ARSENIC(III) AND ANTIMONY(III) AQUEOUS CHEMISTRY

8 downloads 198 Views 7MB Size Report
DISS. ETH No. 15343. UV SPECTROPHOTOMETRIC STUDIES OF ARSENIC(III) . AND ANTIMONY(III) AQUEOUS CHEMISTRY. FROM 25 TO 300°C.
Research Collection

Doctoral Thesis

UV spectrophotometric studies of arsenic(III) and antimony(III) aqueous chemistry from 25 to 300°C Author(s): Iakovleva, Valentina P. Publication Date: 2003 Permanent Link: https://doi.org/10.3929/ethz-a-004685440

Rights / License: In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use.

ETH Library

DISS. ETH No. 15343

UV SPECTROPHOTOMETRIC STUDIES OF AND

ANTIMONY(III) AQUEOUS

ARSENIC(III)

CHEMISTRY

FROM 25 TO 300°C.

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH for the

of

degree

Doctor of Science

presented by VALENTINA P. IAKOVLEVA

Dipl. Geologist-Geochemist,

Moscow State

University,

Russia

born 19.05.1975

citizen of

Russian Federation

accepted

on

the recommendation of

and

Pétrographie,

Prof. Dr. T. M. Seward

Inst.

Mineralogy

Prof. Dr. C. A. Heinrich

Inst.

Isotope Geochemistry,

Prof. Dr. S. A. Wood

University of Idaho, Moscow, USA

2003

ETH Zürich

ETH Zürich

examiner co-examiner co-examiner

The

cover

illustrations show: absorbance spectra

arsenic and

antimony sulphide deposition

Pool, Waiotapu Geothermal System, New

on

oîAs(III) sulphide containing solutions;

siliceous

Zealand.

algal

stromatolites at

Champagne

To my

grandfathers

General A. M. Volkov

Professor

N. P. Zakaznov

Abstract

The aim of this

dynamic and

study

has been to

provide

a

data which define the ionisation of

HzSbO^)

addition,

the

and

p-nitrophenol and

stability

able to determine the a

new

experimental set-up

measurements in

of the

was

The main

uv-vis

stoichiometry

designed

and its

developed

region

validity

of

(i.e. HAsÖ2

which

our

In

species have also

method used in this

However,

in order to be

of the thioarsenite aqueous

species,

and constructed which facilitated accurate

and

solutions.

A mathematical treatment

successfully applied.

deprotonated equivalent

the visible and ultraviolet test and confirm the

was

experimental

spectroscopy.

hydrogen sulphide containing

experimental data

p-nitrophenol

and

stability

based thermo¬

and antimonous acids

of the thioarsenite aqueous

stoichiometry

high temperature flow-through

is

arsenous

experimentally

from 25 to 300°C at saturated vapour pressures.

been determined at ambient temperature.

study

reliable set of

Dilute solutions of

exhibit well defined spectra

comprise

a

throughout

simple, ideal system with which

spectrophotometric methodology

to

and mathematical

data treatment.

The ultraviolet spectra of dilute

antimony and

arsenic aqueous solutions have been

sured from 25 to 300°C at the saturated vapour pressure.

stability

constants

were

obtained for the

HAs02(aq) for which 25 to

pKi (arsenous acid)

9.

species and stability

constant

solutions, the reduced sulphur concentrations

four times greater that that of arsenic and hence all

acid

arsenous

was

species reacted

to

thioarsenite.

The thioarsenious

sulphide species

and

fluids,

K\, for the thioarsenous acid

sulphur hydrothermal

As02 the

,

,

were

in dilute aqueous solutions at ambient

isation constant,

In low

species, H3AsS3 and H2AsS3

was

found to be the dominant

temperature and pressure. The ion¬

obtained,

fluids in the Earth's crust, the

(i.e. p.rYi=11.14±0.04).

and

simple

species will be the dominant arsenic species. However,

fully protonated H3AsS3 species

solutions, the

-As2 CO

oo oo CO CO

Ö

Ö co o 4^ Cn

O

I—i

O oo 4^

I—»

CD

1—i

1—»

O O

Ö

O

cn O

cn

ö

CO co o -a

p Ö

1—"

-J Oi

to

O

4^

1—»

o o

p Ö

to o

o

CD 00

-a

o

1—1

o

—>

1—i

O o

Ö

O

i—»

cn

-4

Ö

4^

O CO

4^

Ö

O

-q o Cn

to

o

CO

1—1

o o

p ö

i—»

to

to

Cn CO

i—»

oo -

"/.STABILITY CONSTANT EVALUATION /As-Na system y,

% 1.

Model

"/. 2.

Constants

used

general script"

"in

description:

densities):

(water dissociation constant,

°/."water_constants_densities" "/.

3.

Parameters

(total concentrations,

density correction)

Absorbance,

°/,"in general script" % 4.

calculation:

coefficients

Activities

"/." [I]=ion_str(C104)

"

;

"Debye_Huckel2" ;Pitzer_Agamma_derivD_H;

°/,"activity_calculation" y,5.

calculation

concentrations

Equilibrium

at

known Kt-d:

a

"/."balance. ." % 6.

