Conceptual Design - Eurocodes - Europa

62 downloads 393 Views 3MB Size Report
Oct 21, 2011 ... on http://eurocodes.jrc.ec.europa.eu/showpage.php?id=335_2): ... loads but two different sets of horizontal actions (EC2: vertical loads + high.
EUROCODE 2 Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011

1

The EC2 worked example: Description, actions, durability, materials Francesco Biasioli Giuseppe Mancini Dipartimento di Ingegneria Strutturale e Geotecnica Politecnico di Torino – Italy e-mail: [email protected]

EUROCODE 2 Background and Applications

The EC2 worked example

Dissemination of information for training – Brussels, 20-21 October 2011

2

6-storeys building + 2-storeys underground parking in an urban area (terrain category IV) not close to the at 300 m AMSL (Above Mean Sea Level). The building design working is 50 years. Reinforced cast on site concrete, 3 different floor solutions: slab on beams, flat slab, slab with embedded lighting (clay) elements. Building similar to the one used for the EC8 example (documentation available on http://eurocodes.jrc.ec.europa.eu/showpage.php?id=335_2): Scope: two “case studies” referring to the same building with the same vertical loads but two different sets of horizontal actions (EC2: vertical loads + high wind; EC8: vertical loads + earthquake). In comparison with EC8 example, lateral stiffness and strength are still required but less bracing elements (lift core + two walls) are present.

EUROCODE 2 Background and Applications

EC2 worked example

Dissemination of information for training – Brussels, 20-21 October 2011

• 2-level underground parking • ground floor: offices open to public, 1st to 5th floor: dwellings • roof

3

EUROCODE 2 Background and Applications

EC2 worked example

Dissemination of information for training – Brussels, 20-21 October 2011

x direction slab/ beams spans: all equal single central core and stairs two y-direction walls

4

EUROCODE 2

Three solutions: 1) slab on beams

Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011

5

0,18 m slab on 0,40 h beams spanning in both x and y directions

EUROCODE 2 Background and Applications

2) flat slab

Dissemination of information for training – Brussels, 20-21 October 2011

6

0,24 m flat slab spanning in x and y directions

EUROCODE 2 3) Monodirectional ribbed slab Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011

7

Lighting clay elements b = 500 mm, bw = 120 mm b/bw = 4,2 > 3 50 mm flange made of cast on site concrete h = 0,18 + 0,05 = 0,23 m T beams h = 0,23+0,17 = 0,40 m

EUROCODE 2 Background and Applications

Actions: G loads

Dissemination of information for training – Brussels, 20-21 October 2011

8

Self weight G1 : based on reinforced concrete unit weight (25kN/m3) and the geometry of structural elements. Permanent loads G2 Finishing, pavement, embedded services, partitions: Walls on external perimeter (windows included):

3,0 kN/m2 8,0 kN/m

Variable loads characteristic values and ψ factors

Type

qk (kN/m2)

Dwellings

2,00

Stairs, office open to public

4,00

Snow

1,70

ψ0

ψ2

0,70

0,30

0,50

0,00

EUROCODE 2 Background and Applications

Actions: wind

Dissemination of information for training – Brussels, 20-21 October 2011

9

European wind map 10-minutes median wind velocity at 10-m height above flat, even ground; no gusts The characteristic value of wind velocity or velocity pressure occurs in the average once every 50 year (p = 0,02, mean return period 50 years)

EUROCODE 2 Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011

Actions: wind 10

EUROCODE 2 Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011

Actions: wind 11

EUROCODE 2 Background and Applications

Preliminary evalutation

Dissemination of information for training – Brussels, 20-21 October 2011

Horizontal loads: wind y and wind x

To increase torsional rigidity, place bracing elements on all sides (stiffnesses’ “centrifugation”)

12

EUROCODE 2 Background and Applications

Durability

Dissemination of information for training – Brussels, 20-21 October 2011

EC2 2.1.3 Rules for design working life, durability and quality management are in EN1990 Section 2

EC2 refers to a 50-years design working life and normal maintenance For concrete structures quality management procedures during execution are described in EN13670.

13

EUROCODE 2 Background and Applications

50-years design working life?

Dissemination of information for training – Brussels, 20-21 October 2011

14

carbonation

α 1959

chlorides

ω 1971

α 1975 R.I.P.

ω 2000

EUROCODE 2 Background and Applications

Durability

Dissemination of information for training – Brussels, 20-21 October 2011

Traditional “deemed to satisfy” rules related to the exposure conditions of the various structural members, described in: - EN206-1 Annex F (concrete standard) for material composition - EN1992-1 for design, based on 1) a required concrete quality and 2) an adequate concrete cover to reinforcement. Strength is used as a measure for the durability of concrete, with values for maximum w/c ratio and mininum cement concrete Result: large variation in requirements in different countries (see CEN TR 15868).

15

EUROCODE 2 Background and Applications

Durability

Dissemination of information for training – Brussels, 20-21 October 2011

16

BASIC PARAMETERS - exposure conditions classified using “exposure classes”; - Minimum concrete strength class and concrete cover related to exposure conditions; - behaviour in use (e.g. cracking) related to exposure conditions. EXPOSURE CLASSES VS. DETERIORATION MECHANISMS - Corrosion of reinforcement due to Carbonation (XC) or chlorides from De-icing agents, industrial wastes, pools (XD) or Sea water (XS) - Deterioration of concrete due to Freeze/thaw action (XF) or chemical Attack (XA)

EUROCODE 2 Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011

Exposure classes in EN206-1 referred to in EN1992-1

17

EUROCODE 2

Durability

Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011

18

CURRENT SYSTEM : EC2 ch. 4

1) Exposure class(es) 2) MINIMUM strength class for the exposure class(es) (EC2 Informative annex E)

3) Nominal concrete cover cnom cnom = max [(cmin + ∆c); 20 mm] ∆c = 0 -10 mm

d'

h d d'

cmin = max {cmin,b; (cmin,dur - ∆c dur,add); 10 mm} accounts for bond, protection from corrosion and fire resistance

φlong /2 φstaffe cnom

d'

EUROCODE 2 Background and Applications

Minimum cover for durability

Dissemination of information for training – Brussels, 20-21 October 2011

1) STRUCTURAL CLASS SELECTION - DEFAULT: S4

Exp. class XC2/XC3 - 50 years working life, no special QC Slabs: concrete C25/30 S(4 – 1) = S3 Beams and columns: concrete C30/37 S4

19

EUROCODE 2 Background and Applications

Minimum cover for durability

Dissemination of information for training – Brussels, 20-21 October 2011

2) CONCRETE COVER FOR XC2/3 AND CLASSES S3/S4

cmin,dur slabs = 20 mm cmin,dur columns = 25 mm

20

EUROCODE 2 Background and Applications

Nominal cover evaluation

Dissemination of information for training – Brussels, 20-21 October 2011

21

Excel™ spreadsheet

Parameters 1 Exposure class 2 Freeze/thaw 3 Strenght class 4 Service life 5 Slab or similar? 6 Quality control? 7 Max bar diam. (mm) 8 ∆cdur,st

Concrete cover Suggested

C min,dur

0

User defined XC3 C30/37 50 NO NO 16 0

9 ∆cdur,γ

0

0

XS1

10 ∆cdur,add

0

0

XS2

11

C30/37

Δctoll

12 Structural class 13 cmin,dur

10

A) Recommended 10 S4 25

14 cmin,b

16

15 cmin

25

16 cnom

35

0 X0 XC1 XC2 XC3 XC4

XS3 XD1 XD2 XD3

5

10

15

20

25

30

35

40

45

50

55

60

EUROCODE 2 Background and Applications

Nominal cover evaluation

Dissemination of information for training – Brussels, 20-21 October 2011

22

National tables

EUROCODE 2

Proposal for EC2/EN206 2015 revision

Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011

23

EUROCODE 2

Proposal for EC2/EN206 2015 revision

Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011

24

EUROCODE 2 Background and Applications

Durability - EC2 Worked example

Dissemination of information for training – Brussels, 20-21 October 2011

25

Due to non uniformity of EU National choices, to avoid countryspecific conditions, for the example no exposure classes were selected and nominal cover to reinforcement cnom was fixed: cnom = 20 +10 = 25 + 5 = 30 mm cmin,dur = 20/25 mm – exp. class XC2/XC3 for classes S3/S4 ∆c,dev = 5 - 10 mm for controlled execution For foundations cnom = 40 mm. Concrete strength classes have been selected accordingly

EUROCODE 2

Materials: concrete

Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011

26

Foundations, beams and slabs: C25/30 Columns: C30/37 > C25/30

EC8 “capacity design” rule to avoid soft storey plastic mechanism

Safety factors: ULS γc = 1,50 (persistent and transient design situation) SLS γc = 1,0

