Biodiversity and Nematodes

0 downloads 0 Views 3MB Size Report
Soil Biodiversity:Biodiversity below ground. Many authors suggests the use of nematodes as potential indicators of soil quality.
Biodiversity and Nematodes Juan José Ibáñez Martí European Soil Bureau Steering Committe CCMA (CSIC)

Soil Biodiversity:Biodiversity below ground Peter Mullin

S p e c ie s b io d iv e r s ity is o fte n c o n s id e r e d in te r m s o f w h a t s c ie n tis ts c a n id e n tify a b o v e g r o u n d b u t th e b io d iv e r s ity b e lo w g r o u n d m a y b e m a g n itu d e s g r e a te r a n d p r o v id e a s u r p r is in g ly c le a r p ic tu r e o f h o w w e ll a n e c o s y s te m is fu n c tio n in g P .M u llin g

Soil Biodiversity:Biodiversity below ground Although m ost biological m easurem ents to date have focused on m icrobial populations or activity, there is growing awareness of the im portance of soil invertebrates as vital com ponents of soils and as potential indicators of soil quality. Recent reviews of soil invertebrate ecology confirm that soil invertebrates affect soil structure, alter patterns of m icrobial activity and influence soil organic m atter dynam ics and nutrient cycling, etc. Results from m any recent studies point to potential utility of using soil invertebrates as indicators of physical or chem ical disturbance to soils (Blair et al. 1996)

Soil Biodiversity:Biodiversity below ground

M a n y a u th o r s s u g g e s ts t h e u s e o f n e m a to d e s a s p o te n tia l in d ic a to r s o f s o il q u a lity .

Soil Biodiversity:Biodiversity below ground T h e a b u n d a n c e a n d d iv e r s ity o f s o il in v e r te b r a te s h a s b e e n in v e s tig a te d in a v a r ie ty o f n a tu r a l a n d m a n a g e d e c o s y s te m s , a lth o u g h tr u e s p e c ie s n u m b e r s a r e o fte n u n k n o w n . S o il in v e r te b r a te s n u m b e r s a r e o fte n la r g e , a n d th e y c o m p r is e a s ig n ific a n t p o r tio n o f b e lo w g r o u n d fo o d w e b s in m o s t te r r e s tr ia l e c o s y s te m s .

http://economics.iucn.org (99-05-02) 1

Table 1. Knowledge of Species Richness and Distribution (after Brussaard, 1997) BIOTA

SOIL DWELLING SPECIES DESCRIBED

GLOBAL SYNTHESIS OF BIOGEOGRAPHY

3 200 18 - 35 000

NO NO

200 18 - 35 000 10 000

NO NO NO

1 500 400 5 000

NO NO NO

c. 40 000 6 500 > 600

NO YES NO

C. 40 000

NO

2 000 8 800 3 627

YES YES YES

Microorganisms Bacteria and archaea Fungi Amfungi Ectomycorrhizal fungi

Microfauna Protozoa Ciliates Nematodes

Mesofauna Mites Collembola Enchytraeids

Macrofauna Root herbivorous insects Termites Ants Earthworms .

Soil Biodiversity:Biodiversity below ground

The incredible diversity of soil invertebrates is only beginning to be fully appreciated, and rem ain one of the great unknowns in the realm of biodiversity (Andre et al. 1994; Freckm an 1994). M ay nam ed to this paradox the “vertebrate chauvinism ” (also called the “conspicuous bias” by Ibáñez et al. 2001)

Soil Biodiversity:Biodiversity below ground

Because it is, at the present time, impossible inventory all soil invertebrate diversity, soil ecologists oftengroup together various taxa infunctional groups of invertebrates. However a “true inventory of nematode diversity require to identify all members of the soil (taxonomic diversity)”. Functional groups couldbe useful for other purposes such as soil quality monitoring

I n f lu e n c e s o f S o il B io ta o n S o il P r o c e s se s in E c o s y s te m s (a f te r H e n d r ix e t a l. 1 9 9 0 ) N u tr ie n t C y c lin g

S o il S tr u c tu re

M ic r o flo ra

C a ta b o liz e o r g a n ic m a tte r M in e ra liz e a n d in m o v iliz e n u tr ie n ts

M ic r o fa u n a

R e g u la te b a c te r ia l a n d p o p u la tio n s A lte r n u tr ie n t tu r n o v e r

