and Osmium(IV) Mixed Chloro-Bromo Complexes

0 downloads 0 Views 9MB Size Report
other hand, since the central atom g and f orbitals presumably hardly have any importance for the chemical bonding, the energy difference observed between ...
Interpretation of Electron Transfer Spectra of Iridium (IV) and Osmium(IV) Mixed Chloro-Bromo Complexes C H R . K L I X B Ü L L JØRGENSEN

Cyanamid European Research Institute, 1223 Cologny (Geneva), Switzerland and W .

PREETZ

Institut für Analytische Chemie und Radiochemie der Universität des Saarlandes, 66 Saarbrücken 15 (Z. Naturforschg. 22 a, 945—954 [1967] ; received 27 February 1967)

The previous M.O. treatment of unsubstituted hexahalides has been modified, taking the results on FARADAY effect obtained at the University of Virginia into account. The absorption spectra previously measured of the complexes (M = Os, Ir) £r16

electronegativity

optical

T h i s set is the o n l y o n e having the same s y m m e t r y

rropt. This argument cannot be

type (Y4U in BETHE, t l u in MULLIKEN'S n o m e n c l a t u r e )

corresponding

lower

extended to R e ( I V ) 7 . W e are n o w discussing

the

e n e r g y levels expected f o r substituted c h r o m o p h o r e s of o r t h o a x i a l type

MAXBG_X

17

i. e. all six ligands A

and B can b e situated o n the axes of a Cartesian

as o n e of the sets of o-orbitals. T h e effect o n the intensities of

transitions to the h i g h e r

are s p e c t a c u l a r 1 3 ;

d-sub-shell

it is nearly certain that the ad-

mixture of o-character to the rr-set [ w h i c h w e h e n c e

c o o r d i n a t e system, and w e start b y c o n s i d e r i n g the

call (JI + o ) y 4 u ] is responsible f o r nearly all o f the

unsubstituted h e x a h a l i d e M A 6 .

electric d i p o l e oscillator strength o b s e r v e d . T h u s , it m a y b e argued that o n e should assign " Z " = 3 rather

Unsubstituted Hexahalides Until recently, it was assumed

than 1 to the ^ - c o m b i n a t i o n which has to b e o r t h o -

MA6

gonal

10'13,14

that the

o r d e r of the twelve CT orbitals f o r m e d b y the loosest of

angular

node-planes18

which

25

on the o - c o m b i n a t i o n " p " and h e n c e devel-

a node-cone,

the M . 0 .

wavefunction

having

o p p o s i t e sign f o r f o u r ligands relative to the two

by

others o n one Cartesian axis. It is generally r e c o g -

also

nized that a n o d e - c o n e counts f o r two n o d e - p l a n e s .

b o u n d , filled p shell of A w a s that determined the n u m b e r

ops

indicates the lowest value of I f o r central a t o m o r bitals which are able to m i x with the c o m b i n a t i o n of l i g a n d orbitals. W e call this q u a n t u m n u m b e r " Z " and write " s " , " p " , " d " , " f " , " g " . . . f o r " Z " = 0 , 1, 2 , 3 , 4 , . . . Said in other w o r d s , the f o u r sets of ."r-orbitals have " Z " = 4 , 3, 2 , 1 and the three sets of o-orbitals " Z " = 2 , 1, 0. H o w e v e r , in octahedral symmetry, the n u m b e r of degenerate orbitals is not alw a y s ( 2 1 + 1) like in spherical s y m m e t r y

but it is

10

3 , 3 , 3 , 3 , 2 , 3 , 1 in the sets m e n t i o n e d . T h e e n e r g y d i f f e r e n c e between the rr-orbitals " f " and " d "

can

b e ascribed to the central a t o m d orbitals f o r m i n g a b o n d i n g M . 0 . b y c o m b i n a t i o n with the latter set (as experimentally verified b y the study of h y p e r f i n e structure of the p a r a m a g n e t i c r e s o n a n c e curve

in-

M

d u c e d b y the i r i d i u m and chlorine n u c l e i 1 9 ) . O n the

(



other hand, since the central a t o m g and f orbitals presumably chemical

hardly

bonding,

have

any

the energy

importance

for

difference

the

observed

between the " g " and " f " cr-orbitals must b e caused '

b y MCCLURE'S effect, i. e. the increased kinetic energy

20, 21

d u e to the f o u r rather than three angular

node-planes.