αcc = 1,0

EUROCODE 2 Background and Applications

Materials: steel

Dissemination of information for training – Brussels, 20-21 October 2011

Grade 500 class B Strength fyk P 500 N/mm2 Ductility (ft/fy)k P1,08 εuk P 5%

27

fy,max O 1,30 fyk εud = 0,90 εuk P 4,5%

Safety factors: ULS γs = 1,15 (persistent and transient design situation SLS γs = 1,0

EUROCODE 2 Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011

28

The EC2 worked example: Description, actions, durability, materials Francesco Biasioli Giuseppe Mancini Dipartimento di Ingegneria Strutturale e Geotecnica Politecnico di Torino – Italy e-mail: [email protected]

EUROCODE 2 Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

1

EC2 worked example Conceptual design Slabs Francesco Biasioli Giuseppe Mancini Dipartimento di Ingegneria Strutturale e Geotecnica Politecnico di Torino – Italy e-mail: [email protected]

EUROCODE 2

Two (contradictory?) appproaches

Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

“When time is money, it’s moral not to waste time. Especially your own.” Theodor W. Adorno

“Keep doing what you've always done and you'll keep getting what you've always got” Buckminster Fuller

2

EUROCODE 2 Background and Applications

Conceptual Design: definition

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

«Choosing an appropriate solution among many possible which must be studied in order to solve a particular problem, taking into account functional, structural, aesthetical and sustainability requirements» H. Corres Peiretti et al. (Structural concrete Textbook, fib bulletin 51)

3

EUROCODE 2 Background and Applications

Aesthetical requirements?

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

4

EUROCODE 2 Background and Applications

EC2 worked example

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

• • • •

2-level underground parking ground floor: offices open to public 1st to 5th floor: dwellings roof

5

EUROCODE 2 Background and Applications

EC2 worked example

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

x, y -direction slab/ beams spans all equal single central core, two y-walls

6

EUROCODE 2

General assumptions

Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

7

SLABS AND BEAMS

The design of the geometry of slabs and beams has to fulfill both Ultimate (ULS) and Serviceability Limit States (SLS) requrements. The depth of all slabs is based on deflection control (EC2 7.4). For flat slabs, punching may also govern. The width “b” of the beams is evaluated on the basis of the span ULS maximum bending, taking into account SLS of stress limitation and crack control. Maximum bending moments occur generally at the face of supports but redistribution and double reinforcement there can take care of the (Msup – Mspan) difference. In the case of T beam, the minimum web width bw may be governed by ULS shear.

Slab self weight estimation

EUROCODE 2 Background and Applications

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

8

Self weight based on reinforced concrete unit weight (25 kN/m3) and the actual or equivalent depth h (m) of the slab. G1 = 25 h

(kN/m2)

For lighting embedded clay elements (38+12) cm with 5 cm topping, the equivalent height ( = load) is 51 - 55% (average: 53%) of the weight of a flat slab of the same height. hle [m]

h = hle + 0,05 [m]

heq =G1/25 [m]

heq/htot

[kN/m2]

0,16

0,21

2,89

0,116

0,55

0,18

0,23

3,08

0,123

0,54

0,20

0,25

3,27

0,131

0,52

0,22

0,27

3,46

0,138

0,51

0,24

0,29

3,69

0,148

0,51

G1

Ex. Total height h = 0,23 m

G = (0,54 x 0,23) x 25 = 3,10 kN/m2

EUROCODE 2

G and Q loads

Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

9

Permanent loads G2 Finishing, pavement, embedded services, partitions: 3,0 kN/m2 Walls on external perimeter (windows included): 8,0 kN/m Variable loads Q and ψ factors for load combinations Type

qk (kN/m2)

Parking (cars O 30 kN)

2,50

Dwellings

2,00

Stairs, office open to public

4,00

Snow

1,70

ψ0

ψ2

0,70

0,60

0,70

0,30

0,50

0,00

No thermal effects considered as Lmax O 30 m - EC2 2.3.3 (3)

ln =

lef K

EUROCODE 2 Background and Applications

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

Structural model EC2 5.3.2.2 (1) leff = “effective span”

EC2 5.3.2.2 (2) Slabs analysed on the assumption that supports provide no rotational restraint

10

ln =

lef K

EUROCODE 2 Background and Applications

Preliminary evalutation

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

11

ln =

lef K

EUROCODE 2

Slab depth

Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

12

EC2 7.4.2 - Deflection control for flat slabs O 8,5m and slab and beams O 7 ml s(hape) factor s = 1,0 R section s = 0,8 T sections with b/bw > 3

lef 310  l  500 A s,prov  l  =Ks = K s     d σ s  d 0 fyk A s,req  d 0 −

3

ρ0 =

0 1

ρ > ρ0

ρ' =

' sd A b

ρ ≤ ρ0

sd A b

ρ=

fck

 ρ0  ρ0 l = 11+ 1,5 f + 3,2 f -1   ck ck  ρ ρ  d 0   ρ0 l 1 + fck   = 11+ 1,5 fck d ρ ρ' 12  0

3

ρ' ρ0

C20/25

C25/30

C30/37

C32/40

C35/45

ρ0 (%)

0,45

0,50

0,55

0,57

0,59

(l/d)0

19

20

20

21

18

slabs

beams

max (l/d)o = 36

ln =

lef K

EUROCODE 2 Background and Applications

(l/d) values – C30/37, fyk = 500 N/mm2

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

k “normalizes” structural spans to the Simply Supported one

lCL 5 q 4 fSS = lSS lSS = 384 EJ k 5 4 44 5 4 4 fCL = fSS ⇒ lCL = lSS = k lSS k= = 0,57 48 48

1q 4 fCL = lCL 8 EJ

13

ln =

lef K

EUROCODE 2 EC2 7.4.2 Deflection control by slenderness (l/d) Background and Applications

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

14

• the “normalized” span ln = l/k may be used for fast approximate span bending moment evaluation using the “single span beam” formula M = qln2/8 G l2eff = 14,2

ln =

G ln2 G l2eff Mln = = 8 13,5

+ 5%

Mleff

MG+Q

G (1+Q/G) l2eff ≈ 13,1

leff 1,3

- 3% if Q = 1/3 G

EUROCODE 2

Depth evaluation

Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

C20/25

C25/30

C30/37

C32/40

C35/45

ρ0 (%)

0,45

0,50

0,55

0,57

0,59

(l/d)0

19

20

20

21

18

k

lef,x

lef,y

lef

m

m

m

Slab on beams

6,0

7,125

6,0

Flat slab

6,0

7,125

7,125

1,2

-

7,125

7,125

1,3

Slab with emb. el.

15

ln

(l/d)0

s

m

C30/37 1,3 4,62

dmin

As

m

cm2/m

20

1,0

0,23

12,7

5,94

20

1,0

0,30

16,5

5,48

20

0,8

0,27

14,9

ln =

lef K

dmin =

ln ( l/d)0 s

Due to the high reinforcement ratio assumed in the table resulting effective depths dmin are too conservative, but may be used for a (safe) preliminary evaluation of slab self weight G1 d’ = cnom + φst + ½ φl = 30 + 0 + 14/2 = 37 mm

hmin = dmin + d’

dmin

hmin = dmin+ d’

m

m

Slab on beams

0,23

0,27

Flat slab

0,30

Slab with emb. el.

0,27

coeff

hc,eq

G1

m

kN/m2

1,00

0,27

6,69

0,33

1,00

0,33

8,35

0,31

0,55

0,17

4,28

d'

h d d'

φlong /2 φstaffe cnom

d'

EUROCODE 2

Iterative refined method

Background and Applications

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

16

λs

G and Q in kN/m λs  ln  =    d  3 G + ψ 2Q

Slab on beams Flat slab Slab with l. el.

Slab on beams Flat slab Slab with l. el.