M e s o fa u n a

R e g u la te fu n g a l a n d m ic ro b ia l p o p u la tio n s A lte r n u tr ie n t tu r n o v e r F ra g m e n t p la n t re s id u e s F ra g m e n t P la n t R e s id u e s S tim u la te m ic ro b ia l a c tiv ity

M a c r o fa u n a

P ro d u c e o r g a n ic c o m p o u n d s th a t b in d a g g re g a te s H y p h a e e n ta n g le p a rtic le s o n to a g g re g a te s fu n g a l M a y a ffe c t a g g re g a te s tr u c tu re th ro u g h in te ra c tio n s w ith m ic ro flo ra P ro d u c e fe c a l p e lle ts C re a te b io p h o re s P ro m o te h u m ific a tio n M ix o r g a n ic and m in e ra l p a rtic le s R e d is tr ib u te o r g a n ic m a tte r a n d m ic ro o r g a n is m s C re a te b io p o re s P ro m o te H u m if ic a tio n P ro d u c e fe c a l p e lle ts

Nematodes and its global biogeography T able 1. M ajor H ypotheses in Procter’s biogeograp hical schem e o f the functional roles of soil living n em atodes in terrestria l ecosy stem s in response to increa sin gly adverse m oistu re and tem perature regim es (after P rocter 1990) Increasing dryness Tropical Tropical Lowlan d D eciduous Rain Forest Forest

Species richness Species d iversity T ro phic d iversity H ig her p lant parasitic Lo w er plant parasitic M icro be feed ing N emas o f ep ip hytes Adaptive characters N emato de densities N emato de bio mass Invert B io mass

H ig h H ig h M ed iu m V . H ig h V . Lo w M ed iu m H ig h K V . Lo w V . Lo w V . Lo w

V . H ig h V . H ig h H ig h V . H ig h M ed iu m M ed iu m Lo w K-r M ed iu m M ed iu m Lo w

Savanna

H ot D esert

Increasing C old M on tan e A lpin e A lpin e Rain H eath T un dra Forest

H ig h H ig h H ig h H ig h V . Lo w M ed iu m V . Lo w r-K Lo w Lo w M ed iu m

Lo w Lo w V . Lo w V . Lo w V . Lo w V . H ig h V . Lo w r V . Lo w V . Lo w H ig h

V . H ig h V . H ig h V . H ig h V . H ig h H ig h M ed iu m V . H ig h K-r V . H ig h V . H ig h M ed iu m

H ig h H ig h H ig h H ig h H ig h H ig h M ed iu m r-K V . H ig h V . H ig h H ig h

M ed iu m M ed iu m M ed iu m M ed iu m H ig h V . H ig h V . Lo w R H ig h H ig h V . H ig h

Nematodes and soil quality Reasons of interest in nematodes as indicators of soil quality has been outlined by several authors. Thus according to Blair et al. (1996) these are the following:  the tremendous diversity of soil nematodes and their participation in many ecosystem functions at different levels of the soil food web  the presence of nematodes in soils of every terrestrial ecosystem (but see Procter 1990), including extreme habitats such as Antarctica, which facilitates comparisons across many soils  the rapid response of nematodes to changes in their food resource base, because of their small size and short generation times  the relative stability of nematode populations, so that changes in population size or in nematode community structure can be used to infer soil disturbance  the ability of most nematode species to survive adverse environmental extremes (freezing, droughts)  the aquatic habitat of nematodes (living in soil water films) allow them to respond to changes in soil water quantity and quality at the microscale  the limited movement of nematodes in soil allows disturbance to be relate to a particular source-point (but see Griffiths & Caul, 1993)  nematode trophic groups can be identified (functional diversity) and their varying life histories and reproductive capabilities (k-strategies versus r-strategies) can be used to indicate soil disturbance (Bongers, 1990);  and (according to our) there are, probably more taxonomists in nematology than in other microfauna taxa (critical mass or task force).