Similar

arguments

can

be

extracted

f r o m SCHMIDTKE'S article o n t o p o l o g i c a l matrices

22.

In tetrahedral c h r o m o p h o r e s M X 4 , the loosest b o u n d c o m b i n a t i o n of ^ - o r b i t a l s is " f " h a v i n g the highest n u m b e r of angular node-planes

16' 23' 2 4 .

These arguments have always been slightly

un-

certain in the case of the yr-orbitals having " Z " = l . 16

C. K. JORGENSEN, Halogen Chem. 1, 265 [1967].

17

C . E . SCHÄFFER a n d C . K . JORGENSEN,

18

D . S . MCCLURE, S o l i d S t a t e P h y s . 9 , 3 9 9

19

J . H . E . GRIFFITHS a n d J . OWEN, P r o c . R o y . S o c . L o n d o n

Kgl. Danske

skab. Selskab Mat. Eys. Medd. 34, no. 13 [1965].

226,96 20

22

A

C. K. JORGENSEN, Chem. Phys. Letters 1, 11 [1967]. 1I.-H. SCHMIDTKE, J. Chem. Phys. 45, 3920 [1966].

23

A . CARRINGTON

24

[1961]. P. DAY and C. K. JORGENSEN, J. Chem. Soc. 6226 [1964]. C. K. JORGENSEN, J. Phys. Radium 26, 825 [1965].

[1959]. 25

[1954].

8u

Fig. 1. The energy differences between 8 of the 12 energy levels formed from six halide ligands as a function of their LANDE parameter. In the non-relativistic case at the left-hand side, the energy difference between JT4g and (?r + o)4u has been taken as the average for a variety of hexahalide complexes. In our case of Os(IV) and Ir(IV), it is hardly larger [Eq. (9)] than between (.t+o)4 U and jrsu . However, since the even and odd levels do not mix, this only shifts the two highest curves. The dashed curves correspond to relativistic orbitals from which transitions to a central atom orbital have no oscillator strength. 21

Viden-

0

and

K. RUEDENBERG, Rev. Mod. Phys. 34, 326 [1962].

Unauthenticated Download Date | 11/24/15 4:07 AM

C . K . JORGENSEN,

Mol.

Phys.

4,

395

Said in other w o r d s , whereas the lowest " p " o-orbital

the

has o n l y one n o d e - p l a n e like the angular

effect28'

function

clearest 29.

argument

comes

the 7r-orbitals of same symmetry type have

MCCAFFERY and SCHATZ 1 6 '

o n e n o d e - p l a n e and o n e n o d e - c o n e similar to the

the transition f r o m " ~ f "

angular

20.5 kK

(z/r),

f function

z(5z2-3r)/r3.

The

question

from

the

FARADAY

A c c o r d i n g to a kind c o m m u n i c a t i o n f r o m there is n o d o u b t that

30

o c c u r s at l o w e r

(1 kK = 1 0 0 0 c m - 1 )

energy,

in I r C l 6 " than f r o m

whether this " ~ f " set of symmetry type /4 U o r the

"f"

" f " set of symmetry type 7gu [having

c h r o i s m i n d u c e d b y the external magnetic field has

c o m p a r a b l e to z(x2

node-planes

has highest e n e r g y be-

— y2)/r3]

F i g u r e 1 s h o w s the influence of

o f the central atom empty p orbitals f o r m i n g b o n d with

" ~ f"

are m o r e 1 3

or

di-

o p p o s i t e , a n d k n o w n , signs in the two cases.

