Asymptotic Estimates for Second Kind Generalized Stirling Numbers

3 downloads 0 Views 2MB Size Report
Aug 1, 2013 - Asymptotic formulas for the generalized Stirling numbers of the second kind with ... Applying Cauchy Integral Formula to (1), the following.
Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2013, Article ID 918513, 7 pages http://dx.doi.org/10.1155/2013/918513

Research Article Asymptotic Estimates for Second Kind Generalized Stirling Numbers Cristina B. Corcino1 and Roberto B. Corcino2 1 2

Institute of Mathematics, University of the Philippines, Diliman, 1101 Quezon City, Philippines Department of Mathematics, Mindanao State University Main Campus, 9700 Marawi City, Philippines

Correspondence should be addressed to Roberto B. Corcino; [email protected] Received 5 June 2013; Accepted 1 August 2013 Academic Editor: Zhijun Liu Copyright Β© 2013 C. B. Corcino and R. B. Corcino. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Asymptotic formulas for the generalized Stirling numbers of the second kind with integer and real parameters are obtained and ranges of validity of the formulas are established. The generalizations of Stirling numbers considered here are generalizations along the line of Hsu and Shuie’s unified generalization.

1. Introduction Asymptotic formulas of the classical Stirling numbers have been done by many authors like Temme [1], Moser, and Wyman [2, 3] due to the importance of the formulas in computing values of the numbers under consideration when parameters become large. The Stirling numbers and their generalization, on the other hand, are important due to their applications in statistics, life science, and physics. The (π‘Ÿ, 𝛽)-Stirling numbers [4], the π‘Ÿ-Whitney numbers of the second kind [5], and the numbers considered by RuciΒ΄nski and Voigt [6] are exactly the same numbers which can be classified as generalization of the classical Stirling numbers of the second kind. This generalization is in line with the generalization of Hsu and Shuie [7]. For brevity, we can use 𝑆𝛽,π‘Ÿ (𝑛, π‘š) to denote these numbers. These numbers satisfy the following exponential generating function: ∞ π‘š 𝑧𝑛 1 π‘Ÿπ‘§ 𝛽𝑧 π‘š) 𝑒 (𝑒 βˆ’ 1) = 𝑆 , βˆ‘ (𝑛, 𝛽,π‘Ÿ π›½π‘š (π‘š!) 𝑛! 𝑛=π‘š

(1)

where 𝑛 and π‘š are positive integers. When 𝛽 = 1, (1) reduces to a generating function of π‘Ÿ-Stirling numbers [8] of the second kind and further reduces to a generating function of the classical Stirling numbers of the second when π‘Ÿ = 0. Combinatorial interpretation and probability distribution involving 𝑆𝛽,π‘Ÿ (𝑛, π‘š) are discussed in [9].

The behavior of the numbers 𝑆𝛽,π‘Ÿ (𝑛, π‘š) was shown to be asymptotically normal in [4, 6]. That means that the distribution of these numbers when the parameters 𝑛 and π‘š are large will follow a bell-shaped distribution. The unimodality of this distribution was also discussed in [4]. Moreover, the bound for the index in which the maximum value of these numbers occurs has been established in [10]. With these properties of the numbers 𝑆𝛽,π‘Ÿ (𝑛, π‘š), it is necessary to consider the asymptotic formula for the numbers 𝑆𝛽,π‘Ÿ (𝑛, π‘š) to be able to compute large values of the numbers. Applying Cauchy Integral Formula to (1), the following integral representation is obtained: π‘š

𝑆𝛽,π‘Ÿ (𝑛, π‘š) =

π‘’π‘Ÿπ‘§ (𝑒𝛽𝑧 βˆ’ 1) 𝑛! 𝑑𝑧, ∫ 2πœ‹π‘–π›½π‘š (π‘š!) 𝐢 𝑧𝑛+1

(2)

where 𝐢 is a circle about the origin. The primary purpose of the present paper is to investigate if the analysis in [3] can be extended to the generalized Stirling numbers of the second kind. The authors are motivated by the work of Chelluri et al. [11] which proved the asymptotic equivalence of the formulas obtained by Temme [1] and those obtained by Moser and Wyman in [2, 3]. Moreover, it was also shown in [11] that the formulas obtained apply not only for integral values of the parameters 𝑛 and π‘š, but for real values as well. To be able to do a similar investigation with that in [11] for the generalized Stirling numbers of the first and second

2

Journal of Applied Mathematics

kinds, it is necessary to come up with asymptotic formulas for each kind generalized Stirling numbers which may have used a method similar to that in [2, 3]. The necessary asymptotic formulas for the generalized Stirling numbers of the first kind can be found in [12, 13]. In this paper, an asymptotic formula for the generalized Stirling numbers of the second kind 𝑆𝛽,π‘Ÿ (𝑛, π‘š) with integral values of π‘š and 𝑛 are obtained using a similar analysis as that in [3]. The formula is proved to be valid when π‘š > (1/4)π‘›πœ‡ and lim𝑛 β†’ ∞ (𝑛 βˆ’ π‘š) = ∞, where πœ‡ = π‘Ÿ/𝛽. Moreover, other asymptotic formulas are obtained for 𝑆𝛽,π‘Ÿ (𝑛, π‘š), where 𝑛 and π‘š are real numbers under the conditions 𝑛 βˆ’ π‘š β‰₯ 𝑛𝛼 and 𝑛 βˆ’ π‘š β‰₯ 𝑛1/3 .