Molar

constrained

"/, 7. "/„

calculation,

theorethical

°/,"object_absorbance" Minimisation

8.

"eps=nonnegative_ls(Abs,c,m);"

optimisation:

Absorbance

(5,6,7

of this

"/, 9.

Figures:

°/,10.

Uncertainty

"/.11.

Workspace saving:

using Lagrange multiplier,

calculation

absorptivity

in this "in

sum:

sum

of

separate

squares Aobs-Acalc:

program)

general script"

"figures" calculation "in

using

propagation:

Gaussian

general script,

save..."

in

"uncertainty"

the

name

"/, which system and temperature

*/.-

-----------------------

7.1.

HA=H+

+

A-;

k=H*A/HA; pH

clear all;close

varied

by

NaOH addition

all

water_constants_densities

run

lgkw=lgkw25 ; "/. !

change

d=d25; "/.density

!

°/,3.

Parameters

when

change

temperature is changed

when

temperature is changed

:

load

E:\matlab_files\Data\data_25_300_As_NaOH.mat

load

E:\As_OH_system\AS_final_data\eps_OH.mat"/.

"/.corrected for density,

but

kk=[k_order(l :8)] ;°/,which ll=f ind(lambda==250)

:

not

for

chemical

OH molar

path length solutions

1 :f ind(lambda==196)

to

use

;°/.which wavelength interval

As=As(kk)'; Na=Na(kk)'; Abs=A(ll,kk)'/d;

eps_OH=ka(ll) ;"/, ! change

when

absorptivity

temperature is changed

114

APPENDIX C

COMPUTATIONAL PROGRAMS

"/.run activity_calculation; "/.effect

on

stability

Ion

constant

strength is

is

less

10~-3,

then

negligible

n=length(As); m=3;°/,number

of

absorbing species

options=optimset('Display','iter','TolX',le-9); if

1

lgx_min

=

fminbnd(@obj ect_abs_As_Na,-10,-7,options,lgkw,As,Na,Abs,eps_0H);

end

[F_min,eps,C_abs,pH,oh]=obj ect_abs_As_Na(lgx_min,lgkw,As,Na,Abs,eps_0H); correct eps for path length of the cell run Figures_As_Na "/.important to confedence level run uncertanties_As_Na °/,pm-is cd

E:\matlab_files\Results result_25_As_NaOH lgx_min pm F_min eps C_abs pH kk 11 lambda As Na Abs

save

"/,

!

change

the

name

when

temperature is changed! ! ! !

115

!

APPENDIX C.

COMPUTATIONAL PROGRAMS

"/.SCRIPT FOR PLOTTING FIGURES:

figure°/.l plot(lambda(11),Abs) xlabelCWavelength / nm') ylabel('Absorbance') title(['Spectra of arsenic containing solutions;

Solutions:

'

num2str(kk)])

figure#2 [T,P] orthog_plot(Abs,3,lambda(ll)); =

title(['Orthogonal

vectors,

number

of

species'])

figure°/,3 plot(lambda(ll),[eps; eps_0H]) legend('undissociated species','deprotonated species') xlabelCWavelength / nm') ylabel('/epsilon') title('Molar absorptivities of HAsO_2 and As0_2"-')

figure'/.4 plot(lambda(ll), C_abs'*eps+oh'*eps_OH,'o') hold on; plot(lambda(ll), Abs) xlabeK'Wavelength / nm') ylabel('Absorbance') title(['Comparison between calculated (o) and observed (line) absorbance; resn='num2str(F_min)]) lgx_l=' num2str(lgx_min) ';

f igure°/,5

path=1.8 "/.for example "/. plot (lambda(ll), [eps]/path)

legend('HAsO_2','As0_2"-') xlabelC Wavelength / nm')

ylabel('/epsilon') title('Molar absorptivities of HAsO_2 and As0_2~- corrected for the path

length

of

the

cell')

116

APPENDIX C.

"/.SCRIPT:

COMPUTATIONAL PROGRAMS

WATER CONSTANTS

AND

DENSITIES:

lgkw25=-14;

lgkw50=-13.276; "/. Igkw75 */. Igkw80 7. Igkw90

lgkwl00=-12.266 lgkwl50=-11.644

lgkw200=-l1.302 lgkw250=-11.196

lgkw300=-l1.301 d25=l; d50=l;

dl00=0.9625; dl50=0.9217; d200=0.8703; d250=0.8058; d300=0.7153:

117

APPENDIX C.