c o m e s a question of whether the stabilizing influence ing combinations

at 2 3 . 0 and 2 4 . 4 k K because the circular

the

relativistic

( s p i n - o r b i t c o u p l i n g ) e f f e c t s 1 0 ' 1 3 in the halide ligands

less

represented b y i n c r e a s i n g values of the LANDE pa-

i m p o r t a n t than the ligand-ligand anti-bonding effect

rameter tnp f o r the h a l o g e n

b e c a u s e of the n o d e - c o n e between cr- and o contribu-

orbital e n e r g y differences are essentially taken f r o m

tions to

"~f".

Actually, gand-ligand

the

evidence is

accumulating26'27

anti-bonding

effects can

be

P

[n + o) 7 4 u ( t i u ) « £5 5

"

"d"

71

"d"

Ö

"s"

Ö

=

f

Y~>g (l-2g)

"

i A

T

R

^ —

Tl

n

TJ

n

jj IT

large

n

IJ

n

IT n P—tlx

r/2

«,ang |

IT

par

Hd _ Hn

TT

AI

TT2 n JIP

_

"JTPAR

ti.-i—na

n

II2 11

2 n A trans

IT 2

n

n &

i / 7

A eis

j

an

IT — nJ, T tlx a

2 Ha c ; s

E — Ha

7TG(AIG)

an

TT

TJ

f

a

a n g

r/2

n

H„ + Hn

^ —

73G(EG)

( o + j r ) y 4 u(tlu)

"P"

+

It —

E

^ 75U (t 2 l l )

for

justification w o u l d b e :

E — Hn

* 74g (tig)

concording

DAY effect just discussed. H o w e v e r , their qualitative

great

i m p o r t a n c e f o r the loosest b o u n d M . 0 . In o u r case,

"g"

spectra13

T h e non-relativistic

n u m b e r of h e x a h a l i d e c o m p l e x e s and f r o m the FARA-

that liof

absorption

16.

1

TT

2 n

ad

^

JJ^

o trans

n

(1)

Til

OP

U tt p —IIt l

a

HI,. JJ JJ

2 H0 trans

In these equations, H„ and H0 represent the d i a g o n a l

ligand-ligand

elements

element f o r a given s y m m e t r y type y^ as is also the

of

energy characterizing

non-bonding

n-

bonding

effects change the

diagonal

a n d a-orbitals. Their difference is partly a l i g a n d

case f o r the d i f f e r e n c e between H T and

field effect influencing the potential, the a-orbitals

alternative

b e i n g m o r e stabilized b y the positive central a t o m

a t o m i c orbitals as starting material w o u l d

consider

than the jr-orbitals. Other reasons m a y b e the ortho-

the l i g a n d - l i g a n d

elements

gonalization

between degenerate orbitals. Hn

phore.

c o n d i t i o n s in general in the

The

first-order

(proportional expressions

perturbation

to other H ) ,

and

chromo-

expressions

the

( H 2 d i v i d e d b y Hl — H2)

treatment31

of

effects as n o n - d i a g o n a l

The

ang

indicates the non-

d i a g o n a l element a p p r o p r i a t e f o r t w o crc-orbitals of

second-order

a d j a c e n t l i g a n d atoms in e x p o s i t i o n , h a v i n g ortho-

derive

g o n a l n o d e - p l a n e s . It is expected that this n o n - d i a g -

from

interactions between orbitals having identical ener-

onal

gies o r h i g h l y different energies. In the WOLFSBERG—

parallel jr-orbitals

HELMHOLZ m o d e l 1 0 ' 1 1

h a v i n g the same n o d e - p l a n e . W e neglect

and

Ha.

non-symmetry-adapted

related treatments,

the

26

C . K . JORGENSEN, C o o r d . C h e m . R e v . 1 , 1 6 4

27

R . PAPPALARDO a n d C . K . JORGENSEN, J . C h e m . P h y s . 4 6 , 6 3 2

[1966].

