Atmospheric chemistry in the Arctic and subarctic: Influence of natural ...

6 downloads 54 Views 1MB Size Report
Oct 30, 1992 - M. A. SHIPHAM 2, E. V. BROWELL 2, D. J. JACOB • , AND J. A. LOGAN • ... haze layers had been converted to peroxyacetyl nitrate (PAN), representing a potential source ... 3A, and Figure 1 shows the corresponding flight paths and loca- ..... 103. 169. 20. 11. 33 33. 577. 1030. 14(4-5 km). 110. 230. 255. 27.
JOURNAL OF GEOPHYSICAL

RESEARCH, VOL. 97, NO. D15, PAGES 16,731-16,746, OCTOBER 30, 1992

AtmosphericChemistryin the Arctic andSubarctic' Influenceof Natural Fires, IndustrialEmissions,and StratosphericInputs S.C. WOFSY• , G. W. SACHSE 2, G. L. GREGORY 2, D. R. BLAKE3, J. D. BRADSHAW'*, S. T. SANDHOLM'*, H. B. SlNGHs, J. A. BARRICK 2, R. C. HARRISS 2'6,R. W. TALBOT2'6, M. A. SHIPHAM 2, E. V. BROWELL 2, D. J. JACOB • , AND J. A. LOGAN• Haze layerswith perturbedconcentrations of tracegases,believedto originatefrom tundraand forestwild fires, were observedover extensiveareasof Alaska and Canadain 1988. Enhancementsof CH4, C2H2, C2H6,

C3H8, and C`*H•0 werelinearly correlatedwith CO in haze layers,with mean ratios(mole hydrocarbon/mole CO) of 0.18 (+ 0.04 (1 o)), 0.0019 (+ 0.0001), 0.0055 (+ 0.0002), 0.0008 (+ 0.0001), and 1.2

x10 4 (_+0.2x104), respectively. Enhancements ofNOywerevariable, averaging 0.0056(+ 0.0030) mole NOy/mole CO,whileperturbations of NOxwereverysmall,usually undetectable. At least1/3of theNOyin the hazelayershadbeenconvertedto peroxyacetylnitrate(PAN), representing a potentialsourceof NOx to the global atmosphere; much of the balancewas oxidizedto nitrate (HNO3 and particulate).The compositionof subArctic haze layers was consistentwith aged emissionsfrom smolderingcombustion,exceptfor CH4, which appearsto be partlybiogenic.Inputsfrom the stratosphere andfrom biomassfires contributedmajor fractions

of theNOyin theremotesub-Arctic troposphere. Analysis of aircraftandground dataindicates relatively little influence frommid-latitude industrial NOyin thisregionduringsummer, possibly excepting transport of PAN. Productionof 03 was inefficient in sub-Arctichaze layers, less than 0.1 03 moleculesper molecule of CO, reflectingthe low NOx/CO emissionratiosfrom smolderingcombustion.Mid-latitudepollutionproducedmuch more03, 0.3 - 0.5 03 moleculespermoleculeof CO, a consequence of higherNOx/CO emissionratios.

1. INTRODUCTION

1988], with only a few investigationsin the borealzone [Cofer et al., 1989].

The Arctic and sub-Arcticregionsof Alaska, Canada,and Greenlandrepresent a vastwilderness with extremelylow levels of humanactivity,oneof thelargestsuchlandareasremaining in the world. Anthropogenic emissions are negligibleovermostof theregion,exceptfor oil operations on theNorthSlope[Blakeet al., thisissue].Atmospheric composition is regulated mainlyby naturalprocesses andby long-rangetransportof pollution.Natural influences includestratosphere-troposphere exchange[Gregory et al., thisissue;Browellet al., thisissue],tundraandforestwild

