Beckman Institute California Institute of Technology

7 downloads 25563 Views 2MB Size Report
Beckman Institute. California Institute of Technology. Page 2. nascent polypeptide chain partially folded intermediates subunit mature protein aggregates.
Beckman Institute California Institute of Technology

nascent polypeptide chain

partially folded intermediates

aggregates Redrawn from FASEB J. 10, 58 (1997)

subunit

mature protein

The Nobel Prize in Chemistry 1972

Christian B. Anfinsen "for his work on ribonuclease, especially concerning the connection between the amino acid sequence and the biologically active conformation"

Stanford Moore

William H. Stein

"for their contribution to the understanding of the connection between chemical structure and catalytic activity of the active centre of the ribonuclease molecule"

Levinthal’s paradox

Random search 100 amino acid protein

1.6E+27 years !

Levinthal’s pathway

What pathway(s) ??? Hydrophobic collapse

Unfolded Random coil-like

Stable secondary structure

Compact intermediate Molten globule

?

Folded Native protein

20

70

? vs.

45

20

70

probes that report on the averaged properties of the ensemble • Fluorescence

intensity • Circular Dichroism • X-ray scattering • Absorbance

Example: X-ray scattering experiment. Refolding of horse heart cytochrome c

folded

molecule

intermediate unfolded

Shuji Akiyama, Satoshi Takahashi, Tetsunari Kimura, Koichiro Ishimori, Isao Morishima, Yukihiro Nishikawa, and Tetsuro Fujisawa, Proc. Natl. Acad. Sci. USA, Vol. 99, Issue 3, 1329-1334, February 5, 2002,

S. cerevisiae iso-1 cyt c labeled with 1,5-AEDANS at C102

DNS (C102)-cyt c

H N

CH2

CH2

NH

C

CH2

S

O

Donor (D) : HSO3

Acceptor (A) : Fe-Heme

Donor Absorbance

300

350



Acceptor Absorbance

Donor Fluorescence

400

450

500

Wavelength(nm)

550

600

J ( λ ) = ∫ F D ( λ ) ε A ( λ ) λ 4 dλ 0

650

Efficiency = r06/(r06 + r6)

kET = (1/τD)(r0/r)6 r0 = 0.211(Jκ2n-4ΦD)1/6 Å 1.0

Efficiency

0.8 0.6

50 % Efficiency 0.4 0.2

r0

0.0 0

20

40

60

Distance (Å)

80

100

DNS(C102)-cyt c refolding

Unfolded

Folded

Steady state unfolding, pH 7 DNS(C102)-cytochrome c Folded ↔ Unfolded

Fraction Unfolded

1.0 0.8

fU + f F = 1

0.6 0.4

y = fU yU + fF yF

0.2

fU = (yF - y)/( yF - yU)

0.0

∆GF = ∆GF(H2O) - m[GuHCl]

∆GF (kJ/mol)

-40 -20

[GuHCl]

0

Folded: up to ~0.5 M

20

Unfolded: ~1.2 M +

40

Midpoint: ~0.85 M

60 0

1

2

[GuHCl](M)

3

Fluorescence Intensity ( 500 nm )

Refolding kinetics, pH 7, [GuHCl]=1.33 M 0.133 M DNS(C102)-cytochrome c

1

325 nm steady excitation

0.1

0.01

-2

0

2

4 6 Time(s)

8

10

I(t)

P(r)

P(k)

log(k)

I(t)

T im e

P(k)

P(r)

r (Å)

I(t)

P(k)

P(r)

T im e

log(k)

r (Å)

r (Å)

log(k)

T im e

IDA(r , t ) = I 0D exp[(−t / τD) − (t / τ )(r 0 / r ) 6 )] ∞ IDA(t ) = ∫ P(r)IDA(r , t )dr 0

6 = 1 + / 1 / τD τ D (r 0 / r ) k obs

r → ∞; k obs → 1 / τ D

Steady state unfolding, pH 7 DNS(C102)-cytochrome c 0 M GuHCl

0.23 M GuHCl

0.23 M GuHCl

0.63 M GuHCl

0.63 M GuHCl

0.84 M GuHCl

0.84 M GuHCl

1.22 M GuHCl

1.22 M GuHCl

3 M GuHCl

3 M GuHCl

P(k)

P(r)

0 M GuHCl

20 25 30 35 40 45 50 55

r(Å)

0.01

0.1

1

-1

k(ns )

