cementing of geothermal wells - OSTI.gov

0 downloads 0 Views 1MB Size Report
Sep 30, 1977 - Government nor any agency Thereof, nor any of their employees, .... acrylonitrile - 17 wt % TMF'TMA, have been shown to be durable to ...
BNL 50738 UC-66~ (Geothermal Energy, Drilling Technology - TID-4500)

CEMENTING OF GEOTHERMAL WELLS PROGRESS REPORT NO. 6 JULY - SEPTEMBER 1977

Contributors: L.E. Kukacka A. Zeldin J. Fontana N. Carciello T. Sugama

WORK PERFORMED FOR THE DIVISION OF GEOTHERMAL ENERGY U.S. DEPARTMENT OF ENERGY WASHINGTON, D. C. 20545

- -

--

NOTICE

mis reporl was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Untied States Department of Energy, nor any of Uleir employees, nor any of their Contractors. subcontractors, or their employees, maker any warranty, express or implied, or assumes any legal lrability or responsibility for the accuracy, completeness or uxfulncrs of any Information. apparatus, product or process disclosed, or represents that its use would not lnfrinae rrrivatelv owned riehts.

M. STEINBERG, Head LE. KUKACKA, Project Leader PROCESS SCIENCES DIVISION DEPARTMENT OF ENERGY AND ENVIRONMENT

B RO 0 K H A V E N N AT1 0 N A L UPTON,

NEW

YORK

L A B 0RAT0RY 11973

v

OISTRIBUTIQN OF. THIS DOClJMENT IS U N L I M I V D

DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy (DOE), nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price: Printed Copy $4.50; Microfiche $3.00 December 1977

500 copies

Ab stract A coordinated program for th.e development of improved cements specifical-

ly designed for geothermal well applications was started in April 1976. Since that time an assessment of the state of the art of well cementing has been made, a management plan prepared, and research on organic and inorganic cementing materials started. Work accomplished during the period July 1 -September 30, 1977 is described in the current report.

- iii -

Sumaxy Work to implement the program plan for the development of improved high temperature cementing materials for geothermal wellsis continuing. Research work is currently in progress at Brookhaven National Laboratory, Battelle's Columbus Laboratories, Colorado School of Mines, Dowell, Pennsylvania State University, and the University of Rhode Tsland. A contract with the Southwest Research Institute will be initiated in October. The award of this contract will complete the implementation of the first three elements in the program management plan (problem definition, materials development, and property verification).

-

iv

-

Cementing of G e o t h e r m l Nells P r o g r e s s Report No. 6 July-Sep t emb er 197 7

.

Introduction The US Department of Energy, D i v i s i o n of Geothermal Energy,is spons o r i n g a r e s e a r c h program t o develop improved cementing materials f o r u s e i n t h e completion of geothermal w e l l s .

The m o t i v a t i o n f o r t h e program

stems from an assessment t h a t t h e cements c u r r e n t l y used d e t e r i o r a t e i n t h e geothermal environments, and t h a t t h e l i f e expectancy of a geothermal w e l l and t h e r e f o r e t h e economics of geothermal power could b e improved s i g n i f i c a n t l y i f b e t t e r materials are developed. It i s e s t i m a t e d t h a t f o r u s e i n geothermal w e l l s , cementing materials

w i t h t h e f o l l o w i n g c h a r a c t e r i s t i c s are needed: 1.

Compressive s t r e n g t h , > 1000 p s i 2 4 hours a f t e r placement.

2.

P e r m e a b i l i t y t o water, < 0 . 1 m i l l i Darcy.

3.

Bond s t r e n g t h t o s t e e l c a s i n g ,

4.

S t a b i l i t y , no s i g n i f i c a n t r e d u c t i o n i n s t r e n g t h o r i n c r e a s e i n

> . l o psi.

permeability after prolonged exposure at 4OO0C (- 7500F) t o 25% brine

s o l u t i o n s , f l a s h i n g b r i n e , o r d r y steam.

5.

Placement a b i l i t y , c a p a b l e of 3 t o 4 h r r e t a r d a t i o n a t expected

placement t e m p e r a t u r e s . \

.

6.

C o m p a t i b i l i t y of t h e cement w i t h d r i l l i n g mud.

7.

Non-corrosive t o s t e e l w e l l c a s i n g .



,

The P r o c e s s Technology D i v i s i o n of t h e Department of Energy and Environment a t BNL i s a s s i s t i n g t h e D i v i s i o n of Geothermal Energy i n developing

- 1 -

and managing a program that will result in the development of materials meeting the criteria listed above.

The program represents an integrated

approach to the definition, development, and implementation of the work. A successful development of improved materials will lead to a major ad-

vance in the technology required to economically utilize geothermal energy. The goals for the overall program are as follows:

1. Preparation of an integrated research and development plan for the investigation of new well-cementing materials specifically designed for geothermal well applications.

2.

To provide the technical basis for the development, testing, and

practical demonstration of high-temperature cementing materials for geothermal wells. 3.

Rapid transfer and implementation of the technology in the private

sector. The program goals will be achieved by performing the following tasks:

1. Develop well-cementing materials capable of withstanding the environmental conditions in geothermal wells. 2.

Perform pilot-scale testing and analysis of the cementing materials

at well down-hole conditions. 3.

Develop the technology required to mix, pump, and place the cementing

material.

4.

Demonstrate the process by the cementing of a prototype well.

5.

Perform cost analyses to determine the economic viability of the

cementing systems under investigation.

- 2 -

6.

I n v o l v e t h e well-cementing service i n d u s t r y and w e l l owners i n

a l l phases of t h e program i n o r d e r t o p r o v i d e a t e c h n i c a l b a s i s f o r t h e r a p i d implementation of t h e technology. 7.

P r e p a r e a comprehensive, high-temperature geothermal w e l l -

cementing manual which w i l l i n c l u d e d e t a i l s of downhole equipment, pumps, cement p r o p e r t i e s , and f i e l d examples. Planning work t o o r g a n i z e and develop a management p l a n designed t o m e e t the above o b j e c t i v e s was s t a r t e d i n A p r i l 1976. w a s s t a r t e d i n J u l y 1976.

Experimental work

The work a t BNL i n v o l v e s in-house r e s e a r c h on

polymer c o n c r e t e cementing materials as w e l l as f u l l management of an i n t e g r a t e d program i n v o l v i n g c o n t r a c t r e s e a r c h and i n d u s t r i a l p a r t i c i p a t i o n . T h i s r e p o r t c o n s t i t u t e s t h e s i x t h i n a series of q u a r t e r l y r e p o r t s d e s c r i b i n g work on t h e program.

Accomplishments d u r i n g t h e p e r i o d July-

September 1977 are summarized below. performed i n Tasks 1, 2 , 3, and 7.