Slab on beams Flat slab Slab with l. el.

dmin

hmin = dmin + d’

m

m

0,23

0,27

0,30

coeff

S=

1,0

S=

0,8

C20/25

C25/30

C30/37

C35/45

C40/50

53 49

57 53

60 56

63 59

65 61

ψ2

Tot

λs

heq

G1

G2

Qk

m

kN/m

kN/m

kN/m

1,00

0,27

6,69

3,0

2,0

0,30

10,29

60

0,33

1,00

0,33

8,35

3,0

2,0

0,30

11,95

0,27

0,31

0,55

0,17

4,28

3,0

2,0

0,30

0,17

0,20

1,00

0,20

5,10

3,0

2,0

0,23

0,26

1,00

0,26

6,56

3,0

0,20

0,23

0,55

0,13

3,19

0,16

0,19

1,00

0,19

0,21

0,25

1,00

0,19

0,22

0,55

ln/d

ln

dmin

m

m

28

4,62

0,17

-28%

60

26

5,94

0,23

-24%

7,88

56

28

5,48

0,20

-29%

0,30

8,70

60

29

4,62

0,16

-6%

2,0

0,30

10,16

60

28

5,94

0,21

-6%

3,0

2,0

0,30

6,79

56

30

5,48

0,19

-6%

4,87

3,0

2,0

0,30

8,47

60

30

4,62

0,16

-1%

0,25

6,27

3,0

2,0

0,30

9,87

60

28

5,94

0,21

-1%

0,12

3,06

3,0

2,0

0,30

6,66

56

30

5,48

0,18

-1%

kN/m

hmin = 0,19 – 0,25 – 0,22 m Taking into account As,req/As,prov hfin = 0,18 - 0,24 – (0,18+0,05) = 0,23 m

ln =

lef K

EUROCODE 2 Background and Applications

Beams and columns load tributary area

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

17

Monodirectional slabs: “zero-shear” lines under uniform q = 1 loading identify beams tributary areas; zero shear lines for beams together with the ones for slabs identify columns tributary areas Bi-directional or flat slabs: yield lines approach apply.

EUROCODE 2

Beams tributary area – Auto-CA add on for Autocad™

Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

18

www.auto-ca.it

EUROCODE 2 Columns and cores load tributary area – Auto-Ca Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

19

www.auto-ca.it

EUROCODE 2 Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

20

EC2 worked example Conceptual design Slabs Francesco Biasioli Giuseppe Mancini Dipartimento di Ingegneria Strutturale e Geotecnica Politecnico di Torino – Italy e-mail: [email protected]

EUROCODE 2 Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

1

EC2 worked example Conceptual design Beams Francesco Biasioli Giuseppe Mancini Dipartimento di Ingegneria Strutturale e Geotecnica Politecnico di Torino – Italy e-mail: [email protected]

EUROCODE 2

Beams tributary area by Auto-ca, add on for Autocad™

Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

2

www.auto-ca.it

EUROCODE 2 Background and Applications

SLS cracking

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

wmax = 0,3 mm to be evaluated for the Quasi-Permanent (QP) load combination

3

EUROCODE 2

SLS cracking

Background and Applications

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

4

Maximum diameters - cracked section, QP load combination Steel 500 B C20/25 f ct,eff

2,3

Concrete class C25/30 C30/37 C35/45

C40/50

2,9 2,6 3,4 3,6 φ l,max for crack width wk = 0,30 mm

σs

σs/f yk

160

0,32

24

28

32

36

38

170

0,34

22

26

30

34

36

180 190 200 210 220 230 240

0,36 0,38 0,40 0,42 0,44 0,46 0,48

22 20 18 16 14 14 12

24 22 20 18 16 16 14

28 26 24 22 20 18 16

32 30 26 24 22 20 18

34 32 28 26 24 22 20

260 280

0,52 0,56

10 10

12 10

14 12

16 14

16 14

Note: EC2 values up to f yk; 25 mm for σs = 200 Mpa

EUROCODE 2 Background and Applications

SLS stress limitation

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

5

CA combination of loads 1) Longitudinal craks due to excessive concrete compressive stress may affect durability (exposure classes XD,XF, XS only) 2) Excessive steel inelastic strain leads to unacceptable cracking or deformation. QP combination of loads 3) Limitation of max concrete compressive stress to confirm linear creep for concrete 4) [Crack width control by maximum bar diameter – see prev. slide]

σc/fck and σs/fyk to be evaluated with an elastic cracked model

EUROCODE 2 Background and Applications

SLS stress evaluation

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

6

Single reinforced cracked section - elastic model

 ξe   1-   3 

MEK,CA

f (ρ)

µk f  ξ  ρ yk  1- e  fck  3 

c

or

σs = fyk

µk

s

MEk = MEK,QP

σc = fck ξ e 2

α =

E E

MEk µk = b d2 fck

ρ=

e

  xe 2 ξe= = α e ρ  1+ - 1  d α e ρ  

xe 1 = d 1 + σs α e σc

sd A b

ξe =

αe coefficient

EUROCODE 2 Background and Applications

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

αe =

7

Es E c,eff

E c,eff =

φ eff = φ ∞ ,t o φ eff = φ ∞ ,t o

E cm

(1+φeff )

QP combination M Ek,QP M Ek,CA

CA combination

αeQP

C16/20 21,0

C20/25 20,0

C25/30 19,1

C30/37 18,3

C35/45 17,6

C40/50 17,0

αeCA

16,1

15,4

14,6

14,0

13,5

13,1

αeEcm

7,0

6,7

6,4

6,1

5,9

5,7

EUROCODE 2 Background and Applications

ULS – materials’ design values

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

Concrete C25 / 30 fck = 25/30 N/mm2 α f fcd = cc ck α cc = 1.0 γ C = 1.50 γC 1.0 × 25 1.0 × 30 =16,7 N/mm2 fcd = =20,0 N/mm2 fcd = 1,50 1,50 Steel 500 B

fyk = 435 N/mm2

fyk

fyd

fyd =

ε syd = γ s = 1, 15 Es γs 500 435 fyd = = 435 N/mm2 ε syd = = 0, 22 % 1, 15 2000

8

EUROCODE 2 Background and Applications

ULS design

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

9

Single reinforced (A’s = 0) cracked section – plastic model

M µd = 2Ed bd fcd

xu 1 ξu = = d 1+ εcu2 /εs

ω=

A s fyd b d fcd



fyd fcd

ρ=

As bd

For single reinforced elements (A’s = 0):

ξ u = 1,202 − 1,445 − 2,970 µ d

ω = 0,973 − 0,947 − 1,946 µ d

ρ [%]

EUROCODE 2 Background and Applications

ULS bending “universal” table µd = ω= ρ=

MEd bd2 fcd

A s fyd b d fcd



fyd fcd

As f = ω cd bd fyd

Is any µd value ok for design? What about SLS (deflection, stress limitation)?

ε [‰] 67,5 65,2 51,3 41,9 35,3 30,2 26,3 23,2 22,5 20,6 18,5 16,7 15,1 13,8 12,6 11,5 10,6 10,0 9,8 9,0 8,3 7,7 7,1 6,6 6,1 5,7 5,2 4,8 4,5 4,28 4,1 3,9 3,6 3,4 3,2 3,0 2,8 2,6 2,4 2,17

k 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

ξu 0,05 0,05 0,06 0,08 0,09 0,10 0,12 0,13 0,13 0,15 0,16 0,17 0,19 0,20 0,22 0,23 0,25 0,26 0,26 0,28 0,30 0,31 0,33 0,35 0,36 0,38 0,40 0,42 0,44 0,45 0,46 0,48 0,49 0,50 0,52 0,54 0,56 0,57 0,59 0,62

ζu 0,98 0,98 0,97 0,97 0,96 0,96 0,95 0,95 0,94 0,94 0,93 0,93 0,92 0,92 0,91 0,90 0,90 0,89 0,89 0,88 0,88 0,87 0,86 0,86 0,85 0,84 0,83 0,83 0,82 0,81 0,81 0,80 0,80 0,79 0,78 0,78 0,77 0,76 0,75 0,74

μu 0,039 0,040 0,050 0,060 0,070 0,080 0,090 0,100 0,103 0,110 0,120 0,130 0,140 0,150 0,160 0,170 0,180 0,187 0,190 0,200 0,210 0,220 0,230 0,240 0,250 0,260 0,270 0,280 0,290 0,296 0,302 0,309 0,316 0,323 0,330 0,338 0,346 0,354 0,362 0,371

ω0 0,040 0,041 0,052 0,062 0,073 0,084 0,095 0,106 0,109 0,117 0,129 0,140 0,152 0,164 0,176 0,189 0,201 0,210 0,214 0,227 0,240 0,253 0,267 0,281 0,295 0,309 0,324 0,339 0,355 0,364 0,374 0,385 0,397 0,409 0,421 0,435 0,449 0,465 0,482 0,499

δ 'lim % 1,9 1,9 2,4 2,9 3,4 3,9 4,4 5,0 5,1 5,5 6,0 6,6 7,1 7,7 8,2 8,8 9,4 9,8 10,0 10,6 11,2 11,8 12,5 13,1 13,8 14,5 15,2 15,9 16,6 17,1 17,5 18,0 18,6 19,1 19,7 20,4 21,0 21,8 22,5 23,4