Measuring Soil biodiversity and soil quality with nematodes • • • • • • • •

Sampling design in space (soil surface) Sampling design in the space (soil deep) Sampling design in time (seasonal, etc.) Recollecting samples Extraction techniques Identification of taxa Results interpretation All of them have major problems

Sampling design in space (soil surface) • The surface in nature is rough • The Surface in nature is nonrectifiable • There is not a single measure of a natural surface. This depend of its roughness and the scale. • Thus, it is impossible said: for example: a square meter have X individuals or biomass. • When more rough is a planimetric space, more real space contain • In addition the real surface in soil also include interparticles surface where living the nematodes (clay> silt> sand)

Sampling design in space (soil surface) • • • • •

Different soils have very different surficial space depending on the soil texture and aggregation Nematode distribution is aggregated, making precise quantification a problem (as all living taxa) Then, how can us determine the real surface for soil nematodes How can analyse the spatial distributions of nematodes Geostatistical tools, currently only are useful to the analysis of nematode distribution in the surface of the soils but not in the soil surface which fractal dimension is very high

Sampling design in the space (measuring the space for soil microfauna) • In order to measure the real surface for soil microorganisms and microfauna we must measure the surface of the whole of soil particles and pores (micromorphology is and digital image anaylisis are tools to do this operations)

Sampling design in the space (soil deep) • Pedogenesis create horizonation with the time • Different horizons have different physical and chemical properties • Thus horizonation generate habitat heterogeneity to nematocenosis

Sampling design in the space (soil deep) • Pedogenesis increase vertical habitat heterogeneity and thus: • Increase, probably the number of communities • Facilities in order that nematodes move along the year to the best habitat into the solum

Sampling design in the space (soil deep) • Different habitats could have different assemblages of nematodes •

Because many nematode species emigrate along the profile searching suitable habitats, the nematofauna in contrast to plant communities have a behaviour like animal assemblages; they change a long the time in a single annual cycle

Sampling design in the space (soil deep) • Thus, any study of soil biodiversity must be into account the whole of the soil profile and non the 1o or 20 first cm, as is recommended in many monitoring programs

Sampling design in the space (soil deep) • Thus any study of soil nematodes diversity also must have into account a representative temporal sampling • Not all nematode species are in the topsoil • Several nematodes change in deep along the year.

Repercussions of the biological activity on soils: soil horizons loss caused by termites

Sampling design in the space (soil deep) • Several soil horizons are bad habitats for nematocenoses • E.g. Duricrust (top) • Saline horizons (bottom) • Gley (hidromorphic horizons) • In some cases these horizons can be barriers for nematode migrations

Sampling design in the space (soil deep) 200







Distribution of nematodes along the soil profile (Typic Haploxeralf) in Mediterranean continenla climate (pastures) Notice as the abundance of nematodes and perhaps biomass is bigger below the normal sampling methods in soil biodiversity and soil monitoring schemes. In addition some taxa do not appear in the top horizon

150 Serie2 Serie1

100 50 0

Ap1 (0- Ap2 (24- Bt (4724) 48) 73)

Ck (73114)

2BCkg (> 114)

Serie2

11

7

7

4

1

Serie1

171

86

90

7

1

200 150 100

Serie1

50

Serie2

0 Ap1 (0- Ap2 Bt (47- Ck (73- 2BCkg 24) (24-48) 73) 114) (> 114)

Sampling design in the space (soil deep) 100 80 60

Serie2

Abundance

Serie1

40 20 0

Richness

Ap (022)

Bt (22- Btk (47- Ck (72- 2BCkg 47) 72) 99) (99-

2Btg (138-

3Bwkg (>170)

Serie2

77

73

67

27

3

1

0

Serie1

3

7

5

2

2

1

0

80 70 60 50 40 30 20 10 0

Abundance Richness

Ap (0- Bt (2222) 47)

Btk (47-

2BCk 2Btg g (99- (138-

3Bwk g

Serie1

77

73

67

3

1

0

Serie2

3

7

5

2

1

0

• In this Xeralf (Mediterranean Continental Climate) • With independence of the abundance's, a nematode biodiversity inventoty of the A horizon do not detect the true biodiversity into the solum

Sampling design in the space (soil deep) • 1200



1000 800 600 400

Serie2

200

Serie1

0



A (0- B1 B2 Cg Cgo 32) (32- (60- (135- x

Serie2

3

0

Serie1

35

0

2

2

0

1165 10

0

Richness Abendance



300 250 200 Serie2

150

Serie1

100



50 0 A11 (015)

A12 (1555)

Cg1 A2 (55(13085) 250)

Cg2 (>250)

