Classification and phytogeographical differentiation of oriental beech ...

13 downloads 0 Views 499KB Size Report
Tatlı A., Varol Ö. & Tel A.Z. 2005. Gümüş Dağı (Kütahya-Türkiye) orman vejetasyonu üzerine fitososyolojik bir araştırma. Ekoloji Çevre Dergisi 14: 6–17.
Biologia 67/3: 461—473, 2012 Section Botany DOI: 10.2478/s11756-012-0029-6

Classification and phytogeographical differentiation of oriental beech forests in Turkey and Bulgaria ¨ ¨ l3, Neslihan Erdog ˘ an4 & Andraž Čarni5,6 Ali Kavgacı1, M¨ unevver Arslan2, Umit Bingo 1

Southwest Anatolia Forest Research Institute, p.b. 264, 07002, Antalya, Turkey; e-mail: [email protected] Research Institute for Forest Soil and Ecology, p.b. 61, 26160, Eski¸sehir, Turkey; e-mail: [email protected] 3 Biology Department, Science Faculty of Ankara University, Dogol cad. 06100, Ankara, Turkey; e-mail: [email protected] 4 ˙ Biology Department, Science Faculty of Mehmet Akif Ersoy University, Yeni mah. Inonu cad. 15030, Burdur, Turkey; e-mail: [email protected] 5 Institute of Biology, Scientific Research Center of the Slovenian Academy of Sciences and Arts, Novi trg 2, p.b. 306, SI-1001, Ljubljana, Slovenia; e-mail: [email protected] 6 University of Nova Gorica, Vipavska 13, p.b. 301, SI-5000, Nova Gorica, Slovenia 2

Abstract: Floristic differentiation of the oriental beech (Fagus orientalis Lipsky) forests in Turkey and Bulgaria was investigated and the role of geographical and topographical factors in this differentiation was assessed. After geographical and ecological stratification of the available 922 relevés, 288 remained. Classification, by applying cluster analysis, resulted in seven vegetation units defined by species composition which represent the geographical and ecological variation of Fagus orientalis forests. DCA ordination was applied to these units by passively projecting their chorological structure, as supplementary variables. For more detailed interpretation of vegetation types with similar geographic distribution patterns, PCA was applied by passively projecting the chorological elements, life-forms and topographical factors as supplementary variables. Seven vegetation units representing the geographical and ecological variety of Fagus orientalis forests were described. Four vegetation units represent the core area of Fagus orientalis distribution on the western and middle coast of the Black Sea region (Euxine region); the remaining three types represent the distribution in the eastern Black Sea region (Colchic region), the distribution in western and southern Anatolia under the influence of the Mediterranean climate and the distribution in the transitional zone from the Euxine region to the continental parts of Inner Anatolia, respectively. The four vegetation types in Euxine region reflect the decreasing effect of Black Sea towards Inner Anatolia, as well as altitudinal differences, except the forest type representing forests on calcareous sites. The other three vegetation units represent ravine, lowland to montane and altimontane forests in Euxine region. Fagus orientalis forests could be distinguished by their floristic composition, their chorological elements and life-forms spectra, which reflect a geographical and ecological gradients. Key words: Anatolia; Balkan; Fagus orientalis; numerical analysis; phytosociology; phytogeography; syntaxonomy; synecology.

Introduction Oriental beech (Fagus orientalis Lipsky – OB) is one of the widely distributed deciduous trees in Turkey, with coverage of 1,750,000 hectares (8.25% of all forested area) (Anon. 2006). Its main distribution area is situated along the Black Sea (northern Anatolia) with extra-zonal distributions in western and southern Anatolia (G¨ unal 1997). The northern part of Anatolia and northern part of Thrace along the Black sea that belongs to the Eurosibirian phytogeographic region, has been divided into Euxine region in the western and middle part and Colchic region in the eastern part (Davis et al. 1971). In addition to pure stands, OB also forms mixed forests, mainly with Abies nordmanniana subsp. nordmanniana Abies n. subsp. bormuelleriana, Abies n. subsp. equi-trojana, Picea orientalis, Pinus nigra, P. c 2012 Institute of Botany, Slovak Academy of Sciences 

sylvestris, Carpinus betulus, Castanea sativa, Tilia argentea and various oak species such as Quercus petraea, Q. frainetto and Q. cerris (Mayer & Aksoy 1986). Fagus orientalis dominated forests can be found also in Europe: in the most southeastern part of Bulgaria (Tzonev et al. 2006, 2009) and northwestern part of Turkey, in Thrace (Kavgacı et al. 2010b). Its appearance in Greece is difficult to define, since the distribution limit between Fagus sylvatica and Fagus orientalis is rather unclear in NE Greece (Tsiripidis et al. 2007, Papageorgiou et al. 2008). Fagus sylvatica (including subsp. moesica), with a very wide distribution in Central Europe and Balkans, is represented by several small scattered distribution areas also in northwestern Turkey (Aydın¨ oz¨ u 2008). The first syntaxonomic study of Oriental beech forests (OBFs) was carried out by Quézel et al. (1980)

462 with a broad overview of the OBFs. This comprehensive work described the geographical and ecological differences of OBFs in Turkey. However, this early work did not cover the whole distribution range and ecological diversity of OBFs; this caused difficulties to subsequent researchers when trying to classify the local communities at the alliance level. For instance, insufficient distinction of alliances within the RhododendroFagetalia (D¨ uzenli 1982; Aydo˘gdu 1983; Yaltırık et al. ¨ 1983; Demir¨ ors 1986; Ozen & Kılın¸c 1995; 2002; Kutbay & Kılın¸c 1995; Yarcı 2000; T¨ ure et al. 2005; Arslan ¨ 2010; Ozen 2010), as well as other geographical and ecological identification problems. On the basis of studies carried out at local scale, covering almost the total distributional range of the OBFs in Turkey and Bulgaria, and with modern vegetation analysis techniques, this study aims to: a) prepare an overview of the diversity and main units of OBFs, b) propose a classification scheme that would reflect the majority of geographical and ecological gradients c) set up the diagnostic species of individual units (syntaxa), d) compare the structural (chorological elements, lifeforms) and the ecological conditions (topographical factors) among these units and e) integrate the OBFs into the system of forest vegetation. Material and methods We constructed a database of 922 relevés of OBFs from the literature or unpublished sources, carried out according to the Braun-Blanquet approach (Braun-Blanquet 1964). The relevés of OB-dominated or co-dominated forests originating from Turkey were collected. Additionally, relevés from Bulgaria (Tzonev et al. 2006) were added to the data set. The relevés were stored in the TURBOVEG (Hennekens & Schaminee 2001) database management program. The relevés from the following sources were used to built the database: Quézel & Pamukcuoglu (1969): 8 relevés; Aksoy (1978): 20; Akman et al. (1979a): 5; Akman et al. (1979b): 14; Quézel et al. (1980): 94; D¨ uzenli (1982): 22; Akman et al. (1983a): 116; Akman et al. (1983b): 26; Yaltırık et al. (1983): 16; Aydogdu (1983): 73; Demirors (1986): 41; G¨ uner et al. (1987): 17; Kutbay & Kılınc (1995): 51; Kılınc ¨ & Karaer (1995): 12; Ozen & Kılınc (1995): 26; Ozel (1999): 26; Yarcı (2000): 16; Bingol (2000): 18; Varol & Tatlı (2001): 9; Yarcı (2002): 10; Ozen & Kılınc (2002): 17; Yurdakulol et al. (2002): 15; T¨ ure et al. (2005): 35; Tatlı et al. (2005): 9; Tzonev et al. (2006): 50; Eminagaoglu et al. (2007): 18; ¨ Bingol et al. (2007): 32; Aydın et al. (2008): 3; Ozen (2010): 8; Sevgi et al. (2010): 19; Oner & Akbin (2010): 18; Arslan (2010): 78. Relevés with OB coverage less than 25% were excluded from the data set. Outlier analysis was processed by PCORD 5 (McCune & Grace 2002) and relevés whose species composition deviated more than 2 SD were omitted (Šilc et al. 2009). After those selections, 725 relevés remained. Stratification was applied on the data set. It was carried out by combining the geographical stratification with the ecological stratification; each association was treated as an ecological unit (Knollová et. al. 2005; Košir et al. 2008), which means that up to ten relevés of each association from an area were selected in such a way that different authors, different publications and different locations of the study