The presentpaperinvestigates layerswith enhanced concentrationsof tracegasesintercepted by theNASA Electraaircraftover AlaskaduringtheArcticBoundary LayerExpedition (ABLE 3A) ' in July-August1988. The summerof 1988 wasnotablyhot and dry overAlaskaandthehazelayersarebelievedto haveoriginated fromnaturalfiresthatwerewidespread in theregion[Shipham et al., this issue]. Data from the haze layersare examinedto define primaryemissionfactorsfrom borealwild fires and to delincatethe courseof chemicalaging. The chemicalsignatures of

fires,anduptakeof reactive chemical species byvegetation [Jacob thesehazelayersarefoundtoberemarkably consistent withemiset al., thisissue].Anthropogenic pollutants havebeenobserved at sionsfrom smoldering combustion observedin the laboratory particularlyhigh levelsin late winterandspring,during the "Arc- [Lobertet al., 1991], and notablydifferentfrom emissionsfrom

tichaze"period[Rahn,1981; RahnandMcCaffrey,1980;Barrie flamingcombustion. andHoff, 1985;Hansenet al., 1989]. We alsoassess therelativeimportances of naturalandanthropoNaturalfiresoccurthroughout theborealzoneduringsummer,geniesources in regulating tracegasconcentrations oversouthern representing a potentially dominant sourceof hydrocarbons, NO,,, Alaska. Analysisof datafor background air indicates thatinput andparticulates. Mostpreviousstudiesof fireshavefocussed on fromthestratosphere provideda dominantsourcefor O3 [Gregory mid-latitudes or ontropicalburning[e.g.,Hegget al., 1990;Seiler et al., thisissue].We arguethatthestratosphere provideda signi-

andCrutzen, 1980,Andreae et al., 1988;Crutzen et al., 1985; ticantsource forNO• andthatnatural fireswerealsoimportant. Ward and Hardy, 1991;Greenberget al., 1984;Coferet al., Long-range transport of pollutionfrommid-latitudes mayhaveaffectedvertical distributionsof C2-C4 alkanesand CO but could

notbedetected unambiguously forNO• or 03. •Division of Applied Science andDepartment of EarthandPlanetary Science,HarvardUniversity,Cambridge,Massachusetts.

2. SLrMMERTtME HAZ• LAYERS IN TI-m SUB-ARCTIC

2NASALangley Research Center, Hampton, Virginia. 3Department ofChemistry, University ofCalifornia atIrvine. Plate 1 showslidar imagesfrom severalflightsduringABLE `*School of EarthandAtmospheric Science, Georgia Institute ofTechnolo3A, and Figure 1 showsthe corresponding flight pathsandlocagy, Atlanta.

SNASA Ames Research Center, Moffett Field, California.

tions offiresonthedayofFlights 14and20/21.Flight14,on

6Present address: Complex Systems Research Center, University ofNew July26,1988(Plate la), shows anextensive hazelayerbetween 2 Hampshire, Durham.

Copyright1992 by the AmericanGeophysical Union. Papernumber921D0•22. 0148-0227/92/92J-DO0622505.00

and3kinaltitude,asindicated by darkareasin theaerosol image. This layer was samplednear2-km and againat 4-km altitudein a verticalprofile at point 2 (see Figure 2). Weak ozoneenhancement may have been associatedwith the aerosollayer (for example, examinethe lidar datanear Point 1). A fire coveringseveral squarekilometerswas burning about 100 km to the north, and a numberof very large fires were burningto the east;visibility had 16,731

b PM

SPIRAL

ABI.E--3A

FLIGHT

AEROSOL

14-

ABLE

7-26-88

1242

FLIGHT

AEROSOL

DISTRIBUTION

21

8--

4-88

DISTRIBUTION

RELATIVEAEROSOL SCATTERING

P,m•TrV• •oso•. •ooo

SPIRAI•

3A

o

4oo0

L

1250 1256 1•00 1305 LT I i

-

•ooo

4ooo

i

6ooo

i

1634

uooo

I

1640

I,

i

•ooco

I

_

1645 I

_

LT _

_

4

3

-

60.1•

61.11

162.09

61.29

161.91

OZONE

161.21

61.26

161.31

-

{, i61.9•

WLON.

81.85

62.13

N LAT.

161•30

160_90

160_55

w LON

DISTRIBUTION OZONE

OZONE MIX•G 0



1242

0

61.51

l)I•T!•.IIHJ'I'!ON

RATIO, PPBV

30

4•

60

75

1305

1250 125•

LT

I,

- FTM

16:t4

! B40

t

{,

1645

l/r

&,

-

5

4

3

2

!

-

'-

1

o

60.B3

t, H•..O9

61.11

,

61.•9

I

I

161.91

161.21

61.26

,I ,,, 161.31

({1.11

N lAT.