"/.FUNCTION:

ORTHOGONALISATION

[T,P]

function

=

OF

MATRIX,

orthog_plot(A,n,lambda);

"/,

orthogonal izat ion [Y,I]=sort(sum(A)) ;

tmp=size(I) ; startvector=I(l,tmp(2))

;

I

=

tl

=

A(:.startvector);

t2

=

0;

for

l:n

sum(abs(t2-tl))

while t2

pi pi

>

=

tl;

=

t2'*A/(t2'*t2);

=

pl/sqrt(pl*(pl'));

tl

=

if

I

==

P

=

T

=

0.00001

A*pl';

end

1

pi; tl;

else P

=

T

=

[P; pi]; [T, tl];

end A

end

=

A-tl*pl;

figure plot(lambda, P)

118

COMPUTATIONAL PROGRAMS

written

by

0.

Suleimenov

APPENDIX C

"/.FUNCTION

function

COMPUTATIONAL PROGRAMS

OBJECTIVE

:

[F,eps,C_abs,pH,oh]=obj ect_abs_As_Na(lgx,lgkw,As,Na,Abs,eps_0H);

n=length(As); for

j=l:n

[h(j),oh(j),haso2(j),aso2(j)]=balance_As_Na(lgx,lgkw,As(j),Na(j)); end

C_abs=[haso2;aso2]; pH=-logl0(h); Abs_OHcorr=Abs-oh.'*eps_0H;

eps=nonnegative_ls(Abs_0Hcorr,C_abs,2); A_cal=C_abs.'*eps; F=sum(sum((Abs-A_cal).~2));

119

APPENDIX C.

"/.FUNCTION:

function

NONNEGATIVE LEAST

COMPUTATIONAL PROGRAMS

SQUARE FIT OF ABSORBANCE,

eps=nonnegative_ls(Abs,c,m);

°/,m-number of absorbing species

[ml,nl]=size(Abs); [m2,n2]=size(c);

eps=zeros(m2,nl); for

j=l:nl;

eps(:,j)=inv(c*c')*c*Abs(:,j); c_new=

[]

;

index=0; for

i=l:m

eps(i,j)0

eps_new=inv(c_new*c_new')*c_new*Abs(:,j); 1=1; for

i=l:m if

(eps(i,j)>0) eps(i,j)=eps_new(l,:)

;

1=1+1; end

end end

end

120

written

by

F.

Herzog

APPENDIX C

"/.FUNCTION

function

COMPUTATIONAL PROGRAMS

OBJECTIVE

:

[F,eps,C_abs,pH,oh]=object_abs_As_Na(lgx,lgkw,As,Na,Abs,eps_0H);

n=length(As); for

j=l:n

[h(j),oh(j),haso2(j),aso2(j)]=balance_As_Na(lgx,lgkw,As(j),Na(j)); end

C_abs=[haso2;aso2]; pH=-logl0(h);

Abs_OHcorr=Abs-oh.'*eps_0H;

eps=nonnegative_ls(Abs_0Hcorr,C_abs,2); A_cal=C_abs.'*eps; F=sum(sum((Abs-A_cal)."2));

121

APPENDIX C.

"/.FUNCTION

SPECIATION

:

PROGRAM,

idea from 0.

COMPUTATIONAL PROGRAMS

Suleimenov

[h,oh,haso2,aso2]=balance_As_Na(lgx,lgkw,As,Na);

function

na=Na; astot=As;

k=10~(lgx); kw=10-(lgkw); C(l)=l;

C(2)=k+na; C(3)=-k*astot+k*na-kw; C(4)=-k*kw; a=roots(C); °/0everythink k=0;

in=l;

if

for

is

OK

i=l:3

isreal(a(i)) if

a(i)>0 & a(i)0 & haso2>0 &

aso2>0

in=i; end

k=l; end

end end

h=a(in); oh=kw/h; haso2=(astot*h+kw-h*na-h~2)/h;

aso2=-(kw-h*na-h~2)/h; if

(k==0)

error('No real

roots

between 0

and

astot!!!')

end

122

COMPUTATIONAL PROGRAMS

APPENDIX C.

"/.FUNCTION

SPECIATION PROGRAM WITH NaOH ASSOCIATION

:

function[h, oh,haso2,

aso2,

na,

naoh]=balance_As_Na_assoc(lgk,lgkw,As,NA,

lgkam); AS=As;

NA=Na;

kw=10~(lgkw); kl=10~(lgk); kam=10~(lgkam); c(l)=kw*kanT2-kl*kam; c(2)=kw~2*kam'3+kl-kl*kam"2*kw-kw*kam-3*kw*kam"2*NA+2*kl*kam*NA-kl*AS*kam; c(3)=-3*kw~2*kam'N3*NA+kl*AS*kam*NA+3*kw*kam''2*NA~2+kw*kam*NA+2*kl*kw*kam"2*NA -kl*NA~2*kam;

c(4)=-kw*kam'2*NA"3+3*kw~2*kam'3*NA~2-kl*kw*kam~2*NA"2; c(5)=-kw~2*kam~3*NA"3;

g=roots(c); kl=0; t=l; for u=l:4 if

isreal(g(u)) if

g(u)>0

g(u)0

if

phtal=a(i); hp

=

P-phtal;