A. Kavgacı et al. area were represented. As basis for the geographical stratification, the regions in the phytogeographical map of Turkey (Davis et al. 1971) were used. The assessments based on the geographical and ecological stratification resulted in 288 relevés listed in Appendix 1. Since the division into layers differs among authors, all layers were unified into a single layer for the purpose of numerical analysis. The classification of OBFs relevés was carried out by the PC-ORD program (McCune & Grace 2002), using Ward’s method and the Sørensen similarity index as a resemblance measure. OBFs units were described on the basis of the results of classification analysis, by also taking into account expert knowledge about the communities and information acquired from the literature. On the basis of these assessments, seven units of OBFs were distinguished. Diagnostic species of each units were defined in the JUICE 6.4 program (Tichý 2002) by calculating the fidelity of each species to each unit (Chytrý et al. 2002) using the ϕ-coefficient as the fidelity measure. In these calculations, each unit was compared with all other relevés in the data set, which were taken as a single, undivided group. Each of the seven units was virtually adjusted to 1/7 of the size of the entire data set respectively, while holding the percentage occurrences of a species within and outside a target cluster the same as in the original data set (Tichý & Chytrý 2006). The threshold ϕ value for a species (multiplied by 100 in the Juice program) to be considered as diagnostic was set at 30.0. Results are presented in Table 1. Ordination of these units was performed using CANOCO 4.5 (ter Braak & Šmilauer 2002). Due to the high heterogeneity in the matrix of species, Detrended Correspondence Analysis (DCA) was applied for this analysis and squareroot transformed percentage frequencies were used as the input data. The ordination reflects the wide geographical distribution pattern of OBFs. After omitting the most remote units, the ordination analysis was carried out again by Principal Coordinate Analysis (PCA), since the rest of the data set shows a shorter gradient. Additionally, we calculated the chorological and the life-forms spectra and assessed some topographical factors (altitude, inclination and aspect); these were passively projected to the ordination diagram. For the species nomenclature and chorological characterization we used the system of chorological types as given in Davis (1965–1985), while life-forms are in accordance with Raunkiaer (1934). In addition, Box-Whisker diagrams of these parameters were prepared in STATISTICA 8.0 (Anon. 2007). The International Code of Phytosociological Nomenclature (ICPN; Weber et al. 2000) is followed for nomenclature and typification of syntaxa.

Results Classification and vegetation units Cluster analysis of the data set revealed seven main clusters (Fig. 1, shown by letters A–G), indicating the geographical and ecological differences of the OBFs on the basis of their floristic composition. However, on the basis of expert knowledge and literature sources, it was decided to make an assessment by determining OBFs units from clusters. We disintegrated cluster B and partially joined it to unit 3, because it is more ecologically sound. It seems that cluster B consists of two parts. The first part, which is thereafter treated as unit 2, unlike all other OBFs is mainly found on calcareous bedrock,

Oriental beech forests

463

Table 1. Synoptic table of the Fagus orientalis forest vegetation (Fig. 1). Species constancy is given in percentage; the background is shaded for constancy values of diagnostic taxa, marked also with an asterisk. 1 – OBFs from Colchic region; 2 – 5 OBFs from Euxine region: 2 – OBFs on calcareous substratum; 3 – altimontane OBFs; 4 – ravine OBFs; 5 – lowland to montane OBFs; 6 – OBFs from the Mediterranean region; 7 – OBFs from the transitional zone to the interior of Anatolia.

Unit number No. of releves

1 36

2 17

3 56

4 42

5 55

6 57

7 25

Rhododendron ponticum subsp. ponticum Vaccinium arctostaphylos Ranunculus cappadocicus Hedera colchica Rhododendron luteum Picea orientalis Salvia glutinosa Viburnum orientale Rubus caucasicus Thelypteris limbosperma Cardamine impatiens var. impatiens Abies nordmanniana subsp. nordmanniana Dryopteris liliana Daphne mezereum Rubus platyphyllos Blechnum spicant Geranium purpureum Poa diversifolia Oxalis acetosella Alnus glutinosa Astragalus imbricatus Trachystemon orientalis Galium odoratum Laurocerasus officinalis Geranium robertianum Aristolochia pontica Cardamine impatiens var. pectinata Euonymus latifolius Calamintha grandiflora Phyllitis scolopendrium Buxus sempervirens Dryopteris caucasica Corylus colurna Clematis vitalba Staphylea pinnata Abies nordmanniana subsp. bornmuelleriana Sanicula europaea Euphorbia amygdaloides Neottia nidus-avis Cirsium hypoleucum Galium rotundifolium Cyclamen coum Dryopteris filix-max Epilobium montanum Carpinus betulus Primula vulgaris Rubus idaeus Hypericum calycinum Tilia argentea Cornus mas Tilia platyphyllos Campanula persicifolia Acer pseudoplatanus Viola odorata Ruscus hypoglossum Quercus frainetto Epimedium pubigerum Pinus nigra subsp. pallasiana Rubus canescens var. canescens Rubus caesius Acer campestre Rosa canina

69* 53* 50* 50* 47* 44* 42* 36* 33* 33* 33* 28* 25* 25* 25* 22* 19* 19* 19* 19* 17* 47 39 14 28 . 25 . 25 . . . . . 3 3 47 3 6 3 22 3 . 6 6 . . 6 . . . . . . . . . . . . . 3

41 35 . 29 18 . 12 . . . . . . . . . . . . . . 82* 71* 65* 65* 53* 47* 35* 35* 29* 24* 24* 24* 24* 24* 18 41 29 18 6 18 6 12 12 24 . . 12 . 18 12 . . . 6 . 6 . . . . .

7 9 11 . 11 . 11 . . . 13 . . . 2 . . . 2 . . 50 55 2 38 16 30 5 25 . . . 4 . 2 82* 79* 57* 46* 46* 43* 41* 38* 36* 13 25 7 14 . 2 . 2 . 11 4 . 2 5 4 . 2 4

5 2 . . 7 2 7 . . . 2 . . . . . . . . 2 . 26 24 . 17 2 . 10 . 2 . . . 12 7 2 26 45 5 31 2 7 12 2 74* 55* 48* 48* 29* 29* 24* 21* 19* 12 31 5 . . . . 17 7

22 11 . 4 9 . 4 . . . 5 . . . . . . . . 2 . 42 24 9 2 . 2 2 7 . . . . . 2 2 9 31 4 . 5 24 2 . 11 45 5 2 5 . 2 4 . 36* 35* 20* 20* . . . . .