I 161.94

W ION.

Plate 1. LIDAR imagesof aerosolextinctionat 1 pm (upperpanels)and ozonemixing ratio (lowerpanels)for (a) Flight 14 (July 26, 1988, and (b) Flight 21 (August4, 1988), showinghazelayersin the regionnearBethel,

õl .,'s4

61 .rib

6Z. 13

t



t

161.',C7

160.90

160.f,5

N LAT.

W !•)N

Alaska.(•) DataforFlight33(August 17,1988)cover thecoastal transect from Portland,Maine, to WallopsIsland,Virginia.

been reducedby smokeduringthe previousfew days in Bethel 'mettime Arctictroposphere observations relatedto N. Oydis•ibu[Shiphamet al., thisissue].The high aerosolburdensuggests that tion andpartitioning:ABLE 3A, submittedto Journalof Geophya biomassfire was the main source;howeverthe origin cannotbe sical Research,1991) for experimentaldetail) was observed(see uniquelytraced. ElevatedNO, (see S.T. Sandholmet al., Sum- Figure2 andTable 1), indicatingrelativelyrecentemissions,and

WOFSY ET AL.: INFLUENCESON SUBARCTICATMOSPHERICCHEMISTRY

PORTI•ND

-

ABI•--3A

LANGLEY

FLIGHT AEROSOL

•71•

16,733

33

8-17-88

DISTRIBUTION

•T:ROSO],, SCATTERINC

o

4oo0

!

!

.

!

IL

•J..

1029 1030 1040 1050 I ..... I J ,,, I , I•00

1110 , •

1120

LT

-

4-2.47

41.66

41.11

40.78

5

40.19

a9.68

39•0

38.5.q

N LAT.

73.16

73.89

74.64

7•.17

W LON.

I 70.61

70.99

71.70

72:.51

OZONE OZO• o

15

I,..

1009 L,

42.44 !

70.61

,

DISTRIBUTION IdTX•G 3O

L

•TIO,

PPBV



!

80

L

i,

1020 1030 1040 1050 11•0 I

41.66

L,

I

,!....

75 .._J

1110 1120 I,•

,

LT

I

41.11

40.7fi

40.19

39.68

39.20

38.53

71.69

72:.52

73.16

73.8g

74•64

75.17

N LAT.

{

70.99

Plate 1 (continued)

the town of Bethel (population4000, 30 - 100 km distant)may Back trajectories passedovernumerousandextensivefires idenfihavecontributed. fled in satelliteimages200 - 1000 km to the east and northeast On Flights20 and 21 (August3, 1988) a haze layer was ob- (seeFigures34 and 35 in Shiphamet al. [this issue]. Enhance-

servedbetween3 and 4.Skm altitude(Plate lb and Figure3). mentsof CO andC2 hydrocarbons weresimilaron Flights14 and

16,734

WOFSY ET AL.: INFLUENCESON SUBARCTICATMOSPHERICCHEMISTRY

-

3

_

'--



_ Bethel

(a)

i

I

I

I

I

-166

-164

-162

-160

-158

(b)

,

-166

-164

-162

-160

-158

Longitude

Longitude

Fig. 1. Flight tracksfor (a) Flight 14 and 0a) Flight 20/21 near Bethel, Alaska, and (c) Flight 33 alongthe eastcoastof the United States. The numberscorrespondto pointsin the LIDAR imagesin Plate 1. The locationsof spiralsare indicatedby D (first spiral,descending) andU (second spiral,ascending).The tower siteis denotedby X; locationsof major active fires by crosses.The arrow denotesdirectionof motionof air parcels from trajectorycalculationsfor Flights20/21 [Shiphamet al., this issue], for the 300 K level (closeto thehazelayeraltitude).

20/21, but NO was not perturbedand NOy was only slightly

elevated onFlights 20/21.

