Battery Cell Electrochemical and Thermal Modeling

0 downloads 0 Views 2MB Size Report
2011 ANSYS, Inc. September 22,. 2011. 1. Battery Cell Electrochemical and. Thermal Modeling. Xiao Hu, PhD. Lead Technical Services Engineer. ANSYS Inc ...
Battery Cell Electrochemical and Thermal Modeling

Xiao Hu, PhD Lead Technical Services Engineer ANSYS Inc 1

© 2011 ANSYS, Inc.

September 22, 2011

Outline  Battery electrochemical modeling using Simplorer VHDL-AMS  Battery cell thermal modeling using FLUENT  From electrochemistry model to cell thermal model 2

© 2011 ANSYS, Inc.

September 22, 2011

Newman Pseudo 2d Electrochemistry Model Lithium Ion Batteries

Li+

Li+ Jump Li+

LixC6

Li+ e

∂ (ε e ce ) 1 − t + Li j = ∇ ⋅ ( De ∇ce ) + F ∂t

• Electrochemical Kinetics • Solid-State Li Transport • Electrolytic Li Transport

3

• Charge Conservation/Transport • (Thermal) Energy Conservation

Results from Simplorer

© 2011 ANSYS, Inc.

September 22, 2011

e

Lix-Metal-oxide

Results from Newman

What is VHDL-AMS Very High Speed Integrated Circuit Hardware Description Language – Analog and Mixed-Signal Description & simulation of eventdriven systems

Description & simulation of analog and mixed signal circuits and systems IEEE 1076 VHDL

IEEE 1076.1 VHDL-AMS

1993

1999

VHDL-AMS is a strict superset of IEEE Std. 1076

4

© 2011 ANSYS, Inc.

September 22, 2011

VHDL-AMS Model Construct Entity

Architecture

• Interface description of a

• Behavior description • Can be dataflow, structural,

subsystem or physical device • Specifies input and output ports to the model

procedural, etc • Modeling can deal with both analog (continuous) and digital (discrete) domains

Entity input ports

5

© 2011 ANSYS, Inc.

Architecture 1 Architecture 2 Architecture 3

September 22, 2011

In-out ports output ports

VHDL-AMS Model for a Capacitor

• Entity

• Architecture

LIBRARY Ieee; use Ieee.electrical_systems.ALL; ENTITY cap IS GENERIC (

capacitance : capacitance := 1.0e-3 ); PORT (

QUANTITY init_v : IN voltage := 0.0; TERMINAL p : electrical; TERMINAL n : electrical

ARCHITECTURE arch_cap OF cap IS QUANTITY voltage ACROSS current THROUGH p TO n; BEGIN IF (domain = quiescent_domain) USE

voltage == init_v; ELSE

current == capacitance * voltage'dot;

); END ENTITY cap;

END USE; END ARCHITECTURE arch_cap;

The capacitor entity has one model constant, one input, and two terminals 6

© 2011 ANSYS, Inc.

September 22, 2011

The model description essentially has two lines, one for initial condition and one for the equation!!

VHDL-AMS Model for Heat Conduction Example:

• Entity ENTITY transient_diffusion IS generic ( rho: real := 2000.0; k: real := 2.0; Cp: real := 1000.0); END ENTITY transient_diffusion;

• Architecture (main part) IF (domain = quiescent_domain) USE T1 T2 T3 T4 T5

== == == == ==

20.0; 60.0; 100.0; 60.0; 20.0;

ELSE rho*Cp*T1'dot rho*Cp*T2'dot rho*Cp*T3'dot rho*Cp*T4'dot rho*Cp*T5'dot END USE 7

© 2011 ANSYS, Inc.

September 22, 2011

== == == == ==

-(N1p -(N2p -(N3p -(N4p -(N5p

-

N0p)/h; N1p)/h; N2p)/h; N3p)/h; N4p)/h;

VHDL-AMS Model for Electrochemistry The governing equations of porous electrode model of the lithiumion battery (Electrochemical Systems, 3rd by John Newman)

(

∂c i2 ⋅ ∇t +0 ajn 1 − t +0 + ε = ∇ ⋅ (εD∇c ) − ∂t z+ν +F v+ κRT ( i2 = −κ∇φ2 + 1 − t +0 )∇ ln c F I − i2 = −σ∇φ1 aFjn = ∇ ⋅ i2   αaF   α c F  = − η s  exp − η s  jn i0 exp   RT    RT 8

© 2011 ANSYS, Inc.

September 22, 2011

)

PDE: initial value

A coupled set of PDE: The boundary PDEs. wayvalue to solve them with VHDL-AMS uses PDE: boundary value the same technique as before. PDE: boundary value Algebraic

Model Implementation Ref: Newman et al (1993, 1995, 1996)

x=0

x=L δn

δs

δp

1

1

1

1

1

1

cs1,1

cs2,1

cs3,1

cs4,1

cs5,1

2

2

2

2

2

cs1,2

cs2,2

cs3,2

cs4,2

cs5,2

3 cs1,3

3 cs2,3

3 cs3,3

3 cs4,3

3 cs5,3

1

2 c1

Negative Electrode

Separator

Positive Electrode

2

3 c2

φ1,2 φ2,2 i1,2, i2,2

φ1,1 φ2,1 i1,1 i2,1

3

4 c3

φ1,3 φ2,3 i1,3 i2,3

4

5 c4

φ1,4 φ2,4 i1,4 i2,4

5

6 c5

φ1,5 φ2,5 i1,5 i2,5

φ1,6 φ2,6 i1,6 i2,6

h x=0 x=δn

•Reference: M. Doyle, T.F. Fuller, and J. Newman, Journal of Electrochem. Soc., 140, 1526 (1993) C. R. Pals and Journal22, of Electrochem. Soc., 142 (10), 3274-3281 (1995) © 2011 ANSYS, Inc. J. Newman September 9 M. Doyle, J. Newman, Journal of Electochem. Soc., 143, 1890 (1996) 2011

How to Use a VHDL-AMS Model in Simplorer? • Drag and drop the VHDL-AMS model as if it is built-in. • Double click to launch the property window as if it is built-in.

