Comparative Study of Optical Properties and X-ray Induced

0 downloads 0 Views 1MB Size Report
Luminescence of Octahedral Molybdenum and Tungsten Cluster ..... Figure 6S. ... calculated as a difference between onsets of oxidation and reduction waves. ... Typical kinetics of the decay of emission for samples of compound 2 at 660 nm ...
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Comparative Study of Optical Properties and X-ray Induced Luminescence of Octahedral Molybdenum and Tungsten Cluster Complexes Darya V. Evtushok,a Anatoly R. Melnikov,b,c Natalya A. Vorotnikova,a Yuri A. Vorotnikov,a Alexey A. Ryadun,a Natalia V. Kuratieva,a,c Konstantin V. Kozyr,d Natalia R. Obedinskaya,d Evgeniy I. Kretov,d Igor N. Novozhilov,a Yuri V. Mironov,a,c Dmitri V. Stass,b,c Olga A. Efremova,*e Michael A. Shestopalov**a,c,f aNikolaev

Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation. bVoevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya st., Novosibirsk, 630090, Russian Federation. cNovosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russian Federation dMeshalkin Siberian Federal Biomedical Research Center, 15 Rechkunovskaya st., 630055 Novosibirsk, Russian Federation eSchool of Mathematics and Physical Sciences, University of Hull, Cottingham Road, HU6 7RX, Hull, UK. fResearch Institute of Experimental and Clinical Medicine, 2 Timakova Str., 630060 Novosibirsk, Russian Federation. *Corresponding Authors: *Olga A. Efremova Tel: +441482465417, Fax: +441482466410 e-mail: [email protected]. **Michael A. Shestopalov Tel. +7-383-330-92-53, Fax +7-383-330-94-89 e-mail: [email protected]

S1

Content Crystallographic data for compounds 2-4 and selected interatomic distances for 2-4, 6-8.........................3 FTIR-spectra of 2-4 and 1H NMR spectrum of 3............................................................................................4 3D framework of hydrogen bonding in 4·12H2O ..........................................................................................5 X-ray powder diffraction patterns and TG and DTG curves of 4·6H2O .........................................................6 The emission spectra of 1-3..........................................................................................................................7 The samples for X-ray attenuation and the dependence of radiodensity of 1, 2, 5 and 6 in solid state vs. concentration ...............................................................................................................................................8 Study of electrochemical properties of compounds 1-3 ..............................................................................9 The samples for X-Ray induced photoluminescence measurements and the estimated χX values ...........10 X-Ray induced Luminescence measurements –additional information .....................................................11 Spectral sensitivity calibration .................................................................................................................11 Corrected non-normalised X Ray induced emission spectra of compounds 1-8. ....................................12 X-Ray bleaching compounds 2 and 6 .......................................................................................................13 Consistency for independent full cycles of sample preparation and measurement of X-Ray induced luminescence ...........................................................................................................................................15 Photo-degradation studies .........................................................................................................................17

S2

Crystallographic data for compounds 2-4 and selected interatomic distances (Å) for compounds 2-7 Table 1S. Crystallographic data for compounds 2-4.

Empirical formula Formula weight Crystal system Space group a, Å b, Å c, Å ɑ, º β, º γ, º V, Å3 Z Calc. density, g cm–3 μ, mm–1 Crystal size, mm3 Θ range, º Index ranges Reflections collected/ independent (Rint) Completeness, % Data / restraints / parameters Goodness-of-fit R1, wR2 (I>2σ(I)) R1, wR2 (all data) Δρmax, Δρmin, eÅ–3

2·CH2Cl2

3·(CH3)2CO·1.5(C2H5)2O

4·12H2O

C33H74Cl2I8N8O18W6 3060.20 Monoclinic P 21/n 14.4535(6) 11.3287(4) 21.6572(7)

3529.0(2) 2 2.880 13.373 0.30 × 0.25 × 0.25 2.29 – 26.37 –15 ≤ h ≤ 18 –14 ≤ k ≤ 14 –27 ≤ l ≤ 15 27204 / 6889 (0.0352) 96.4

C83H135I8N2O20.5S6W6 3799.59 Triclinic P1 13.412(2) 16.210(2) 27.147(3) 89.271(3) 79.227(3) 77.959(3) 5668(1) 2 2.226 8.411 0.28 × 0.10 × 0.06 0.76 – 26.37 –16 ≤ h ≤ 16 –20 ≤ k ≤ 17 –33 ≤ l ≤ 33 44791 / 23089 (0.0221) 99.6

H32I8O18W6 2438.56 Triclinic P1 9.5082(2) 9.8579(2) 9.9671(2) 74.110(1) 67.878(1) 88.438(1) 829.36(3) 1 4.882 28.220 0.20 × 0.10 × 0.08 2.30 – 30.67 –13 ≤ h ≤ 8 –14 ≤ k ≤ 14 –14 ≤ l ≤ 10 10599 / 5093 (0.0302) 99.4

6889 / 35 / 396

23089 / 49 / 1150

5093 / 0 / 165

1.029 0.0310, 0.0760 0.0399, 0.0801

1.063 0.0381, 0.0891 0.0505, 0.0943

1.079 0.0229, 0.0575 0.0245, 0.0582

1.804, –1.240

2.603, –1.835

1.724, –2.470

2·CH2Cl2

3·(CH3)2CO·1.5(C2H5)2O

4·12H2O

2.6549(4)–2.6656(4) 2.7791(5)–2.8064(5) 2.144(5)–2.153(5) 6·3(CH3)2CO 2.6664(9)–2.6776(9) 2.7667(8)–2.7857(8) 2.133(6)–2.154(6)

2.622(9)–2.724(8) 2.722(6)–2.816(1) 2.123(6)–2.134(5) 7·(CH3)2CO·1.5H2O 2.6604(8)–2.6718(7) 2.7550(6)–2.7871(7) 2.125(4)–2.146(4)

2.6538(2)–2.6660(2) 2.8181(4)–2.8431(3) 2.087(3)–2.104(4) 8·12H2O 2.6594(5)–2.6797(5) 2.7643(4)–2.7987(4) 2.143(3)

95.633(1)

Table 2S. Selected interatomic distances (Å) for 2-4, 6-8.