2. Preliminary Results πœ‡π‘€

π‘š

𝑀

𝑒 (𝑒 βˆ’ 1) 𝑛! 𝑑𝑀, ∫ π‘šβˆ’π‘› 2πœ‹π‘–π›½ π‘š! 𝐢 𝑀𝑛+1

(3)

where πœ‡ = π‘Ÿ/𝛽, 𝑀 = 𝛽𝑧. Using the representation 𝑀 = π‘…π‘’π‘–πœƒ , for the circle 𝐢, where βˆ’πœ‹ ≀ πœƒ ≀ πœ‹ and 𝑅 is a positive real number, (3) becomes π‘–πœƒ

π‘–πœƒ

π‘š

πœ‡π‘…π‘’ πœ‹ 𝑒 (𝑒𝑅𝑒 βˆ’ 1) 𝑛! π‘‘πœƒ. (4) 𝑆𝛽,π‘Ÿ (𝑛, π‘š) = ∫ 2πœ‹π›½π‘šβˆ’π‘› 𝑅𝑛 (π‘š!) βˆ’πœ‹ π‘’π‘–π‘›πœƒ

Multiplying and dividing the right-hand side of (4) by the correction constant π‘š

(𝑒𝑅 βˆ’ 1) π‘’πœ‡π‘… ,

(5)

it reduces to

π‘š ) βˆ’ 𝑛, 1 βˆ’ π‘’βˆ’π‘…

𝑅 𝑅 1 πœ‡ 𝑒 (𝑒 βˆ’ 𝑅 βˆ’ 1) 𝐻= [ + ], 2 2 π‘š (𝑒𝑅 βˆ’ 1)

π·π‘˜ (𝑅) =

πœ‡π‘… 1 + Ξ”π‘˜ log (𝑒𝑅 βˆ’ 1) , π‘˜!π‘š π‘˜!

(11) (12) (13)

where Ξ” is the operator 𝑅(𝑑/𝑑𝑅). Lemma 1. There is a unique 0 < 𝑅 < 𝑛/π‘š such that π‘š ) βˆ’ 𝑛 = 0. 1 βˆ’ π‘’βˆ’π‘…

(14)

Proof. Equation (14) can be written in the form βˆ’1

𝑅(1 βˆ’ π‘’βˆ’π‘… )

=

πœ‡ 𝑛 βˆ’ 𝑅. π‘š π‘š

(15)

Let 𝑓1 (𝑅) = 𝑅(1 βˆ’ π‘’βˆ’π‘… )βˆ’1 and 𝑓2 (𝑅) = 𝑛/π‘š βˆ’ (πœ‡/π‘š)𝑅. Note that 𝑓1 (𝑅) is a continuous function on (0, ∞) and lim𝑅 β†’ ∞ 𝑓1 (𝑅) = ∞ while lim𝑅 β†’ 0 𝑓1 (𝑅) = 1. On the other hand, 𝑓2 (𝑅) is a line with π‘₯ intercept at 𝑅 = 𝑛/πœ‡ and 𝑦 intercept at 𝑓2 (0) = 𝑛/π‘š and is decreasing when π‘š and πœ‡ are positive real numbers. Thus, 𝑓1 and 𝑓2 , as functions of 𝑅, surely intersect at some point. The value of 𝑅 at the intersection point is the desired solution. Moreover, it can be seen graphically that 𝑅 < 𝑛/πœ‡. Lemma 2. 𝐻 defined in (12) obeys the inequalities 1 1 πœ‡ ≀𝐻≀ + . 4 2 2

(16)

Proof. This lemma follows from Lemma 2.2 in [3].

πœ‹

𝑆𝛽,π‘Ÿ (𝑛, π‘š) = 𝐴 ∫ exp β„Ž (πœƒ, 𝑅) π‘‘πœƒ,

(6)

βˆ’πœ‹

where 𝐴=

𝐡 = 𝑅 (πœ‡ +

𝑅 (πœ‡ +

The integral representation in (2) can be written in the form 𝑆𝛽,π‘Ÿ (𝑛, π‘š) =

where

𝑛!π‘’πœ‡π‘… (𝑒𝑅 βˆ’ 1)

π‘š

2πœ‹π›½π‘šβˆ’π‘› 𝑅𝑛 π‘š!

,

(7)

Proof. π·π‘˜ (𝑅) defined in (13) can be written as

and β„Ž(πœƒ, 𝑅) is the function, π‘…π‘’π‘–πœƒ

π‘–πœƒ

β„Ž (πœƒ, 𝑅) = πœ‡π‘…π‘’ + π‘š log (𝑒

π·π‘˜ (𝑅) = βˆ’ 1) (8)

𝑅

βˆ’ π‘š log (𝑒 βˆ’ 1) βˆ’ πœ‡π‘… βˆ’ π‘–π‘›πœƒ. Observe that β„Ž(πœƒ, 𝑅) can be written in the form β„Ž (πœƒ, 𝑅) = πœ‡π‘…π‘’π‘–πœƒ βˆ’ πœ‡π‘… + π‘šπ‘” (πœƒ, 𝑅) ,

(9)

where 𝑔(πœƒ, 𝑅) is the same function 𝑔(πœƒ, 𝑅) which appeared in [14], except for the value of 𝑅. The Maclaurin expansion of β„Ž(πœƒ, 𝑅) is 2

∞

πœ‡π‘… + πΆπ‘˜ (𝑅) , π‘˜!π‘š

(18)

where πΆπ‘˜ (𝑅) is the same as that defined in (16) in [3]. Dividing both sides of the preceding equation by 𝑅 and taking the absolute value, we have 󡄨󡄨 𝐷 (𝑅) 󡄨󡄨 󡄨󡄨 πœ‡ 󡄨󡄨 󡄨󡄨 𝐢 (𝑅) 󡄨󡄨 󡄨󡄨 󡄨󡄨 󡄨󡄨 󡄨󡄨 π‘˜ 󡄨󡄨 + 󡄨󡄨󡄨 π‘˜ (19) 󡄨≀ 󡄨. 󡄨󡄨 󡄨󡄨 𝑅 󡄨󡄨󡄨 󡄨󡄨󡄨 π‘˜!π‘š 󡄨󡄨󡄨 󡄨󡄨󡄨 𝑅 󡄨󡄨󡄨 With πœ‡ a fixed parameter and π‘š β†’ ∞ as 𝑛 β†’ ∞ and using Lemma 3.2 in [3], the desired result is obtained. Define πœ– = (π‘šπ‘…)βˆ’3/8 and consider the integral 𝐽 defined by πœ‹

π‘˜

β„Ž (πœƒ, 𝑅) = π‘–π΅πœƒ + π‘šπ‘…π»(π‘–πœƒ) + π‘š βˆ‘ π·π‘˜ (𝑅) (π‘–πœƒ) , π‘˜=3

Lemma 3. There exists a constant 𝑀 independent of π‘˜ and 𝑅 such that 󡄨󡄨 𝐷 (𝑅) 󡄨󡄨 󡄨󡄨 󡄨󡄨 π‘˜ (17) 󡄨󡄨 ≀ 𝑀. 󡄨󡄨 󡄨󡄨 𝑅 󡄨󡄨

(10)

𝐽 = ∫ exp β„Ž (πœƒ, 𝑅) π‘‘πœƒ. πœ–

(20)

Journal of Applied Mathematics

3

Lemma 4. A constant π‘˜ > 0 exists such that |𝐽| ≀ πœ‹ exp (βˆ’π‘˜(π‘šπ‘…)1/4 ) .