28

P. J. STEPHENS, Inorg. Chem. 4, 1690 [1965].

29

B . BRIAT, M . BILLARDON, J . BADOZ, a n d J . LORIERS,

30

[1967].

element

is larger on

A . J . MCCAFFERY a n d

than H„ two

par

ligands

involving in

P . N . SCHATZ, p e r s o n a l

two

czs-position non-diagcommunica-

tion. 31

C . E . SCHXFFER

and

C . K . JORGENSEN,

[1965]. Analyt.

Chim. Acta 34, 465 [1966].

Unauthenticated Download Date | 11/24/15 4:07 AM

M o l . Phys. 9, 401

onal elements between rr-orbitals in ligands in position. Hnvis

trans-

is the n o n - d i a g o n a l element between

the subtraction of the diagonal elements H ^ and H x in ( 2 )

and ( 3 ) represents approximately the effect

two o-orbitals o n ligands in a s - p o s i t i o n s and is ex-

of positive local kinetic energy

pected

values since we can write SCHRÖDINGER'S equation

to

WIRTH

be

much

larger

performed

32

than

//„trans

though

WOLFSBERG—HELMHOLZ

calcu-

lations f o r C O ( N H 3 ) 6 + 3 and f o u n d a n o n - n e g l i g i b l e

for

stationary

overlap integral between the t w o rather diffuse lonefirst-order

in

by

(1)

are f o u n d

ligand-ligand

summing

the

and

real

" d "

33' 34.

T h u s , SYMONS 3 5

f o r the energies of

the

three sets of o-orbitals.

influence of MADELUNG potentials on the elements of such m o d e l s 3 ' , the local

Equation ( 1 ) has not taken into a c c o u n t that antib o n d i n g M . 0 . are m o r e a n t i - b o n d i n g than the c o r r e -

ative in a certain r e g i o n rjj ~ 3 b o h r because of the m o r e positive U in

s p o n d i n g b o n d i n g M . 0 . are b o n d i n g . If the changes of kinetic energy in the b o n d r e g i o n are evaluated one would

to a certain a p p r o x i m a t i o n

expect

for

b o n d i n g situations, i . e . negative c o e f f i c i e n t s in (*-l)

H

2

21

(1),

and

It is clear " ~ f"

and

difference

that

"f"

(4). the energy

represented

between

the

difference

by

two

first

the

between

wavenumber

LAPORTE-allowed

a b s o r p t i o n b a n d s m a y vary rather much a c c o r d i n g to circumstances because of the c o m p e n s a t i n g

[/4

— //M — H\] S f r x

(2)

and f o r anti-bonding situations H2=

diagonal

is m o r e neg-

\

+ A

the c o r r e s p o n d i n g

5mx

square-roots

for

(3)

the

first-

con-

tributions to the energy of " ~ f " . Actually, there is g o o d evidence

16' 3 8 - 4 0

TiCl6

and WC1 6 have a smaller

, NbCl6-

that d ° - c o m p l e x e s such as energy

difference, p r o b a b l y c o r r e s p o n d i n g to smaller /(//T — H0)

H20:i

in the less compressed c o m p l e x e s . A t the

same time, the transition f r o m " ~ f " b e c o m e s rela-

o r d e r perturbations, x is a constant expected to be

tively less intense than f r o m " f " . Solvent effects

somewhat

and c o m p r e s s i o n

above

1;

the case

x = l

occurs

if

eigenfunctions are the original c o m b i n a t i o n xpx

the of

ligand orbitals and the c o m b i n a t i o n m a d e o r t h o g o n a l to it, i . e .

the normalized

form

are

to

in salts

increase

the

such as Cs 2 IrCl 6

difference

between

14

seem " ~ f"

and " f " .