During t h e q u a r t e r work h a s been Work on o t h e r t a s k s w i l l commence i n

FY 1978 as t h e r e s e a r c h work p r o g r e s s e s . Task 1.

Program Management P l a n The need f o r DOE t o sponsor a program t o develop improved geo-

thermal cementing materials w a s a s c e r t a i n e d by e v a l u a t i n g i n f o r m a t i o n obt a i n e d from w e l l owners, cementing service companies, and governmental and private research organizations.

The consensus of t h o s e c o n t a c t e d w a s t h a t

t h e program should b e a c o o p e r a t i v e one performed on a c o s t - s h a r i n g b a s i s w i t h w e l l cementing service companies and w e l l owners.

It was a l s o es-

t a b l i s h e d t h a t t h e f o c a l p o i n t of t h e program s h o u l d b e a series of downh o l e test f a c i l i t i e s .

T e s t i n g should b e performed i n several geothermal

environments b u t t h e h i g h e s t p r i o r i t y f o r near-term

- 3 -

(%

10 y r ) a p p l i c a t i o n

s h o u l d b e g i v e n t o medium s a l i n i t y b r i n e s a t temperatures up t c 4OO0C (750OF). I n a n earlier r e p o r t , '

was p r e s e n t e d .

an o u t l i n e of t h e approved management p l a n

The program c o n s i s t s of t h e f o l l o w i n g elements:

problem

d e f i n i t i o n , materials development, p r o p e r t y v e r i f i c a t i o n , down-hole t e s t i n g , and t h e u s e of t h e cements i n completing demonstration w e l l s .

Implementa-

t i o n of t h e f i r s t t h r e e elements i n t h e p l a n w a s completed d u r i n g t h e curr e n t report period.

O r g a n i z a t i o n s p a r t i c i p a t i n g i n t h e program are as

follows : Problem d e f i n i t i o n , ! Dowell D i v i s i o n of Dow Chemical Co.

Materials development , B a t t e l l e ' s Columbus L a b o r a t o r i e s Brookhaven N a t i o n a l Laboratory Colorado School of Mines Dowell D i v i s i o n of Dow Chemical Co. Pennsylvania S t a t e U n i v e r s i t y Southwest Research I n s t i t u t e U n i v e r s i t y of &ode I s l a n d P r o p e r t y - v e r i f i c a t i o n , N a t i o n a l Bureau of S t a n d a r d s

As a means of o b t a i n i n g t e c h n i c a l guidance f o r t h e o v e r a l l program and as an i n i t i a l s t e p i n t h e technology t r a n s f e r p r o c e s s , BNL h a s est a b l i s h e d a "Geothermal Well Cement Advisory Panel".

members was g i v e n i n t h e p r e v i o u s p r o g r e s s r e p o r t . 2

A l i s t of p a n e l The f i r s t meeting of

t h e p a n e l w a s h e l d a t t h e N a t i o n a l Bureau of Standards on May 26, 1977. The second meeting is scheduled f o r December 7 , 1977 a t t h e Union Research Center i n Brea, C a l i f o r n i a .

P l a n s have been made t o a f f i l i a t e t h e p a n e l

as a subcommittee of the "American Petroleum I n s t i t u t e " .

- 4 -

Task 2.

Selection of Well Cementing Materials Work is being perforrped in this task to identify, evaluate, and

select high temperature well cementing materials. Polymer Cement Polymer cements (PC) have been identified as promising well completion materials. BNL.

Development of these materials is continuing at

To date two monomer formulations, 60 wt % styrene

- 40 wt

methylolpropane trimethacrylate (TMF'TMA) and 50 wt % styrene acrylonitrile

-

-

% tri-

33 wt %

17 wt % TMF'TMA, have been shown to be durable to geothermal

fluids. Both systems can be polymerized using chemical.initiatorsand heat or by chemical initiators and prqmoters. temperatures up to up to

Q

Q

The former appears suitable for

15OoC (302OF) while the latter has given good results

24OoC (464OF).

During the current report period work with styrene-acrylonitrile formulations containing acrylamide or methacrylamide and crosslinking agents was continued. Three variables: polymer content, and type and concentration of the crosslinking agent were investigated. Polymer Content The effect of polymer cantent on the strength and durability of PC containing a 55 wt % styrene

-

35 wt % acrylonitrile

-

5 wt %, acrylamide

-

5 wt % trimethylolpropane,t.rimethacrylate (TMPTMA) monomer mixture w a s

studied. Polymer contents ranging between 12 and 20 wt % were used in .

I

conjunction with an aggregate consisting o f 70 wt % silica sand

- 30 wt

%

portland cement. Properties measured included water absorption and thermal stability in air and hot brine at 238OC (460OF).

- 5 -

A l l of the specimens e x h i b i t e d r e d u c t i o n s i n s t r e n g t h and i n c r e a s e s i n a b s o r p t i o n a f t e r exposure t o a i r and h r i n e a t 238% (460OF) f o r 30 and 1 0 days, r e s p e c t i v e l y .

I n c r e a s e d polymer c o n t e n t r e s u l t e d i n a de-

crease i n s t a b i l i t y . C r o s s l i n k i n g Agents The i n c o r p o r a t i o n of c r o s s l i n k i n g a g e n t s i n t o PC r e s u l t s i n s i g n i f i c a n t improvements i n t h e r m a l s t a b i l i t y and d u r a b i l i t y .

During t h e r e p o r t

p e r i o d two c r o s s l i n k i n g a g e n t s , TMPTMA and d i v i n y l benzene (DVB), were used w i t h t h e s t y r e n e - a c r y l o n i t r i l e f o r m u l a t i o n s c o n t a i n i n g acrylamide o r methacrylamide. studied.

TMPTMA c o n c e n t r a t i o n s of 2 . 5 w t % and 5 w t % were

The DVB c o n c e n t r a t i o n w a s v a r i e d from 2.5 w t % t o 10 w t %.

The r e s u l t s from t h e s e s t u d i e s i n d i c a t e t h a t t h e u s e of WB i n PC produces composites w i t h g r e a t e r h i g h t e m p e r a t u r e b r i n e s t a b i l i t y t h a n samples c o n t a i n i n g TMPTMA.

The b e s t r e s u l t s were o b t a i n e d w i t h samples

c o n t a i n i n g t h e styrene-acrylonitrile-acrylamide m i x t u r e i n c o n j u n c t i o n w i t h DVB c o n c e n t r a t i o n s from 5 w t % t o 10 w t %. These samples d i d n o t e x h i b i t r e d u c t i o n s i n s t r e n g t h a f t e r exposure t o h o t b r i n e a t 238OC

(460OF) f o r 1 0 days.