10

© 2011 ANSYS, Inc.

September 22, 2011

Newman Model – Dual Insertion

Simplorer’s Results © 2011 ANSYS, Inc.

September 22,

Newman’s Results

11 •Reference: M. Doyle, J. Newman, Journal of Electochem. Soc., 143, 1890 (1996) 2011

Newman Model – Temperature Impact

Concentration profiles due to different temperatures

Discharge curves due to different temperatures

© 2011 ANSYS, Inc. September 22, 12 •Reference: C. R. Pals and J. Newman Journal of Electrochem. Soc., 142 (10), 3274-3281 (1995) 2011

Newman Model – Quantitative Comparison x=Lp+Ls+Ln x=Lp+Ls x=Lp x=0

1/10 C 1/2 C 1C 2C 4C 6C 8C 10 C

Simplorer’s Results

White’s Results

© 2011 ANSYS, Inc. September 22, 13 •Reference: Long Cai, Ralph E. White, Journal of Electrochem. Soc., 156 (3), A154-A161 (2009) 2011

Newman Model - Quantitative Comparison

Simplorer’s Results

White’s Results

© 2011 ANSYS, Inc. September 22, 14 •Reference: Long Cai, Ralph E. White, Journal of Electrochem. Soc., 156 (3), A154-A161 (2009) 2011

Single Battery Cell Thermal Model The model is based on the work of: - Newman & Tidemann (1993);

- Gu (1983) ; - Kim et al (2008)*

∇ ⋅ (σ∇φ ) = J

Transfer current

J = Y (φ p − φn − U ) f (T ) Current

Current

ip= Current Vectors at Cathode plate

in= Current Vectors

U and Y are derived from experimentally obtained polarization curve, dependent on Depth of Discharge (DOD) & Temperature

at Anode plate

J = Current Density J (t, x, y, T )

Cathode

Anode

* Reference: U. S. Kim, C. B. Shin , C. S. Kim, “Effect of electrode configuration on the thermal © 2011 ANSYS, Inc. September 22, 15 behavior of a lithium-polymer 2011 battery”, Journal of Power Sources 180 (2008) 909–916.

Results of a Prismatic Lithium-Ion Cell Geometry & Mesh

Temperature

16

© 2011 ANSYS, Inc.

Current Density

September 22, 2011

Inputs to Single Cell Thermal Model • U and Y curves are the inputs to the cell thermal model. U and Y curves are converted from battery performance data. • A small program has been written to convert the performance data into the U and Y curves needed by Fluent. Performance data

17

© 2011 ANSYS, Inc.

A program September 22, 2011

What Performance Data Needed? • Short answer: Battery discharge curves. (aka polarization characteristics) • Precise answer: Battery cell potential as a function of depth of discharge (DOD) for different discharge rates sampled in the way demonstrated in Gu’s paper Figure 3. • The required data can be from either testing or electrochemistry model. © 2011 ANSYS, Inc. September 22, 18 •Reference: H. Gu , “Mathematical Analysis of a Zn/NiOOH Cell” J of Electrochem. Soc., Vol. 130, No.7, 1983 2011

Battery Discharge Curves Battery discharge curves are battery cell potential as a function of capacity, time, or DOD for different discharge rates.

The two examples use capacity and time. But we need DOD!! 19

© 2011 ANSYS, Inc.

September 22, 2011

What is DOD? Definition of depth of discharge (DOD) used: t

Jdt ∫ DOD = 0

Qt

What is Qt? • The theoretical capacity per unit area of the electrodes. • Achieved when cell potential is lower than certain value discharged at a rate close to zero. 20

© 2011 ANSYS, Inc.

September 22, 2011

Discharge Curves in Time

These results are from Newman electrochemistry model in Simplorer. 21

© 2011 ANSYS, Inc.

September 22, 2011

Discharge Curves in DOD

22

© 2011 ANSYS, Inc.

September 22, 2011

Sampled Discharge Curves in DOD

23

© 2011 ANSYS, Inc.

September 22, 2011

Simplorer offers nice sampling tools shown above.

Data Input File Format to the Program Matrix Size

Current Density

Not Used

DOD 24

© 2011 ANSYS, Inc.

Main Data September 22, 2011

Program Output : Polynomial Coefficients for U and Y Coefficients for U

Coefficients for Y

Note that the extraction code allows you to select the order of polynomial. An order of 3 is used for both U and Y.

U = 4.187 − 1.659 ⋅ DOD + 2.661 ⋅ DOD 2 − 2.676 ⋅ DOD 3 Y = 157.0 − 89.76 ⋅ DOD − 168.4 ⋅ DOD 2 + 189.9 ⋅ DOD 3 25

© 2011 ANSYS, Inc.

September 22, 2011

Curve Fitting Results

U Results 26

© 2011 ANSYS, Inc.

September 22, 2011

Y Results

Summary  Battery electrochemistry can be modeled using VHDLAMS in Simplorer.  Battery cell thermal analysis can be performed using a simplified model in FLUENT.  Model inputs for the cell thermal model can be calculated from battery electrochemistry model.

27

© 2011 ANSYS, Inc.

September 22, 2011

Thank you !!

28

© 2011 ANSYS, Inc.

September 22, 2011