C20/25 C25/30 C30/37 C35/45 C40/50 0,13 0,15 0,18 0,21 0,24 0,13 0,16 0,19 0,22 0,25 0,16 0,20 0,24 0,28 0,32 0,19 0,24 0,29 0,33 0,38 0,22 0,28 0,34 0,39 0,45 0,26 0,32 0,39 0,45 0,52 0,29 0,36 0,44 0,51 0,58 0,33 0,41 0,49 0,57 0,65 0,33 0,42 0,50 0,58 0,67 0,36 0,45 0,54 0,63 0,72 0,40 0,49 0,59 0,69 0,79 0,43 0,54 0,65 0,75 0,86 0,47 0,58 0,70 0,82 0,93 0,50 0,63 0,75 0,88 1,01 0,54 0,68 0,81 0,95 1,08 0,58 0,72 0,87 1,01 1,16 0,62 0,77 0,92 1,08 1,23 0,64 0,81 0,97 1,13 1,29 0,66 0,82 0,98 1,15 1,31 0,69 0,87 1,04 1,22 1,39 0,74 0,92 1,10 1,29 1,47 0,78 0,97 1,16 1,36 1,55 0,82 1,02 1,23 1,43 1,64 0,86 1,08 1,29 1,51 1,72 0,90 1,13 1,36 1,58 1,81 0,95 1,19 1,42 1,66 1,90 0,99 1,24 1,49 1,74 1,99 1,04 1,30 1,56 1,82 2,08 1,09 1,36 1,63 1,90 2,18 1,12 1,40 1,68 1,96 2,23 1,15 1,44 1,72 2,01 2,30 1,18 1,48 1,77 2,07 2,36 1,22 1,52 1,82 2,13 2,43 1,25 1,57 1,88 2,19 2,51 1,29 1,61 1,94 2,26 2,58 1,33 1,67 2,00 2,33 2,67 1,38 1,72 2,07 2,41 2,76 1,43 1,78 2,14 2,49 2,85 1,48 1,85 2,21 2,58 2,95 1,53 1,91 2,30 2,68 3,06

ρ [%]

EUROCODE 2 Background and Applications

ULS bending “universal” table vs. linear elastic analysis of hyperstatic structures EC2 5.4 – 5.5 ∂=

M Eel,rid M Eel,d

≥ 0,44 + 1,25

xu d

0,70 ≤ ∂ ≤ 1,0 ∂ = 1 when ξ u =

xu = 0,45 d

⇓ µ d ≤ 0,296

ε [‰] 67,5 65,2 51,3 41,9 35,3 30,2 26,3 23,2 22,5 20,6 18,5 16,7 15,1 13,8 12,6 11,5 10,6 10,0 9,8 9,0 8,3 7,7 7,1 6,6 6,1 5,7 5,2 4,8 4,5 4,28 4,1 3,9 3,6 3,4 3,2 3,0 2,8 2,6 2,4 2,17

k 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

ξu 0,05 0,05 0,06 0,08 0,09 0,10 0,12 0,13 0,13 0,15 0,16 0,17 0,19 0,20 0,22 0,23 0,25 0,26 0,26 0,28 0,30 0,31 0,33 0,35 0,36 0,38 0,40 0,42 0,44 0,45 0,46 0,48 0,49 0,50 0,52 0,54 0,56 0,57 0,59 0,62

ζu 0,98 0,98 0,97 0,97 0,96 0,96 0,95 0,95 0,94 0,94 0,93 0,93 0,92 0,92 0,91 0,90 0,90 0,89 0,89 ∂ 0,88 0,88 0,87 0,86 0,86 0,85 0,84 0,83 0,83 0,82 0,81 0,81 0,80 0,80 0,79 0,78 0,78 0,77 0,76 0,75 0,74

μu 0,039 0,040 0,050 0,060 0,070 0,080 0,090 0,100 0,103 0,110 0,120 0,130 0,140 0,150 0,160 0,170 0,180 0,187 0,190 0,200 0,210 0,220 0,230 0,240 0,250 0,260 0,270 0,280 0,290 0,296 0,302 0,309 0,316 0,323 0,330 0,338 0,346 0,354 0,362 0,371

ω0 0,040 0,041 0,052 0,062 0,073 0,084 0,095 0,106 0,109 0,117 0,129 0,140 0,152 0,164 0,176 0,189 0,201 0,210 0,214 0,227 0,240 0,253 0,267 0,281 0,295 0,309 0,324 0,339 0,355 0,364 0,374 0,385 0,397 0,409 0,421 0,435 0,449 0,465 0,482 0,499

δ 'lim % 1,9 1,9 2,4 2,9 3,4 3,9 4,4 5,0 5,1 5,5 6,0 6,6 7,1 7,7 8,2 8,8 9,4 9,8 10,0 10,6 11,2 11,8 12,5 13,1 13,8 14,5 15,2 15,9 16,6 17,1 17,5 18,0 18,6 19,1 19,7 20,4 21,0 21,8 22,5 23,4

C20/25 C25/30 C30/37 C35/45 C40/50 0,13 0,15 0,18 0,21 0,24 0,13 0,16 0,19 0,22 0,25 0,16 0,20 0,24 0,28 0,32 0,19 0,24 0,29 0,33 0,38 0,22 0,28 0,34 0,39 0,45 0,26 0,32 0,39 0,45 0,52 0,29 0,36 0,44 0,51 0,58 0,33 0,41 0,49 0,57 0,65 0,33 0,42 0,50 0,58 0,67 0,36 0,45 0,54 0,63 0,72 0,40 0,49 0,59 0,69 0,79 0,43 0,54 0,65 0,75 0,86 0,47 0,58 0,70 0,82 0,93 0,50 0,63 0,75 0,88 1,01 0,54 0,68 0,81 0,95 1,08 0,58 0,72 0,87 1,01 1,16 0,62 0,77 0,92 1,08 1,23 0,64 0,81 0,97 1,13 1,29 0,66 0,82 0,98 1,15 1,31 0,69 0,87 1,04 1,22 1,39 0,74 0,92 1,10 1,29 1,47 0,78 0,97 1,16 1,36 1,55 0,82 1,02 1,23 1,43 1,64 0,86 1,08 1,29 1,51 1,72 0,90 1,13 1,36 1,58 1,81 0,95 1,19 1,42 1,66 1,90 0,99 1,24 1,49 1,74 1,99 1,04 1,30 1,56 1,82 2,08 1,09 1,36 1,63 1,90 2,18 1,12 1,40 1,68 1,96 2,23 1,15 1,44 1,72 2,01 2,30 1,18 1,48 1,77 2,07 2,36 1,22 1,52 1,82 2,13 2,43 1,25 1,57 1,88 2,19 2,51 1,29 1,61 1,94 2,26 2,58 1,33 1,67 2,00 2,33 2,67 1,38 1,72 2,07 2,41 2,76 1,43 1,78 2,14 2,49 2,85 1,48 1,85 2,21 2,58 2,95 1,53 1,91 2,30 2,68 3,06

(l/d)0

EUROCODE 2 Background and Applications

Universal table vs. SLS deflection ρ ≤ ρ0

 ρ0  ρ0 l = 11+ 1,5 f + 3,2 f -1   ck ck  ρ  d 0 ρ 

ρ > ρ0

ρ0 1 ρ' l = 11+ 1,5 f + f   ck ck ρ - ρ' 12 ρ0  d 0

Increasing µd the maximum allowed “slenderness” (l/d)0 (so ln /d as k, are given ) decreases: high bending M high curvature high deflection, less slenderness-

3

μu 0,039 0,040 0,050 0,060 0,070 0,080 0,090 0,100 0,103 0,110 0,120 0,130 0,140 0,150 0,160 0,170 0,180 0,187 0,190 0,200 0,210 0,220 0,230 0,240 0,250 0,260 0,270 0,280 0,290 0,296 0,302 0,309 0,316 0,323 0,330 0,338 0,346 0,354 0,362 0,371

ω0 0,040 0,041 0,052 0,062 0,073 0,084 0,095 0,106 0,109 0,117 0,129 0,140 0,152 0,164 0,176 0,189 0,201 0,210 0,214 0,227 0,240 0,253 0,267 0,281 0,295 0,309 0,324 0,339 0,355 0,364 0,374 0,385 0,397 0,409 0,421 0,435 0,449 0,465 0,482 0,499

C16/20 67,8 67,8 67,8 52,9 41,9 34,3 29,1 25,2 24,5 22,4 20,3 18,8 17,7 17,0 16,6 16,2 15,9 15,7 15,6 15,3 15,1 14,9 14,7 14,5 14,3 14,2 14,0 13,9 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,2 13,1 13,0 13,0

C20/25 88,6 92,5 65,0 48,9 38,6 31,7 26,9 23,5 22,8 21,0 19,3 18,1 17,4 17,0 16,6 16,2 15,9 15,7 15,6 15,3 15,1 14,9 14,7 14,5 14,3 14,2 14,0 13,9 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,2 13,1 13,0 13,0