Carbon monoxide, measured continuously bythedifferential

absorptionCO measurement(DACOM) insmament[Harrisset al., this issue],providesthe most sensitiveindicatorfor combustion, to which otherconcentrations may be ratioedto obtainemission factors. CorrelationsbetweenCO and C2H6, andbetweenCO and C2H2, were remarkablyuniform for the haze layers. Figure 4 showslinear regressionsfor compositedata from Flights 14, 20 and 21 (20 grabsamplesanalyzedfor hydrocarbons [Blakeet al.,

thisissue]),givingr2= 0.97 for both,i.e., lineardependence on

(c)

CO couldaccountfor 97% of the varianceobservedfor C2H2 and

C2H6. Propanewasmorevariablethanacetylene andethane,rela-

tive to CO, but a significant correlation (r2=0.82)wasstillobtainedin the compositedata set (Figure4c) and for individual haze layers(seeTable 1). The uniformityof hydrocarbon/CO ratiosin Flights14 and20/21 arguesstronglyfor a similaroriginfor hazelayersencountered on theseflights. Concentrations

-76

I

I

!

-74

-72

.70

Longitude

of butane were not correlated with CO in the

composite set,howeverconsistent correlations, with similarproportionalitycoefficients, werefoundin individuallayers(Table1). The variableresultslikely reflectthe difficultyin makingmeasurementsat very low concentrations, andatmospheric lossescould alsoplay a role. The lifetimefor C4Hx0is only a few hoursin the

daytime,andlayersmorethana day old mightlosethe signature of primaryemissions. We define emissionfactorsfrom faresby focussingon haze layers with well-definedboundaries,believedto representfare plumes. Primary emissionratios are preservedwithin the haze

WOFSYET AL.' INFLUENCESON SUBARCTICATMOSPHERIC CHEMISTRY

16,735

7OOO

(a) 50

100

150

680

1700

17'20

CO

1740

1760

10

1780

20

CH4

30

40

50 0

200

600

NO

1000

1400

60

80

100

120

NO),

6500

6000

55OO

5O0O

4500

4000

3500 3000

2500

2000

i........................................................ 1500

_

.,..,

',

(b)

o

1 ooo

!,

60

i

,

,I

80

I

i

i

!00

i

120

i

i

140

i

i

720

!

!

780

i

I

i

840

C2H•

i

i

J

i

900

C2H(•

i

i

960

i

i

i

!

1020

60

,

i

80

I

i

100

i

i

120

i

i

!40

i

i .

160

!

180

C.•H•

Fig. 2. Verticalprofilesfor tracegaseson Flight 14, at Point U (spiral2) in Plate la. Data for CO, CH4 and03 represem10-s

averages; dataforNO andNOyarel-rainaverages, anddatafornonmethane hydrocarbons represem grabsamples.

layer as cleanair is entrained.The uniformratiosobtainedfor C2H2andC2H6support thevalidityof thisframework. Table1 summarizes observations of tracegasconcentrations in hazelayersencountered in theBethelregion(Flights14, 20, and

21) and over the Bering Sea (Flight 23). Linear correlations between tracegasesandCO werederivedfromtheslopeof theregression of Ai againstACO, whereA denotes theexcessof i overa background obtained by linearinterpolation betweenaltitudelim-

16,736

WOFSY El' AL.' INFLUENCESON SUBARCTICATMOSPHERICCHEMISTRY

7000

60O0

(

5OOO

•000

20O0

1000

(a) i

0

,

lOO

50

0

,

150

20 1700

,

t

1740

CO

i

i

182o

1780

i ....

186( o

lO

i

,

20

CH4

,l

,

J

ß

,

30

40

50

0

200

NO

i

,

L

1000

20

i

i

i

40

60

•0

NO•

,i

100

O:•

6500

6000

5500

5000

4500



4000

E (:D

---"

3500

3000

25O0

20O0

1500

1000

500

,

40

80

120

160

200

,

241600 700

i

,

800

,

!

900

,

,

i

1050

,

J J J

1200 70

90

110 130 150 170 19 10

C.•H•

15

20

25

30

35

40

45

C4H•o

Fig. 3. (a andb) VerticalprofilesonFlight21 at Point3 (descending) in Platelb. (c andd) ProfilesonFlight21 at point2 (ascending)in Plate 1b.

its for thepolluted layerdefinedby theCO enhancement. For of r2 for0 3 wererelatively low,andratiosAO3/ACO werevarieachintercepted layer,resultsfor twoprofileswereaveraged (des- able.