of

where 5\ix is the overlap integral. T h e //>[ and

also

lo

On the other hand, the energy difference between quantities

the asymptotic values of the e x p o -

" g " and " f " represented by the w a v e n u m b e r difference between

the first LAPORTE-forbidden

and

the

nents f o r large r, xp = k exp ( — ju r), p r o d u c i n g a neg-

s e c o n d LAPORTE-allowed band stays remarkably c o n -

ative local contribution to the kinetic e n e r g y

stant and is {Hn

36

and

ang

— H-, p a r ) in the m o d e l ( 1 ) . T h e

T. H. WIRTH, Acta Chem. Scand. 19. 2261 [1965]. C. K. J0RGENSEN, Mol. Phys. 4, 231 [ 1 9 6 1 ] .

38

S. M. HORNER and S. Y. TYREE. Inorg. Nucl. Chem. Letters

34

C . K . JORGENSEN a n d J. S. BRINEN. M o l . P h y s . 5 , 5 3 5 [ 1 9 6 2 ] ,

39

B . J . BRISDON, T . E . LESTER, a n d

35

M . C . R . SYMONS, J. C h e m . S o c . 1 9 6 4 . 1 4 8 2 .

36

C. K. JORGENSEN, Proc. Bressanone Conference, July 1967.

37

C . K . JORGENSEN, S . M . HORNER, W . E . HATFIELD, a n d S . Y .

32 33

1, 43 [1965]. R . A . WALTON,

communication. 40

J. L. RYAN, personal communication.

TYREE, Int. J. Quantum Chem. 1, 191 [ 1 9 6 7 ] .

Unauthenticated Download Date | 11/24/15 4:07 AM

personal

observed values are 6 . 8 k K f o r T i C l 6 RUC1 6 ~ 3 ,

7.5 kK

for

WC16,

5.8 kK

, 6.8 kK for for

OsCl6~,

systems is i ^ g , i. e. the lower sub-shell has the pure configuration y$g4 y^g,

j,/-coupling

the transitions

6 . 2 kK f o r O s C l 6 - 3 and 6 . 8 kK f o r I r C l 6 ~ . This is

f r o m yc,u orbitals to this 77 g -hole are s y m m e t r y - f o r -

remarkably large quantity f o r effects of ligand-ligand

b i d d e n , and the even orbitals

anti-bonding.

tions are LAPORTE-forbidden) and y-H0)

in the

(1). call the

"Vir-

in IrCl 6

the

and 0 . 7 kK

in

) is mainly due to the energy difference beof ( 5 ) though it was expected

to be only 0 . 4 5 kK a c c o r d i n g to ( 6 ) . It is possible

£a3g

+

OsCl 6

(the difference between

is 1.4 kK

tween 2 y-u and 2

o3g

that 3 ygu and 2 y yi% of

tral a t o m a n d ligand JI- and o-orbitals in m a n y dif-

can b e r e c o g n i z e d as c o r r e s p o n d i n g to those

ferent c h r o m o p h o r e s . T h e type £ r a n s - M A 4 B 2 h a v i n g

results in b o t h OsBre

and

Ir(IV)

cases13.

The

individual

bands

of

the s y m m e t r y D 4 h can b e c o n s i d e r e d as the super-

[ 4 k K in the case of { n + o ) - > 5 d j'3 g ]. A c -

p o s i t i o n of quadratic M A 4 and linear M B 2 . W e use

tually, the agreement is better than c o n c e r n i n g the

BETHE'S n o m e n c l a t u r e f o r tetragonal s y m m e t r y , giv-

shift 12 — 13 k K between the isoelectronic

OsBr6-3

ing MULLIKEN'S n o m e n c l a t u r e in parenthesis, as de-

It is interesting to c o m p a r e F i g . 1 with OsI 6 ~ 3 and

parity is a d d e d as a further s p e c i f i c a t i o n if D 4 h and

o b t a i n e d b y a d d i n g 5 . 7 kK to the w a v e n u m b e r s IrBr6

and I r B r 6 OsI6

rived f r o m octahedral s y m m e t r y . T h e even or

.