-Ka*(-P+phtal)/phtal; h2aso3 -(-kw*phtal~2+Ka*K*phtal*P-Ka*K*phtal~2+Ka*NA*phtal*Ph

=

=

Ka*NA*phtal"2+Ka"2*P~2-2*Ka"2*P*phtal+Ka"2*phtal"2-Ka*P"2*phtal+ Ka*phtal"3)/pht al/Ka/(-P+pht al); oh=kw/h;

(-AS*Ka*phtal*P+AS*Ka*phtal~2-kw*phtal~2+Ka*K*phtal*PKa*K*phtal"2+Ka*NA*phtal*P-Ka*NA*phtal"2+Ka'2*P"2-2*Ka'*2*P*phtal+ Ka~2*phtal~2-Ka*P~2*phtal+Ka*phtal~3)/phtal/Ka/(-P+phtal) ;

h3aso3

if

=

&

hp>0

h2aso3>0 & h3aso3>0 & h>0

t=i; end; end

end end

phtal=a(t); hp h

=

=

P-phtal;

-Ka*(-P+phtal)/phtal;

h2aso3

=

-(-kw*phtal"2+Ka*K*phtal*P-Ka*K*phtal~2+Ka*NA*phtal*P133

APPENDIX C.

COMPUTATIONAL PROGRAMS

Ka*NA*phtal~2+Ka~2*P~2-2*Ka~2*P*phtal+Ka~2*phtal~2-Ka*P~2*phtal+ Ka*phtal~ 3)/pht al/Ka/(-P+pht al); oh=kw/h;

(-AS*Ka*phtal*P+AS*Ka*phtal"2-kw*phtal~2+Ka*K*phtal*PKa*K*phtal~2+Ka*NA*phtal*P-Ka*NA*phtal~2+Ka~2*P~2-2*Ka~2*P*phtal+

h3aso3

=

Ka"2*phtal~2-Ka*P"2*phtal+Ka*phtal"3)/phtal/Ka/(-P+phtal);

134

APPENDIX C

"/.FUNCTION

function

:

COMPUTATIONAL PROGRAMS

SPECIATION AT EACH POINT OF TITRATION

[Q]=matal(pkw, pkl, pKa.NAl, ASl, Kl, Pl,Vn,Vd);

°/,Vn=solution volume

on

titration

the

start

[0.01:0.5:10]

in ml example [NA, AS, K, P]=OHdelutKHP(NAl, ASl, Kl, PI, Vn, Vd);

°/,Vd=added

solution volume

[h, oh, h2aso3, h3aso3, hp, phtal]=KHPtitr(pkw, pkl, pKa, NA(1), K(l), P(l), AS(1)); Q=[h

oh

h2aso3

h3aso3

hp

phtal];

y=size(Vd); for

i=2:y [h, oh, h2aso3, h3aso3, hp, phtal]=KHPtitr(pkw, pkl, pKa, NA(i), K(i), P(i), AS(i)); Q=[Q;h

oh h2aso3 h3aso3

hp phtal];

end

135

APPENDIX C.

"/.FUNCTION

:

COMPUTATIONAL PROGRAMS

OBJECT FUNCTION FOR TITRATION DATA TREATMENT

[G]=perl(NAl, pkw, pkl, pKa.ASl, Kl, Pl.Vn.Vd, X); [Q]=matal(pkw, pkl, pKa.NAl, ASl, Kl, Pl,Vn,Vd); W=diff(-loglO(Q(:, 1))); function

a=size(Vd'); f=a(:, 2)-l; v=size(Vd(l:f)); u=size(W); S=[Vd(l:f) W];

s=size(S);

[y, m]=min(S); x=S(m(2),

1);

G=(X-x)~2;

"/.primer resheniya v \from Cary5\matlab26_05_99_calk.txt. °/.pKa konstanta dlya KHP, X-min v diriviate exp, Vn-m sol °/.Vd,

skol'ko

dobavlyala, K-C(K).

.

.

136

s

As,

COMPUTATIONAL PROGRAMS

APPENDIX C.

"/.FUNCTION function

:

TO

CALCULATE DILUTED CONCENTRATIONS

[NA, AS, K, P]=OHdelutKHP(NAl, ASl, Kl, PI, Vn, Vd);

°/,Vn=solution volume

on

the

titration

°/0Vd=added solution volume example

start

[0.01:0.5:10]

AS=AS1*Vn/(Vn+Vd(1));

NA=NAl*Vn/(Vn+Vd(l));

P=Pl*Vd(l)/(Vn+Vd(l)); K=Kl*Vd(l)/(Vn+Vd(l));

d=size(Vd); i=2:d

for

FOR TITRATION

as=ASl*Vn/(Vn+Vd(i)); na=NAl*Vn/(Vn+Vd(i));

p=Pl*Vd(i)/(Vn+Vd(i)); k=Kl*Vd(i)/(Vn+Vd(i)); AS=[AS ; as];

NA=[NA;na];

P=[P;p]; K=[K;k]; end

137

in ml

APPENDIX C.

