Examples  from  the  Republic  of  Moldova   In  this  section,  based  on  my  personal  expert  knowledge,  ‘systems  thinking’  is   applied  to  evaluate  the  complex  concept  of  SD  in  the  Republic  of  Moldova.     4.8.1.  Study  area  and  historical  context   The  Republic  of  Moldova  is  an  ideal  location  for  conduction  an   operationalized  SD  study.    The  geographic  area  once  known  as  Moldova  was   significantly  larger  than  the  area  comprising  the  present  day  Republic  of  Moldova.     The  old  principality  of  “Moldova”  reached  from  the  Carpathian  Mountains  and  

51  

 

Bocovina  in  northern  Romania,  south  to  Dobrogea,  Romania,  and  included  an  area   between  the  Dniester/Nistru  and  Danube  rivers  that  is  now  part  of  Ukraine.    Most  of   the  area  known  as  Bessarabia  of  the  greater  “Moldova”,  the  Republic  of  Moldova  is   now  landlocked  between  the  Ukraine  and  Romania.    Specifically,  the  Republic  of   Moldova  is  located  between  the  Prut  and  Dniester/Nistru  Rivers  to  the  west  and   east,  respectively,  and  Ukraine  to  the  north  and  south.   The  Bessarabia  region  of  “Moldova”  was  first  annexed  to  Russia  in  1812.     Following  the  Crimean  War  in  1856,  Russia  lost  the  southern  area  of  Bessarabia  to   “Moldova,”  only  to  gain  it  back  from  Romania  in  1878  at  the  Congress  of  Berlin.     With  the  collapse  of  the  Russian  Empire  in  1918  the  area  of  the  present  Republic  of   Moldova  and  some  of  the  present-­‐day  Ukraine  declared  its  independence  and  united   with  Romania.    However,  the  formed  Union  of  Soviet  Socialist  Republics  (USSR)   refused  to  recognize  this  unification.    In  1924,  the  USSR  created  the  “Moldovan   Autonomous  Soviet  Socialist  Republic  (MASSR),”  east  of  the  Dniester/Nistru  River  in   present  day  Transnistria.  In  June  1940,  according  to  the  Molotov-­‐Ribbentrop  pact,   the  remainder  of  the  present  day  “Moldova”  was  annexed  by  the  USSR  to  form  the   “Moldovan  Soviet  Socialist  Republic  (MSSR)”.    During  World  War  II,  the  MSSR  area   fell  back  to  Romania  and  then  was  annexed  for  the  final  time  to  the  Soviet  Union.   After  the  1944  annexation  of  Moldova  to  the  USSR,  the  progression  of   creating  a  uniformed,  patriotic,  and  Soviet-­‐cultured  Empire  began.    This  process   officially  introduced  the  Cyrillic  alphabet  and  Russian  language  into  everyday  life-­‐   replacing  the  traditional  Latin  alphabet  and  Romanian  language.    During  this  time,   cultural  re-­‐education  (e.g.,  removal  of  religion  and  Romanian  holidays)  was  set  into  

52  

  action;  albeit,  manipulating  the  aboriginal  people  of  “Moldova”  to  change  their  

native  ways.  Severe  economic  recession,  transplanting  of  native  Russians,  and  slow   nation  building  shortly  followed.  Soviet  rule  promoted  urbanization  and   industrialization,  even  though  “Moldova”  was  traditionally  agricultural.    Soviet   governmental  methods  soon  changed  with  the  introduction  of  “glasnost”  (openness)   by  Soviet  President  Mikhail  Gorbachev.      This  new  policy  set  the  stage  for  Moldova’s   future  independence.  On  27  August  1991,  after  a  failed  coup  in  Moscow  resulted  in   the  ousting  of  Gorbachev  from  power  and  the  political  collapse  of  the  USSR,  the   Moldovan  Parliament  and  the  Republic’s  General  Assembly  declared  independence.   After  declaring  its  independence,  the  Republic  of  Moldova  was  marked  by   conflict  and  turmoil.    Early  interests  in  reunifying  greater  Romania  and  the  presence   of  a  large  ex-­‐Soviet  (Russian)  military  force  provoked  a  short  civil  war  in  1992-­‐ 1993.    This  civil  war  led  to  the  separation  of  Transnistria  from  the  rest  of  the   Republic.    This  area,  east  of  the  Dniester/Nistru  River,  still  has  sensitive  ethnicity   and  language  issues.  The  demographic  breakdown  of  Transnistria  is  about  65   percent  Romanian,  14  percent  Ukrainians,  13  percent  Russian,  and  the  rest  Gagauz,   Jewish,  and  Bulgarian.    Tiraspol  is  the  capital  of  Transnistria,  which  is  not   recognized  by  the  U.S.  government.   Significant  social  (e.g.,  human  trafficking),  economic  (e.g.,  weapons   manufacturing),  and  environmental  (e.g.,  ground  water  nitrate  poisoning)  issues   have  been  linked  to  Transnistria  and  the  Republic  of  Moldova.    Much  of  the  issues  in   the  Republic  of  Moldova  are  linked  to  lack  of  jobs  and  money.  Moldova  is  the   poorest  country  in  Europe  and  has  suffered  a  nearly  65  percent  decline  in  income  