cending andascending spirals). Relationships between CO andnonmethane hydrocarbons were Examples of regressions against ACOaregivenin Figure5for remarkablyconsistent with laboratorydata for smoldering thevertical profileat Pt.D onFlight14 (Platela). Valuesof r2 combustion of biomass material[CrutzenandAndreae,1990; for hydrocarbons andNO• typicallyexceeded 0.7 andin many Coferet al., 1989;Lobertet al., 1991]. In fact,observed ratios cases, werelargerthan0.9. Smallenhancements of NO wereob- fell within10%of laboratory meansfor C2H2/COandC2H6/CO. servedfor Flights14 and23, butnonefor Flights20/21. Values Laboratory datafor flamingcombustion showmorethan3 times

WOFSY ET AL.: INFLUENCESON SUBARCTiCATMOSPHERICCHEMISTRY

16,737

F__.3ooo

2000

(c) !

50

lOO

15o

20 17oo

1740

1780

1820

186

0

10

3O

40

50

0

2O0

NO

CH4

CO

20

600

1000

20

40

60

80

1O0

12C

03

NOy

5000

4500

4000

, ß ß

350O ß

':.

ß ß

25oo

2000 1500

lOOO

;. ,,

500 ß

ß

0

i 40

60

80

100

130

C2H2

160

650

750

850

950

• 1050

i 11!60

80

C2H6

100

120

140

C•H8

160

18( 5

10

15

20

25

30

35

40

45

C4H]o

Fig. 3. (continued)

higher emissionsof C2H2, and 3 times lower of C2H6, relative to very low in the Arctic, and the small yields of NOy from tundra CO [Lobertet al., 1991]. fires cannevertheless representa significantsource.

Arctichazelayerscontained lessNOythanobserved in associa- Enhancements of ozonearesmallin thehazelayers,evennegation with fires in the Amazon or at mid-latitudes(seeTable la), tive in some,reflectingthe low NO,, emissionstypicalof smolderconsistent with a dominantrole for smoldering combustion.Most ing fires [Jacobet al., thisissue]. Significantpositivecorrelation

NOy frombiomassfiresevolvesduringflamingcombustion, by between03 andCO wasobserved onlyin a layerwithdetectable

oxidation of fuelnitrogen [Lobert eta/., 1991].Arcticvegetationenhancement of NOx andrelatively highANO•/ACO(Flight14). is notablylow in nitrogen[Chapinand Shaver,1985]. The vari- The small valuesfor AO3/ACOin Arctic haze layers,about0.1 anceof NO• ratiosto CO suggests variablecontributions from (Table la), may be contrastedwith valuesaveraging0.4 in

smallareasof flamingcombustion. Background levelsof NO• are urban/industrial pollution (Table2 andFigure7).

16,738

WOFSY ET AL.' INFLUENCESON SUBARCTICATMOSPHERICCHEMISTRY 1400

350

1300 300

1200

250

11oo

200

-• 1 ooo

150 900

100

800

5O

700

(b) 0 80

i

I

!

I

I

1O0

120

140

160

1ao

600 200

80

!

I

I

I

I

100

120

140

160

180

200

co (ppb)

CO (ppb)

Fig. 4a. (a) Relationship betweenCO (ppb)andC2H2(ppt)obtained from Fig. 45. Sameasfor Figure4a, for C2H6. Regression hasslope0.0055(+

composited datafor hazelayersfromFlights14 (triangle), 20 (diamond)0.002)mole/mole, r2 = 0.96. and 21 (square). The regressionline shown,with slope0.0021 (+ 0.03)

moleC2H2permoleCO,givesr2=0.97. 200

800

700 180

600

160

500 140

=

400

120 300

100 200

8O

100

60

I 80

1O0

120

140

C0 (ppb)

I

,1

160

180

, 200

0 80

I

I

I

I

I

1O0

120

140

160

180

200

CO (ppb)

Fig. 4c.Sameasfor Figure4•, for C3H8. Regression hasslope0.0010(+ Fig. 4d. Sameasfor Figure4a, for CnH•0. Regression is not statistically 0.002)mole/mole, r2 = 0.82. valid.

WOFSY ET AL.: INFLUENCESON SUBARCTICATMOSPHERICCHEMISTRY

16,739

TABLE la. Enhancement Ratiosin BiomassBurningandPollutionHumes

C2H2

C2H6

C3H8

C4Hlo CH4

03

PAN

14(Bethel) 20(Bethel)

Flight

0.0084 0.0003 0.0036