Serie2

4

2

1

1

3

Serie1

255

30

15

5

40

In this Xeralf (degraded Mediterranean forest) The moust number and biomass of nematodes appear in a deep horizon. The A horizon have few nematodes A inventory of the surficial layer give a wrong image of abundance, biomass and diversity) Under the same conditions with shrubs nematodes show a bimodal distribution

Sampling design in the space (soil deep) • •





Top: in this Mediterranean Typic Haploxeralf on forest also a sampling of 10 or 20 surfical cm produce a false image of nematode biodiversity In general in well conserved potential vegetation the structure of nematocenoses chage less that in disturbed lands See also Panel of Ibáñez et al. in this World Congress

100 50

0

Ap Bt Btk BC BC 2C

Serie2 7 6 7

2 2 0

Serie1 54 65 27 4 2 0

Sampling design in the space (soil deep) 100







Top: Mediterranean Xeralf with a bimodal distribution of nematodes Notice that in many of these graphics abundance and richness are strongly correlated Botton: Tropical oxisols under natural and agricultural land use. Tropical nematofaunas have less abundance and biodiversity of nematodes that temperate ones.

Fuente La Hihuera Profile (Xeralf) Rainfied

80 60 40 20 0

A2 (012)

IIA2 (12- IIBt (5252) 105)

Bcn (105-

Cg1 (130-

Cg2 (>250)

Serie2

5

2

1

3

3

1

Serie1

85

15

5

20

50

10

Oxisol Zimbaw e (Crop) 200

0

1

2

BA

70

3

Ap

52

5

Oxisol Zimbague (Natural Vegetation)

200 100 0

1

2

B

6

3

A

183

6

Seasonal Changes in the structure of the Nematocenosis, with time, land use and deep in the firsts 50 cm (Mediterranean Xeralf) Diversity analysis Morphological Groups Autumn

winter

Spring

Sample

S

H

E

S

H

E

S

H

E

Forest Litter Forest 10-20 Forest 20-50 Shrub 0-20 Shrub 20-50 Fallow 10-20 Fallow 20-50

10 9 9 7 8 6 9

1,94 1,92 1,69 1,68 2,05 1,14 1,97

0,64 0,63 0,55 0,55 0,67 0,37 0,65

9 8 7 8 7 4 10

1,87 2,01 1,57 1,84 1,42 1,18 2,00

0, 62 0,60 0,52 0,60 0,47 0,39 0,66

10 5 11 9 10 7 6

1,83 1,54 1,83 1,38 1,68 1,16 1,63

0,60 0,51 0,60 0,45 0,55 0,38 0,54

Seasonal Changes in the structure of the Nematocenosis, with time, land use and deep in the firsts 50 cm (Mediterranean Xeralf) Functional Diversity (feeding habits) Autumn

winter

Spring

Sample

S

H

E

S

H

E

S

H

E

Forest Litter Forest 10-20 Forest 20-50 Shrub 0-20 Shrub 20-50 Fallow 10-20 Fallow 20-50

5 5 5 4 5 4 5

1,41 1,38 1,09 1,33 1,53 0,95 1,37

0,88 0,86 0,68 0,83 0,95 0,59 0,85

5 5 5 5 5 4 5

1,47 1,53 1,17 1,56 1,19 1,18 1,46

0,91 0,95 0,73 0,97 0,74 0,73 0,91

5 5 5 4 5 5 5

1,41 1,54 1,40 1,14 1,01 1,12 1,53

0,88 0,96 0,87 0,71 0,63 0,70 0,95

(*) S = richness; H = Shanon Index; E = H/Hmax = Equitability

Seasonal Changes in the structure of the Nematocenosis, with time, land use and deep in the firsts 50 cm (Mediterranean Xeralf)

Figures in decreasing Order Total Abundance or Forest > that  Fallow > that  number of individual Total Richness Forest > that  Fallow > that 

Shrubs (all seasons) Shrubs (autumn, winter) Fallow (Spring) Forests > that  Shrubs > that  Abundance/horizon Forest Fallow Shrub 1>2> 3 (autumn, winter) 2 > 1 (autumn) 2 >1 (autumn, winter) 2 > 1> 3 (spring) 1 > 2 (winter, spring) 1 > 2 (spring) Legend (*) Forest; (1) litter; (**) Fallow; (1) 0-20 cm; (**) Fallow; (1) 0-20 (2) 10-20 cm; (3) 20-50 cm (2) 20-50 cm cm; (2) 20-50 cm

Seasonal Changes in the structure of the Nematocenosis, with time, land use and deep in the firsts 50 cm (Mediterranean Xeralf) •

Respect to the functional diversity of forest soils is noticeable that in all the seasons any given of the analysed horizons have all the trophic groups considered.