. . . . . . . . . . 4 . . . . . . . . 2 . 9 28 . . . . 9 . . . . . . 2 5 11 4 9 14 30 4 2 4 12 14 . 2 . 2 . . . 4 7 . . 39* 28* 18* . 7

. 16 . . 20 . . . . . . . . . . . . . . . . . 8 . 12 . . . . . . . 4 . . . . . . . . 8 . 4 12 44 . . . . . . . . . . . 4 12 . 68* 64*

464

A. Kavgacı et al.

Table 1. (continued)

Unit number

1

2

3

4

5

6

7

Bromus japonicus subsp. japonicus Bromus hordeaceus Bromus tectorum Carpinus orientalis Lathyrus aureus Stellaria holostea Tanacetum parthenium Pinus sylvestris Tanacetum vulgare Trifolium pratense var. pratense Medicago lupulina Umbilicus erectus Veronica multifida Anthemis cretica subsp. anatolica Achillea millefolium subsp. millefolium Artemisia absinthium Quercus macranthera subsp. syspirensis Cirsium arvense Coronilla varia subsp. varia Acer hyrcanum Centaurea triumfettii Torilis leptophylla Lotus corniculatus Dorycnium pentaphyllum Alyssum repens subsp. trichostachyum var. stenophyllum Tanacetum poteriifolium Alyssum desertorum var. desertorum Helianthemum nummularium subsp. nummularium Centaurea urvillei subsp. urvillei Taraxacum microcephaloides Trifolium physodes var. physodes Lappula barbata Ajuga orientalis Cichorium intybus Anthemis tinctoria Crataegus tanacetifolia Cornus sanguinea subsp. australis Vicia cracca Campanula rapunculus Verbascum speciosum Stachys annua subsp. annua var. lycaonica Trifolium campestre Micromeria myrtifolia Ajuga chamaepitys subsp. chia var. ciliata Genista albida Verbascum pyramidatum Myosotis ramosissima Quercus infectoria Trifolium pannonicum subsp. elongatum Polygonum arenastrum Trifolium arvense var. arvense Hyoscyamus niger Leontodon hispidus var. hispidus Galium verum Astragalus campylosema subsp. champylosema Hibiscus trionum Allium scorodoprasum subsp. rotundum Malva neglecta Salvia hypargeia Muscari armeniacum Teucrium chamaedrys subsp. chamaedrys Ziziphora capitata Epilobium hirsutum Dactylis glomerata subsp. hispanica

. . . 8 3 6 11 3 . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . 8 6 . . . . . . . . . . 3 . . . . . . . . . . . . . . .

. . . 6 29 . 12 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 7 . 4 20 . . . . . . . . . . 5 2 . . . . . . . . . . . . . . 2 . . . 7 . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 5 12 10 7 2 . . . . . . . . 5 . 7 12 . . . 5 . . . . . . . . . . 2 2 2 2 7 . . . . . . . 2 5 2 . . . . . . . . . . . 2 . 7 5

. . . . 5 2 . 4 . . . . . . . . . 2 2 2 . . . . . . . . . . . . . . . . . . 4 . . . . . . . . . . . . . . . . . . . . . . . . .

5 . . 4 5 9 9 11 . . . . . . . . . 7 . 2 . . . 5 . . . . . . . . . 2 2 . . 7 . . . . . . . . . . . . . . . . . . . . . . . 5 . 2

48* 44* 44* 44* 44* 40* 40* 40* 36* 36* 36* 36* 36* 36* 36* 36* 36* 36* 36* 36* 32* 32* 32* 32* 28* 28* 28* 28* 28* 28* 28* 28* 28* 28* 28* 28* 28* 28* 28* 24* 24* 24* 24* 24* 24* 24* 24* 24* 24* 20* 20* 20* 20* 20* 20* 20* 20* 20* 20* 20* 20* 20* 20* 16*

Oriental beech forests

465

Table 1. (continued) Unit number

1

2

3

4

5

6

7

Species diagnostic more than one unit Ilex colchica Cardamine bulbifera Mespilus germanica Rubus hirtus Daphne pontica Crataegus monogyna

47* 25 3 22 19 .

76* 53* 29* 59* 35 .

20 59* . 32 61* 9

2 17 33* 2 36 36*

5 15 2 49* 75* .

2 9 . . . .

8 . . 36 8 52*

Other species with high frequency ( ≥ 10% in data set) Fagus orientalis Lathyrus laxiflorus Fragaria vesca Festuca drymeja Viola sieheana Brachypodium sylvaticum Veronica chamaedrys Hedera helix Poa nemoralis Luzula forsteri Clinopodium vulgare Mycelis muralis Sambucus ebulus Sorbus torminalis Digitalis ferruginea Lapsana communis Veronica officinalis Geum urbanum Populus tremula Castanea sativa Polygonatum multiflorum Quercus petraea subsp. iberica Carex sylvatica Salvia forskahlei Helleborus orientalis Galium paschale

100 3 44 8 33 31 . . 22 8 19 8 11 8 . 17 19 22 17 28 8 6 28 6 . .

100 . . 47 29 29 12 29 12 24 6 6 . . . 6 24 18 . . 12 . 24 6 12 .

100 32 45 43 34 27 30 16 14 30 7 27 16 11 9 9 25 4 2 . 9 5 7 27 21 4

100 21 14 24 33 26 26 29 26 7 24 29 10 29 26 21 12 19 7 29 17 17 7 19 26 24

100 22 13 33 9 9 5 36 4 2 2 7 15 15 2 4 2 4 16 11 7 22 15 2 5 5

100 46 30 2 18 12 37 11 35 26 25 9 9 12 23 9 4 5 18 5 16 9 . . . 23

100 52 . 4 . . . 8 4 . 24 . 28 4 24 28 . 28 12 . . 4 . 8 . .

Fig. 1. Cluster analysis of the data set of OBFs. Ward’s method and Sørensen similarity index were used in the PC-ORD program. Legend: numbers and letters correspond to units and clusters, respectively.

466

A. Kavgacı et al.

Fig. 2. Distribution map of OBFs vegetation units in Turkey. The distributions of units 4 and 5 in SE Bulgaria are not shown in the map. Map is prepared in accordance with the localities of sources used in the data set (see Appendix). Legend: numbers correspond to the units in Table 1, E-S – Eurosiberian phytogeographic region, Ph-R – phytogeographic region.

as was already reported by Quézel et al. (1980). In these forests, Laurocerasus officinalis and Ilex colchica are co-dominant species. The remaining part of cluster B was merged with cluster C into unit 3. These forests are found on non-calcareous substrate and are co-dominated by Abies n. subsp. bornmuelleriana. Synoptic table (Table 1) presents seven vegetation units that are result of classification of the whole data set. These units are alliances of OBFs, their distribution is shown in the map (Fig. 2) and diagnostic species in the table (Table 1). Description of units: 1. Colchic region (eastern part of the Black Sea region) Unit 1: Veronico-Fagion, Pino-Piceetalia orientalis Ecology: OBFs from the most precipitation rich part of Turkey (locally more than 2000 mm annual precipitation). Diagnostic taxa: The floristic composition is formed by mesophilous and acidophilous species, such as Picea orientalis and Rhododendron ponticum reflecting specific macro-ecological circumstances. Distribution: It ranges from 300 m to 1950 m in altitude but the optimum distribution is between 900 m and 1700 m. This group can also be found on acidic, mesic sites beyond the Colchic region, such as some OBFs dominated by Castanea sativa from the middle Black Sea region (Kastamonu, Samsun province). 2. Euxine region (central and western part of the Black sea region) Unit 2: Staphyleo-Buxion, Querco-Carpinetalia orientalis Ecology: OBFs on calcareous bedrock. Diagnostic taxa: Besides OB, also Laurocerasus offici-