C25/30 90,2 85,6 59,9 44,9 35,5 29,2 25,0 22,0 21,4 19,9 18,6 18,0 17,4 17,0 16,6 16,2 15,9 15,7 15,6 15,3 15,1 14,9 14,7 14,5 14,3 14,2 14,0 13,9 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,2 13,1 13,0 13,0

C30/37 84,5 80,1 55,9 41,9 33,1 27,4 23,5 21,0 20,5 19,4 18,6 18,0 17,4 17,0 16,6 16,2 15,9 15,7 15,6 15,3 15,1 14,9 14,7 14,5 14,3 14,2 14,0 13,9 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,2 13,1 13,0 13,0

C35/45 79,8 75,7 52,7 39,4 31,2 26,0 22,5 20,4 20,0 19,3 18,6 18,0 17,4 17,0 16,6 16,2 15,9 15,7 15,6 15,3 15,1 14,9 14,7 14,5 14,3 14,2 14,0 13,9 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,2 13,1 13,0 13,0

C40/50 75,9 71,9 49,9 37,4 29,7 24,9 21,8 20,2 20,0 19,3 18,6 18,0 17,4 17,0 16,6 16,2 15,9 15,7 15,6 15,3 15,1 14,9 14,7 14,5 14,3 14,2 14,0 13,9 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,2 13,1 13,0 13,0

ξe,QP

EUROCODE 2 Background and Applications

Universal table vs. SLS stress lim.   xe 2 ξe= = α e ρ  1+ - 1   d α ρ e  

For each µd one ξu, many ξe (one for each concrete class) increasing with µd σc = fck ξ e 2

µk

 ξe   1-   3 

σs = fyk

µk f  ξ  ρ yk  1- e  fck  3 

µk = µd/k k>1 Increasing µd σc increases σs decreases.

ξu 0,05 0,05 0,06 0,08 0,09 0,10 0,12 0,13 0,13 0,15 0,16 0,17 0,19 0,20 0,22 0,23 0,25 0,26 0,26 0,28 0,30 0,31 0,33 0,35 0,36 0,38 0,40 0,42 0,44 0,45 0,46 0,48 0,49 0,50 0,52 0,54 0,56 0,57 0,59 0,62

μu 0,039 0,040 0,050 0,060 0,070 0,080 0,090 0,100 0,103 0,110 0,120 0,130 0,140 0,150 0,160 0,170 0,180 0,187 0,190 0,200 0,210 0,220 0,230 0,240 0,250 0,260 0,270 0,280 0,290 0,296 0,302 0,309 0,316 0,323 0,330 0,338 0,346 0,354 0,362 0,371

ω0 0,040 0,041 0,052 0,062 0,073 0,084 0,095 0,106 0,109 0,117 0,129 0,140 0,152 0,164 0,176 0,189 0,201 0,210 0,214 0,227 0,240 0,253 0,267 0,281 0,295 0,309 0,324 0,339 0,355 0,364 0,374 0,385 0,397 0,409 0,421 0,435 0,449 0,465 0,482 0,499

C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 σ c/fck σ s/fyk 0,21 0,20 0,21 0,23 0,24 0,25 100% 100% 0,21 0,20 0,22 0,23 0,24 0,25 102% 100% 0,21 0,22 0,24 0,25 0,27 0,28 116% 100% 0,22 0,24 0,26 0,28 0,29 0,30 129% 100% 0,24 0,26 0,28 0,29 0,31 0,32 142% 101% 0,25 0,27 0,29 0,31 0,33 0,34 154% 101% 0,27 0,29 0,31 0,33 0,34 0,36 166% 101% 0,28 0,30 0,32 0,34 0,36 0,37 177% 100% 0,28 0,30 0,33 0,35 0,36 0,38 179% 100% 0,29 0,31 0,34 0,36 0,37 0,39 187% 100% 0,30 0,33 0,35 0,37 0,39 0,40 198% 100% 0,31 0,34 0,36 0,38 0,40 0,41 208% 100% 0,33 0,35 0,37 0,39 0,41 0,43 218% 100% 0,34 0,36 0,38 0,41 0,42 0,44 228% 100% 0,34 0,37 0,39 0,42 0,43 0,45 238% 99% 0,35 0,38 0,40 0,43 0,44 0,46 247% 99% 0,36 0,39 0,41 0,44 0,46 0,47 257% 99% 0,37 0,40 0,42 0,44 0,46 0,48 263% 98% 0,37 0,40 0,42 0,45 0,46 0,48 266% 98% 0,38 0,41 0,43 0,46 0,47 0,49 275% 98% 0,39 0,42 0,44 0,46 0,48 0,50 284% 97% 0,40 0,42 0,45 0,47 0,49 0,51 292% 97% 0,40 0,43 0,46 0,48 0,50 0,52 301% 97% 0,41 0,44 0,47 0,49 0,51 0,53 310% 96% 0,42 0,45 0,48 0,50 0,52 0,54 318% 96% 0,43 0,46 0,48 0,51 0,53 0,54 326% 95% 0,43 0,46 0,49 0,51 0,53 0,55 335% 94% 0,44 0,47 0,50 0,52 0,54 0,56 343% 94% 0,45 0,48 0,51 0,53 0,55 0,57 351% 93% 0,45 0,48 0,51 0,53 0,55 0,57 356% 93% 0,46 0,49 0,52 0,54 0,56 0,58 360% 92% 0,46 0,49 0,52 0,54 0,56 0,58 366% 92% 0,47 0,50 0,52 0,55 0,57 0,59 371% 91% 0,47 0,50 0,53 0,55 0,57 0,59 376% 91% 0,48 0,51 0,54 0,56 0,58 0,60 382% 90% 0,48 0,51 0,54 0,56 0,58 0,60 388% 90% 0,49 0,52 0,55 0,57 0,59 0,61 394% 89% 0,49 0,52 0,55 0,58 0,60 0,61 400% 88% 0,50 0,53 0,56 0,58 0,60 0,62 406% 88% 0,50 0,53 0,56 0,59 0,61 0,63 412% 87% C15/20 C20/25 C25/30 C28/35 C32/40 C35/45 σ c/fck σ s/fyk

EUROCODE 2

Stress increase/decrease

Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

 xe  bd-  3   MEd = 0,810 b x u fcd ( d - 0,416x u ) σc xe MEk = 2

σc x = 1,08 ⋅ u fck xe

14

 xe  MEk = σ s A s  d -   3  MEd = A s fyd ( d - 0,416x u )

 d - 0,416 x u  MEk ξU = 1,08 ⋅ ⋅  d 0,333x ξE e   MEd

σs 1  d - 0,416x u =  fyk 1,15  d - 0,333x e

 1- 0,416 ξU ⋅  1- 0,333 ξE

 MEk MEk = k ⋅ ⋅  σc M MEd Ed 

 MEk  1- 0,416 ξu  MEk MEk ⋅ = 0,87 ⋅ = k ⋅    σs M 10,333 M MEd ξ e  Ed  Ed 

C20/25

EUROCODE 2 Background andApplications

 1- 0,416 ξU  MEk MEk ⋅ ⋅ = k ⋅  σc MEd  1- 0,333 ξE  MEd  1- 0,416 ξu  MEk σs MEk = 0,87  ⋅ = k ⋅  σs fyk 10,333 ξ M MEd e  Ed 

σc ξ = 1,08 U ξE fck

For each µd a single ξu but one ξe for each concrete class one kσc increasing with µd one k σs decreasing with µd for each concrete class

C25/30

C30/37

C35/45

C40/50

μu 0,006 0,010 0,020 0,030 0,039 0,040 0,050 0,060 0,070 0,080 0,090 0,100 0,103 0,110 0,120

kσc 0,04 0,07 0,14 0,21 0,27 0,29 0,33 0,36 0,40 0,43 0,46 0,49 0,50 0,52 0,55

kσs 0,93 0,93 0,92 0,92 0,91 0,91 0,91 0,92 0,92 0,92 0,92 0,91 0,91 0,91 0,91

kσc 0,04 0,07 0,14 0,21 0,26 0,27 0,30 0,34 0,37 0,40 0,43 0,46 0,47 0,49 0,52

kσs 0,93 0,93 0,92 0,92 0,92 0,92 0,92 0,92 0,92 0,92 0,92 0,92 0,92 0,92 0,92

kσc 0,04 0,07 0,14 0,20 0,25 0,25 0,29 0,32 0,35 0,38 0,41 0,44 0,45 0,47 0,50

kσs 0,93 0,93 0,92 0,92 0,92 0,92 0,92 0,93 0,93 0,93 0,93 0,93 0,93 0,93 0,93

kσc 0,04 0,07 0,14 0,20 0,24 0,24 0,28 0,31 0,34 0,37 0,40 0,42 0,43 0,45 0,48

kσs 0,93 0,93 0,93 0,92 0,93 0,93 0,93 0,93 0,93 0,93 0,93 0,93 0,93 0,93 0,93

kσc 0,04 0,07 0,13 0,19 0,23 0,23 0,27 0,30 0,33 0,36 0,38 0,41 0,42 0,44 0,46

kσs 0,94 0,93 0,93 0,92 0,93 0,93 0,93 0,94 0,94 0,94 0,94 0,94 0,94 0,94 0,94

0,130 0,140 0,150 0,160 0,170 0,180 0,187 0,190 0,200 0,210 0,220 0,230 0,240 0,250 0,260 0,270 0,280 0,290 0,296 0,302 0,309 0,316 0,323 0,330 0,338 0,346 0,354 0,362 0,371