In turn, for shrub and fallow soils some trophic groups can be missing in some soil horizons. When the last one possibility occur, all of them appear in the lower horizon, but not in the surficial one. Thus in order to analyse the structure and dynamics of the nematofauna it is necessary sampling not only the upper ten or twenty centimetres if not the whole of the solum.



At least 1 sampling by season seem necessary in order to get a “general” picture of the structure and dynamics of the nematocenosis.

Seasonal Changes in the structure of the Nematocenosis, with time, land use and deep in the firsts 50 cm (Mediterranean Xeralf) • Some studies show that even more deeper horizons (Bt, Btg, Bk, BtkCk, Ckg, etc) at more than 2 meters of the soil surface, in some instances (e.g. seasons) can accommodate more taxa, abundance and biomass than the tops soil (10 or 20 cm) • Different extracting methods show distinct scenarios, as well as respect for seasons and soil depth • In addition to spatial habitats, could be in the solum temporal habitats. Nematodes moves into the soil as animals and them temporal habitats are possible.

Seasonal Changes in the structure of the Nematocenosis, with time, land use and deep in the firsts 50 cm (Mediterranean Xeralf) • The higher abundance of individuals, with independence of the season sampled occurs in the forest soil. • The same is not true for shrub and fallow soils. In the two last cases the most rich soil horizon in nematode individual change in function of season sampled. • The same results has been obtained respect to the morphological and functional. However the shrub soil trend to be more richness in morphological groups that the fallow one.

Abundance, Richness, Extracting Methods and Temporal Sampling • Because the abundance distribution models changes according extracting methods and the timing interval, it is difficult get a “general idea of the abundance”. • However it is possible the comparison of the abundance's of different sites in a given season • For these reasons diversity Indices that include abundance are not much recommendable. • Richness Indices are more recommendable if we made use of different extraction methods

Surrogate indicators of soil nematodes diversity

• Currently a inventory of nematode soil diversity (species of genera level) at global scale is impossible • With the best taxonomists in the different taxonomic groups we can only inventory a small number of sites • At the moment there are not studies that shows we can use surrogates of nematode diversity • The surrogates can be biological or non-biological

Surrogate indicators of soil nematodes diversity

• Some studies in other taxonomic groups shows that the inventory of different families is a nice indicator of species diversity; The nematologists could explore this via of research • Recent studies shows that taxonomic pedodiversity can be used as surrogate indicators of plant diversity and the diversity of soil organisms. I will show some examples

Surrogate indicators of soil nematodes diversity

• Because currently it is not possible a full inventory of soil biodiversity I suggest the design of a network of natural of seminatural soil reserves as reservoirs of unknown soil biodiversity. • I include seminatural areas because some traditional farming practices could improve soil diversity and soil quality (e.g. Spanish Dehesas and Portuguese Montados)

Intervención del hombre en los ecosistemas

Curvas “Hollow” Islas del Egeo Ranked-Abundance List (area in Km2) of taxonomic pedotaxa Hollow curve

8000 7000 6000

4000 3000 2000 1000

Re

Gc

Bh

Oe

I+ RO

U

Vc

Lo

Bd

I

Pedotaxa

E

To

Id

Lv

Bk

Bc

Jc

Be

Ie

RO

Rc

Ic

0 Lc

A re a

5000

Pedo taxa

Are a(Km2 )

Ic Lc Rc Ie RO Jc Be Bc Bk Id Lv To I E Bd Lo U Vc I +RO Bh Oe Gc Re

7 303,6 5 5 061,7 1 3 267,1 5 2589 ,8 1 503,4 8 982,9 1 751,2 1 654,0 7 556,6 3 415,3 5 332 ,2 301 ,8 211,2 5 186,2 6 134,0 7 121,3 1 113,2 2 98,5 1 72,2 4 68,5 2 29,3 3 28,8 3 19 ,5

Ley potencial para los edafotaxa para las Islas del Egeo (datos de islas no agrupados)

Regression line plot (log S = 0.192 log A + 0.453 ) of the power law richness-area. The coefficient of correlation is R2 = 0.603.