nalis orIlex colchica are co-dominant species in these stands. Buxus sempervirens, Euonymus latifolius and Staphylea pinnata indicate the calcareous bedrock. Distribution: It ranges from 800–1400 m but the optimum distribution is from 900 m to 1300 m. Unit 3: Fagion orientalis, Fagetalia sylvaticae Ecology: Altimontane OBFs of inner part of the Euxine region at higher altitudes, where the effect of the Black Sea climate gradually decreases. Diagnostic taxa: Abies n. subsp. bornmuelleriana and OB mixed forests. Diagnostic species, such as Sanicula europea, Neottia nidus-avis, Cyclamen coum and Cardamine bulbifera, indicate the mesophilic (i.e. Euro-Siberian) character of the unit. Distribution: It occurs at altitudes from 600 m to 1600 m but the optimum distribution is between 1000 m and 1400 m. Unit 4: Carpinio-Fagion, Rhododendro-Fagetalia Ecology: OBFs appearing in lowlands, particularly in ravines and on moist slopes. Diagnostic taxa: OBFs co-dominated by Carpinus betulus and Tilia argentea. There appear often Castanea sativa, as well as many woody species, such as Acer pseudoplatanus, Carpinus betulus, Cornus mas, Tilia argentea, T. plathyphyllos and Cornus mas. Distribution: It ranges from sea level to 1000 m but the optimum distribution is from 250 m to 500 m. Unit 5: Violo-Fagion, Rhododendro-Fagetalia Ecology: Lowland to montane mesophilous OBFs. Diagnostic taxa: Viola odorata, Ruscus hypoglossum, Quercus frainetto and Epimedium pubigerum are the diagnostic for this community. Distribution: It ranges from 100 m to 1700 m but the optimum distribution is between 200 m and 1000 m.

Oriental beech forests

Fig. 3. DCA biplot of the vegetation units along the first two axes. Chorological elements are passively projected as supplementary variables. Legend: numbers correspond to vegetation units in Table 1.

3. Mediterranean region Unit 6: Cisto-Pinion, Querco-Carpinetalia Ecology: OBFs that appear under the influence of Mediterranean climate Diagnostic taxa: Diagnostic species such as Pinus nigra and Rubus canescens indicate the thermophilous character of this unit. Distribution: It appears between the altitudes of 600 m and 1900 m but the optimum distribution is from 1300 m to 1650 m. These areas represent the edge of the distribution area of OBFs or even their extra zonal distribution. 4. Continental region (Inner Anatolia) Unit 7: Carpino-Acerion, Querco-Carpinetalia Ecology: Continental conditions, with cold winters and hot summers, are pronounced in these areas. The sea effect nearly disappears. Diagnostic taxa: The higher number of diagnostic species than in the former units may correlate with this continental climatic difference. Distribution: The group ranges from 800 m to 1600 m and its optimum distribution is a relatively narrow belt from 1200 m to 1400 m. This group are also marginal OBFs on their limit towards Inner Anatolia. Ordination, Chorological Elements and Life-form spectra The DCA ordination of the seven units is presented with the spectrum of chorological elements projected supplementarily (Fig. 3). The eigenvalues of the first two axes are 0.690 and 0.218. The OBFs from the transition zone towards Inner Anatolia (unit 7) and partly also OBFs from the Mediterranean region (unit 6) are clearly separated from the remaining units along axis 1. The gradient on this axis is much longer than that of axis 2 that may be result of remote position of units 6 and 7. Analysis of the chorological structure of the vegetation units (Fig. 4.) also confirms the results of DCA. The two units from the edges of distribution area and with extra-zonal distribution show a rather special chorological spectrum in comparison with the other five units from the core area of distribution of OBFs

467 in the Euro-Siberian phytogeographic region (Euxine and Colchic regions). These two units are characterized by less species of a Euro-Siberian origin and distribution and by more Mediterranean and Irano-Turanian species. Therefore, we excluded units 6 and 7 from further analysis. Since the chorological differentiation does not give us an explanation for the distinction of other units, we tried to find an ecological explanation for distinguishing the OBFs in the core area. The PCA ordination of the first five units is presented in Fig. 5. The eigenvalues of the first two axes are 0.380 and 0.282. Chorological elements, life-forms and topographical factors are passively projected as supplementary variables. Unit 1 is clearly discriminated from the other groups, since it mainly represents the Colchic distribution of OBFs from the sea coast to the inland and from lowland to the altimontane belt. The proportions of Euro-Siberian and Mediterranean plants are highly correlated with axis 1 and the proportions of Irano-Turanian plants are correlated with axis 2; hence the units 4 and 5 representing ravine OBFs and lowland to montane OBFs in the Euxine region, have a higher proportion of Mediterranean species in comparison with the other units. On the other hand, more Euro-Siberian species appear at higher altitudes (units 1, 2, 3). Additionally, the proportion of Irano-Turanian elements is important in unit 2, representing drier sites due to calcareous bedrock and in unit 3, appearing towards the upper parts of the Euxine region, where the climate is modified by altitude (lower temperatures). Axis 1 shows also a strong correlation with altitude and inclination. This means that units 4 and 5 characterize OBFs with relatively low altitude and moderate inclination in the Euxine region, while units 2 and 3 indicate higher altitude and steeper slopes (Fig. 6). The gradient along axis 1 corresponds to the proportion of chamaephytic and therophytic plants, while the gradient of axis 2 is correlated with the proportion of phanaerophytic and chryptophytic plants (Fig. 5). The highest proportion of phanerophytes can be found in ravine and lowland to montane OBFs from the Euxine region (units 4 and 5), as well as in OBFs from the Colchic region (unit 1) which occur in a wide altitudinal range. A mixture of different species in the tree layer can be found in these forests. The high proportion of therophytes indicates dry site conditions in OBFs thriving over calcareous bedrock (group 2), as well as in OBFs from the Colchic region (unit 1), which can be found in a great variety of habitats. The high proportion of cryptophytes (geophytes) is characteristic of altimontane OBFs (unit 3) and of OBFs over calcareous bedrock (unit 2), due to high precipitation and lower temperature. Chamaephytes and hemicriptophytes are more common and characteristic of ravine and lowland to montane OBFs (units 4 and 5), which is probably the result of human pressure on OBFs, which has resulted in a scarce canopy (Fig. 5 and 6).

468

A. Kavgacı et al.

Fig. 4. Box-whisker diagrams of the proportions of chorological elements for the units. : Median : 25%–75%, I: Non-outlier range, o: outliers ∗: extremes. Legend: numbers of units correspond to Table 1.

Discussion

Fig. 5. Principal Component Analysis (PCA) of units. Chorological elements, life-forms and topographical factors (altitude, inclination and aspect) are passively projected as supplementary variables. Legend: numbers of units correspond to Table 1.

OBFs show ecological and geographical differentiation, similar to Fagus sylvatica forests in Southeastern Europe (Dzwonko et al. 1999; Dzwonko & Loster 2000; Bergmeier & Dimopoulos 2001; Tzonev et al. 2006; Tsiripidis et al. 2007) and Central Europe (Willner 2002). The core area of Fagus orientalis in Turkey is located in the Black Sea region (including northern Thrace). The mountain range is parallel to the coastal line in this region with a crucial effect on vegetation distribution. The floristic structure on the coastal line does not show explicit differences over short distances (T¨ ure et al. 2005), whereas the difference is very clear towards the mountain region in the hinterland (Kavgacı et al. 2010a). The results of this study also confirm this phenomenon. Ravine OBFs (unit 4) and lowland to mon-

Oriental beech forests

469

Fig. 6. Box-whisker diagrams of the proportions of life-forms and topographic factors. : Median : 25%–75%, I: Non-outlier range, o: outliers, ∗: extremes. Legend: numbers correspond to Table 1.

tane OBFs (unit 5) are generally distributed in the Euxine region under the intensive influence of the Black Sea. Both of them have a very wide horizontal distribution along the Black Sea coast (from Bulgaria to the Colchic region) but are ecologically different. Unit 4, which can be considered to be the eastern continuation of broadleaved ravine forests in Europe (Košir et al. 2008), appears in ravines and on moister slopes in low mountains, while unit 5 oc-

curs in relatively higher altitudinal belts on flat surfaces. This monotonous structure becomes more diversified towards the hinterland, since units 4 and 5 are replaced by others within relatively short distances. Towards the hinterland, at higher altitudes of the Euxine region, units 4 and 5 are replaced with OBFs found over calcareous bedrock (unit 2) and altimontane OBFs (unit 3). In the extreme distribution zones of OB,