Samples p r e p a r e d w i t h o u t t h e i n c l u s i o n of a c r o s s -

l i n k i n g a g e n t and w i t h TMPTMA had s t r e n g t h l o s s e s of 50% and r e s p e c t i v e l y , a f t e r s i m i l a r exposures.

%

30%

The tests w i t h DVB are b e i n g re-

p e a t e d t o d e t e r m i n e i f t h e r e s u l t s are r e p r o d u c i b l e .

Longer term tests

have a l s o been s t a r t e d . Aggregate Composition The d u r a b i l i t y of PC t o geothermal f l u i d s h a s been found t o b e h i g h l y dependent upon t h e composition o f t h e a g g r e g a t e .

Materials such as q u a r t z ,

s i l i c a , f l y a s h , and p o r t l a n d cement have been i n v e s t i g a t e d .

A l l of t h e

materials can b e used i n composites which have good d u r a b i l i t y a t temperatures

- 6 -

< 218OC (425OF).

Above this t e m p e r a t u r e , o n l y F'C materials c o n t a i n i n g

m i x t u r e s of s i l i c a sand and p o r t l a n d cement haver been d u r a b l e t o b r i n e and steam. 3 To determine t h e r e a s o n f o r t h i s e f f e c t , i n f r a - r e d b e i n g performed.

(IR) s t u d i e s are

I n t h e s e tests, each of the c h e m i c a l c o n s t i t u e n t s of

Type 111 p o r t l a n d cement ( S i 0 2 , A1203, Fe203, CaO, and MgO) have been combined w i t h s i l i c a sand and v a r i o u s v i n y l - t y p e monomers CMMA, TMPTMA, and s t y r e n e ) t o form PC.

I R a n a l y s e s are b e i n g performed on t h e samples

b e f o r e and a f t e r exposure t o b r i n e and a i r a t 238OC (460OF) f o r 30 days. P r e l i m i n a r y r e s u l t s i n d i c a t e chemical bonding between t h e CaO and -CH2 groups i n t h e v i n y l monomers. E v a l u a t i o n of t h e c o n t r o l specimens h a s been completed and work w i t h t h e specimens a f t e r exposure t o b r i n e and h o t a i r i s i n p r o g r e s s . The o b s e r v a t i o n s from t h e c o n t r o l samples a r e as f o l l o w s : 1.

The a b s o r p t i o n b a n d of t h e -CH2

groups, f o r t h e r e g i o n 2900-

of TMPTMA, polymethyl m e t h a c r y l a t e (PMMA) , and p o l y s t y r e n e

3000 cm-',

i n PC c o n t a i n i n g Type 111 p o r t l a n d cement and C a O w a s observed t o b e much

smaller t h a n t h a t of t h e polymers a l o n e . 2.

The I R s p e c t r a s of TMPTMA, PMMA, and p o l y s t y r e n e i n P C ' s con-

t a i n i n g Ca(OH)2, A1203, MgO, and S i 0 2 were n o t similar t o t h o s e when t h e polymers w e r e used i n PC c o n t a i n i n g Type 111 p o r t l a n d cement and C a O aggregate. 3.

The I R s p e c t r a s and absorbance r a t i o s f o r t h e polymers i n PC's

c o n t a i n i n g 66 w t % Type 111 p o r t l a n d cement were observed t o b e v e r y

s i m i l a r t o t h o s e when t h e polymer w a s used i n P C c o n t a i n i n g 56 w t % CaO. C a l c u l a t i o n of t h e C a O c o n t e n t i n t h e PC c o n t a i n i n g t h e p o r t l a n d cement

- 7 -

i n d i c a t e d a CaO c o n c e n t r a t i o n of 56 w t %.

4.

The a b s o r p t i o n bands fox -C%

g r w p s a t 2998 cm-'

f o r PC con-

t a i n i n g CaObecome smaller as t h e CaO c o n c e n t r a t i o n i s i n c r e a s e d .

5. -CH

2

The e v i d e n c e i n d i c a t e s t h a t t h e C a O reacts c h e m i c a l l y w i t h t h e

groups i n t h e v i n y l monomers.

However, there i s no evidence whether

t h e r e a c t i o n i s caused by f r e e CaO o r t h e calcium i o n . I R and mechanical e v a l u a t i o n of PC a f t e r exposure t o h o t a i r and

b r i n e i s i n progress.

V i s u a l examination of the samples i n d i c a t e d

c r a c k i n g of most of t h e non-portland cement c o n t a i n i n g materials. Work h a s been s t a r t e d t o e v a l u a t e t h e u s e of PC c o n t a i n i n g polyimides

as a p o s s i b l e w e l l cementing materials.

A polyimide formed by r e a c t i n g

a r o m a t i c diamines w i t h a r o m a t i c d i a n h y d r i d e s i s c u r r e n t l y b e i n g s t u d i e d . I n o r g a n i c Cements Research on h i g h t e m p e r a t u r e i n o r g a n i c cements i s i n p r o g r e s s a t f i v e laboratories.

A s i x t h program w i l l b e i n i t i a t e d on October 1, 1977.

The

s t a t u s of each program i s summarized below. Colorado School of Mines G. L . Kalousek, P r i n c i p a l I n v e s t i g a t o r

S t a r t i n g d a t e , A p r i l 1977 The second q u a r t e r l y r e p o r t

4

f o r t h e program i s g i v e n i n Appendix 1.

U n i v e r s i t y of Rhode I s l a n d T. J. R o c k e t t , P r i n c i p a l I n v e s t i g a t o r

S t a r t i n g d a t e , J u l y 1977 The f i r s t q u a r t e r l y r e p o r t

5

i s g i v e n i n Appendix 2 .

Dowel1 D i v i s i o n of Dow Chemical D. F r e e , P r i n c i p a l I n v e s t i g a t o r

S t a r t i n g d a t e , J u l y 1977

- 8 -

B a t t e l l e ' s Columbus Lab o r a t o r i e s

R. S. Kalyoncu, P r i n c i p a l I n v e s t i g a t o r

S t a r t i n g d a t e , September 1977 Pennsylvania S t a t e U n i v e r s i t y D. M. Roy, P r i n c i p a l I n v e s t i g a t o r

S t a r t i n g d a t e , September 1977 Southwest Research I n s t i t u t e D. K. C u r t i c e

S t a r t i n g d a t e , scheduled t o commence October 197y Task 3.

Mechanical, P h y s i c a l , and Chemical R e s i s t a n c e P r o p e r t y Measurements I n c o n j u n c t i o n w i t h work performed i n Task 2 , tests t o measure

t h e mechanical, p h y s i c a l and chemical r e s i s t a n c e p r o p e r t i e s of h i g h t e m p e r a t u r e cementing materials w i l l b e conducted. A t e s t i n g program t h a t w i l l b e a p r e c u r s o r t o down-hole e v a l u a t i o n h a s been s t a r t e d a t t h e N a t i o n a l Bureau of S t a n d a r d s . i s b e i n g assembled and t e s t e d .