0,58 0,61 0,63 0,66 0,69 0,71 0,73 0,74 0,76 0,78 0,81 0,83 0,85 0,88 0,90 0,92 0,94 0,96 0,98 0,99 1,00 1,02 1,03 1,05 1,06 1,08 1,09 1,11 1,13

0,91 0,91 0,90 0,90 0,90 0,90 0,89 0,89 0,89 0,88 0,88 0,88 0,87 0,87 0,86 0,86 0,85 0,85 0,84 0,84 0,83 0,83 0,82 0,82 0,81 0,81 0,80 0,79 0,79

0,55 0,57 0,60 0,62 0,65 0,67 0,69 0,70 0,72 0,74 0,77 0,79 0,81 0,83 0,86 0,88 0,90 0,92 0,93 0,95 0,96 0,97 0,99 1,00 1,02 1,03 1,05 1,06 1,08

0,92 0,92 0,91 0,91 0,91 0,90 0,90 0,90 0,90 0,89 0,89 0,89 0,88 0,88 0,87 0,87 0,86 0,86 0,85 0,85 0,84 0,84 0,83 0,83 0,82 0,82 0,81 0,80 0,80

0,52 0,55 0,57 0,60 0,62 0,64 0,66 0,67 0,69 0,71 0,74 0,76 0,78 0,80 0,82 0,85 0,87 0,89 0,90 0,91 0,93 0,94 0,95 0,97 0,98 1,00 1,01 1,03 1,05

0,92 0,92 0,92 0,92 0,92 0,91 0,91 0,91 0,91 0,90 0,90 0,89 0,89 0,88 0,88 0,87 0,87 0,86 0,86 0,86 0,85 0,85 0,84 0,84 0,83 0,83 0,82 0,81 0,80

0,50 0,53 0,55 0,58 0,60 0,62 0,64 0,65 0,67 0,69 0,71 0,74 0,76 0,78 0,80 0,82 0,84 0,86 0,87 0,89 0,90 0,91 0,93 0,94 0,96 0,97 0,99 1,00 1,02

0,93 0,93 0,93 0,92 0,92 0,92 0,92 0,92 0,91 0,91 0,91 0,90 0,90 0,89 0,89 0,88 0,88 0,87 0,87 0,86 0,86 0,85 0,85 0,84 0,84 0,83 0,83 0,82 0,81

0,49 0,51 0,54 0,56 0,58 0,61 0,62 0,63 0,65 0,67 0,69 0,72 0,74 0,76 0,78 0,80 0,82 0,84 0,85 0,87 0,88 0,89 0,91 0,92 0,94 0,95 0,97 0,98 1,00

0,94 0,93 0,93 0,93 0,93 0,93 0,92 0,92 0,92 0,92 0,91 0,91 0,90 0,90 0,89 0,89 0,88 0,88 0,87 0,87 0,86 0,86 0,86 0,85 0,84 0,84 0,83 0,82 0,82

MEk/MEd range of values

EUROCODE 2 Background and Applications

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

16

In case of linear elastic analysis 1+ ψ

2

Qk G

(l eff / k) MEk (G + ψ Qk ) = = 2 MEd (1,35 G + 1,50 Qk ) (l eff / k) 1,35 + 1,50 Qk G γg =

γQ =

1,35

ψ =ψ 2 for QP

ψ = 1 for CA

1,50 MEk /MEd for Qk/Gk

LC

QP

CA ULS

ψ 0 0,2 0,3 0,6 0,8 1

0,05 0,70 0,71 0,71 0,72 0,73 0,74 1,00

0,1 0,67 0,68 0,69 0,71 0,72 0,73 1,00

MEk,QP/MEd MEk,CA/MEd

0,2 0,61 0,63 0,64 0,68 0,70 0,73 1,00

0,33 0,54 0,58 0,60 0,65 0,69 0,72 1,00

0,4 0,51 0,55 0,57 0,64 0,68 0,72 1,00

0,5 0,48 0,52 0,55 0,62 0,67 0,71 1,00

0,75 0,40 0,46 0,49 0,59 0,65 0,71 1,00

1 0,35 0,42 0,46 0,56 0,63 0,70 1,00

1,5 0,28 0,36 0,40 0,53 0,61 0,69 1,00

2 0,23 0,32 0,37 0,51 0,60 0,69 1,00

4 0,14 0,24 0,30 0,46 0,57 0,68 1,00

large variation f(Qk/G) , max 0,73 limited variation around 0,70

10 0,06 0,18 0,24 0,43 0,55 0,67 1,00

EUROCODE 2 Background and Applications

SLS - Mek,QP/Med vs. µd

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

17

MEkQP/MEd and (l/d)0 for concrete class

QP comb. MEk,QP σc = k σc ⋅ = 0,45 fck MEd ⇓ MEk,QP 0,45 = MEd k σc

Only Mek,QP/Med O 0,73 are possible! Use the table for the choice of a suitable µd!

μu 0,150 0,160 0,170 0,180 0,187 0,190 0,200 0,210 0,220 0,230 0,240 0,250 0,260 0,270 0,280 0,290 0,296 0,302 0,309 0,316 0,323 0,330 0,338 0,346 0,354 0,362 0,371

C20/25 MEkQP/MEd (l/d)0 0,71 17,0 0,68 16,6 0,66 16,2 0,63 15,9 0,62 15,7 0,61 15,6 0,59 15,3 0,57 15,1 0,56 14,9 0,54 14,7 0,53 14,5 0,51 14,3 0,50 14,2 0,49 14,0 0,48 13,9 0,47 13,8 0,46 13,7 0,45 13,6 0,45 13,5 0,44 13,5 0,44 13,4 0,43 13,3 0,42 13,2 0,42 13,2 0,41 13,1 0,41 13,0 0,40 13,0

C25/30 MEkQP/MEd (l/d)0 0,72 0,69 0,67 0,65 0,65 0,62 0,60 0,59 0,57 0,55 0,54 0,53 0,51 0,50 0,49 0,48 0,48 0,47 0,46 0,46 0,45 0,44 0,44 0,43 0,42 0,42

16,6 16,2 15,9 15,7 15,6 15,3 15,1 14,9 14,7 14,5 14,3 14,2 14,0 13,9 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,2 13,1 13,0 13,0

C30/37 MEkQP/MEd (l/d)0

0,72 0,70 0,68 0,67 0,65 0,63 0,61 0,59 0,58 0,56 0,55 0,53 0,52 0,51 0,50 0,49 0,49 0,48 0,47 0,46 0,46 0,45 0,44 0,44 0,43

16,2 15,9 15,7 15,6 15,3 15,1 14,9 14,7 14,5 14,3 14,2 14,0 13,9 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,2 13,1 13,0 13,0

C35/45 MEkQP/MEd (l/d)0

0,72 0,70 0,70 0,67 0,65 0,63 0,61 0,59 0,58 0,56 0,55 0,53 0,52 0,51 0,51 0,50 0,49 0,48 0,48 0,47 0,46 0,46 0,45 0,44

15,7 15,6 15,3 15,1 14,9 14,7 14,5 14,3 14,2 14,0 13,9 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,2 13,1 13,0 13,0

C40/50 MEkQP/MEd (l/d)0

0,72 0,72 0,69 0,67 0,65 0,63 0,61 0,59 0,58 0,56 0,55 0,53 0,53 0,52 0,51 0,50 0,50 0,49 0,48 0,47 0,46 0,46 0,45

15,7 15,6 15,3 15,1 14,9 14,7 14,5 14,3 14,2 14,0 13,9 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,2 13,1 13,0 13,0