having

transitions

41

three

LAPORTE-allowed

n — 5 d 75g

r o u g h l y equidistant with the difference

3 k K . This is qualitatively

in agreement with

the

positions expected f o r 3 /gu > 2 y 7 u and 2 ygu but o n l y if the effective value of £ is somewhat a b o v e the value 5 . 0 7 k K f o r the isolated i o d i n e atom ( 6 ) . T h e intermediate

coupling

has p r o g r e s s e d

t o w a r d the j,/-extreme 2 /7u and 2 t V pected

to

is not much b e l o w the —

be

f 04u f r o m some

strongly

that the difference between (5)

8 kK,

difference

which w o u l d b e ex-

since

the

1 7 8 u ~ ^ 5 d } ' 3 g has been identified OsI6

so

13

broad

°4u «

— WT5u ~ 3 k K and

and

7i ( a i ) = /'ti ( a i ) »

76 = n o ,

72(^2) = 7 t 3 ( b i ) ,

7i =

73(e)

78 = 7to + 7 t i -

=7ti(ai)+7t3(bi),

7a, (8)

74 (ti) = 7 t 2 ( a 2 ) + 7 t s ( e ) , 75 (ta) = 7 t 4 ( b 2 ) + y t 5 ( e ) , U s i n g the c o o r d i n a t e s g i v e n in T a b l e 4 of ref.

the

43

non-relativistic orbitals g i v e n in T a b l e 1 have welldefined s y m m e t r y

types ytk

and their e n e r g y

and

the first-order relativistic splitting c a n b e calculated.

at 4 4 . 6 k K f o r

It is sufficient to c o n s i d e r the d i a g o n a l sum rule and

) . T h e differ-

e n c e between 3 ygu and 1 y%n in the j,/-limit f C + tV ^4u - 4

Oh are c o n s i d e r e d rather than D 4 and O :

band

, i. e. 1 7 . 8 k K a b o v e 3 y s u - ^ 5 d y3g (the anal-

o g o u s distance is 1 9 . 5 kK f o r P t l 6

odd

suggests

(5) that

is 7i4u

— o 4 u ~ 12 k K appropriate f o r

the i n v a r i a n c e of s q u a r e d elements of the secular determinant [ E q . ( 9 3 ) of r e f . 4 3 ] in o r d e r to obtain these results. It has p r e v i o u s l y been s h o w n

13'16

that in c u b i c s y m m e t r y , the orbitals YQ consist (co=^)

components

of

of

the p-shell of the ligands

h e x a c h l o r o c o m p l e x e s cannot b e far off f o r h e x a i o d o

and yi e x c l u s i v e l y of (co = f ) , h a v i n g the c o n t r i b u -

complexes

tion

either. T h i s

discrepancy

cannot b e

re-

m o v e d within the f r a m e of o u r m o d e l , because the

+

In T a b l e 2 , the o b s e r v e d

and calculated

energy

two distances between a d j a c e n t b a n d s in the visible

levels of i r i d i u m ( I V )

are k n o w n to b e nearly identical.

c o m p a r e d , and in T a b l e 3 , a similar c o m p a r i s o n is

However, understood 41 42

we

should

everything.

not

believe that we

have

It is striking that each

C. K. J0RGENSEN, Acta Chem. Scand. 17, 1043 [1963]. J. C. EISENSTEIN, J. Chem. Phys. 25, 142 [1956].

of

chloro-bromo

complexes

are

m a d e f o r o s m i u m ( I V ) . T h e agreement is satisfactory in spite o f the f o l l o w i n g d i f f i c u l t i e s : 43

C. K. JORGENSEN, Absorption Spectra and Chemical Bonding

in Complexes, Pergamon Press, Oxford 1962.