138

COMPUTATIONAL PROGRAMS

Bibliography

Ahrland S. and Bovin J. (1974) The and nitric acid solutions. A

Allen G.

F.,

J. and

Phys.

Souchay

P.

antimony(III)

formation of

in

solubility study. Acta Chem. Scand. A28,

Bower V. E. and Robinson R.

from 0 to 60°C. J.

Angeli

complex

Chem.

(1960)

A.(1962)

perchloric

acid

1089-1100.

Ionization constant of

p-nitrophenol

66, 171.

Sur les thioarsenites

en

solution.

Compt.

Rend. Acad.

Sei. Pans 250, 713-715.

Antikainen P. J. and Tevanen K.

(1961)

arsenious acid. Suomen Kemistilehti

The effect of temperature

on

34, 3-4.

Antikainen P.J. and Rossi V.M.K. (1959) Chelation of arsenious acid with Kemistilehti

32B,

Babko A.K. and of

Lisetskaya G.S.(1956) Equilibrium

Baes C. F. and Mesmer R.

in solution. Zhurn.

E.(1976)

Bates R.G. and Schwarzenbach G.

The

(1954)

D. J. and Pitzer K.

in reactions of formation of thiosalts

Neorgan.

The

Khim. 1, 969-980.

Cations.

Hydrolysis of

tion constants of acids. Helv. Chim. Acta

erties of water and

polyols. Suomen

185-189.

tin, antimony, and arsenic

Bradley

the ionization of

thermodynamic

Wiley-lnterscience.

determination of dissocia¬

37, 1069-1079.

S.(1979) Thermodynamics

Debye-Hiickel parameters

of

electrolytes

to 350°C and 1-Kbar

.12. Dielectric prop¬

J

Phys. Chem 83,

1599-1603.

139

Bibliography

Bibliography-

acid, (b)

arsenous

acid, (c)

dissociation constants of

Caldwell B.

K., Caldwell

solution to the

Coleman W. F.

Complex

Part X.

volving weak acids.

J.

Bangladesh

(1998)

hydroxide,

(2003) Searching

in

arsenic

for

an

optimum

56, 2089-2096.

arsenic crisis. Soc. Sei. Med.

Molecules

(a)

J. Chem. Soc. 1048-1055.

and arsenic acids.

of

formation in¬

in acid and alkaline solutions. The

Mitra S. N. and Smith W.

Collection

complex

formation between tartaric acid and

antimonous

arsenous

C,

studies of

(1934) Physicochemical

Britton H.T.S. and Jackson P.

Dept. of Chemistry, Wellesley

3D.

College. Criaud A. and Fouillac C.

geothermal

waters:

(1989)

Examples

from the Massif Central of

da Silva C. absolute

O.,

Bulgaria.

Chem. Geol.

an

arsenic

(V)

in

France, the Island of Dominica New

Mexico, U.S.A.,

76, 259-269.

da Silva E.C. and Chaer Nascimento

pKa

(HI)

Caribbean, the Vallès Caldera of

in the Leeward Islands of the

and southwest

The distribution of arsenic

values in aqueous solution I.

M.A.(1999)

Carboxylic

acids.

Ab initio calculations of J.

Phys. Chem. A 103,

11194-11199.

Debusschere

capillary Eary

L. E.

L., Demesmay C.

zone

electrophoresis

(1992)

mochim. Acta

The

and Rocca J. with

solubility

of

mass

L.(2000)

amorphous As2S3

M., Belzile

Garrett

on

from 25 to 90°C.

and

Reactivity.

D.C. Heath and

Co.,

edn.

N. and Chen Y.

W.(2002) Antimony

in the environment:

natural waters I. Occurrence. Earth Sei. Rev.

A.B., Holmes O

solutions of

Geochim. Cos-

56, 2267-2280.

Lexington, MA, 3rd

focused

coupling

spectrometry. Chromatographia 51, 262-268.

Ege S. N.(1994) Organic Chemistry: Structure

Filella

Arsenic speciation by

and Laube A

hydrochloric

(1940)

acid and sodium

The

140

review

57, 125-176.

solubility

hydroxide.

a

of

arsenous

oxide in dilute

The character of the ions of triva-

Bibliography

Bibliography

lent arsenic. Evidence for

polymerization of

arsenous

J. Amer.

acid.

Chem. Soc. 62,

2024-2028.

lute solutions af Soc.

(1950)

R.,

arsenic

Haar

oxide(rhombic)

of antimonious

equilibria

acid and sodiuum

hydrochloric

Handbook

Pokrovski G.

speciation

of Inorganic Chemistry,

hydroxide

vol.

Schott J. and Zwick A.

,

Chem.

J.Amer.

at 25oC.

in de-

18(A).

(1997)

in aqueous solutions up to 275°C.

Raman

J. Ram.

spectroscopic study

Sped. 28,

of

725-730.