T e s t equipment

Samples of o i l w e l l cements used f o r t h e

completion of geothermal w e l l s have been o b t a i n e d f o r u s e i n i n i t i a l t e s t s . Task 7.

Administrative During t h e c u r r e n t r e p o r t p e r i o d , t h r e e "Plonthly A d m i n i s t r a t i v e

Letters" w e r e s u b m i t t e d t o DGE and Q u a r t e r l y P r o g r e s s Report N o . 5

issued.

- 9 -

2

was

References

1. Cementing of Geothermal Wells, Progress Report No, 1976, BNL 50578.

2, July-September

2.

5,

Cementingof Geothermal Wells, Progress Report No. 1977, BNL 50693.

3. Cementing of Geothermal Wells, Progress Report No. 1976, BNL 50621.

April-June

2, October-December

4. Kalousek, G. L., Development of Cement for Use in Geothermal and Deep Oil Wells, Second Quarterly Technical Report, August 1 to September 30, 1977, BNL/ERDA Contract No. 406003-5, Colorado School of Mines. 5.

Rockett, T. J., et al., Phosphate Bonded Glass Cements for Geothermal Wells, Technical Report No. 1, July-September 1977, BNL Contract 418691-S, University of mode Island.

- 10 -

Distribution

U.S. Department of Energy D i v i s i o n of Geothermal Energy James C . Bresee Robert Reeb er Ronald Toms John Walker Louis B Werner

.

Brookhaven N a t i o n a l Laboraltory Kenneth C . Hoffman Lawrence Kukacka bavid Gurinsky David Schweller (DOE:) Meyer S t e i n b e r g Warren E. Winsche Arkady Z e l d i n

B a t t e l l e ' s Columbus L a b o r a t o r i e s

Rustu S . Kalyoncu

Colorado School of Mines George L . Kalousek Dowel1 Dustin L. Free N a t i o n a l Bureau of S t a n d a r d s Sheldon Weiderhorn

Pennsylvania S t a t e U n i v e r s i t y

Della M. Roy Southwest Research I n s t i t u t e David K. C u r t i c e U n i v e r s i t y of Rhode I s l a n d Thomas J. Rockett

-

11

-

Appendix 1

Second Q u a r t e r l y Technical Report August 1, 1977 t o September 30, 1977 BNL/ERDA Contract No. 406003-5 DEVELOPMENT OF CEMENT FOR USE I N GEOTHERMAL AND DEEP OIL WELLS

I ntroduc t i,on The research a t CSM shows t h a t t h e hydrothermal products of C-S cements a r e s u b j e c t t o a l t e r a t i o n s w i t h i n c r e a s i n g temperature, and a so a f f e c t e d by i n t r o d u c t i o n o f extraneous components such as A1203, Na20 etc.

The a l t e r a t i o n s ca.:sed f o u r e f f e c t s , some good, some bad, on

strength.

O f p a r t i c u l a r i n t e r e s t has been t h e p o t e n t i a l l y adverse

e f f e c t on c r y s t a l l i z a t i o n and/or r e - c r y s t a l l i z a t i o n o f t r u s c o t t i t e , t h e u l t i m a t e b i n d e r a t e l e v a t e d temperatures i n t h e presence o f excess silica.

Prolonged c u r i n g even a t t h e h i g h e s t temperature may be r e q u i r e d

t o f u l l y disclose the r o l e o f t r u s c o t t i t e . During t h e p a s t q u a r t e r , a t t e n t i o n has been d i r e c t e d t o o t h e r c r i t e r i a of q u a l i t y o f t h e cements i n a d d i t i o n t o s t r e n g t h . Strength A t y p e G P o r t l a n d cement and s l i c a s u p p l i e d by Ha l i b u r t o n i s being t e s t e d

n comparison w i t h t h e C2S-S cements.

The t y p e G cement

c o n t a i n s 4.1% A1203, '5.1% Fe203 and 2% SO3 and i s being used w i t h o u t any a d d i t i o n s except t h e s i l i c a .

The W/S used i s 0.4 o r s l i g h t l y l e s s t o

prevent excessive subsidence o f t h e s o l i d s i n t h e mold. cements a r e used a t W/S o f 0.45. C/(S + A) o f 0.98,

0.83,

The BC2S-S

The type G cement i s being t e s t e d a t

0.70 and 0.60,

t h e 0.98 being t h e standard

w i t h Hal 1 iburton. The t y p e G cement mixes cured a t 150' C f o r 24 hours gave h i g h e r

- 13 -

strengths than the BC2S cements, which normally would be attributable t o the lower W/S. mixture of

The type G binders were a

This i s not the explanation.

aC2SH, a b i n d e r of very low strength, and CSH(l), a binder

of superior strength a t a l l C/(S

cements was tobermorite.

t

A t 250°,

A) ratios.

The binder of the C2S-S

300' and 350' C the dominant phase

of the type G cement was xonotlite, generally l i t t l e t o very l i t t l e t r u s c o t t i t e and s i l i c a , generally i n increasing amount w i t h decreasing C/(S

i-

A) ratio.

The compressive strengths ranged between 8,000 and

13,000 psi and independently of the C/(S + A ) .

To obtain more information on the changes in amounts of t r u s c o t t i t e with increasing time of curing, the 0.98, 0.83 and 0.60 C/(S

i-

A ) mixes

were cured a t 350' C f o r 3, 7 a n d 14 days. T h e amount of t r u s c o t t i t e increased between 3 and 14 days f o r the 0.6 C / ( S + A ) product, remained about the same a t 0.83 C/(S + A ) and decreased i n the 0.98 C/(S + A ) product.

The amounts of xonotlite and quartz remained unaltered.

Some

unidentified phase contributed a peak of weak t o medium intensity a t 3.50A.

(Some o f these samples are being submitted t o Professor Taylor I t i s possible t h i s uniden-

f o r examination w i t h the Guinier Camera.)

t i f i e d phase may contain the A1203, Fe203 o r other extraneous component and have some e f f e c t on the properties.

The small increase in amount of

t r u s c o t t i t e i n the 0.6 C/(S + A ) product between 3 and 14 days i s indicative of a very slow r a t e of t r u s c o t t i t e formation from xonotlite, even a t 350' C. Attainment of Equilibrium of C7S-S Cements Tests on 0.6 t o 1.0 C/S pastes t o determine attainment of equilibrium in the shortest time are continuing.

The 1.0 C/S mixes reached

equil'ibrium, xonotlite only with no reactants, i n short time, l e s s than

- 14 -

7 days a t 175'

C and l e s s than 1 day a t 350'

C.