Unauthenticated Download Date | 11/24/15 4:07 AM

Symmetry type cubic tetragonal r 1 7t5g 1i yt2g

( A 1 A A

r 1 7t5u

/ A { A A

1 7t2u -T 75U

oy4u

Wavefunction

r 1 yt5u 1i 7t4u Ir 1 7t5u 1[ 7t2u

A z4 — B 2/5+B ?/6 J -A

y2 — A

X3 + A

•AZ, + A Z

A Z

2

- A Z

3

+AZ

4

3

- A Z

4

+ H AN

+ }

J

(7teg >'t6g

6

/

-AO, •Bö,

First-order relativistic correction

ang

H \ „ + H \ A „

XX

-AX 4 + BX 5 + BZ 6

\A I A A f A 1 A B

Non-relativistic energy

HAO

«AB,par

— I CB

non-diagonal elements


't6u

° 0 0

PAR

+ IHAAO

#BO+£

b,teu

#BBO

trans trans

_

CA

CA

Table 1. Energies of the filled M.O. in */-ans-MA4B2. The results can be applied to MA 5 B removing the parity of the grouptheoretical quantum numbers and, when the ligand A replaces B on one of the positions 5 or 6, replacing £B by (£A+CB)/2 . Symmetry type cubic non-relativistic tetragonal non-relativistic tetragonal relativistic IrCl 6 — obs. 1 3 IrClsBr— obs. 8 ealc. Jran-s-IrCUB^ obs. 9 ealc. frans-IrCl2Br4 obs. 9 ealc. IrClBr 5 — obs. 8 ealc. IrBrß obs. 1 3 ealc. /fflC-IrCl3Br3— obs. 9 calc. cubic relativistic

(71+

71 74g

yteg

yt7g

7t6g

17.0

14.23 15.5 13.66 13.9

Hi. I —

15.1 12.05 11.8 12.4 11.6



14.5 —

12.9 11.6 11.4 13.17 14.2 ys g



17.0 —

17.0 —

14.7 —

13.9 13.4 13.2 15.43 15.1 76g

o)y\u

Ytbu

7t2g

ytsg

7t7u

7t6u

18.8 19.0 17.24 17.4 16.56 18.0 15.62 16.4 14.3, 14.9 14.9 17.68 17.7 7 8u

y t5u

7t2u

20.5 19.65 19.6 —

18.6 14.8 15.3 14.5 15.1

7t6u



20.5 —

20.5 20.08 18.2 —

17.4 —

16.7 —

18.6 76u

7t7u

7t4u 7t6u

7t7u

23.0, 24.4

22.05 22.2 21.64 20.6 18.08 18.5 17.68 18.2 17.15 17.5 20.5 20.6 7?u

23.6 23.7 — 23.53 21.8 23.7 21.14 22.27 21.2 21.4 18.95 20.6 20.2 20.1 18.35, 19.7 19.3 22.32 21.5 7 8u —

22.8

Table 2. Assignments of absorption bands of iridium (IV) complexes. Symmetry type cubic non-relativistic

^74g

tetragonal non-relativistic t e t r a g o n a l relativistic

OsCl 6 — obs. 1 3 OsCloBr—obs.s calc. 1 3

is

the

j,/-coupling

but also that the effects

of interelectronic repulsion between the partly

filled

the geometrical

isomers have

structures

of this g r o u p at least as different as two c o m p l e x e s of different c o m p o s i t i o n . It has been s h o w n that the c o n c e p t of h o l o h e d r i z e d symmetry

17' 2 5

can b e ap-

5d-shell and the l o w e r orbitals d o n o t separate in-

plied to electron transfer spectra with the same suc-

dividual terms of a given M . 0 . c o n f i g u r a t i o n to any

cess as to internal transitions in the partly

large extent. This is not trivial b e c a u s e the first ex-

d-shell in octahedral orthoaxial c o m p l e x e s .

filled

y-Radiolyse von flüssigem Kohlenoxid bei —196 °C H . W . BUSCHMANN

und

W .