The last inequality will yield

Proof. We claim that π‘–πœƒ 󡄨󡄨 󡄨󡄨 󡄨󡄨 βˆ’1 σ΅„¨σ΅„¨π‘š |β„Ž (πœƒ, 𝑅)| ≀ 󡄨󡄨󡄨(𝑒𝑅𝑒 βˆ’ 1)󡄨󡄨󡄨 β‹… 󡄨󡄨󡄨(𝑒𝑅 βˆ’ 1) 󡄨󡄨󡄨 . 󡄨 󡄨 󡄨 󡄨

(22)

Using the definition of β„Ž(πœƒ, 𝑅) given by (9), we have 󡄨 π‘–πœƒ σ΅„¨π‘š 󡄨󡄨 󡄨󡄨󡄨󡄨 𝑒𝑅𝑒 βˆ’ 1 󡄨󡄨󡄨󡄨 󡄨󡄨 βˆ’π‘–π‘›πœƒ 󡄨󡄨 󡄨󡄨 󡄨󡄨󡄨 󡄨󡄨 π‘–πœƒ 󡄨 󡄨 β‹… 󡄨𝑒 󡄨󡄨󡄨 . 󡄨󡄨exp β„Ž (πœƒ, 𝑅)󡄨󡄨 = 󡄨󡄨exp [πœ‡π‘… (𝑒 βˆ’ 1)]󡄨󡄨 β‹… 󡄨󡄨 𝑅 󡄨󡄨 𝑒 βˆ’ 1 󡄨󡄨󡄨 󡄨󡄨 󡄨 󡄨 (23) Because |π‘’π‘–π‘›πœƒ | = 1, it remains to show that | exp[πœ‡π‘…(π‘’π‘–πœƒ βˆ’ 1)]| ≀ 1. Note that | exp[πœ‡π‘…(π‘’π‘–πœƒβˆ’1 )]| = π‘’πœ‡π‘… cos πœƒ β‹…π‘’βˆ’πœ‡π‘… . The claim now follows from the fact that βˆ’1 ≀ cos πœƒ ≀ 1 and πœ‡π‘… β‰₯ 0. From (9), β„Ž (πœƒ, 𝑅) = πœ‡π‘… (π‘’π‘–πœƒ βˆ’ πœ‡π‘…) + π‘šπ‘” (πœƒ, 𝑅) .

(24)

(25)

The result now follows from the previous claim and the fact that 𝑔(πœƒ, 𝑅) is the same function 𝑔(πœƒ, 𝑅) that appeared in [3] except for the value of 𝑅. Observe that when π‘šπ‘… β†’ ∞ as 𝑛 β†’ ∞, Lemma 4 will imply that 𝐽 β†’ 0 as 𝑛 β†’ ∞. Indeed, π‘šπ‘… β†’ ∞ as 𝑛 β†’ ∞ under some conditions, as shown in the following lemma. Lemma 5. π‘šπ‘… β†’ ∞ as 𝑛 βˆ’ π‘š β†’ ∞ provided π‘š > (1/4)π‘›πœ‡, 𝑛 > 4. Proof. Write (14) in the form (26)

Now the application of the mean value theorem to the function 𝑓(𝑅) = 1 βˆ’ π‘’βˆ’π‘… over the interval (0, 𝑅) will yield 1βˆ’π‘’

provided 𝑛 βˆ’ πœ‡π‘… > 0. The previous inequality can be written in the form π‘›πœ‡ ) β‰₯ 𝑛 βˆ’ (π‘š + 4) , (31) π‘šπ‘… β‰₯ 𝑛 βˆ’ (π‘š βˆ’ πœ‡π‘…) β‰₯ 𝑛 βˆ’ (π‘š + π‘š when π‘š β‰₯ (1/4)π‘›πœ‡. The second inequality previous follows if 𝑅 < 𝑛/π‘š. Indeed, 𝑅 < 𝑛/π‘š when π‘š β‰₯ (1/4)π‘›πœ‡ and 𝑛 > 4 because 𝑓1 (𝑛/π‘š) > 𝑓2 (𝑛/π‘š), where 𝑓1 and 𝑓2 are the functions in the proof of Lemma 1. Hence, 𝑅 which is the π‘₯-coordinate of the point of intersection of the two functions must be less than 𝑛/π‘š. The last inequality shows that π‘šπ‘… β†’ ∞ as 𝑛 βˆ’ π‘š β†’ ∞ under the given restriction of π‘š. Returning to the condition that 𝑛 βˆ’ πœ‡π‘… > 0, note that 𝑅 < 𝑛/π‘š. Thus, 𝑛 𝑛 βˆ’ πœ‡π‘… > 𝑛 βˆ’ πœ‡ > 𝑛 βˆ’ 4, (32) π‘š

For example, when 𝑛 = 100 and πœ‡ = 4/7, π‘š in Lemma 5 must satisfy π‘š β‰₯ (1/4)100(4/7) = 14.2857. Thus, π‘š β‰₯ 15.

3. Asymptotic Formula with Integral Parameters In the discussion that follows, 𝑅 denotes the unique positive solution to (14). It will be seen later that our final asymptotic formula is expressed in terms of powers of 1/π‘šπ‘…. Anticipating this result and in view of Lemma 4, we write πœ–

𝑆𝛽,π‘Ÿ (π‘š, 𝑛) ∼ 𝐴 ∫ exp β„Ž (πœƒ, 𝑅) π‘‘πœƒ.

(33)

βˆ’πœ–

π‘šπ‘… = 𝑛 βˆ’ πœ‡π‘…. 1 βˆ’ π‘’βˆ’π‘…

βˆ’π‘…

(30)

under the restriction that π‘š β‰₯ (1/4)π‘›πœ‡. So that 𝑛 βˆ’ πœ‡π‘… > 0 whenever 𝑛 > 4.