The 0.83 C/S mix y i e l d s

t h e e q u i l i b r i u m products, x o n o t l i t e and g y r o l i t e , between 7 and 28 days a t 200'

C y and x o n o t l i t e and t r u s c o t t i t e between 7 and 28 days a t 250'

using n o m i n a l l y pure pC2S and s i l i c a . pure t r u s c o t t i t e a t about 225'

C

The 0.6 C/S product should y i e l d

C y b u t even a t 350'

C f o r 14 days some

o t h e r u n i d e n t i f i e d phase appears t o p e r s i s t w i t h t h e t r u s c o t t i t e . w i t h added A1203 y i e l d even more complex r e s u l t s .

Mixes

( A few o f t h e 0.6 C/S

products w i l l be sent t o Professor T a y l o r f o r e v a l u a t i o n . )

The need o f

developing unequivocal r e s u l t s o f c r y s t a l l i z a t i o n o f t r u s c o t t i t e i s u r g e n t because t h i s i s t h e u l t i m a t e phase t o c o e x i s t w i t h excess s i l i c a a t e l e v a t e d temperatures. Volume Changes T e s t procedures and necessary equipment f o r determining volume The t e s t s w i l l

change have been developed and obtained, r e s p e c t i v e l y .

p r o v i d e r e s u l t s on volume change d u r i n g ( 1 ) phase transformation,

( 2 ) d e l i b e r a t e l y induced expansion, ( 3 ) s a l i n e water a t t a c k , and ( 4 ) d r y i n g shrinkage.

The specimens a t 0.6 t o 1.0 C/(S

+ A) a r e 1 x 1 x 5

i n c h bars precured a t 150' C f o r 24 hours, c o n d i t i o n e d i n 73' and measured f o r i n i t i a l l e n g t h w i t h a comparator. be cured successively a t 175',

250'

and 300'

c u r i n g , l e n g t h measurements w i l l be made.

F water

The specimens w i l l

C f o r 7 days and a f t e r each

Specimens, 1/2 x 1/2 x 1.8

i n c h i n s i z e , w i l l be simultaneously processed i n t h e event i t becomes d e s i r a b l e t o determine t h e product f o r phase change.

These small

specimens w i l l probably supply u s e f u l i n f o r m a t i o n on s a l i n e water a t t a c k i n t h e event such a t t a c k does n o t cause expansion. i n d u c t i o n o f expansion i s planned f o r l a t e r t e s t s . )

- 15 -

(The d e l i b e r a t e

. Cement-Wallrock/Steel

Casing Bond

I t has been decided t o measure bond s t r e n g t h s u s i n g a specimen c o n s i s t i n g o f a 2 i n c h D. x 1 i n c h s t e e l r i n g w i t h a 1 i n c h D. r o c k specimen centered i n t h e r i n g and surrounded by t h e cement.

The assembly

would be precured a t 150' C and then cured a t h i g h e r temperatures up t o

350'

C i n i n i t i a l tests.

The r o c k specimen, which i s 2 inches high, w i l l

be loaded t o p o i n t s of i n i t i a l and f i n a l f a i l u r e s . w i l l be c a l c u l a t e d as bond s t r e n g t h .

The improved loads

The design o f t h e specimen assembly

and t e s t procedure was done w i t h t h e i n t e n t i o n of s t u d y i n g t h e e f f e c t s o f r e s i d u a l d r i l l i n g mud a t t h e i n t e r f a c e s on t h e bond s t r e n g t h s .

A

1 i n c h diameter s t e e l t u b i n g w i l l r e p l a c e t h e r o c k specimen i n t h e d e t e r m i n a t i o n o f t h e s t e e l casing-cement bond. I n c o n s u l t a t i o n w i t h t h e people i n t h e E a r t h Mechanics I n s t i t u t e , D r . Romberger i n Geology a t CSM, and D u s t i n Free o f Dowel1 D i v i s i o n o f Dow Chemical U.S.A., present t e s t s :

t h e f o l l o w i n g rocks were s e l e c t e d t e n t a t i v e l y f o r

b a s a l t , r h y o l it e , q u a r t z ( o r sandstone), g r a n i t e , 1ime-

stone ( o r d o l o m i t e ) , shale and s i l t s t o n e .

The g r a n i t e , sandstone and

shale were immediately a v a i l a b l e and have been f a b r i c a t e d i n t o t e s t specimens.

The a v a i l a b l e shale was t o o b r i t t l e f o r c o r i n g .

The a v a i l a b l e

rocks have a l s o been reduced t o a minus 100 mesh sieve t o be used w i t h t h e cement f o r compressive s t r e n g t h measurements.

It i s not possible

t o p r e d i c t i f t i m e w i l l p e r m i t t e s t i n g o f a l l t h e rocks. Summary The s t u d i e s on t h e e f f e c t o f t r u s c o t t i t e on s t r e n g t h u s i n g P o r t l a n d and C2S cements i s progressing s l o w l y due t o t h e a p p a r e n t l y r e q u i r e d prolonged curing.

The formation o f

aC2SH and CSH(1) as i n i t i a l binders

i n t h e t y p e G cements which t r a c s f o r m e s s e n t i a l l y t o x o n o t l i t e o f very

- 16 -

h i g h s t r e n g t h adds a new f a c e t t o t h e research.

Our e a r l i e r research on

pC2S-S cements showed c l e a r l y t h a t t r a n s f o r m a t i o n t o x o n o t l i t e i s accompanied by s e r i o u s s t r e n g t h r e t r o g r e s s i o n .

The question, o f course,

a r i s e s now about t h e e f f e c t o f t h e A1203’ Fe203’ SO3 and o t h e r minor cement c o n s t i t u e n t s i n t h e cement.

- 17 -

Appendix 2

BNL C o n t r a c t 418691-S

PHOSPHATE BONDED GLASS CEMENTS FOR GEOTHERMAL WELLS

Technical Report No. 1 July t o September, 1977

from

Department of Materials and Chemical E n g i n e e r i n g U n i v e r s i t y of Rhode I s l a n d Kingston, Rhode I s l a n d

to

P r o c e s s Technology D i v i s i o n Department o f A p p l i e d S c i e n c e Brookhaven N a t i o n a l L a b o r a t o r y Upton, New York, 11973

Contributors:

T. J . R o c k e t t S. S . Feng N. Thakore

-

19

-

I.

Introduction T h i s r e p o r t c o v e r s t h e work done on t h e c o n t r a c t e n t i t l e d ,

" P h o s p h a t e Bonded Glass Cements" d u r i n g t h e p e r i o d of J u l y 1, 1977 t o O c t o b e r 1, 1977.

D u r i n g t h i s p e r i o d , e x p e r i m e n t a l work was

begun on s e v e r a l a l u m i n a r e f r a c t o r y c e m e n t s , u s i n g b o t h p h o s p h a t e s o l u t i o n s a n d waters as t h e r e a c t i v e l i q u i d .