W–W (Å) W–I (Å) W–O (Å) Mo-Mo Mo-I Mo-O

S3

FTIR-spectra of 2-4 and 1H NMR spectrum of 3 ν(NO)

νs(NO2)

νas(NO2)

2

ν(SO)

νs(SO2)

νas(SO2)

3

4·6H2O 3000

2500

2000

1500

1000 -1

Wavenumber, cm Figure 1S. FTIR-spectra of 2-4.

Figure 2S. 1H NMR spectrum of 3 in acetone-d6.

S4

500

3D framework of hydrogen bonding in 4·12H2O

Figure 3S. 3D framework of hydrogen bonding between OH–/H2O ligands and water of crystallisation in 4·12H2O.

S5

X-ray powder diffraction patterns and TG and DTG curves of 4·6H2O

4·6H2O 4·12H2O theor

5

10

15

20

2Θ,

o

25

30

35

40

Figure 4S. Experimental X-ray powder diffraction patterns of 4·6H2O and theoretical diffraction pattern of 4·12H2O.

DTG/(%/min) 2

TG/% –6H2O 100

t = 130 oC, mass loss 4.6%

1 0

90 80

–2H2O

-1

t = 210 oC, mass loss 6.2%

-2 -3

70

-4 60

-5 -6

50

-7 100

200

300

400

500

600

Temperature, oC

700

Figure 5S. TG and DTG curves of 4·6H2O.

S6

800

The emission spectra of 1-3 1 2 3

1 2 3 4·6H2O

500

600

700

Wavelength, nm

800

500

600 700 Wavelength, nm

800

Figure 6S. Normalised raw emission spectra of 1-4 in the solid state (left) and emission spectra of 1-3 in argonsaturated CH3CN solutions.

S7

The samples for X-ray attenuation and the dependence of radiodensity of 1, 2, 5 and 6 in solid state vs. concentration

Figure 7S. 1, 2, 5 and 6 in DMSO solutions (left) and in the mixture with α-lactose monohydrate (right)

1 2 5 6

3500

Radidensity, HU

3000 2500 2000 1500 1000 500 0 0

1x10-5

2x10-5

3x10-5

4x10-5

5x10-5

6x10-5

Concentration, mol/g Figure 8S. The dependence of radiodensity of 1, 2, 5 and 6 in solid state in Hounsfield unit scale vs. concentration.

S8

Study of electrochemical properties of compounds 1-3 Cyclic voltammetry (CV) was performed using a Metrohm 797 VA Computrace instrument with a glassy carbon electrode as the working electrode and a saturated silver / silver chloride (Ag/AgCl) in 3.5 M KCl as a reference electrode. The potentials were related to the standard platinum electrode. A 0.10 M solution of tetran-butylammonium tetrafluoroborate (nBu4NBF4) in dimethyl sulfoxide (DMSO) was used as the electrolyte. Solutions of the samples in the electrolyte (1-2 mM) were degassed by purging with argon prior to CV measurements. Compounds were investigated voltammetrically within the potential window from –2V to 1.8V at 25 °C. The formal half-wave potentials (E1/2) were calculated as the midpoint between the anodic and cathodic peak. Table 3S summarises the oxidation and reduction potentials, as well as electrochemical energy gap calculated as a difference between onsets of oxidation and reduction waves. CV data of compounds 1-3 demonstrate reversible oxidation in the positive region of thepotentials and the irreversible reduction in the negative region. Table 3S. Formal half-wave potentials (E1/2) onset of oxidation (Eoxonset) and reduction (Eredonset) potentials (calculated electrochemical energy gaps) of compounds 1-3 in DMSO vs. saturated Ag/AgCl couple. The scan rate was 0.05 V·s−1.

Compound

Е1/2, V

Eoxonset, V

Eredonset, V

Electrochemical energy gap, eV

[{W6I8}L6]1-/2-

[{W6I8}L6]2-/3-

1

1.12

-1.55

1.06

-1.29

2.35

2

1.36

-1.65

1.28

-1.34

2.62

3

1.48

-1.51

1.37

-1.23

2.60

S9

The samples for X-Ray induced photoluminescence measurements and the estimated χX values

Figure 9S. Photo-images of naked thin strips of powdered samples of compounds 1-8 for X-Ray induced photoluminescence measurements. Table 4S. The estimated χX values for the eight complexes Complex 1 2 3 4·6H2O 5 6 7 8·2H2O

λem, nm 669 676 645 750 780 668 670 -

S10

Integration range, nm 400 – 673 450 – 678 400 – 648 500 – 760 550 – 797 500 – 668 500 – 669 500 – 670

χX Value 1.2·104 1.2·102 6.1·103 2.0·101 7.8·102 4.2·102 3.0·103