L., Gallagher J. S. and G. S. Kell (1984) NBS/NRC Steam tables. Thermodynamic

and transport properties and m

The

74, 2353-2354.

Gmelin

Gout

A.B.(1952)

K.H. and Garrett

Gayer

SI units.

Haase

Hemisphere

R., Ducker

states

of

water

Corp.

Küppers

H. A. (1965) Aktivitatskoefflzienten und Dissozi¬

Gesellsch.

Ber. Buns.

Eadington (1986) Thermodynamic predictions

chemistry of arsenic, and

cassiterite-arsenopyrite-base

their

significance

metal sulfide

H. C. and D. H. Kirkham

havior of aqueous

liquid

97.

Heinrich C. A. and P. J.

Helgeson

vapour and

wassriger Salpetersaure und Uberchlorsaure.

Physikal. Chem. 69,

mal

Publ.

K. H. and

ationskonstanten

computer pragrams for

electrolytes

at

(1974) high

for the

deposits.

paragenetic

Econ. Geol.

Theoretical

pressures and

prediction

of the

hydrother¬

sequence of

some

81, 511-529.

of

thermodynamic

temperatures

.

2.

Debye-

parameters for activity-coefficients and relative partial molal properties.

be¬

Hiickel

Am. J. Sei.

274, 1199-1261.

Heiz G.

C.

R.,

Tossell J.

A., Charnock

D.(1995) Oligomerization

in

J.

M., Pattrick R. A. D., Vaughan

As(III)

sulfide solutions

-

theoretical constraints and

spectroscopic evidence. Geochim. Cosmochim. Acta 59, 4591-4604. 141

D. J. and Garner

Bibliography

Bibliography

C,

Bianchi

electrolyte

H.,

W.(1971)

Palmer D. A. and R. H. Wood

solutions at

Kinetics of thermal

decomposi¬

Can. J. Chem. 49, 317-324.

acid.

perchloric

tion of aqueous

Ho P.

I. and Swaddle T.

P., Miasek V.

Henderson M.

high temperatures

(2000) Conductivity

and pressures

using

a

of dilute aqueous

flow cell. J. Sol. Chem.

29, 217-235.

A., Vorob'eva S. V.

Ivakin A.

and Gertman E.

third dissociation constants of

Ivakin A.

Vorobeva S.

A.,

Equilibria

M.(1979)

acid. Rus. J.

arsenous

Determination of second and

Inorg.

Chem.

E. M. and Voronova E.

V., Gertman

and Self-Association in Arsenic Acid Solutions. Zhurn.

24, 36-40

M.(1976)

Acid-Base

Neorgan. Khim. 21,

442-448.

J.(1965) Lichtabsorptions-and

Jander G. and Hartmann H.

Bestimung Chem.

des

Diffusionsversuche sowie die Zeit.

im Sauren Bereich.

Ionenladungsvorzeichens

Anorgan. Allgem.

339, 239-247.

Johnson J.

W., Oelkers

E. H. and

H.

Helgeson

C.(1992) Supcrt92

-

a

software

calculating the standard molal thermodynamic properties of minerals, species, and Kielland J.

reactions from 1 bar to 5000 bar and 0°C to 1000°C.

(1937)

activity coefficients of

Individual

package for

gases, aqueous

Comp. Geosci.

cations in aqueous solutions.

18.

J. Am.

Chem. Soc. 59, 1675-1678.

Krupp R. E. and Seward an

active

T.

M.(1987)

epithermal gold-depositing

Loehr T.M. and Plane

R.A.(1968)

arsenites in aqueous solution.

Mironova G. D. and Zotov A.

complexes

of arsenic

(III)

The Rotokawa

geothermal system,

environment. Econ. Geol.

New-Zealand

-

82, 1109-1129.

Raman spectra and structures of arsenious acid and

Inorg. Chem. 7, 1708-1714.

V.(1980) Experimental study

at 90°C

using

a

of the

stability

of sulfide

solubility technique. Geokhimiya 3, 397-407.

142

Bibliography

Bibliography

Mironova G.

Zotov A. V. and Gulko N.

D.,

orpiment solubility

orpiment

Mishra S.K. and

Sb(III)

in aqueous

Science, 296,

(2002)

(1996)

de l'arsenic et delà

thesis,

Pokrovski

G.,

Y.

of the

acid solution. Ind. J. Chem.

perchloric

of

solubility

arsenic.

Public health

-

Worldwide

occurrences

hydrolytic equilibria

6, 757-758.

of arsenic in

S.(1974)

Ionization constant of

Etude

expérimentale

complexation

du

ground

water.

and

p-nitrophenols

at

Ser. Khim. 5, 16-21.

comportement du germanium, du silicium

de Valuminiu

avec

Paul-Sabatier, Toulouse,

R., Schott J.,

o-

SSSR,

to 175°C. Izv. Sib. Otd. Akad. Nauk

Universite

Gout

B.

Zotov A. and

et

la silice dans les solutions naturelles.

France.

Harrichoury

J.