53  

  since  its  independence.    Since  its  independence  and  prior  to  2000,  the  Republic  of  

Moldova  recorded  only  one  year  of  positive  GDP  growth.    Sporadic  and  ineffective   law  enforcement,  combined  with  economic  and  political  uncertainty,  and   outstanding  disputes  with  international  investors,  continues  to  discourage  direct   foreign  investment.    To  aid  in  local  SD  goals,  developed  counties  have  tried  to   improve  SD  conditions  in  the  Republic  of  Moldova;  in  2005  the  U.S.  provided   roughly  $27  million  in  assistance  to  the  Republic  of  Moldova  to  alleviate  issues   associated  to  post-­‐land-­‐privatization,  promote  democratic  institutions  and  civil   societies,  improve  law  enforcement  and  boarder  control,  and  combat  human   trafficking.    To  date,  many  of  these  issues  remain  unresolved  in  the  Republic  of   Moldova  and  unacceptable  globally.    Currently,  the  Republic  of  Moldova  occupies   33,846  Km2  of  land  with  4,317,483  people  (2010  census);  albeit,  42%  of  which  live   in  an  urban  environment.   4.8.2.  Official  demographic  and  health  survey  data   Data  provided  from  the  Moldova  Demographic  and  Health  Survey  (2005)   were  used  to  describe  the  three  aspects  of  sustainability  (environmental  quality,   social  equity,  and  economic  welfare)  through  SD  multimetric  index  development  at   the  household  scale.    Information  in  this  subsection  comes  from  the  Moldova   Demographic  and  Health  Survey  (MDHS  2005).    Over  a  two-­‐month  period  from  June   13th  to  August  18th,  Moldova’s  first  nationally  representative  demographic  and   health  sample  survey  of  over  11,000  households  was  conducted  to  monitor  the   population  and  health  situation  in  Moldova.    The  Moldova  Demographic  and  Health   Survey  (MDHS)  sample  survey  of  over  11,000  households  were  selected  from  400  

54  

  sample  points  (clusters)  throughout  the  Republic  of  Moldova  (excluding  the   Transnistria  region).    The  survey  includes  detailed  information  on  fertility  levels,  

marriage,  sexual  activity,  nutritional  status  of  women  and  young  children,  childhood   mortality,  and  household  property  and  composition.    Additional  features  of  the   MDHS  (2005)  include  the  collection  of  information  on  international  emigration,   language  preference  for  reading,  and  domestic  violence.         The  MDHS  (2005)  is  based  on  a  representative  probability  sample  of  over   11,000  households.    This  sample  was  designed  to  allow  separate  urban  and  rural   estimates  for  key  population  and  health  indicators  (e.g.,  fertility,  contraceptive   prevalence,  infant  mortality).    Transnistria,  the  semiautonomous  region  in  the   eastern  part  of  the  country  holding  15  percent  of  Moldova’s  population  was  not   included  in  the  sample.    The  MDHS  (2005)  utilized  a  two-­‐stage  sample  design.    The   first  sate  involved  selecting  a  sample  of  cluster  sectors  pertinent  to  the  2004   Moldova  Population  and  Housing  Census.    A  total  of  400  clusters  in  Moldova  were   selected  from  the  master  sampling  framework.    Clusters  for  urban  and  rural   domains  (233  urban  and  167  rural)  were  selected  using  systematic  sampling  with   probabilities  proportional  to  the  2004  census  distribution,  and  consequently  neither   is  the  final  household  distribution.    A  complete  household  listing  operation  was   carried  out  from  April  to  late  May  2005  in  all  400  clusters  in  order  to  provide  a   sampling  framework  for  the  second  stage  selection  of  households.    The  second  stage   selection  involved  the  systematic  selection  of  households  from  a  complete  listing  of   all  households  in  each  of  the  400  clusters.    The  sample  “take”  in  both  urban  and   rural  clusters  was  30  households,  which  would  make  a  total  sample  size  of  12,000  