Expanded ULS universal table

EUROCODE 2 Background and Applications

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

18

MEkQP/Med, ρ and (l/d)0 for concrete class ε [‰] 13,8 12,6 11,5 10,6 10,0 9,8 9,0 8,3 7,7 7,1 6,6 6,1 5,7 5,2 4,8 4,5 4,3 4,1 3,9 3,6 3,4 3,2 3,0 2,8 2,6 2,4 2,2

ξu 0,20 0,22 0,23 0,25 0,26 0,26 0,28 0,30 0,31 0,33 0,35 0,36 0,38 0,40 0,42 0,44 0,45 0,46 0,48 0,49 0,50 0,52 0,54 0,56 0,57 0,59 0,62

ζu 0,92 0,91 0,90 0,90 0,89 0,89 0,88 0,88 0,87 0,86 0,86 0,85 0,84 0,83 0,83 0,82 0,81 0,81 0,80 0,80 0,79 0,78 0,78 0,77 0,76 0,75 0,74

μu 0,150 0,160 0,170 0,180 0,187 0,190 0,200 0,210 0,220 0,230 0,240 0,250 0,260 0,270 0,280 0,290 0,296 0,302 0,309 0,316 0,323 0,330 0,338 0,346 0,354 0,362 0,371

ω0 0,164 0,176 0,189 0,201 0,210 0,214 0,227 0,240 0,253 0,267 0,281 0,295 0,309 0,324 0,339 0,355 0,364 0,374 0,385 0,397 0,409 0,421 0,435 0,449 0,465 0,482 0,499

δ 'lim % 7,7 8,2 8,8 9,4 9,8 10,0 10,6 11,2 11,8 12,5 13,1 13,8 14,5 15,2 15,9 16,6 17,1 17,5 18,0 18,6 19,1 19,7 20,4 21,0 21,8 22,5 23,4

MEkQP/MEd 0,71 0,68 0,66 0,63 0,62 0,61 0,59 0,57 0,56 0,54 0,53 0,51 0,50 0,49 0,48 0,47 0,46 0,45 0,45 0,44 0,44 0,43 0,42 0,42 0,41 0,41 0,40

C20/25 ρ [%] 0,50 0,54 0,58 0,62 0,64 0,66 0,69 0,74 0,78 0,82 0,86 0,90 0,95 0,99 1,04 1,09 1,12 1,15 1,18 1,22 1,25 1,29 1,33 1,38 1,43 1,48 1,53

(l/d)0 17,0 16,6 16,2 15,9 15,7 15,6 15,3 15,1 14,9 14,7 14,5 14,3 14,2 14,0 13,9 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,2 13,1 13,0 13,0

MEkQP/MEd

C25/30 ρ [%]

(l/d)0

MEkQP/MEd

C30/37 ρ [%]

(l/d)0

MEkQP/MEd

C35/45 ρ [%]

(l/d)0

MEkQP/MEd

C40/50 ρ [%]

(l/d)0

0,72 0,69 0,67 0,65 0,65 0,62 0,60 0,59 0,57 0,55 0,54 0,53 0,51 0,50 0,49 0,48 0,48 0,47 0,46 0,46 0,45 0,44 0,44 0,43 0,42 0,42

0,68 0,72 0,77 0,81 0,82 0,87 0,92 0,97 1,02 1,08 1,13 1,19 1,24 1,30 1,36 1,40 1,44 1,48 1,52 1,57 1,61 1,67 1,72 1,78 1,85 1,91

16,6 16,2 15,9 15,7 15,6 15,3 15,1 14,9 14,7 14,5 14,3 14,2 14,0 13,9 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,2 13,1 13,0 13,0

0,72 0,70 0,68 0,67 0,65 0,63 0,61 0,59 0,58 0,56 0,55 0,53 0,52 0,51 0,50 0,49 0,49 0,48 0,47 0,46 0,46 0,45 0,44 0,44 0,43

0,87 0,92 0,97 0,98 1,04 1,10 1,16 1,23 1,29 1,36 1,42 1,49 1,56 1,63 1,68 1,72 1,77 1,82 1,88 1,94 2,00 2,07 2,14 2,21 2,30

16,2 15,9 15,7 15,6 15,3 15,1 14,9 14,7 14,5 14,3 14,2 14,0 13,9 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,2 13,1 13,0 13,0

0,72 0,70 0,70 0,67 0,65 0,63 0,61 0,59 0,58 0,56 0,55 0,53 0,52 0,51 0,51 0,50 0,49 0,48 0,48 0,47 0,46 0,46 0,45 0,44

1,08 1,13 1,15 1,22 1,29 1,36 1,43 1,51 1,58 1,66 1,74 1,82 1,90 1,96 2,01 2,07 2,13 2,19 2,26 2,33 2,41 2,49 2,58 2,68

15,7 15,6 15,3 15,1 14,9 14,7 14,5 14,3 14,2 14,0 13,9 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,2 13,1 13,0 13,0

0,72 0,72 0,69 0,67 0,65 0,63 0,61 0,59 0,58 0,56 0,55 0,53 0,53 0,52 0,51 0,50 0,50 0,49 0,48 0,47 0,46 0,46 0,45

1,29 1,31 1,39 1,47 1,55 1,64 1,72 1,81 1,90 1,99 2,08 2,18 2,23 2,30 2,36 2,43 2,51 2,58 2,67 2,76 2,85 2,95 3,06

15,7 15,6 15,3 15,1 14,9 14,7 14,5 14,3 14,2 14,0 13,9 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,2 13,1 13,0 13,0

Fast design – verification of single and double reinforced beams

EUROCODE 2

Cont. beam - ULS section design

Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

19

For each beam of a continuous beam 1) Calculate G and Qk on the basis of tributary area 2) Estimate MEk,QP and MEd on the basis of ln 3) Enter design table with MEk,QP/ MEd for the selected concrete class 4) Identify µd,i and (l/d)0 : adopt µd,i =min (µd,i ; 0,296) 5) Identify the “ geometry leading” beam by calculating µd =

M Ed b d 2 fc d ⇓

m a x (b d ) = 2

1 fc d

 M E d ,i m ax   µ  d ,i

  

EUROCODE 2

Axis A and B beams

Background and Applications

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

γc

fck N/mm

fcd

2

25

2

N/mm N/mm

1,5

γc

fyk 2

fyd N/mm

16,7

500

1,15

435

2

φst

φl

d'

mm

mm

mm

mm

30

8

16

46

g1

g2

qk

K

lta

ln

l0

bw

b eff

[m]

-

[m]

[m]

[m]

[m]

[m]

B1-B2

6

1,3

8,91

4,62

5,1

0,25

1,02

3,08

3

B2-B3

6

1,5

8,91

4,00

4,2

0,25

0,84

3,08

B3-B4

6

1,5

3,42

4,00

4,2

0,25

0,84

B4-B5

6

1,5

8,91

4,00

4,2

0,25

B5-B6

6

1,3

8,91

4,62

5,1

leff

K

lta

ln

l0

Beam

ψ2

c nom

leff

Beam

20

0,30

G=(g 1+g 2) ∙lta Q=q k∙lc

[kN/m 2] [kN/m 2] [kN/m 2]

G+ψ 2Q

1,3G+1,5Q

MEK,QP

MEd

MEK,QP/MEd

[kN/m]

[kN/m]

[kN/m]

[kN/m]

[kNm]

[kNm]

-

2

54,2

17,8

59,5

97,2

158,5

258,7

0,61

3

2

54,2

17,8

59,5

97,2

119,0

194,3

0,61

3,42

3

4

22,0

13,7

26,1

49,1

52,1

98,1

0,53

0,84

3,08

3

2

54,2

17,8

59,5

97,2

119,0

194,3

0,61

0,25

1,02

3,08

3

2

54,2

17,8

59,5

97,2

158,5

258,7

0,61

bw

b eff

g1

G+ψ 2Q

1,3G+1,5Q

MEK,QP

MEd

MEK,QP/MEd

g2 2

qk 2

[m]

-

[m]

[m]

[m]

[m]

[m]

[kN/m ] [kN/m ] [kN/m

A1-A2

6

1,3

2,75

4,62

5,1

0,25

0,76

3,08

5,91

A2-A3

6

1,5

2,75

4,00

4,2

0,25

0,67

3,08

A3-A4

6

1,5

1,89

4,00

4,2

0,25

0,67

A4-A5

6

1,5

2,75

4,00

4,2

0,25

A5-A6

6

1,3

2,75

4,62

5,1

0,25

G=(g 1+g 2) ∙lta Q=q k∙lc 2

[kN/m]

[kN/m]

[kN/m]

[kN/m]

[kNm]

[kNm]