C.(1996) Thermodynamic

properties and stoichiometry of As(III) hydroxide complexes tions.

of

stability of sulfide complexes of

K.(1968) Spectrophotometric study

Smolyakov

temperatures from 25

Ph.D.

1.(1990) Experimental study

2143-2145.

L. A. and

Pokrovski G.S.

1762-1768.

Geokhimiya 12,

691-703.

Gupta

Nordstrom D. K.

Pavlyuk

and Gulko N.

in sulfide solutions at 25 to 150°C and

Geokhimiya 5,

of

in the acidic solutions at 25-150°C.

D., Zotov A. V.

Mironova G.

determination of the

1.(1983) Experimental

at

hydrothermal

condi¬

Geochim. Cosmochim. Acta 60, 737-749.

Pokrovski G.

S.,

Zakirov I.

and Golikova G.

500°C:

Roux

J.,

Testemale

V.(2002) Experimental study

Implications for As transport and

volcanic gases.

Prasad S.

V.,

(1987)

143

Y.

of arsenic speciation in vapor phase to

low-density

an

crustal fluids and

acid-thioarsenite system and the for¬

Anales De La Asociacion

83-89.

L., Bychkov A.

66, 3453-3480.

investigation of

mation of different thioarsenites.

Hazemann J.

fractionation in

Geochim. Cosmochim. Acta

Electrometric

D.,

Quimica Argentina 75,

Bibliography

Bibliography

A.

Quist

S.,

Jolley

Marshall W. L. and

solutions at

high temperature

H.

R.(1965)

Electrical conductances of aqueous

and pressure .2. Conductances and ionization constants

of sulfuric acid-water solutions from 0 to 800°C and at pressures up to 4000 bars.

Phys. Chem. 69,

2726.

Raposo J. C, Sanz,J., Zuloaga,0., Olazabal dynamic of the

J.

model of

arsenic

inorganic

hydrolytic equilibrium

Ratcliffe C. I. and Irish D.

M. A. and

Madariaga

J.

M.(2003)

Thermo¬

in aqueous solutions. Potentiometrie

species

study

of arsenious acid. J. Sol. Chem. 32, 253-264.

E.(1984)

Vibrational

spectral studies

of solutions at elevated

temperatures and pressures. VI. Raman studies of perchloric acid. Can. J. Chem. 62, 1134-1144.

Reyes

A. G

Rotokawa

Trompetter

,

W.

I. and

New Zealand.

Salmassi T.

M.,

G.(2002)

Venkateswaren

Shin

T.W.,

.

Kinetic

dissociation constants for

J. Sol. Chem.

C, Keegan T.,

H., Newman D.

Thornton

K. and

by Agrobacterium albertimagni, AOL15,

acidity

T.(1969)

constants of

acid and

26, 379-390. 144

sp. nov.,

Solvent deuterium isotope effects

inorganic oxyacids

I.J.(1997) Spectrophotometric

cacodylic

Hering

53-66.

applications. Acta Chem. Scand. 23,

Kim K. and Lee

119, 215-239.

Butterworths, London.

Dadea

K.

Creek, California. Geomicrobiol. 19,

acid-base reactions .3. Relative water

in the

in waters and sediments of the Rio Loa

K., Satomi M., Nealson

Salomaa P., Hakala R., Vesala S. and Aalto

heavy

deposits

Geochem. 18, 1399-1416.

Oxidation of arsenite

isolated from Hot

on

solutions.

L., Alonso H., Campano P., Fanfani L., Cidu R., Farago M.(2003) Arsenic enrichment

Mineral

J. Vol. Geotherm. Res.

H.(1968) Electrolyte

(Second Region, Chile). Appl.

J.

J.(2003)

Britten K. and Searle

geothermal pipelines,

Robinson R.A. and Stokes R.

Romero

J.,

p-nitrophenol

in

light

and

2116-2126.

determination of the acid at elevated

temperatures.

Bibliography

Bibliography

P. L. and

Smedley

D.

Kinniburgh

G.(2002) Appl.

bution of arsenic in natural waters.

A review of the source, behaviour and distri¬

17, 517-568.

Geochem.

1.(1986)

Smith R. W. and Popp C. J. and Norman D.

The dissociation of

oxy-acids

at

elevated-temperatures. Geochim. Cosmochim. Acta 50, 137-142.

N. F. and Reed M.

Spycher of

and

stoichiometry

Acta

H.(1989) As(III)

stability

from

and

Sb(III)

sulfide

complexes

-

an

evaluation

existing experimental data. Geochim. Cosmochim.

53, 2185-2194.

Srivastava M. H. N. and Ghosh and dissolution of arsenious

S.(1958)

sulphide

on

thioarsenites. Part I.

J. Ind. Chem. Soc.

sulphide.

Suleimenov O. M. and Seward T.

Studies

M.(1997)

A

Presipitation

35, 165-169.

spectrophotometric study of hydrogen Cosmochim. Acta 61,

Geochim.

ionisation in aqueous solutions to 350°C.