Literature surveys

were a l s o begun o n p h o s p h a t e b o n d i n g and on cement s l u r r y r h e o l o g y . 11.

Experimental Results: A.

H y d r a u l i c Alumina Cements :

All p h o s p h a t e c e m e n t i n g i n v o l v e s t h e l e a c h i n g o r d i s s o l u t i o n o f v a r i o u s i o n s from a cement powder i n t o a p h o s p h a t e l j quid.'

The d i s s o l v e d c o n s t i t u e n t i n t e r a c t s w i t h t h e p h o s p h a t e

11quJ.d t o y i e l d a c r y s t a l l i n e o r amorphorus cement p h a s e .

These

c e m e n t s a r e known a s p h o s p h a t e c e m e n t s , o x y p h o s p h a t e c e m e n t s , a c j d p h o s p h a t e c e m e n t s and a l u m i n a p h o s p h a t e c e m e n t s . 2

Even t h e

s o - c a l l e d s i l i c a t e c e m e n t s a r e more p r o p e r l y c l a s s i f i e d as phosp h a t e c e m e n t s b e c a u s e t h e s e t t l n g r e s u l t s from t h e l e a c h i n g of

c a l c i u m and a l u m i n u m ' i o n s f r o m a s i l i c a t e g l a s s w i t h s u b s e q u e n t r e a c t i o n t o f o r m c a l c i u m a n d aluminum

phosphate^.^

With t h e ex-

c e p t i o n o f t h e z i n c p h o s p h a t e c e m e n t s , which a r e n o t s t a b l e a t e l e v a t e d t e m p e r a t u r e s , t h e aluminum i o n i s a k e y t o p h o s p h a t e cementing.

F o r t h i s r e a s o n , o u r i n v e s t i g a t i o n o f p o s s i b l e geo-

thermal w e l l c e m e n t s h a s begun w i t h a n i n v e s t i g a t i o n o f a l u m i n a

r e f r a c t o r y cements. Table 1 l i s t s t h e s e t t i n g p r o p e r t i e s of a high alumina " c a s t a b l e " r e f r a c t o r y cement.

T h i s material was examined be-

c a u s e i t i s known t o form a c e m e n t i t i o u s bond a t low t e m p e r a t u r e

- 20 -

TABLE 1

Li qu4 d

-

S E T T I N G TIME O F A H I G H ALUMINA REFRACTORY CEMENT

Powder ' L i q u i d

Temp.

Condf t i . o n

S e t t i n g TI m e

80 h r s .

H20

5

25OC

H2O

5

60°c

100% H u m j d i t y

7.5 h r s .

H2°

5

60°c

100% H u m i d 1 t y

5.75 h r s .

H2°

5

60°c

H2°

5

100O c

H20

5

100O c

H2O

5

100O c

- 21 -

Dry

100% H u m i d i t y

D rY (Sealed)

4.25 hrs. 2.5 h r s . 2.0 h r s .

?24 h r s

.

w h i c h i s s t a b l e t o temperatures i n e x c e s s of 1000°C.

The

m a t e r i a l w a s a l s o u s e d t o d e t e r m i n e a powder l i q u i d r a t i o which would r e s u l t i n a pumpable s l u r r y f o r implacement.

The powder

l i q u i d r a t i o of 5 which was c h o s e n f o r t h e e x p e r i m e n t s i s a weight r a t i o .

Hence

B

t y p i c a l t e s t sample w a s made by m i x i n g

30 grams cement powder w i t h s i x m l . of water. The s e t t i n g times were d e t e r m i n e d u s i n g a 1 pound

gilmore needle.

When no l n d e n t a t i o n i n t h e cement s u r f a c e i s

o b s e r v e d t h e cement i s deemed t o h a v e s e t . made e v e r y lished.

D e t e r m i n a t i o n s were

15 m i n u t e s a f t e r t h e a p p r o x i m a t e s e t time was estab-

Sample 7 r e p r e s e n t s a m i x t u r e w h i c h was sealed i n a

p o l y p r o p y l e n e b o t t l e and heated t o p r e v e n t water l o s s .

With a l l

water r e t a i n e d , t h e sample d i d n o t s e t i n t w e n t y - f o u r h o u r s .

It

a p p e a r s t h a t some d e h y d r a t i o n must t a k e p l a c e i n o r d e r t o p r o mote s e t t i n g .

The i m p l i c a t i o n s o f t h i s f i n d i n g t o g e o t h e r m a l

w e l l c o m p l e t i o n w i l l b e d i s c u s s e d below. X-ray d i f f r a c t i o n a n a l y s i s showed t h e cement t o be a two p h a s e m i x t u r e of o( - a l u m i n a a n d p o t a s s i u m

p "-alumina.

The b e t a

a l u m i n a has a c o m p o s i t i o n o f K A 1 0

.

5 8 1 . e . a m o l a r r a t i o o f 1 K 20 T h e & - a l u m i n a i s p r e s e n t as a f i l l e r material

to 5 A1 0 4 2 3 w h i l e t h e p't a l u m i n a s e r v e s as t h e r e a c t i v e component. mixing, t h e pH i n c r e a s e s t o a b o u t 10. K

+

On

i s leached f r o m t h e

compound and t h e b a s i c s o l u t l o n b r e a k s down t h e p " - a l u m i n a framework.

S u b s e q u e n t r e a c t i o n p r o b a b l y forms a p o t a s s i u m

aluminum h y d r a t e g e l phase which i s t h e c e m e n t i n g phase. T h e r e a r e s e v e r a l d i f f e r e n t t y p e s of h y d r a u l i c a l u m i n a

cements.

They h a v e been c l a s s i f i e d by B r i e b a c h on t h e b a s i s of

- 22 -

t h e i r a l u m i n a t o lime r a t i o . 5

H i s c l a s s i f i c a t i o n i s given i n

T a b l e I1 a n d we h a v e a d d e d t h e p h o s p h a t e bond c e m e n t s t o t h e group.

Next t o p o r t l a n d cement, t h e c a l c i u m a l u m i n a t e c e m e n t s

a r e t h e most w i d e l y u s e d c e m e n t s .

Castable c e m e n t s a r e made

up of a m i x t u r e of p u r e a l u m i n a (60 t o 80% f i l l e r ) a n d a rea c t i v e a l u m i n a cement powder.

The r e a c t i v e cement may be o n e

o f t h e c a l c i a - a l u m i n a cements of T a b l e I1 o r a n a;lumina p h a s e w i t h other cations.

B.

P h o s p h a t e Bonded Cements: T h a t a l u m i n a w j l l form a bond w i t h p h o s p h o r i c a c i d t h a t

becomes permanent o n h e a t i n g i s w e l l known.6

U s u a l l y some

degree of h e a t i n g i s r e q u i r e d t o form t h e bond.