Thus, 󡄨󡄨 󡄨 󡄨 󡄨 󡄨󡄨 π‘–πœƒ 󡄨󡄨exp β„Ž (πœƒ, 𝑅)󡄨󡄨󡄨 = 󡄨󡄨󡄨󡄨exp [πœ‡π‘… (𝑒 βˆ’ 1)]󡄨󡄨󡄨󡄨 󡄨󡄨󡄨exp π‘šπ‘” (πœƒ, 𝑅)󡄨󡄨󡄨 .

π‘šπ‘… β‰₯ (𝑛 βˆ’ πœ‡π‘…) βˆ’ π‘š,

(21)

βˆ’πœ

= 𝑅𝑒 ,

(27)

where 𝜍 is a number within the interval (0, 𝑅). Then, π‘š = π‘’βˆ’πœ . 𝑛 βˆ’ πœ‡π‘…

(28)

Consequently,

Substituting (10) for β„Ž(πœƒ, 𝑅) and noting that 𝐡(𝑅) = 0, (33) becomes πœ–

∞

βˆ’πœ–

π‘˜=3

𝑆𝛽,π‘Ÿ (𝑛, π‘š) ∼ 𝐴 ∫ exp [βˆ’π‘šπ‘…π»πœƒ2 + π‘š βˆ‘ π·π‘˜ (𝑅) (π‘–πœƒ)π‘˜ ] π‘‘πœƒ. (34) The change of variable πœ™ = (π‘šπ‘…π»)1/2 πœƒ will yield π‘‘πœ™ = (π‘šπ‘…π»)1/2 π‘‘πœƒ, πœƒ=

πœ™ (π‘šπ‘…π»)

1/2

,

π‘‘πœƒ =

π‘‘πœ™ (π‘šπ‘…π»)1/2

.

(35)

Now, (34) becomes βˆ’π‘…

1βˆ’π‘’

π‘š = 𝑅( ), 𝑛 βˆ’ πœ‡π‘…

π‘š π‘šπ‘… = π‘’βˆ’π‘… ≀ π‘’βˆ’πœ = , 1βˆ’ 𝑛 βˆ’ πœ‡π‘… 𝑛 βˆ’ πœ‡π‘… π‘š π‘šπ‘… ≀ . 1βˆ’ 𝑛 βˆ’ πœ‡π‘… 𝑛 βˆ’ πœ‡π‘…

𝑆𝛽,π‘Ÿ (𝑛, π‘š) ∼ (29)

𝛼

𝐴 (π‘šπ‘…π»)

where 𝛼 = (π‘šπ‘…π»)

1/2

1/2

2

∫ π‘’βˆ’πœ™ exp [𝑓 (𝑧, 𝑅, πœ™)] π‘‘πœ™, (36) βˆ’π›Ό

πœ–, 𝑧 = (π‘šπ‘…π»)βˆ’1/2 ,

∞

π‘˜+2

(π‘–πœ™) 𝑓 (𝑧, 𝑅, πœ™) = βˆ‘ π·π‘˜+2 (𝑅) (π‘šπ‘…)βˆ’π‘˜/2 . (π‘˜+2)/2 𝑅𝐻 π‘˜=1

(37)

4

Journal of Applied Mathematics The equation in (37) can be written in the from

It can be computed that

∞

𝑓 (𝑧, 𝑅, πœ™) = βˆ‘ π‘Žπ‘˜ π‘§π‘˜ ,

(38)

𝑏0 = 1,

π‘˜=1

∫

where

2

βˆ’βˆž

π‘˜+2

(π‘–πœ™) . 𝑅𝐻(π‘˜+2)/2

π‘Žπ‘˜ = π·π‘˜+2 (𝑅)

∞

π‘’βˆ’πœ™ π‘‘πœ™ = βˆšπœ‹,

1 2 𝑏2 = π‘Ž2 (𝑅, πœ™) + [π‘Ž1 (𝑅, πœ™)] , 2

(39)

4

Note here that 𝑧 = (π‘šπ‘…)βˆ’1/2 is within the radius of convergence of the series in (38). On the other hand, the Maclaurin series of exp 𝑓(𝑧, 𝑅, πœ™) is

π‘Ž2 = 𝐷4 (𝑅) 𝐷4 (𝑅) =

∞

𝑒𝑓(𝑧,𝑅,πœ™) = βˆ‘ π‘π‘˜ (𝑅, πœ™) π‘§π‘˜ ,

(48)

(40)

(π‘–πœ™) , 𝑅𝐻2

πœ‡π‘… + 𝐢4 (𝑅) , 24π‘š

π‘˜=0

where 𝑏2π‘˜ is a polynomial in πœ™ containing only even powers of πœ™, and 𝑏2π‘˜+1 is a polynomial in πœ™ containing only odd powers of πœ™. Now, (36) can be written in the form 𝛼

where 𝐢4 (𝑅) =

∞

2

𝑆𝛽,π‘Ÿ (𝑛, π‘š) ∼ 𝑄 ∫ π‘’βˆ’πœ™ ( βˆ‘ π‘π‘˜ (𝑅, πœ™) π‘§π‘˜ ) π‘‘πœ™, βˆ’π›Ό

(41)

+

π‘˜=0

where 𝑄 = 𝐴/βˆšπ‘šπ‘…π» and 𝑧 = (π‘šπ‘…) We write (41) as π‘ βˆ’1

𝛼

π‘˜=0

βˆ’π›Ό

βˆ’1/2

βˆ’1 1 [𝑅 + (𝑅 βˆ’ 7𝑅2 + 6𝑅3 βˆ’ 𝑅4 ) (𝑒𝑅 βˆ’ 1) ] 24 βˆ’2 1 [(18𝑅3 βˆ’ 7𝑅2 βˆ’ 7𝑅4 ) (𝑒𝑅 βˆ’ 1) 24 3

4

𝑅

βˆ’3

(49)

+ (12𝑅 βˆ’ 12𝑅 ) (𝑒 βˆ’ 1) ]

.