5187-5198.

Tissandier M.

D., Cowen

Tuttle T. R. and Coe J.

A., Feng

K.

V.(1998)

Y., Gundlach E., Cohen

W.

The

proton's

absolute aqueous

energy of solvation from cluster ion solvation data. J.

A.(1997)

Tossell J.

Theoretical studies

and in aqueous solution.

A.(2001)

Tossell J.

on

sulfide

V.,

Calculation of the UV

Ivakin A.

complexes

Webster J. G

bearing

(1990)

A.,

A

and Gibbs free

102, 7787-7794.

hydroxide species

absorption spectra

PF3 in the

gas

in minerals

solubility

fluids at 25°C and 90°C.

of

Neorgan.

of

As(III)

and thio acids

Khim.

239-254.

Gertman(1977) Arsenic(III)

22, 2725-2728.

As2S3 and speciation of As

Geochim. Cosmochim. Acta

145

oxo

phase. Aq. Geochem. 00,

Gorelov A. M. and E. M.

in solutions. Zhurn.

The

enthalpy

Phys. Chem.

arsenic oxide and

H., Earhart A. D.,

Geochim. Cosmochim. Acta 61, 1613-1623.

and anions in aqueous solution and of

Vorob'eva S.

M.

in

dilute and sulfide-

54, 1009-1017.

Bibliography

Bibliography

Weissberg ore

B.

Browne P. R. L. and Seward T.

G.,

deposits,

John

Willey

and

M.(1979) Geochemistry of hydrothernal

Sons, Inc., chap. Ore

metals in active

geothermal systems,

pp. 738-780. éd. H. L. Barnes.

Weissberg Na2S



B.

G.,

H20

at 50-200°C and 100-1500 bars with

Cosmochim. Acta

Welch

United States.

Wilkin R. waters.

Wood S.

geological applications.

in

Geochim.

Hughes J.L.(1988)

ground

water of the western

G.(2003) Speciation

of arsenic in sulfidic

Arsenic in

D. and Ford R.

Geochem. Trans. 4, 1-7.

Tait C. D. and

and thioarsenite

species

H., Sperline R.

the dissociation constant

Yokoyama T.,

Janecky

D.

R.(2002)

A.V., Shikina

P. and Freiser

(pK(a))

geothermal

67,

spectroscopic study

Geochem. Trans.

H.(1993) Spectrophotometric

of arsenious acid.

T.(1993)

water.

N. D. and Akinfiev N.

Sb(III) hydroxide complex Sb(OH)3(&q) mochim. Acta

A Raman

in aqueous solution at 25°C.

Takahashi Y. and Tarutani

and arsenious acids in

Zotov

orpiment (As2S3)

Ground Water 26, 333-347.

T., Wallschlager

A.,

Yamazaki

of

30, 815-827.

Lico M.S. and

A.H.,

G.(1966) Solubility

Dickson F. W. and Tunell

Chem

Analyt.

of arsenite

3, 31-39.

determination of

Chem. Acta 284, 379-384.

Simultaneous determination of arsenic Geol. 103, 103-111.

N.(2003) Thermodynamic properties at

1821-1836.

146

hydrothermal

conditions.

of the

Geochim. Cos¬

CURRICULUM VITAE

Valentina P. Zakaznova-Iakovleva

Name: Date

of Birth:

May 19, Russian

Nationality: Education:

1975

1982-1992:

Moskovskaya Gymnasia

(Primary 1992-1997:

Diploma

and

1998-2003:

(M.Sc.)

in

Geology

Russia

and

Geochemistry

University, Russia

Ph.D. student in Institute für

Yugo-Zapade

Secondary schools), Moscow,

with honor

Moscow State

na

Geochemistry

Mineralogy

und

Petrography,

ETH-Zentrum

Zürich, Switzerland Awards:

Languages:

1996:

"Academician D.S. Korzhunskii

Stipend",

Russia

1997:

"Academician D.S. Korzhunskii

Stipend",

Russia

Russian

(mother tongue), English

and German

Acknowledgments

I would like to thank many

the

possibility

Oleg

group.

to do

a

people

set-up experiments and

doing

me

at ETH

version and

me

hope;

a

personal

of fun times

together.

We

friends,

kept

Hönggerberg;

our

these years.

during

supervision within

Dr.

Kissner for

a

friends,

Thank to Florian for all his

without your

patience, support and advice

thanks to my Parents for the love and energy

in both

they

how to

spectrometric my

"first"

alive;

I have realised that

help;

personal

arenas.

Finally,

mass

me

for great company and lots

for their support in difficult moments.

possible

motivated research

correcting

traditions and habits very much

my Ph.D. would not have been

Terry Seward for

teaching

doing

Trudi Semeniuk for

note I would like to thank my Russian

Thanks to all my

finishing

me

ab intio calculations and for

to write programs;

measurements for

On

helped

doctoral thesis under his

Suleimenov for

giving

who

gave

me.

and scientific