4

log S

3 2 1 0 0

1

2

log A

3

4

Edafodiversidad a pequeñas Escalas Cronosecuencia del Río Henares

taxonomic pedodiversity

2 1,6 1,2 Great Group

0,8

Subgroup 0,4 0 A1

A2 samplea area

A3

Edafodiversidad a Escala de Cuencas SOILS and PLANTS LOG / NORMAL SUEL OS-Cue nca s L n / Nor mal

y = 1,4451x + 2,59 99

VEGETACIO N-C uen cas Ln / Nor ma l

y = 1, 4441x + 2,6054 2

2

R = 0,98 15

R = 0,9815

12

12 Rango 5

10

LnArea

Ln Area

8

Rango 4

6

Rango 3

8

Rango 4 Rango 3

6 Rango 2

4

Rango 2

4

Rango 6

Rango 5

10

Rango 6

Rango 1

Rango 1 2

2

0

0 1

2

3

4

Ran go

5

y = 0,2968x - 0, 7832

SUELO S-Cuen cas Ln / Nor ma l

2

3

Rango

4

5

6

y = 0,367x - 1,26 22

VEGETACIO N-C uen cas Ln / Nor ma l

2

R = 0, 941

1 ,2

1

6

2

R = 0,99 24

1, 5

Rango 6

1 Rango 5

0 ,6 0 ,4 Rango 4

0 ,2 Rango 2

0 -0 ,2 1

Rango 3 2

3

4

Rango 6

1 Ln Div ersidad

Ln Diversidad

0 ,8

5

6

Rango 5 0, 5 Rango 4

0 1

2

-1

Rango 6 Rango 5 LnRiqueza

3

2,5 2

Rango 4

1,5

Rango 3 Rango 2 Rango 1

0 2

Rango

3

Rang o

4

5

y = 0,6529x - 0,13 92

VEGETACIO N-C uen cas Ln / Nor ma l

2

R = 0,9388

4

1

Rango 1

y = 0,5 838x + 0,1439

3,5 Ln Riqueza

6

Rango 1

SUEL OS-Cue nca s L n / Nor mal

1

5

Rango 2 Rango

0,5

4

-0, 5

-0 ,4 -0 ,6

3 Rango 3

6

4, 5 4 3, 5 3 2, 5 2 1, 5 1 0, 5 0

2

R = 0,92 35

Rango 6

Rango 5 Rango 4 Rango 3 Rango 2

Rango 1 1

2

3

Rango

4

5

6

Edafodiversidad a Escala de Cuencas SOILS and PLANTS LOG / LOG y = 1,0 218x- 1,1562

S UE - CUE Ln / Ln

y = 1,0221x - 1,1588

V EGE - CUE Ln / Ln

2

R = 0,9885

2

R = 0,9886

12 12 11,513

11,513

8

10

9,210

Ln AREA

Ln AREA

10

6 6,908

4,605

4

9,210 6

6,908

4,605 4 2

2

0

0 1

3

5

7 L n Tama ño

9

11

1

11,513

1 0 9,210 6,908

0 3

5

7

9

11

13

0 4,605

-1

1 1 1 0 0 0 0 1 0 -1 -1 -1 -1

5

-1

9

11

13

y = 0,2566x - 2,1626 2

R = 0,9952

9,210 3

5

7

9

11

13

6,908 4,605

L n Tamañ o

L n Tama ño y = 0,3 868x - 1,1278

S UE - CUE Ln / Ln

y = 0,4446x - 1,5619

VE GE - CUE Ln / Ln

2

R = 0,9428

2

R = 0,909

5

4 4

4

11,513

11,513

4 L n Riqueza

3 Ln Riq ueza

7 Ln Tamaño

11,513

Ln DIVER

1 0

3

VEGE - CUE Ln / Ln

2

R = 0,9866

1

0 1

1

13

y = 0,2 142x - 1,5814

S UE - CUE Ln / Ln

Ln DIVER

8

3 9,210

2 2

6,908

4,605

1

3 3

9,210

2 6,908

2 1

1

4,605

1

0 1

3

5

7 L n Tama ño

9

11

13

0 1

3

5

7 Ln T amaño

9

11

13

Riqueza y diversidades de edafotaxa para las Islas del Egeo

Summary • Estimation of soil biodiversity and monitoring of soil quality are two of the major priorities of the international environmental agenda, although their quantification is not free from uncertainties. I this introduction I analyzes some these uncertainties. I study some cases took the following issues into account:

Summary various soil horizons and the whole of soil solum Land use  seasonally with different extracting methods. In addition different soil types (result of different pedogenetic horizon assemblage must be also into account

Summary • Different extracting methods show distinct scenarios, as well as respect for seasons and soil depth. • Sampling the upper 10 or 20 cm of the A horizon frequently involved a great abundance of soil individuals, biomass and biodiversity. However also is true that in some instances B or C horizon (not usually sampled for soil biodiversity and soil monitoring studies) have more individuals and taxonomic diversity than the A horizon.

Summary • Thus, from the analyzed data, it seems that both the theoretical assumptions and the standard techniques currently used for soil biodiversity and soilmonitoring studies do not show the complexity of soil nematofauna.

Summary • Results show that an estimation of the taxonomic biodiversity and individual abundance patterns is not possible, without taking all the above-mentioned items into account. • Therefore, we need to improve present methods, parting from more relevant basic research on these topics

Estructura Taxonomías Biológicas NEMATODES TO TALES SUPERFAMILIA 1

T OTAL SUBORDEN T YLENCHINA LOG NUM

especie

INDIVUADUOS

y = 0,632x - 0,895 2 R = 0,947

2,5

espec ie

y = 0,746x - 0,810

3

2

R = 0,967

2,5 2

género

1,5

familia superfamil ia

1 0,5 0 -0,5 0

1

género

2

subfamilia

3

4

5

CATEGORÍAS TAX ONÓM ICAS

6

7

TO TALES SUPERFAMILIA 2 3

1,5

subfamilia

familia 0,5

-0,5

superfami lia

suborden 0

1

LOG(NºINDIVIDUOS)

LOG(NºINDIVIDUALS)

3,5

3,5

2

3

2,5 2

5

T AXONOMICS CATEGORIES

6

7

R2 = 0,8 95

1,5 1 0,5 0 -0,5 0

4

espec ie

y = 0,646x - 0,9 31

género superfamilfamilia subfamilia ia 1

2

3

4

5

CATEGORÍ AS TAX ONÓM ICAS

6

7

Estructura Taxonomías Edafológicas

TOTALES SOILS

LOG(NºINDIVIDUOS)

Soil TAXONOMY

y = 0,753x - 0,7 35

2

s u bg rup os

2

R = 0,9 94

1,5

g rup os

1

s ub órd en es

0,5 ord en es

0 0

4

1

2

3

4

5

CATEG ORÍAS TAXONÓM ICAS

y = 0,824x - 0,730 3, 5

subgrupo s

2

R = 0,995

3

OR DEN 2

2,5 y = 0,713x - 0,761 LOG(NºINDIVIDUOS)

grupos

2, 5 2

2

grupos

1

subórdenes

0,5

-0,5

suelos

ordenes

0

1 0, 5

s ubgrupos

R = 0,997

1,5

subórden es

1, 5

2

0

1

2

3

4

5

CATEGORÍAS T AX ONÓM ICAS

ordenes OR DEN 3

2,5

0

y = 0,761 x - 0,812

0

1

2 3 4 TAXONOM I CS CATEGORIES

5

6

LOG(NºINDIVIDUOS)

LOG(NºINDIVIDUOS)

OR DEN 1

2,5

2

su bgrupo s

2

R = 0,991

1,5 grupo s

1

sub órdene s

0,5

ordene s

0 -0,5

0

1

2

3

CATEGORÍAS TAXONÓM ICAS

4

5

Diversidad y Taxonomías Branching structures of Bio. and pedol. clasifications S O I L

N

E M

A

T A X O

T O

D E

N

O M

S U B

Y

O R

D

E R

Cliserie fitoclimática

+ Humedad + Conservación

Perennifolios

+ Aridez + Degradación Caducifolios Ambientes nemorales

Dosel arbóreo

Semicaducifolios

Condiciones mesoclimáticas Dosel arbóreo

Ambiente nemoral

Condiciones microclimáticas

Perennifolios