470 western and southern Anatolia, where the influence of the Mediterranean climate is more pronounced, unit 6 appears, while unit 7 occurs in the transition zone from the Euxine region to the Irano-Turanian region. The Colchic region is in major part covered by unit 1. Syntaxonomical classification Syntaxonomy is not well elaborated in Turkey (Keteno˘ glu et al. 2010) and there are also some gaps within OBFs. OBFs in the Euxine and Colchic regions are grouped within the class Querco-Fagetea (Quézel et al. 1980; Akman 1995). The distribution of units 1, 3, 4 and 5 correspond to the Euxine and Colchic regions and all of them can be classified within QuercoFagatea. Units 6 and 7, found on the edge of distribution of OBFs, towards the Mediterranean (unit 6) or Inner Anatolia (unit 7), where conditions are influenced by the Mediterranean Sea or by Inner Anatolia, with a decreasing effect of Black sea climate (mesic site conditions) and unit 2, characterizing the dry conditions on calcareous bedrock in the Euxine region, should be classified within the thermophilous class Quercetea pubescentis, as has already been identified (Akman et al. 1979b; Quézel et al. 1980; Varol & Tatlı 2001; Tatlı et al. 2005). In the Colchic region, montane OBFs have been classified within the order Pino-Piceetalia orientalis, while forests in the lower belt zones dominated by Carpinus betulus, Castanea sativa and mostly characterized by the disappearance of OB, have been classified within Castaneo-Carpinion, RhododendroFagetalia (Quézel et al. 1980; Akman, 1995). The core group of the Rhododendro-Fagetalia-communities appears in the Euxinic region (Quézel et al. 1980). As the vegetation in Colchic region is different, we propose to classify unit 1, mainly representing Colchic OBFs, within Veronico-Fagion, Pino-Piceetalia (Quézel et al. 1980). In the Euxine region, OBFs characterizing in particular the lower to montane distribution zones have been classified within Rhododendro-Fagetalia (Quézel et al. 1980). So units 4 and 5 should be classified under Rhododendro-Fagetalia. Three alliances have been described within Rhododendro-Fagetalia in Turkey. These are: Castaneo-Carpinion distributed in the lowlands and mostly with the disappearance of OB (Kavgaci et al. 2011), Crataego-Fagion, characterizing the lowland distribution of OB in the Euxine region and Alnion barbatae, representing hygrophilous forests in the Colchic region (Quézel et al. 1980, Akman 1995). According to this identification, OBFs representing the ravine and lowland moist slopes in the Euxine region (Unit 4) could be classified under Crataego-Fagion. But the typification of this alliance (Quézel et. al, 1992, Quézel et al. 1980 – Table 7) show that the type association is Ilici-Fagetum orientalis. This association is found at altitude that ranges from 750 m to 1250 m (type relevé no. 4 is at 1250 m); moreover the relevé material is rather heterogeneous, since the relevés were sampled on siliceous and on calcareous bedrock. So our

A. Kavgacı et al. analysis shows that relevés of Ilici-Fagetum used in the analysis are classified within Unit 2 presenting OBFs on calcareous bedrock (Staphyleo-Buxion) and Unit 3 – altimontane OBFs (Fagion orientalis). Therefore, the alliance Crataego-Fagion does not correspond to Unit 4 and we propose a new name, indicating mesophilous lowland ravine OBFs in the Euxine region, which can be designated as Carpino betuli-Fagion orientalis. Although Primulo-Fagetum orientalis has been classified within Fagion orientalis in Bulgaria (Tzonev et al. 2006), it should also be considered within this alliance. Unit 5 is clearly different from Carpino-Fagion and should be according to the identification of alliances classified within Rhododendro-Fagetalia. None of already described syntaxa corresponds to the floristic and ecologic structure of Unit 5. We therefore propose a new alliance, indicating mesophilous lowland to mountain OBFs in the Euxine region, which can be designated Violo odoratae-Fagion orientalis. Although CyclaminiFagetum orientalis and Rhododendro-Fagetum orientalis have been classified within Fagion orientalis in Bulgaria (Tzonev et al. 2006), they should also be considered within this alliance. Altimontane OBFs (unit 3), co-dominated by Abies n. subsp. bornmuelleriana and other coniferous species in the Euxine region have been classified within the order Fagetalia sylvatica and alliance Fagion orientalis (Quézel et al. 1980). In this sense, unit 3 should be classified within this order and alliance. OBFs (unit 2) on calcareous bedrock with drier conditions in the Euxine region have been identified within the alliance Staphyleo-Buxion of the order Querco-Carpinetalia (Quézel et. al. 1980). In our work, special emphasis was also given to these forests and they were classified into Staphyleo-Buxion. The results of this study grouped all the OBFs in western and southern Anatolia together (unit 6), although they have been previously classified within many different alliances, orders and classes (Fagion sylvaticae – Quézel & Pamuk¸cuo˘ glu 1969; OstryoQuercion – Akman et al. 1979a; Quercion frainetto ¨ – Ozel 1999; Geranio-Cedrion – Varol & Tatlı 2001; Ostryo-Quercion – Tatlı et al. 2005). Pinus nigra subsp. pallasiana is one of the diagnostic species of this unit and the syntaxonomy of OBFs should be considered in connection with Pinus nigra-forests for those regions. The characteristic alliance of Pinus nigra forests in those areas is Cisto-Pinion, within the order QuercoCarpinetalia (Akman et al. 1978). OBFs may be considered to be the humid part of this thermophilous and submediterranean alliance. Quézel et al. (1980) report that forest vegetation in the pre-Black Sea region (the transition zone from Irano-Turanian to Euro-Siberian) can be classified within the alliance Carpino-Acerion of the order Querco-Carpinetalia. So OBFs of unit 7 should be classified within Carpino-Acerion, as has already been stated by Bing¨ ol (2000) and Bing¨ ol et al (2007). On the basis of the analysis, the following syntax-

Oriental beech forests onomical scheme of OBFs is suggested: Querco-Fagetea Br.-Bl. et Vlieger in Vlieger 1937 Rhododendro pontici-Fagetalia orientalis (Soó 1964) Passarge 1981 Carpino-Fagion orientalis all. nova hoc loco (Unit 4) Violo-Fagion orientalis all. nova hoc loco (Unit 5) Fagetalia sylvaticae Pawlowski et al. 1928 Fagion orientalis Quézel et al. ex Quézel et al. 1992 (Unit 3) Pino-Piceetalia orientalis Quézel et al. ex Quézel et al. 1992 Veronico-Fagion Quézel et al. ex Quézel et al. 1992 (Unit 1) Quercetea pubescentis Doing-Kraft ex Scamoni et Passarge1959 Querco cerridis-Carpinetalia orientalis Quézel et al. ex Quézel et al. 1992 Staphyleo-Buxion Quézel et al. ex Quézel et al. 1992 (Unit 2) Cisto-Pinion Akman et al. 1978 (Unit 6) Carpino-Acerion Akman et al. 1978 (Unit 7) Description of new syntaxa: Name: Carpino-Fagion orientalis all. nova hoc loco Nomenclatural type – holoptypus: Carpino betuliFagetum orientalis Yarcı 2002 holotypus hoc loco. The association is validly published in (Yarcı 2002). Diagnostic species: Carpinus betulus, Primula vulgaris, Rubus idaeus, Hypericum calycinum, Tilia argentea, Cornus mas, Tilia platyphyllos, Campanula persicifolia, Acer pseudoplatanus. Ecological conditions: Mesophilous lowland ravine OBFs in Euxine region. Name: Violo odoratae-Fagion orientalis all. nova hoc loco Nomenclatural type – holoptypus: Galio-Fagetum ori¨ entalis Ozen & Kılın¸c 2002 holotypus hoc loco. The as¨ sociation is validly published in (Ozen & Kılın¸c 2002). Diagnostic species: Viola odorata, Quercus frainetto, Epimedium pubigerum, Ruscus hypoglossum. Ecological conditions: Mesophilous lowland to montane beech forest in the Euxine region.