2

𝑆𝛽,π‘Ÿ (𝑛, π‘š) ∼ 𝑄 [ βˆ‘ π‘§π‘˜ (∫ π‘’βˆ’πœ™ π‘π‘˜ π‘‘πœ™) + π‘ˆπ‘  ] ,

βˆ’ (42)

βˆ’4 1 [6𝑅4 (𝑒𝑅 βˆ’ 1) ] , 24

while

where ∞

𝛼

2

π‘ˆπ‘  = βˆ‘ (∫ π‘’βˆ’πœ™ π‘π‘˜ π‘‘πœ™) π‘§π‘˜ . βˆ’π›Ό

π‘˜=𝑠

In view of Lemma 2, 𝐻 β‰₯ 1/4; hence, 1/2

𝛼 = (π‘šπ‘…π»)

1/2

πœ– = (π‘šπ‘…π»)

βˆ’3/8

(π‘šπ‘…)

3

(π‘šπ‘…)1/8 β‰₯ . 2

∞

π‘˜=0

∞

βˆ’βˆž

2

π‘’βˆ’πœ™ 𝑏2π‘˜ π‘‘πœ™) (π‘šπ‘…)βˆ’π‘˜ ] .

(50)

where (44) 𝐢3 =

Since π‘π‘˜ is a polynomial in πœ™, we can replace 𝛼 with ∞ in (41). Following the discussion in [3], it can be shown that π‘ˆπ‘  = 𝑂(𝑧𝑠 ); hence, we have the asymptotic formula 𝑆𝛽,π‘Ÿ (𝑛, π‘š) ∼ 𝑄 [ βˆ‘ (∫

3

(π‘–πœ™) (π‘–πœ™) πœ‡π‘… π‘Ž1 (𝑅, πœ™) = 𝐷3 =( , + 𝐢3 ) 3!π‘š 𝑅𝐻3/2 𝑅𝐻3/2

(43)

βˆ’1 1 [𝑅 + (𝑅 βˆ’ 3𝑅2 + 𝑅3 ) (𝑒𝑅 βˆ’ 1) 6 βˆ’2

+ (3𝑅3 βˆ’ 3𝑅2 ) (𝑒𝑅 βˆ’ 1) ] +

(45)

(51)

βˆ’3 1 [2𝑅3 (𝑒𝑅 βˆ’ 1) ] . 6

Thus, 𝑏2 can be written as follows:

Note that ∞

∫

βˆ’βˆž

2

π‘’βˆ’πœ™ 𝑏2π‘˜+1 π‘‘πœ™ = 0.

(46)

This is why no odd subscript of π‘π‘˜ appears in (45). An approximation is obtained by taking the first two terms of the sum in (45). Thus, 𝑆𝛽,π‘Ÿ (𝑛, π‘š) β‰ˆ 𝑄 [∫

∞

βˆ’βˆž

2

π‘’βˆ’πœ™ 𝑏0 π‘‘πœ™ + (π‘šπ‘…)βˆ’1 ∫

∞

βˆ’βˆž

𝑏2 = [

2 πœ‡π‘… πœ™4 πœ™6 1 πœ‡π‘… βˆ’ ) . + 𝐢4 ] ( + 𝐢 3 24π‘š 𝑅𝐻2 2 6π‘š 𝑅2 𝐻3

(52)

Let

2

π‘’βˆ’πœ™ 𝑏2 π‘‘πœ™] . (47)

𝐼=∫

∞

βˆ’βˆž

2

π‘’βˆ’πœ™ 𝑏2 π‘‘πœ™.

(53)

Journal of Applied Mathematics

5 Table 1

Then, 𝐼=∫

∞

βˆ’βˆž

2

π‘’βˆ’πœ™

(πœ‡π‘…/24π‘š + 𝐢4 ) 4 πœ™ π‘‘πœ™ 𝑅𝐻2 2

βˆ’ =

1 ∞ βˆ’πœ™2 (πœ‡π‘…/6π‘š + 𝐢3 ) 6 πœ™ π‘‘πœ™ ∫ 𝑒 2 βˆ’βˆž 𝑅2 𝐻3

πœ‡π‘…/24π‘š + 𝐢4 ∞ βˆ’πœ™2 4 ∫ 𝑒 πœ™ π‘‘πœ™ 𝑅𝐻2 βˆ’βˆž

(54)

Exact value 5.685 Γ— 10152 7.728 Γ— 10171 8.411 Γ— 10178 5.604 Γ— 10174 7.399 Γ— 10122 1.275 Γ— 1070 2.208 Γ— 1038

𝑆7,4 (100, 5) 𝑆7,4 (100, 10) 𝑆7,4 (100, 15) 𝑆7,4 (100, 30) 𝑆7,4 (100, 60) 𝑆7,4 (100, 80) 𝑆7,4 (100, 90)

Approximate value 6.335 Γ— 10152 8.169 Γ— 10171 8.731 Γ— 10178 5.706 Γ— 10174 7.446 Γ— 10122 1.279 Γ— 1070 2.211 Γ— 1038

Relative error 0.11428 0.05713 0.03804 0.01824 0.00641 0.00263 0.00123

2

βˆ’

(πœ‡π‘…/6π‘š + 𝐢3 ) ∞ βˆ’πœ™2 6 ∫ 𝑒 πœ™ π‘‘πœ™ 2𝑅2 𝐻3 βˆ’βˆž

Note that by change of variable, say 𝑀 = 𝛽𝑧, we can express 𝑆𝛽,π‘Ÿ (π‘₯, 𝑦) as follows:

2

=

πœ‡π‘…/24π‘š + 𝐢4 3βˆšπœ‹ (πœ‡π‘…/6π‘š + 𝐢3 ) 15βˆšπœ‹ β‹… β‹… βˆ’ . 𝑅𝐻2 4 𝑅2 𝐻3 16

π‘Ÿ π‘₯+ } { { { } 𝛽} 𝑆𝛽,π‘Ÿ (π‘₯, 𝑦) = 𝛽π‘₯βˆ’π‘¦ { } , π‘Ÿ { {𝑦 + } } 𝛽 }π‘Ÿ/𝛽 {

Finally, we obtain the approximation formula π‘š

πœ‡π‘… 𝑅 𝐼 𝑛! 𝑒 (𝑒 βˆ’ 1) [1 + ]. 𝑆𝛽,π‘Ÿ (𝑛, π‘š) β‰ˆ π‘š! 2π›½π‘šβˆ’π‘› 𝑅𝑛 βˆšπœ‹π‘šπ‘…π» π‘šπ‘…βˆšπœ‹

(55)

In view of Lemmas 4 and 5 and (33), the previous asymptotic approximation is valid for π‘š β‰₯ (1/4)π‘›πœ‡. The formula obtained in the previous discussion is formally stated in the following theorem. Theorem 6. The formula 𝑆𝛽,π‘Ÿ (𝑛, π‘š) ∼ 𝑄 [βˆšπœ‹ +

𝐼 ] π‘šπ‘…

(56)

behaves as an asymptotic approximation for the generalized Stirling numbers of the second kind 𝑆𝛽,π‘Ÿ (𝑛, π‘š) with positive integral parameters for π‘š > (1/4)π‘›πœ‡, 𝑛 > 4 and such that 𝑛 βˆ’ π‘š β†’ ∞ as 𝑛 β†’ ∞. Table 1 displays the exact values and approximate values for 𝑛 = 100, π‘Ÿ = 4, 𝛽 = 7. The exact values are obtained using recurrence formula while the approximate values are obtained using Theorem 6. In view of Lemma 5, the formula is valid for π‘š β‰₯ 15. Values on the table affirm that the asymptotic formula in Theorem 6 gives a good approximation for 𝑆7,4 (100, π‘š) when π‘š β‰₯ 15.