It i s a l s o

known t h a t o t h e r o x i d e s s u c h as c h r o m i a , z i r c o n i a a n d p e r h a p s s i l i c a w i l l a l s o form s u c h a bond. T a b l e I11 shows t h e r e s u l t s o f some e x p e r i m e n t c o n d u c t e d

o n v a r i o u s t y p e s o f a l u m i n a and one t y p e of s i l i c a .

The powder/

l i q u i d r a t i o was c h o s e n t o y i e l d a mass which c o u l d b e pumped. The p h o s p h a t e l i q u i d s become i n c r e a s i n g l y v i s c o u s w i t h i n c r e a s e d

P2O5 c o n t e n t and t h e r e t h e powder l i q u i d r a t i o m u s t be r e d u c e d

t o y i e l d a f l o w a b l e mass.

Also,

t h e powder l i q u i d r a t i o f o r

alumina and s i l i c a i s d r a s t i c a l l y d i f f e r e n t i n d i c a t i n g a s t r o n g a d s o r p t i o n of t h e s o l u t i o n on t h e a l u m i n a g r a i n s .

were formed w l . t h t < - A l 2 O 3 r-alumina,

No c e m e n t s

o r s i l i c a ( - q u a r t z ) a t 200'F.

Using

some v e r y s t r o n g b o d i e s were formed w i t h t h e 51% a n d

68% p h o s p h o r i c a c i d s o l u t i o n s .

The d i f f e r e n c e i n cement f o r m i n g

between a'a n d I( i s b e l i e v e d t o b e d u e t o t h e m e t a s t a b i l i t y of

- 23 -

g.

TARZE 11. Approximate Composition A120

CLASSIFICATION OF ALUMINA CEMENTS A1203/Ca0

Liquid

Names

:C a O :Si O2 :O t h e r

10

60

22

8

0.1

Water

Rapid f i r e d p o r t l a n t cement. Blast f u r n a c e c e m e n t .

40

38

7

15

1.1

Water

High a l u m i n a c e m e n t . Tricslclbm alumfnate cement.

60

35

5

--

2.0

Water

High a l u m i n a c e m e n t . Low i r o n a l u m i n a cements.

so

20

-

--

3- 5

Water

White h i g h alumina cement Alum4 n a r e f r a c t o r y cement. Fused a l u m i n a c a s t ables.

-

N /A

- 24 -

Phosphate Solution

.

A l u m i nophosphste cement. P h o s p h a t e bonded a lumi na

TABLE 111.

Test

Powder (average particle size)

SETTING TIME OF PHOSPHATE BONDED CEMENTS AT 200°F

Liquid (w/o H3PO4)

Powder/Liquid

Humj (wt) dity

29

1.0

100%

51

0.9

100%

68

0.9

100%

29

0.6

100%

51

0.55

100%

68

0.5

100%

29

0.3

100%

51

0.3

100%

68

0.28

100%

Results

10.

d-Fjred C? 900°C

29

0.3

100%

No s e t t i n g . Dry Powder. N o s e t t i n g . Wet Cake. No s e t t i n g . Wet Cake. No s e t t i n g . Dry Powder. No setting;. Dry Powder. No s e t t l n g . Wet Cake. Surface s e t 1 2 hours S o l i d cement i n 12 hours. Full of b u b b l e . S o l i d cement hydroscopic, Same a s 7.

11.

X-FJred (3 g00"c

51

0.3

100%

Same as 8.

12.

$-Fired @ 900"c

68

0.28

100%

Same as 9.

13.

Y - A ~ ~ O ~

29

0.3

Sealed

No setting

51

0.3

Sealed Sealed

-

hours.

- 46

No s e t t i n g - 46 hours.

15.

f-A1203

68

0.28

16.

Si02

29

3.0

100%

17.

si02

51

2.5

100%

18.

Si O2

68

2.0

100%

No s e t t i n g hours.

-

46

Dry cake - no setting

. Dry cake - no setting.

Moist cake

-

some . p l a s t i c i t y

- 25 -

T h e s t - p h a s e i s s t a b l e a t room t e m p e r a t u r e a n d less s u b j e c t t o

ftod

a t t a c k by p h o s p h o r i c a c i d .

Experiments t o c o n v e r t

900°C were n o t s u c c e s s f u l .

X-ray e x a m i n a t i o n o f t h e

at

f material

b e f o r e f i r i n g showed t h a t i t c o n t a i n e d a t l e a s t 50 p e r c e n t o f LA-alumina.

T h e s e c e m e n t s were submerged i n water f o r one

hundred hours.

They d i d n o t b r e a k down o r d i s s o l v e b u t d i d

show a w e i g h t l o s s of 2 p e r c e n t .

They were somewhat c h a l k y

a f t e r s o a k i n g a n d appeared t o have l o s t some s t r e n g t h . The s u c c e s s f u l c e m e n t s c o n t a i n e d a l a r g e p r o p o r t i o n of

b u b b l e s d i s t r i b u t e d t h r o u g h o u t t h e s e t mass. b u b b l e s r e s u l t from water v a p o r i z a t i o n .

The p h o s p h a t e l i q u i d s

are hydroscopic and e q u i l i b r a t e w i t h the p ber.

We b e l i e v e t h e

~ i~ n t ho e t e s t cham-

As P O r g r o u p s r e a c t w i t h a l u m i n a , w a t e r i s g i v e n o f f by t h e

solution.

T h e s e o b s e r v a t i o n s r a i s e d t h e q u e s t i o n of t h e r o l e of

water l o s s i n s e t t i n g .

As mentioned above,

no s e t t i n g was ob-

s e r v e d i n t h e h y d r a u l l c a l u m i n a t e c e m e n t s u n l e s s some water

l o s s was o b s e r v e d .

E x p e r i m e n t s 13 t o 15 c o n f i r m e d t h i s phenon-

enon i n p h o s p h a t e bonded a l u m i n a s .

The i m p l i c a t i o n o f t h e s e

f i n d i n g s t o the cementing o f geothermal wells i s important. S e v e r a l w e l l known p h o s p h a t e c e m e n t s would be u s e l e s s i n t h e geothermal e n v i r o n m e n t .

Up t o 46 h o u r s , no c e m e n t s were ob-

s e r v e d t o form i n s e a l e d p o l y p r o p y l e n e b o t t l e s . Some i n s i g h t i n t o t h e b e h a v i o r o f t h e s e p h o s p h a t e a l u m i n a m i x t u r e s c a n be o b t a i n e d by r e f e r r i n g t o t h e phase d i a 7 gram f o r t h e s y s t e m shown i n f i g u r e 1.