Acknowledgements This study was carried out with the support of projects of the Scientific and Technological Research Council of ¨ ITAK ˙ Turkey–TUB (104O551) and Ministry of Environment and Forestry of Turkey (23.2607/2005–2008). The authors also appreciate the financial support from the Slovenian Research Agency (L1-9737 and P1-0236). We also thank two anonymous reviewers for their comments and suggestions.

References Akman Y. 1995. Turkiye orman vejetasyonu. Science Faculty of Ankara University, Ankara, 450 pp.

471 Akman Y., Barbéro M. & Quézel P. 1978. Contribution ` a l’étude de la végétation foresti`ere d’Anatolie méditerranéenne. Phytocoenologia 5: 1–79. Akman Y., Barbéro M. & Quézel P. 1979a. Contribution ` a l’étude de la végétation foresti`ere d’Anatolie méditerranéenne. Phytocoenologia 5: 189–276. Akman Y., Barbéro M. & Quézel P. 1979b. Contribution ` a l’étude de la végétation foresti`ere d’Anatolie méditerranéenne. Phytocoenologia 5: 277–346. Akman Y., Yurdakulol E. & Aydo˘ gdu M. 1983a. A phytosociological research on the vegetation of the Bolu Mountain. Communications de la Faculté des Sciences de I’Université d’Ankara C1: 87–104. Akman Y., Yurdakulol E. & Demir¨ ors M. 1983b. A phytosociological research on the vegetation of the Semen Mountains (Bolu). Communications de la Faculté des Sciences de l’Unıversité d’Ankara C1: 71–86. Aksoy H. 1978. Karab¨ uk-B¨ uy¨ ukd¨ uz ara¸stırma ormanındaki orman toplumları ve bunların silvik¨ ult¨ urel ¨ ozellikleri u ¨zerine ˙ ara¸stırmalar. Forestry Faculty of Istanbul University, Istanbul, 136pp. Anonymous 2006. Orman Varlı˘ gımız. Forest General Directory, Ankara, 160pp. Anonymous 2007. STATISTICA (data analysis software system), version 8,0. StatSoft, Inc, www.statsoft.com. Arslan M. 2010. Yaylacık ara¸stırma ormanının bitki sosyolojisi y¨ on¨ unden incelenmesi. Central Anatolia Forest Research Institute, technical bulletin no 288, Ankara, 140 pp. Aydın C.T., Bergmeier E. & Walentowski H. 2008. Vegetation und Standort in der Waldlandschaft der Nordwest-T¨ urkei. ¨ Onel Druck &Verlag, K¨ oln. Aydın¨ oz¨ u D. 2008. Avrupa kayınının (Fagus sylvatica) yıldız ˙ ¨ da˘ glarındaki (Istıranca) yayılı¸s alanları. Istanbul Universitesi Co˘ grafya B¨ ol¨ um¨ u Co˘ grafya Dergisi 17: 46–56. Aydo˘ gdu M. 1983. C ¸ am Da˘ gları’nın (D¨ uzce-Ak¸cakoca) Fitososyolojik Y¨ onden Ara¸stırılması. Ph.D. thesis, Ankara University, Ankara. Bergmeier E. & Dimopoulos P. 2001. Fagus sylvatica forest vegetation in Greece: Syntaxanomy and gradient analysis. J. Veg. Sci. 12: 109–126. ¨ 2000. Deveci Da˘ Bing¨ ol M.U. gları (Yozgat-Tokat)’nın Bitki Ekolojisi ve Bitki Sosyolojisi Y¨ on¨ unden Ara¸stırılması. Ph.D. thesis, Ankara University, Ankara. ¨ Bing¨ ol M.U., Geven F. & G¨ uney K. 2007. Sakarat Da˘ gı (Amasya)’nın Bitki Ekolojisi ve Bitki Sosyolojisi Y¨ on¨ unden ¨ ITAK-TOVAG, ˙ Ara¸stırılması. TUB report no. 105O018, Ankara. Braun-Blanquet J. 1964. Pflanzensoziologie. Grundz¨ uge der Vegetationskunde. Springer, Wien. Chytrý M., Tichý L., Holt J. & Botta-Dukát Z. 2002. Determination of diagnostic species with statistical fidelity measures. J. Veg. Sci. 13: 79–90. Davis P.H. 1965–1985. Flora of Turkey and the East Aegean Islands. Vol. 1–9, Edinburgh University Press, Edinburgh. Davis P.H., Happer P.C. & Hedge I.C. 1971. Plant life of southwest Asia. The Botanical Society of Edinburgh, Edinburgh. Demir¨ ors M. 1986. Zonguldak-Bartın ve Karab¨ uk Arasında Kalan B¨ olgenin Bitki Sosyolojisi Y¨ on¨ unden Ara¸stırılması. Ph.D. thesis, Ankara University, Ankara. D¨ uzenli A. 1982. Tiryal Da˘ gı’nın (Artvin) Bitki Ekolojisi ve Bitki Sosyolojisi Y¨ on¨ unden Ara¸stırılması. Habilitation thesis. Ankara University, Ankara. Dzwonko Z. & Loster S. 2000. Syntaxonomy and phytogeographical differentiation of the Fagus woods in the Southwest Balkan Peninsula. J. Veg. Sci. 11: 667–678. Dzwonko Z., Loster S., Dubiel E. & Drenkovski R. 1999. Syntaxonmic analysis of beechwoods in Macedonia (former Republic of Yugoslavia). Phytocoenologia 29: 153–175. ¨ An¸sin R. & Kutbay H.G. 2007. Forest vegetaEmina˘ gao˘ glu O., tion of Karag¨ ol-Sahara National Park Artvin-Turkey. Turk. J. Bot. 31: 421–449. G¨ unal N. 1997. T¨ urkiye’de ba¸slıca a˘ ga¸c t¨ urlerinin co˘ grafi yayılı¸s˙ ları, ekolojik ve floristik ¨ ozellikleri, C ¸ antay Kitabevi, Istanbul.