4. Asymptotic Formula with Real Parameters Recently, the (π‘Ÿ, 𝛽)-Stirling numbers for complex arguments were defined in [15] parallel to the definition of Flajolet and Prodinger as 𝑆𝛽,π‘Ÿ (π‘₯, 𝑦) =

𝑦 𝑑𝑧 π‘₯! ∫ π‘’π‘Ÿπ‘§ (𝑒𝛽𝑧 βˆ’ 1) π‘₯+1 , 𝑦!𝛽𝑦 2πœ‹π‘– H 𝑧

(57)

where π‘₯! := Ξ“(π‘₯ + 1) and H is a Hankel contour that starts from βˆ’βˆž below the negative axis surrounds the origin counterclockwise and returns to βˆ’βˆž in the half plane I𝑧 > 0.

(58)

where {

π‘₯! π‘₯+π‘Ÿ 𝑦 𝑑𝑧 } = ∫ π‘’π‘Ÿπ‘§ (𝑒𝑧 βˆ’ 1) π‘₯+1 . 𝑦 + π‘Ÿ π‘Ÿ 𝑦!2πœ‹π‘– H 𝑧

(59)

π‘₯+π‘Ÿ The numbers { 𝑦+π‘Ÿ }π‘Ÿ are certain generalization of π‘ŸStirling numbers of the second kind [8] in which the parameters involved are complex numbers. These numbers satisfy the following properties.

Theorem 7. For nonnegative real number π‘Ÿ, one has {

π‘₯+π‘Ÿβˆ’1 π‘₯+π‘Ÿβˆ’1 π‘₯+π‘Ÿ } + (𝑦 + π‘Ÿ) { }. } ={ 𝑦+π‘Ÿβˆ’1 π‘Ÿ 𝑦+π‘Ÿ π‘Ÿ 𝑦+π‘Ÿ π‘Ÿ

(60)

Theorem 8. For nonnegative real numbers π‘Ÿ and 𝛽 and π‘˜ ∈ N, one has 1 π‘˜ π‘₯+π‘Ÿ π‘˜ π‘₯ { } = βˆ‘ (βˆ’1)π‘˜βˆ’π‘— ( ) (𝑗 + π‘Ÿ) . π‘˜ + π‘Ÿ π‘Ÿ π‘˜! 𝑗 𝑗=0

(61)

Furthermore, when π‘˜ = 𝑦, a complex number 1 ∞ π‘₯+π‘Ÿ 𝑦 π‘₯ { } = βˆ‘ (βˆ’1)π‘¦βˆ’π‘— ( ) (𝑗 + π‘Ÿ) . 𝑦 + π‘Ÿ π‘Ÿ 𝑦! 𝑗 𝑗=0

(62)

The Bernoulli polynomial can be expressed using the explicit formula in [16] and the first formula in Theorem 8, with 𝑀 = π‘Ÿ and π‘₯ = 𝑛, as ∞

(βˆ’1)π‘˜ π‘˜! 𝑛 + π‘Ÿ { }. π‘˜+1 π‘˜+π‘Ÿ π‘Ÿ π‘˜=0

𝐡𝑛 (π‘Ÿ) = βˆ‘

(63)

Moreover, it is known that, for 𝑛 = 1, 2, . . ., the Hurwitz zeta function 𝜁(1 βˆ’ 𝑛, π‘₯) = βˆ’π΅π‘› (π‘₯)/𝑛. Note that, as 𝑦 β†’ 0, (𝑦 βˆ’ 1)! ∼ 1/𝑦. By Cauchy’s integral formula 𝐡 (π‘Ÿ) π‘’π‘Ÿπ‘§ 𝑛+π‘Ÿ { = 𝑦 𝑛+1 , } ∼ 𝑦𝑛! [𝑧𝑛+1 ] 𝑧 𝑦+π‘Ÿβˆ’1 π‘Ÿ 𝑒 βˆ’1 𝑛+1

(64)

6

Journal of Applied Mathematics

which further gives, using a result in [17], the following relation: [

𝑑 𝑛+π‘Ÿ = βˆ’πœ (βˆ’π‘›, π‘Ÿ) { }] 𝑑𝑦 𝑦 + π‘Ÿ π‘Ÿ 𝑦=βˆ’1 =

𝑛! βˆ’1 𝑑𝑧 ∫ π‘’π‘Ÿπ‘§ (𝑒𝑧 βˆ’ 1) 𝑛+1 . 2πœ‹π‘– H 𝑧

where ∫𝐢 |𝑑𝑧| is the length of 𝐢1 . With 𝐢1 the horizontal line 1 I𝑧 = βˆ’2πœ‹ + 𝛿, the length of 𝐢1 is a linear function of the real part of 𝑧, given by 𝑙 (𝐢1 ) = lim (πœ– βˆ’ 𝑑) .