GROTH

Institut für Physikalische Chemie der Universität Bonn (Z. Naturforschg. 22 a. 954—960 [1967] ; eingegangen am 12. Februar 1967)

The radiation chemistry of liquid carbon monoxide at —196 °C and mixtures of CO with various gases has been investigated. In the y-radiolysis of pure CO C0 2 is formed with G(C0 2 ) =0.18. The addition of CH4 , C 2 H 4 , 0 2 , and NO leads to the formation of C 3 0 2 which is not observed in the }'-radiolysis of pure CO. In the case of CO —CH4 mixtures the following reacting products were identified: CoH 6 . C.,H 2 , H X O , H 2 C 2 0 (Ketene), C0 2 and C 3 0 2 . Results of experiments with C O - C H 4 - 1 3 C H 4 "and CO — CH4 — CD4 mixtures and measurements of the dependence of G ( C 0 2 ) , G(C 3 0 2 ), G(C 2 H 2 ) and G(C 2 H 6 ) on the concentration of CH4 have shown that ethane is formed by energy transfer from CO to CH4 or by reaction of CH4 with excited CO and that C 3 0 2 and C 2 H 2 are formed by reaction of free carbon atoms which are formed in the presence of methane.

V o n photochemischen Untersuchungen her ist be-

B i l d u n g v o n m o n o m e r e m K o h l e n s u b o x i d ist bei der

kannt, daß sich K o h l e n o x i d bei Bestrahlung mit den

y - R a d i o l y s e des K o h l e n o x i d s auch nicht zu erwarten,

Linien

1 2 3 6 Ä und

2062 Ä

2

1295 Ä

1

s o w i e mit der

Linie

da M e s s u n g e n

in unserem

Laboratorium

ergeben

unter B i l d u n g v o n K o h l e n d i o x i d und K o h -

haben, d a ß K o h l e n s u b o x i d unter d e m Einfluß ioni-

l e n s u b o x i d zersetzt. D a g e g e n beobachtet m a n bei der

sierender Strahlung mit G{ — C 3 0 2 ) = 1 0 5 p o l y m e r i -

/-Radiolyse

des K o h l e n o x i d s 3 ' 4

von Kohlendioxid

z w a r die

mit G ( C 0 2 ) = 2 , 0 ,

Bildung

anstelle

von

siert. Bei der Bestrahlung v o n verflüssigtem reinem K o h l e n o x i d bei

— 196

C beobachtet man ebenfalls

K o h l e n s u b o x i d findet m a n j e d o c h ein festes b r a u n e s

die B i l d u n g v o n K o h l e n d i o x i d .

R e a k t i o n s p r o d u k t . Dieses ist im Gegensatz zu ther-

unter diesen B e d i n g u n g e n nicht nachweisbar.

misch o d e r strahlenchemisch p o l y m e r i s i e r t e m K o h l e n s u b o x i d in allen untersuchten Lösungsmitteln löslich. Es ist anzunehmen, daß es sich bei Reaktionsprodukt

um

eine

innige

nicht

diesem

Mischung

von

K o h l e n s u b o x i d und f r e i e m Kohlenstoff handelt. D i e

1

W . GROTH, W . PESARRA U. H . J . ROMMEL, Z . P h y s i k .

Chem.

Setzt m a n j e d o c h d e m verflüssigten

Kohlenoxid

Gases

Kohlensuboxid

gebildet.

Die

Radiolysepro-

dukte verschiedener Gasmischungen sind in T a b . 1 zusammengefaßt. 3

S . DONDES, P . HARTECK u . H . V. WEYSSENHOFF, Z . N a t u r f o r s c h g .

19 a, 13 [1964].

P . HARTECK, R . R . REEVES U. B . A . T H O M P S O N , Z . N a t u r f o r s c h g .

19 a, 2 [1964],

ist

F r e m d g a s e zu, so w i r d j e nach Art des zugesetzten

Frankfurt 32. 192 [1962]. 2

Kohlensuboxid

4

A . R . ANDERSON, J . V . F . BEST U. M . J . WILLETT, T r a n s .

raday Soc. 62, 595 [1966].

Unauthenticated Download Date | 11/24/15 4:07 AM

Fa-