472 G¨ uner A., Vural M. & Sorkun K. 1987. Rize Florası, Vejetasyonu ve Y¨ ore Ballarının Polen Analizi. TUBITAK-TBAG, report no. 650, Ankara. Hennekens S.M. & Schaminée J.H.J. 2001. TURBOVEG a comprehensive data base management system for vegetation data. J. Veg. Sci. 12: 589–591. Kavgacı A., Čarni A., Ba¸saran S., Ba¸saran M.A., Košir P., Marinšek A. & Šilc U. 2010a. Vegetation of temporary ponds in cold holes in the Taurus mountain chain (Turkey). Biologia 65: 621–629. ¨ Kavgacı A., Čarni A., Tecimen B., Ozalp G. 2010b. Diversity and ecological differentiation of oak forests in NW Thrace (Turkey). Arch. Biol. Sci. 62: 705–718. ¨ Kavgacı A., Čarni A., Tecimen H. B., Ozalp G. 2011: Diversity of Floodplain Forests in the Igneada Region (NW Thrace – Turkey). Hacquetia 10: 73–93. Keteno˘ glu O., Tug G.N, Bingol U., Geven F., Kurt L. & G¨ uney K. 2010. Synopsis of syntaxonomy of turkish forests. J. Environ. Biol. 31: 71–80. Kılın¸c M. & Karaer F. 1995. Sinop yarımadasının vejetasyonu. Turk. J. Bot. 19: 107–124. Knollavá I., Chytrý M., Tichý L. & Hajek O. 2005. Stratified resampling of phytosociological databases: some strategies for obtaining more representative data sets for classification studies. J. Veg. Sci. 16: 479–486. Košir P., Čarni A. & Di Pietro R. 2008. Classification and phytogeographical differentiation of noble hardwood forests in Southeastern Europe. J. Veg. Sci. 19: 331–342. Kutbay H.G. & Kılın¸c M. 1995. Bafra Nebyan Da˘ gı (Samsun) ve ¸cevresinin vejetasyonu u ¨zerinde fitososyolojik ve ekolojik bir ara¸stırma. Turk. J. Bot. 19: 41–63. Mayer H. & Aksoy H. 1986. Walder der T¨ urkei. Gustav Fischer Verlag, Stuttgart, Germany. McCune B. & Grace J.B. 2002. Analysis of Ecological Communities. MjM Software Design, Glenden Beach, OR, USA. Papageorgiou A.C., Vidalis A., Gailing O., Tsiripidis I., Hatziskakis S., Boutsias S., Galatsida S. & Finkeldey R. 2008: Genetic variation of beech (Fagus sylvatica L.) in Rodopi (N.E. Greece). Eur. J. Forest Res. 127: 81–88. ¨ Oner H.H. & Akbin G. 2010. Kapıda˘ gı yarım adasının fitososyolojik ve fitoekolojik y¨ onden incelenmesi. Aegean Forestry Re˙ search Institute, Technical bulletin no. 46, Izmir. ¨ Ozel N. 1999. Kazda˘ gları orman vejetasyonu u ¨zerine fitososyolojik ve fitoekolojik ara¸stırmalar. Aegean Forestry Research In˙ stitute, Technical bulletin no. 11, Izmir, 81 pp. ¨ Ozen F. 2010. Yenik¨ oy (Bursa) higrofil, orman ve maki vejetasyonunun sinekolojik ve sintaksonomik analizi. Ekoloji 76: 50–64 ¨ Ozen F. & Kılın¸c M. 1995: Ala¸cam-Gerze ve Boyabat-Dura˘ gan Arasında Kalan B¨ olgenin Vejetasyonu, II- Orman ve Bozuk Orman Vejetasyonları. Turk. J. Bot. 19: 87–105. ¨ Ozen F. & Kılın¸c M. 2002. The flora and vegetation of Kunduz Forests (Vezirk¨ opr¨ u/Samsun). Turk. J. Bot. 26: 371–393. Quézel P. & Pamuk¸cuo˘ glu A. 1969. Etude Phytosociologique des Forets d’Abies equi-trojani et de Fagus orientalis du Kazda˘ gı. Ann. Fac. Sci. Marseille 42: 145–151. Quézel P., Barbéro M. & Akman Y. 1980. Contribution ` a l’étude la végétation forestiere d’Anatolie septentrionale. Phytocoenologia 8: 365–519.

A. Kavgacı et al. Quézel P., Barbéro M. & Akman Y. 1992. Typification de syntaxa décrits en région méditerranéanne orientale. Ecologia Mediterranea XVIII: 81–87. Raunkiaer C. 1934. The life forms of plants and statistical plant geography. Clarendon Press, Oxford. Sevgi O, Yılmaz Y., Carus S., D¨ undar T., Kavgacı A. & Tecimen H.B. 2010. Ala¸cam Da˘ gları’nda kara¸cam ormanlarının y¨ ukseltiye g¨ ore beslenme – b¨ uy¨ ume modelleri ve odununun teknolojik o ¨zellikleri. TUBITAK-TOVAG, report no.104O551, Ankara, Turkey. Šilc U., Vrbničanin S., Boži´c D., Čarni A. & Daji´c Stevanovi´c Z. 2009 . Weed vegetation in the north-western Balkans: diversity and species composition. Weed Research 49: 602–612. ¨ & Tel A.Z. 2005. G¨ Tatlı A., Varol O. um¨ u¸s Da˘ gı (K¨ utahyaT¨ urkiye) orman vejetasyonu u ¨ zerine fitososyolojik bir ara¸stırma. Ekoloji C ¸ evre Dergisi 14: 6–17. Ter Braak J.F.C. & Šmilauer P. 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide, Software for Canonical Community Ordination (version 4.5), Wageningen. Tichý L. & Chytrý M., 2006. Statistical determination of diagnostic species for site groups of unequal size. J. Veg. Sci. 17: 809–818. Tichý L. 2002. JUICE, software for vegetation classification. J. Veget. Sci. 13: 451–453. Tsiripidis I., Bergmeier E. & Dimopoulos P. 2007. Geographical and ecological differentiation in Greek Fagus forest vegetation. J. Veg. Sci. 18: 743–750. T¨ ure C., Tokur S. & Keteno˘ glu O. 2005. Contribution to the syntaxonomy and ecology of the forest and shrub vegetation in Bithynia, Northwestern Antolia, Turkey. Phyton (Austria) 45: 81–115. Tzonev R., Dimitrov M., Chytrý M., Roussakova V., Dimova D., Gussev C., Pavlov D., Vulchev V., Vitkova A., Gogoushev G., Nikolov I., Borisova D. & Ganeva A. 2006. Beech forest communities in Bulgaria. Phytocoenologia 36: 247–279. Tzonev R.T., Dimitrov M.A., Roussakova V.H. 2009: Syntaxa according to the Braun-Blanquet approach in Bulgaria. Phytologia Balcanica 15: 200–223. ¨ & Tatlı A. 2001. The vegetation of C Varol O. ¸ imen Mountains (Kahramanmara¸s). Turk. J. Bot. 25: 335–358. Weber H.E., Moravec J. & Theurillat J.P. 2000. International code of phytosociological nomenclature. 3rd edition. J. Veg. Sci. 11: 739–768. Willner W. 2002: Syntaxonomische Revision der s¨ udmitteleurop¨ aischen Buchenw¨ alder. Phytocoenologia 32: 337– 453. Yaltırık F., Akman Y. & Keteno˘ glu O. 1983: A phytosociological research in the Belgrad forest. Comm Fac Sci Univ C(1): 1–9. Yarcı C. 2000. Demirk¨ oy (Istranca Da˘ gları/Trakya b¨ olgesi) ve civarının orman vejetasyonu. Ekoloji C ¸ evre Dergisi 9: 13–18. Yarcı C. 2002. Carpineto betuli- Fagetum orientalis Yarcı ass. nova ve Querco cerridis-Carpinetum orienatlis Yarcı ass. nova. Ekoloji C ¸ evre Dergisi 11: 1–7. Yurdakulol E., Demir¨ ors M. & Yıldız A. 2002. A phytosociological ˙ study of the vegetation of the Devrekani-Inebolu-Abana area (Kastamonu-Turkey). Isra. J. Plant Sci. 50: 293–311. Received June 6, 2011 Accepted November