55  

  households  throughout  the  Republic  of  Moldova.    Due  to  a  geographic  coordinate   error  with  one  cluster  location  and  a  number  of  household  surveys  missing  data,   399  cluster  locations  corresponding  with  11,066  households  were  utilized  in  this   study  (Figure  3).     The  Household  Questionnaire  was  used  to  list  all  the  usual  members  and   visitors  in  the  selected  households  and  to  identify  women  and  men  who  were   eligible  for  the  individual  interview.    Basic  information  was  collected  on  the   characteristics  of  each  person  listed,  including  their  age,  sex,  education,  and   relationship  to  the  head  of  the  household.    In  addition,  a  separate  listing  and  basic   information  on  former  household  members  who  had  emigrated  abroad  was  

collected.    The  Household  Questionnaire  was  also  designed  to  collect  information  on   characteristics  of  the  household’s  dwelling  unit,  such  as  the  source  of  water,  type  of   toilet  facilities,  materials  used  for  the  floor  and  roof  of  the  house,  ownership  of   various  durable  goods,  etc  (MDHS  2005).    A  copy  of  the  detailed  household   questionnaire  used  in  the  Moldova  Demographic  and  Health  Survey  (MDHS  2005)   can  be  found  in  Appendix  A.    

 

56  

  Fig.  3.  Map  of  the  demographic  and  health  survey  geographic  distribution  within  the   Republic  of  Moldova  (47°24’N,  28°22’E).  

   

57  

  4.8.3.  Method   Prior  to  index  development,  this  approach  requires:  (1)  identification  and   characterization  of  local  SD  conditions  and  priorities;  (2)  description  of  the  

reference  household  community  for  each  regional  application;  and  (3)  selection  of   appropriate  SD  attributes  of  the  household  community  and  property  composition   metrics  that  will  be  used  to  quantify  the  difference  between  observed  and   reference  households.    Using  the  aforementioned  399  cluster  locations  and  11,066   households  from  the  Moldova  Demographic  and  Health  Survey  (2005),  two   composite  indicators  (Ecological  Demand  Index,  Sustainability  Demand  Index)  for   operationalizing  SD  were  developed  and  computed.    Seeking  a  more  holistic,   integrative  and  ecological  approach,  10  metrics  and  15  metrics  were  selected  for   creation  of  the  Ecological  Demand  Index  (EDI)  and  Sustainability  Demand  Index   (SDI),  respectively.    The  composite  SD  index  EDI  has  an  environmental  centric   designed,  while  the  composite  index  SDI  is  designed  to  take  into  account  all  three   aspects  of  sustainability  (environmental  quality,  social  equity,  and  economic   welfare).    By  doing  so,  empirical  questions  related  to  SD  index  design  and  response   to  goals  can  be  compared  and  contrasted.      

Procedures  for  operationalizing  SD  assessment  at  the  local  scale  should  be  

kept  simple  and  understandable,  and  procedural  and  analytic  complexity  should  be   kept  to  a  minimum.    The  EDI  and  SDI  are  designed  to  include  a  range  of  attributes   of  household  community  and  property  composition.    The  EDI’s  10  measures,  or   metrics,  fall  into  six  broad  categories:  Household  Abundance,  Structural   Composition,  Goods  Production,  Transportation,  Services,  and  Income  (Table  1).    

58  

  The  SDI’s  15  measures,  or  metrics,  fall  into  ten  broad  categories:  Household   Abundance,  Structural  Composition,  Goods  Production,  Transportation,  Services,   Income,  Technology,  Public  Health,  Psychology,  and  Education  (Table  2).     Remaining  flexible  in  both  broad  category  and  specific  indicators,  EDI  and  SDI   metrics  were  selected  or  developed  from  the  available  information  found  in  the  

MDHS  (2005).    Direction  of  metric  response  can  vary  due  to  overall  SD  index  goals.     For  both  EDI  and  SDI,  the  index  is  the  sum  of  several  standardized  component   metric  scores;  furthermore,  each  metric  score  is  on  an  ordinal  scale  of  1  to  5  based   on  the  strength  of  deviation  from  an  excellent  scenario  at  a  reference  site.    Because   the  sample  size  of  households  from  the  MDHS  is  11,066,  it  is  assumed  that  at  least   one  household  meets  the  assumption  of  an  excellent  SD  scenario  at  a  reference   location.    Although  specific  degrees  of  threshold  are  not  directly  assessed  through   this  methodology,  as  the  overall  EDI  and  SDI  values  increase  there  is  a  decrease  in   degree  that  SD  is  being  achieved.    The  detailed  framework  and  data  for  each  metric   used  in  EDI  and  SDI  can  be  found  forthcoming  in  Table  5  and  Table  9  of  Article   Two,  respectively.   Table  1.  Republic  of  Moldova  household  ecological  demand  index  (EDI)  metrics  and   relative  scoring  criteria.     ,+)*'#$#$%&'($)*+,-%.*/.0' 893%09%3/)+:$2;$&;'+$4+3'&