(71)

π‘‘β†’βˆž

(65) Hence, we have

An asymptotic formula for π‘Ÿ-Stirling numbers of the second kind was first considered by Corcino et al. in [14]. However, the formula only holds for integral arguments. In this section, we are going to establish an asymptotic formula for π‘Ÿ-Stirling numbers of the second kind that will hold for real arguments. Consider the integral representation in (59) where |I𝑧| < 2πœ‹. To see the analysis of Moser-Wyman applies to π‘Ÿ-Stirling numbers with real arguments π‘₯ and 𝑦, we deform the path H into the following contour: 𝐢1 βˆͺ 𝐢2 βˆͺ 𝐢3 βˆͺ 𝐢4 βˆͺ 𝐢5 where

𝑦 󡄨󡄨 󡄨󡄨 (𝑒𝑧 βˆ’ 1) 󡄨󡄨 󡄨󡄨 (2 + πœ–)𝑦 σ΅„¨σ΅„¨βˆ« 󡄨󡄨 ≀ 𝑑𝑧 lim (πœ– βˆ’ 𝑑) π‘₯+1 󡄨󡄨 𝐢 󡄨 󡄨󡄨 (2πœ‹ βˆ’ 𝛿)π‘₯+1 𝑑 β†’ ∞ 󡄨 1 𝑧

lim𝑑 β†’ ∞ (πœ– βˆ’ 𝑑) < . (2πœ‹ βˆ’ 𝛿)π‘₯βˆ’π‘¦

(72)

The last inequality follows from the fact that 2+πœ– < 2πœ‹βˆ’π›Ώ. With the condition that π‘₯ βˆ’ 𝑦 β‰₯ π‘₯𝛼 , 0 < 𝛼 < 1, and the fact that 2πœ‹ βˆ’ 𝛿 > 𝑒, it follows that the integral along 𝐢1 goes to 0 as π‘₯ β†’ ∞. Thus, we have 𝑦

(1) 𝐢1 is the line I𝑧 = βˆ’2πœ‹ + 𝛿, 𝛿 > 0 and R𝑧 ≀ πœ–, πœ– is a small positive number;

π‘’π‘Ÿπ‘§ (𝑒𝑧 βˆ’ 1) π‘₯! 1 π‘₯+π‘Ÿ 𝑑𝑧. { } ∼ ∫ 𝑦 + π‘Ÿ π‘Ÿ 𝑦! 2πœ‹π‘– 𝐢3 𝑧π‘₯+1

(2) 𝐢2 is the line segment R𝑧 = πœ–, going from πœ–+𝑖(π›Ώβˆ’2πœ‹) to the circle |𝑧| = 𝑅;

Using the method of Moser and Wyman [3], we obtain the following asymptotic formula.

(3) 𝐢5 and 𝐢4 are the reflections in the real axis of 𝐢1 and 𝐢2 , respectively; and (4) 𝐢3 is the portion of the circle |𝑧| = 𝑅, meeting 𝐢2 and 𝐢4 .

(73)

Theorem 9. The π‘Ÿ-Stirling numbers of the second kind with real arguments π‘₯ and 𝑦 have the following asymptotic formula: 𝑦

π‘Ÿπ‘… 𝑅 π‘₯! 𝑒 (𝑒 βˆ’ 1) 1 π‘₯+π‘Ÿ [1 + 𝑂 ( )] { } = 𝑦 + π‘Ÿ π‘Ÿ 𝑦! 2𝑅π‘₯ βˆšπœ‹π‘¦π‘…π» 𝑦

(74)

The new contour is 𝐢1 βˆͺ 𝐢2 βˆͺ 𝐢3 βˆͺ 𝐢4 βˆͺ 𝐢5 in the counterclockwise sense. This idea of deforming the contour H is also done in [11]. The integrals along 𝐢1 , 𝐢2 , 𝐢4 , and 𝐢5 are seen to be

valid for π‘₯ βˆ’ 𝑦 β†’ ∞ as π‘₯ β†’ ∞, provided that π‘₯ βˆ’ 𝑦 β‰₯ π‘₯𝛼 with 0 < 𝛼 < 1, where

(2 + πœ–)𝑦 𝑂( ). (2πœ‹ βˆ’ 𝛿)π‘₯

𝑒𝑅 (𝑒𝑅 βˆ’ 𝑅 βˆ’ 1) π‘Ÿ 𝐻= , + 2 2𝑦 2(𝑒𝑅 βˆ’ 1)

(66)

It will also be shown that these integrals go to 0 as π‘₯ β†’ ∞ provided that π‘₯ βˆ’ 𝑦 β‰₯ π‘₯𝛼 where 0 < 𝛼 < 1. To see this, we consider 𝐢1 . For the other contours, the estimate can be seen similarly. Note that for 𝑧 in 𝐢1 , we can choose 𝛿 so that βˆ’1 2

[1 βˆ’ (𝑒R𝑧 cos (I𝑧)) ] < 1.

(67)

From this and the assumptions that R𝑧 < πœ– and πœ– < 1, it follows that 2+πœ– 󡄨󡄨 𝑧 󡄨 R𝑧 < 2 + πœ–. 󡄨󡄨𝑒 βˆ’ 1󡄨󡄨󡄨 ≀ 𝑒 < πœ– < 2βˆ’πœ–

(68)

βˆ’1

𝑀 [π‘Ÿ βˆ’ 𝑦(1 βˆ’ π‘’βˆ’π‘€ ) ] βˆ’ π‘₯ = 0,

(76)

as a function of 𝑀. Chelluri et al. [11] has made a modification of Moser and Wyman formula and analysis. Using this analysis of Chelluri, we can restate Theorem 9 as follows. Theorem 10. The π‘Ÿ-Stirling numbers of the second kind with real arguments π‘₯ and 𝑦 have the following asymptotic formula: 𝑦

(69)

Consequently, 𝑦 󡄨󡄨 󡄨󡄨 (𝑒𝑧 βˆ’ 1) 󡄨󡄨 󡄨󡄨 (2 + πœ–)𝑦 󡄨 σ΅„¨σ΅„¨βˆ« ≀ , 𝑑𝑧 ∫ 󡄨󡄨 π‘₯+1 |𝑑𝑧| π‘₯+1 󡄨󡄨 𝐢 󡄨󡄨 𝐢1 (2πœ‹ βˆ’ 𝛿) 󡄨 1 𝑧

and 𝑅 is the unique positive solution to the equation

π‘Ÿπ‘… 𝑅 π‘₯! 𝑒 (𝑒 βˆ’ 1) 1 π‘₯+π‘Ÿ [1 + 𝑂 ( )] { } = 𝑦 + π‘Ÿ π‘Ÿ 𝑦! 2𝑅π‘₯ βˆšπœ‹π‘¦π‘…π» π‘₯

Thus, 󡄨󡄨 𝑧 󡄨𝑦 𝑦 󡄨󡄨𝑒 βˆ’ 1󡄨󡄨󡄨 < (2 + πœ–) .