- 26 -

The p h a s e diagram i s d i v i d e d i n t o t h r e e areas: (1) t o t a l l y d i d p h a s e qssemblages;

( 2 ) m i x t u r e s of s o l i d s

and l i q u i d ; and (3) a n a l l l i q u i d r e g i o n .

If a l i q u i d of

c o m p o s i t i o n A i s mixed w i t h a s o l u b l e f o r m of a l u m i n a t h e c o m p o s i t i o n of t h e l i q u i d w i l l s h i f t as shown o n f i g u r e 1. A t point

If

a", some o f t h e n o n o - h y d r a t e w i l l b e g i n t o form.

T h i s w i l l lead t o c r y s t a l g r o w t h on t h e s u r f a c e o f t h e un-

dissolved a l u m i n a g r a i n s and i t w i l l a l s o c a u s e t h e l i q u i d

p h a s e t o become r i c h i n H20.

S u b s e q u e n t water l o s s o r

v a p o r i z a t i o n a t high t e m p e r a t u r e c o u l d r e s u l t .

I f t h e re-

a c t i o n c o n t i n u e d , more c r y s t a l l i z a t i o n would r e s u l t i n a t o t a l s o l i d i f i c a t i o n of t h e mass. ( P o i n t C - F i g u r e 1) The d i s s o l u t i o n rates however a r e e x t r e m e l y s l o w e v e n w i t h metastable

f

-alumina.

E q u i l i b r i u m times f o r

s a t u r a t i o n of t h e s e l i q u i d s a t 60°C i s between s i x months and 1 y e a r . T h e r e f o r e s e t t i n g o f a p h o s p h a t e cement by t h i s mechanism a t room t e m p e r a t u r e i s p r o b a b l y i m p o s s i b l e .

How-

e v e r , i f water loss i s combined w i t h d i s s o l u t i o n of a l u m i n a , t h e all s o l i d s t a t e c a n b e reached by d i s s o l v i n g h a l f as much a l u m i n a .

The k i n e t i c s o f a c l o s e d s y s t e m a t tempera-

t u r e s h i g h e r t h a n 60°c i s n o t known.

S i n c e these r e a c t i o n s

are c r i t i c a l t o phosphate bonding under geothermal c o n d i t i o n s ,

our f u t u r e plans include an investigation of t h i s reaction rate a t 2 0 0 " ~ .

- 27 -

- 28 -

P o w d e r - l i q u i d r a t i o s and P u m p a b i l i t y :

C.

The r e s t r i c t i o n t h a t t h e c e m e n t s f o r w e l l c o m p l e t i o n

be pumpable p l a c e s s e v e r e l i m i t a t i o n s o n p h o s p h a t e c e m e n t s .

One estimate f o r p o r t l a n d t y p e c e m e n t s i s t h a t t h e r e must be

40 w e i g h t p e r c e n t water i n t h e s l u r r y f o r p u m p a b i l i t y . 8

In

o r d e r t o t e s t materials a t c o n s i s t e n c i e s which would b e w i t h i n t h e r a n g e of u s a b i l i t y we have begun d e t e r m i n i n g v i s c o s i -

t i e s o f s l u r r i e s as a f u n c t i o n o f powder l i q u i d r a t i o . A f t e r some p r e l i m i n a r y work w i t h v i b r a t i n g Zahn c u p s

i t w a s d e c i d e d t h a t more a c c u r a t e d a t a c o u l d b e o b t a i n e d u s i n g

a r o t a t l n g s p i n d l e viscometer.

A s e r i e s o f t e s t s w i l l be com-

p l e t e d t o f i x t h e v i s c o s i t y of v a r i o u s p o w d e r / l l q u i d r a t i o s f o r a r a n g e of p h o s p h a t e l i q u i d s . 111.

Future Plans

- Work w i l l c o n t i n u e on t h e s e t t i n g o f a l u m i n a w i t h p h o s p h a t e l i q u i d s u n d e r sealed c o n d i t i o n s .

-

E x p e r i m e n t s w i l l b e c o n d u c t e d t o d e t e r m i n e t h e 200°C i s o t h e r m i n t h e System Al203-P2O5-H20 u n d e r sealed

c o n d i t i o n s t o e s t a b l i s h t h e optimum l l q u i d compositi'on range f o r aluminophosphate bonding.

- P o w d e r - l i q u i d r a t i o s t u d i e s v e r s u s v i s c o s i t y w i l l be c o m p l e t e d f o r v a r i o u s p h o s p h a t e l i q u i d s u s i n g d - alumi

i n a as a f i l l e r .

-

The c e m e n t i n g o f h i g h a l u m i n a glasses w i l l be i n v e s t i gated.

Work w i l l b e g i n on calcium-alumino-silicate

glasses.

- 29 -

R e f e r e n c es

1.

J. Forest,

"Con,ribution a la connaissance de ciment

l i e s p a r l ' a c i d e o r t h o p h o s p h o r i g u e " Revue d e s m a t e r i a u x d e C o n s t r u c t i o n No. 583.

P u b l i c a t i o n of t h e

Centre d ' E t u d e s e t de Rechercnes de 1 " I n d u s t r i e des L i a n t s Hydraulique. 2.

J . F . Wygant,

11

(1964).

C e m e n t i t i o u s Bonding i n Ceramic F a b r i c a -

t i o n " from CerRmic F a b r i c a t i o n P r o c e s s e s . Kingery.

3.

B.E.

E d . , W.D.

J o h n Wiley and Sons, New York, 1958.

Kent, K.E.

F l e t c h e r , A.D.

Wilson " D e n t a l S i l i c a t e

Cements: X I E l e c t r o n Probe S t u d i e s " J. Dent. Res., v o l . 49, p 86, (1970).

4.

ASTM c a r d f i l e .

R e f e r e n c e t o Yamaguchi and S u z u k i ,

B u l l . Chem, SOC. J a p a n , v o l . 41, 93 (1968).

5.

A.V.

B r i e b a c h , " A Review o f R e f r a c t o r y H y d r a u l i c Cements''

T r a n s . J. B r i t . C e r a m . SOC., v o l 71, p 153 ( 1 9 7 2 ) .

6.

W.D.

Kingery,

"Fundamental Study of P h o s p h a t e Bonding

i n R e f r a c t o r i e s " J. Amer. Ceram. SOC. v o l . 33, p . 239

(1950) 7.

R . M a r t i n , C . Duc-Mauge and H. G u e r i n , " S u r l e s phos-

p h a t e s d'A1uminum:Diagramme d ' E q u i l i b r e P205-A1203-H20

a t 6 0 ° " , SOC. Chim. F r a n c e B u l l . ,

8.

G.O.

p 851 (1960).

Suman, Jr. "Cementing O i l a n d Gas Wells," World

Oil, May,

1977.

- 30 -