10

Fluorescence Intensity

Refolding kinetics, pH 7, [GuHCl]=1.33 M 0.133 M DNS(C102)-cytochrome c

1 ms 40 ms 380 ms 760 ms 1.8 s 4.8 s 10 s 16 s

0 10 20 30 40 t Fluor

(ns)

50

t

d Fol

Refolding kinetics, pH 7, [GuHCl]=1.33 M 0.133 M DNS(C102)-cytochrome c

Hydrophobic

∆ + 1ms

∆ + 1 ms

∆ + 10 ms

∆ + 10 ms

∆ + 40 ms

∆ + 40 ms

∆ + 380 ms

∆ + 380 ms

∆ + 760 ms

∆ + 760 ms

∆ + 16 s

∆ + 16 s

Compact intermediate

Unfolded

Unfolded 60%

Compact 40%

P(k)

+

P(r)

collapse

20 25 30 35 40 45 50 55

r(Å)

0.01

0.1

1 -1

k(ns )

10

Refolding kinetics, pH 7, 0.15 M Imidazole, 1ºC, [GuHCl]=1.8 M 0.18 M DNS(C102)-cytochrome c ∆ + 1ms

∆ + 10 ms

∆ + 10ms

∆ + 60 ms

∆ + 60 ms

∆ + 180 ms

∆ + 180 ms

∆ + 760 ms

∆ + 760 ms

∆ + 5.76 s

∆ + 5.76 s

P(r)

P(k)

∆ + 1ms

20

30

40

r(Å)

50

60

0.01

0.1

1

-1

k(ns )

10

Refolding kinetics, pH 7 DNS(C102)-Co(III)-cytochrome c unfolded

2 min

2 min

3 hr 40 min

3 hr 40 min

12 hr

12 hr

17 hr 45 min

17 hr 45 min

folded

folded

P(r)

P(k)

unfolded

Tezcan et al., Proc. Natl. Acad. Sci. USA, 99, 8626-8630

20 25 30 35 40 45 50 55

r(Å)

0.01

0.1

1 -1

k(ns )

10

Idealized folding landscape (cross-section) for DNS(C102)-cytochrome c E = extended C,C’ = compact N = native

Conclusions

• Extended polypeptide conformations play an important role in DNS(C102)-cytochrome c refolding.

• These conformations may be an important means of avoiding the partially folded intermediates that can aggregate into misfolded structures, which characterize a variety of disease states.

1973 Ptitsyn: Molten globule is a kinetic intermediate on protein folding pathway

Hydrophobic collapse

Unfolded

Intermediate

Folded

Random coil-like

Molten globule

Native protein

• Compact • Native-like secondary structure • Lack of rigid tertiary structure

Molten globule formation DNS(C102)-cytochrome c

Na2SO4/H2SO4 pH 2

H2SO4 pH 2 Na2SO4

Unfolded

Intermediate

Random coil-like

Molten globule

Steady state molten globule formation, pH 2 DNS(C102)-cytochrome c 50 mM Na2SO4

100 mM Na2SO4

100 mM Na2SO4

250 mM Na2SO4

250 mM Na2SO4

330 mM Na2SO4

330 mM Na2SO4

450 mM Na2SO4

450 mM Na2SO4

700 mM Na2SO4

700 mM Na2SO4

P(r)

P(k)

50 mM Na2SO4

20253035404550556065

r(Å)

0.01

0.1

1

-1

k(ns )

10

DNS(C102)-cytochrome c Molten globule, pH 2

Refolding kinetics, pH 7

50 mM Na2SO4

∆ + 1ms

100 mM Na2SO4

∆ + 10 ms

∆ + 40 ms

P(r)

P(r)

250 mM Na2SO4

330 mM Na2SO4

450 mM Na2SO4

700 mM Na2SO4

20253035404550556065

r(Å)

∆ + 380 ms

∆ + 760 ms

∆ + 16 s

20 25 30 35 40 45 50 55

r(Å)

Conclusions

• FET kinetics provide definitive evidence for the formation of a uniformly compact molten globule at salt concentrations greater than 700 mM.

• The molten globule generated is far more homogeneous than the ensemble of polypeptides present during early cyt c refolding.

• Preliminary mapping of the protein folding landscape has been performed without any a priori assumption

• Fluorescence energy transfer kinetics technique has been applied in new ways to detect the structure and dynamics of protein folding intermediates

• Results and technique may be helpful in learning causes of various diseases