(75)

(70)

(77)

valid for π‘₯ βˆ’ 𝑦 β†’ ∞ as π‘₯ β†’ ∞, provided that π‘₯ βˆ’ 𝑦 β‰₯ π‘₯1/3 , where 𝑒𝑅 (𝑒𝑅 βˆ’ 𝑅 βˆ’ 1) π‘Ÿ 𝐻= , + 2 2𝑦 2(𝑒𝑅 βˆ’ 1)

(78)

Journal of Applied Mathematics

7

and 𝑅 is the unique positive solution to the equation βˆ’1

𝑀 [π‘Ÿ βˆ’ 𝑦(1 βˆ’ π‘’βˆ’π‘€ ) ] βˆ’ π‘₯ = 0,

(79)

as a function of 𝑀. As noted in (58), the (π‘Ÿ, 𝛽)-Stirling numbers can be obtained using the π‘Ÿ-Stirling numbers of the second kind for complex arguments π‘₯, 𝑦, π‘Ÿ, and 𝛽. This implies, using Theorems 9 and 10, the following asymptotic formulas which agree with the formula in (55) for the integral values of π‘₯ and 𝑦. Corollary 11. The (π‘Ÿ, 𝛽)-Stirling numbers with real arguments π‘₯ and 𝑦 have the following asymptotic formulas: 𝑦

π‘Ÿπ‘…/𝛽 𝑅 𝛽π‘₯βˆ’π‘¦ π‘₯! 𝑒 (𝑒 βˆ’ 1) 1 [1 + 𝑂 ( )] 𝑆𝛽,π‘Ÿ (π‘₯, 𝑦) = 𝑦! 𝑦 2𝑅π‘₯ βˆšπœ‹π‘¦π‘…π»

(80)

provided that π‘₯ βˆ’ 𝑦 β‰₯ π‘₯𝛼 with 0 < 𝛼 < 1, and 𝑦

π‘Ÿπ‘…/𝛽 𝑅 𝛽π‘₯βˆ’π‘¦ π‘₯! 𝑒 (𝑒 βˆ’ 1) 1 𝑆𝛽,π‘Ÿ (π‘₯, 𝑦) = [1 + 𝑂 ( )] π‘₯ 𝑦! π‘₯ 2𝑅 βˆšπœ‹π‘¦π‘…π»

(81)

provided that π‘₯ βˆ’ 𝑦 β‰₯ π‘₯1/3 , where 𝐻=

𝑒𝑅 (𝑒𝑅 βˆ’ 𝑅 βˆ’ 1) π‘Ÿ + 2 2𝛽𝑦 2(𝑒𝑅 βˆ’ 1)

(82)

and 𝑅 is the unique positive solution to the equation 𝑀[

π‘Ÿ βˆ’1 βˆ’ 𝑦(1 βˆ’ π‘’βˆ’π‘€ ) ] βˆ’ π‘₯ = 0 𝛽

(83)

as a function of 𝑀.

Acknowledgment The authors would like to thank the referee for reading and evaluating the paper.

References [1] N. M. Temme, β€œAsymptotic estimates of Stirling numbers,” Studies in Applied Mathematics, vol. 89, no. 3, pp. 233–243, 1993. [2] L. Moser and M. Wyman, β€œAsymptotic development of the Stirling numbers of the first kind,” Journal of the London Mathematical Society, vol. 33, pp. 133–146, 1958. [3] L. Moser and M. Wyman, β€œStirling numbers of the second kind,” Duke Mathematical Journal, vol. 25, pp. 29–43, 1957. [4] R. B. Corcino, C. B. Corcino, and R. Aldema, β€œAsymptotic normality of the (π‘Ÿ, 𝛽)-Stirling numbers,” Ars Combinatoria, vol. 81, pp. 81–96, 2006. [5] I. Mez˝o, β€œA new formula for the Bernoulli polynomials,” Results in Mathematics, vol. 58, no. 3-4, pp. 329–335, 2010. [6] A. RuciΒ΄nski and B. Voigt, β€œA local limit theorem for generalized Stirling numbers,” Revue Roumaine de MathΒ΄ematiques Pures et AppliquΒ΄ees, vol. 35, no. 2, pp. 161–172, 1990.

[7] L. C. Hsu and P. J. S. Shuie, β€œA unified approach to generalized stirling numbers,” Advances in Applied Mathematics, vol. 20, no. 3, pp. 366–384, 1998. [8] A. Z. Broder, β€œThe π‘Ÿ-stirling numbers,” Discrete Mathematics, vol. 49, no. 3, pp. 241–259, 1984. [9] R. B. Corcino and R. Aldema, β€œSome combinatorial and statistical applications of (π‘Ÿ, 𝛽)-Stirling numbers,” MatimyΒ΄as Matematika, vol. 25, no. 1, pp. 19–29, 2002. [10] R. B. Corcino and C. B. Corcino, β€œOn the maximum of generalized Stirling numbers,” Utilitas Mathematica, vol. 86, pp. 241–256, 2011. [11] R. Chelluri, L. B. Richmond, and N. M. Temme, β€œAsymptotic estimates for generalized Stirling numbers,” Analysis, vol. 20, no. 1, pp. 1–13, 2000. [12] M. A. R. P. Vega and C. B. Corcino, β€œAn asymptotic formula for the generalized Stirling numbers of the first kind,” Utilitas Mathematica, vol. 73, pp. 129–141, 2007. [13] M. A. R. P. Vega and C. B. Corcino, β€œMore asymptotic formulas for the generalized Stirling numbers of the first kind,” Utilitas Mathematica, vol. 75, pp. 259–272, 2008. [14] C. B. Corcino, L. C. Hsu, and E. L. Tan, β€œAsymptotic approximations of π‘Ÿ-stirling numbers,” Approximation Theory and Its Applications, vol. 15, no. 3, pp. 13–25, 1999. [15] R. B. Corcino, C. B. Corcino, and M. B. Montero, β€œOn generalized Bell numbers for complex argument,” Utilitas Mathematica, vol. 88, pp. 267–279, 2012. [16] F. W. J. Olver, D. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, Washington, DC, USA, 2010. [17] K. N. Boyadzhiev, β€œEvaluation of series with Hurwitz and Lerch zeta function coefficients by using Hankel contour integrals,” Applied Mathematics and Computation, vol. 186, no. 2, pp. 1559– 1571, 2007.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014