Oriental beech forests Appendix Sources of data used for the analysis. Units refer to Fig. 2 and Table 1. Unit 1. Quézel et al. (1980), Castanea sativa-Sophora jaubertii community, Table 6 (relevés 3, 5, 7), G¨ uner et al. (1987), Fago-Castanetum sativae, Table 4 (relevés 192, 270, 271), Kutbay & Kılın¸ c (1995), Fago-Castanetum sativae, Table 7 (relevés 39, 40), D¨ uzenli (1982), Fagus orientalis-Rubus caucasicus community, Table 10 (relevés 16, 23, 40, 44, 73, 96, 100, 102, 104, 105), Quézel et al. (1980), Ilici-Fagetum orientalis, Table 7 (relevé 4), Quézel et al. (1980), Fago-Piceetum orientalis, Table 13 (relevés 1, 3, 5, 6, 7, 8, 10, 12), Emina˘ gao˘ glu et al. (2007), Fago-Abietum nordmannianae, Table 5 (relevés 98, 99, 105, 106, 107, 132, 139, 141, 179). Unit 2. Quézel et al. (1980), Ilici-Fagetum orientalis, Table 7 (relevés 10, 11, 14), Quézel et al. (1980), Abies bornmullerina-Fagus orientalis community, Table 8 (relevés 4, 5), Quézel et al. (1980), Pruno-Fagetum orientalis, Table 16 (relevés 5, 6, 7, 8), Yurdakulol et al. (2002), Ilici-Fagetum orientalis, Table 5 (relevés 32, 37, 38, 112, 113), Quézel et al. (1980), Trachystemo-Fagetum orientalis, Table 26, (relevé 2), Arslan (2010), Cardamino impatiendis-Fagetum orientalis, App. 2 (relevés 92, 132). Unit3. Quézel et al. (1980), Ilici-Fagetum orientalis, Table 7 (relevé 3), Quézel et al. (1980), TrachystemoFagetum orientalis, Table 26 (relevés 1, 3, 4, 5, 6, 7), Aydın et al (2008), Trachystemo-Fagetum orientalis, Table 28 (relevé 6), Akman et al. (1979b), Trachystemo-Fagetum orientalis, Table 36 (relevés 9, 10, 11, 13, 14), Arslan (2010), Cardamino-Fagetum orientalis, App. 2 (relevés 72, 80, 97, 138, 201, 205, 215, 237), Quézel et al. (1980), Veronico-Fagetum orientalis, Table 12 (relevés 1, 2, 3, 4, 5, 6, 7, 8), Akman et al. (1983a), Abies bornmullerianaFagus orientalis community, Table 2 (relevés 11, 14, 62, 146), Akman et al. (1983b), Abies bornmulleriana-Fagus orientalis community, Table 1 (relevé 78, 51), Demir¨ ors (1986), Abies bornmulleriana-Veronica magna community, Table 15 (relevé 149), Aksoy (1978), Abieti-Fagetum orientalis, App. A (relevés 14, 57, 67, 263), Kutbay & Kılın¸ c (1995), Fago-Abietetum nordmannianae, Table 6 (relevé 74, ¨ 125, 127,), Ozen & Kılın¸ c (1995), Saniculo-Abietetum bornmuellerianae, Table 5 (relevés 117, 138, 191), T¨ ure et al. (2005), Fago-Abietum bornmullerianae, Table 9 (relevés 95, 96, 97, 99, 100, 102, 103, 104, 106, 107). Unit4. Akman et al (1983a), Fagus orientalis community, Table 1 (relevé 164), Aydo˘ gdu (1983), Tilia argentea-Fagus orientalis community, Table 15 (relevés 128, 130, 131, 132, 133, 189, 190, 191, 192, 193), Quézel et al. (1980), VincetoxicoFagetum orientalis, Table 17 (relevés 1, 2), Quézel et al. (1980), Carpinus betulus-Fagus orientalis community, Table 20 (relevé 8), Kutbay & Kılın¸ c (1995), Carpino-

473 ¨ Fagetum orientalis, Table 5 (relevés 107, 117), Ozen & Kılın¸ c (1995), Carpino-Fagetum orientalis, Table 3 (relevé 48), Kılın¸ c & Karaer (1995), Carpino-Fagetum orien¨ talis, Table 1 (relevé 3), Ozen (2010), Rubo-Fagetum orientalis, Table 8 (relevé 15), Yarcı (2002), CarpinoFagetum orientalis, Table 1 (relevés 12, 20), Akman et al. (1983a), Carpinus betulus-Fagus orientalis community, Table 3 (relevés 154, 158), Aydo˘ gdu (1983), Carpinus betulus-Fagus orientalis community, Table 16 (relevé 17), ¨ Oner & Akbin (2010), Violo-Fagetum orientalis, App. 6 (relevés 4, 8, 9, 32, 49, 52, 63, 64, 85), Tzonev et al. (2006), Primulo-Fagetum orientalis, App. 15 (relevés 241, 242, 243, 244, 245, 246, 247, 248, 249). Unit5. Akman et al. (1983a), Fagus orientalis community, Table 1 (relevés 39, 41, 129), Aydo˘ gdu (1983), Fagus orientalisRhododendron ponticum community, Table 14 (relevé 59), Demir¨ ors (1986), Fagus orientalis-Rhododendron ponticum community, Table 12 (relevés 15,16), Yarcı (2000), Rhododendro-Fagetum orientalis, Table 4 (relevés 22, 24), Tzonev et al. (2006), Rhododendro-Fagetum orientalis, App. 13 (relevés 457, 458, 495), Tzonev et al. (2006), Cyclamini-Fagetum orientalis, App. 14 (relevés 455, 461, ¨ 462, 463, 471, 472, 474, 477, 479, 487, 488), Ozen & Kılın¸ c (2002), Galio-Fagetum orientalis, Table 4 (relevés 18, 27, 28, 29, 30, 31, 36, 38, 70, 83), Kutbay & Kılın¸ c (1995), Rhododendro-Fagetum orientalis, Table 8 (relevés 25, 27, ¨ 28, 33, 152), Ozen (2010), Rubo-Fagetum orientalis, Ta¨ ble 8 (relevés 3, 21, 23, 68, 69, 82, 90), Oner & Akbin (2010), Violo-Fagetum orientalis, App. 6 (relevé 59), Aydın et al. (2008), Ilici-Fagetum orientalis, Table 16 (relevé 3), Yaltırık et al. (1983), Fagus orientalis-Ilex aquifolia community, Table 2 (relevés 31, 33, 34, 37, 39, 52, 53, 54, 141). Unit6. Quézel & Pamuk¸ cuo˘ glu (1969), Fagus orientalis-Rubus caesius community, Table 1 (relevés ¨ 5, 6, 7, 8), Ozel (1999), Rubo-Fagetum orientalis, App. 14 (relevés 1, 2, 4, 5, 11, 12), Akman et al. (1979a), Fagus orientalis-Vicia aurantia community, Table 24 (relevés 1, 2, 3, 4, 5), Akman et al. (1979b), Pyrolo-Fagetum orientalis community, Table 36 (relevés 16, 17, 18, 19, 20, 21, 22), Sevgi et al. (2010), Fagus orientalis-Pinus nigra community, App. 3 (relevés 19, 20, 30, 31, 36, 37, 38, 53, 54, 73), Varol & Tatlı (2001), Potentillo-Fagetum orientalis, Table 6 (relevé 38, 39, 60, 61, 62, 63, 64, 71), T¨ ure et al. (2005), Trachsytemo-Fagetum orientalis, Table 8 (relevés 74, 75, 76, 84, 91), Sevgi et al. (2010), Galium odoratumFagus orientalis community, App. 3 (16, 17, 32, 33, 34, 63), Tatlı et al. (2005), Pino-Fagetum orientalis, Table 7 (relevés 45, 46, 47, 48, 49, 50). Unit7. Bing¨ ol et al (2007), Rhododendro-Fagetum orientalis, Table 9.5.2. (relevés 31, 43, 45, 56, 74), Bing¨ ol et al (2007), Pino-Fagetum orientalis, Table 9.1.2. (relevés 1, 5, 6, 18, 21, 22, 23, 37, 38, 58,), Bing¨ ol (2000), Tanaceto-Fagetum orientalis, Table 9.2.1 (relevés 9, 16, 17, 39, 41, 78, 79, 80, 81, 82).