-

2

24,7

5,5

26,4

40,4

70,2

107,5

0,65

5,91

2

24,7

5,5

26,4

40,4

52,7

80,8

0,65

3,08

7,23

2

19,5

3,8

20,6

31,0

41,3

62,0

0,67

0,67

3,08

5,91

2

24,7

5,5

26,4

40,4

52,7

80,8

0,65

0,76

3,08

5,91

2

24,7

5,5

26,4

40,4

70,2

107,5

0,65

EUROCODE 2 Background and Applications

Axis B and A beams - cont.d

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

21

from design table Beam MEK,QP/MEd (l/d) 0

s

-

d min

µd

MEd /(µ d f c d ) b min

bfin

d

h

hfin

dfin

[m]

[m]

[m]

[m]

[m]

[m]

[m]

µd

B1-B2

0,61

14,9

1,0

0,31

0,220

71

0,74

0,60

0,34

0,39

0,40

0,35

0,206

B2-B3

0,61

14,9

1,0

0,27

0,220

53

0,74

0,60

0,30

0,34

0,40

0,35

0,155

B3-B4

0,53

14,0

1,0

0,29

0,270

22

0,27

0,60

0,19

0,24

0,40

0,35

0,078

B4-B5

0,61

14,9

1,0

0,27

0,220

53

0,74

0,60

0,30

0,34

0,40

0,35

0,155

B5-B6

0,61

14,9

1,0

0,31

0,220

71

0,74

0,60

0,34

0,39

0,40

0,35

0,206

s

dmin

μd

MEd/(μdfcd) b min

bfin

d

h

hfin

dfin

µd

[m]

[m]

[m]

[m]

[m]

[m]

Beam MEK,QP/MEd (l/d)0 -

[m]

A1-A2

0,65

15,3

1,0

0,30

0,200

32

0,35

0,50

0,25

0,30

0,40

0,35

0,103

A2-A3

0,65

15,3

1,0

0,26

0,200

24

0,35

0,50

0,22

0,27

0,40

0,35

0,077

A3-A4

0,67

15,6

1,0

0,26

0,190

20

0,30

0,50

0,20

0,24

0,40

0,35

0,059

A4-A5

0,65

15,3

1,0

0,26

0,200

24

0,35

0,50

0,22

0,27

0,40

0,35

0,077

A5-A6

0,65

15,3

1,0

0,30

0,200

32

0,35

0,50

0,25

0,30

0,40

0,35

0,103

d m in =

ln s (l/d ) o

 M E d,i b m in =   µ f  d ,i cd

 1  2  d m in

µ d ,i = c o n st ⇒ b m in d m2 in = b f in d 2

EUROCODE 2 Background and Applications

Axis B and A beams – cont.d

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

Beam

MEd

MEK,QP/MEd (l/d)0

s

µd

[kNm]

-

B1-B2

258,7

0,61

14,9

1,0

0,220

B2-B3

194,3

0,61

14,9

1,0

B3-B4

98,1

0,53

14,0

B4-B5

194,3

0,61

B5-B6

258,7

0,61

Beam

MEd

MEd /(µ d f c d ) bfin

hfin

22

dfin

µd

ω

ρ

As

(l/d) 0

kσc

σc/fck

2

[m]

[m]

[m]

71

0,60

0,40

0,35

0,206 0,235

0,90%

1910

15,2

0,73

0,45

0,220

53

0,60

0,40

0,35

0,155 0,170

0,65%

1382

16,8

0,61

0,37

1,0

0,270

22

0,60

0,40

0,35

0,078 0,082

0,31%

664

23,0

0,40

0,21

14,9

1,0

0,220

53

0,60

0,40

0,35

0,155 0,170

0,65%

1382

16,8

0,61

0,37

14,9

1,0

0,220

71

0,60

0,40

0,35

0,206 0,235

0,90%

1910

15,2

0,73

0,45

s

μd

MEd/(μdfcd) bfin

hfin

dfin

ρ

As

(l/d) 0

kσc

σc/fck

MEK,QP/MEd (l/d)0

[kNm]

-

A1-A2

107,5

0,65

15,3

1,0

0,200

A2-A3

80,8

0,65

15,3

1,0

A3-A4

62,0

0,67

15,6

A4-A5

80,8

0,65

A5-A6

107,5

0,65

mm

µd

ω

2

[m]

[m]

[m]

32

0,50

0,40

0,35

0,103 0,109

0,42%

739

20,0

0,47

0,31

0,200

24

0,50

0,40

0,35

0,077 0,081

0,31%

546

23,1

0,41

0,27

1,0

0,190

20

0,50

0,40

0,35

0,059 0,061

0,23%

415

27,0

0,34

0,23

15,3

1,0

0,200

24

0,50

0,40

0,35

0,077 0,081

0,31%

546

23,1

0,41

0,27

15,3

1,0

0,200

32

0,50

0,40

0,35

0,103 0,109

0,42%

739

20,0

0,47

0,31

mm

“Green light” everywhere If (l/d)0 is not verified: take account of steel in compression

EUROCODE 2 Background and Applications

Conclusions

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

Simple method (one table), consistent and coherent driving engineers to comprehensive evaluation of section geometry by proper choice of SLU design parameters while taking into account relevant SLS. No wasted time, no “trial and error” approach. Easy to be implemented in spreadsheets and computer programs.

23

EUROCODE 2 Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

24

Conceptual design – Beams Thanks for your attention!

Francesco Biasioli Giuseppe Mancini Dipartimento di Ingegneria Strutturale e Geotecnica Politecnico di Torino – Italy e-mail: [email protected]

EUROCODE 2 Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

1

EC2 worked example Conceptual design Columns Francesco Biasioli Giuseppe Mancini Dipartimento di Ingegneria Strutturale e Geotecnica Politecnico di Torino – Italy e-mail: [email protected]

EUROCODE 2

Column B2 tributary area by Auto-ca, for Autocad™

Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

2

www.auto-ca.it

Objective: define column area and (minimum) size

EUROCODE 2

Global 2nd order effects

Background and Applications

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

3

EC2.5.8.3.3 In buildings with sufficiente torsional stiffness (defined later) 2nd order global effects may be ignored if : FV,Ed

ns ≤ k1 ns +1,6

∑E

cdIc

L2

ns = number of (real of “equivalent”) storeys free of moving FV,ed = total weight of these storeys, increasing of the same amount per storey : FV,ed ≈ ns As (1,3G+1,5Qk) K1 = 0,31(cracked) 0,62 (uncracked) sections at ULS Ic = inertia of bracing members (uncracked concrete section) Ecd = Ecm/1,20 elasticity modulus of (vertical) bracing elements

EUROCODE 2 Global second effects design formula Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

3,87 (1,3 G + 1,5 Qk )A s ( ns + 1,6 ) L2 Ecm 3,87 = 1,20/0,31; if uncracked, use 3,87/2 = 1,94 Units: L [m] As [m2] Ic [m4] G, Qk [kN/m2 ] Ecm [kN/m2 ] = 103 Ecm [N/mm2] Σ Ic ≥

Example : flat slab h = 0,24 cm ns = 6 L = 19 m As = 30x 14,25 = 427,5 m2 G = 0,24x25+3,0+ 8x2x(30+14,25)/427,5=10,66 kN/m2 Q = (5x2+0x1,7)/6 = 1,66 kN/m2 snow ψ2= 0 Ecm (C30/37) = 33 x 106 kN/m2

Σ Ic ≥

3,87 2 4 (1,3x10,66 +1,5 x1.66 ) 427,5 6+1,6 19 =2,25 m ( ) 33x106

1 (1,8x3,63 -1,6x3,23 )=2,62 > 2,25 m4 OK 12 2 Iy = (0,2x23 )+ 0,413=0,68 < 2,25 m4 NO 12

Ix =

4

EUROCODE 2 Background and Applications

(ν,µ) interaction diagram

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

5

EUROCODE 2 Background and Applications

Single B2 column design

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

6

G1 = 0,24x25= 6 kN/m2 G2 = 3 kN/m2 (dwellings + office) Qk = 3,0 (dwel); 4,0 (offi); 2,5 (park);1,7 (snow) kN/m2 NEd = 58,3x[1,35x(6x(6+3)+1x6))+1,50x(5x3+1x4+1x0,70x2,5+0x1,70)]= = 58,3x[81,0+31,13] =6537 kN + self weight

Geometric imperfections and 2nd order have to be taken into account; bending moments mainly due to horizontal actions (wind) resisted by the bracing system Nmax related to min M: ν = 1 + ω = 1,10 assuming ω = 0,10 (ν = n in EC2) NEd ν= = 1,10 A c fcd

fcd = 20N/mm2

A c =6537 x103 /(1,10x20) x10−6 = 0,30 m2

EUROCODE 2

Columns 2nd order effects

Background and Applications

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

7

Column B2 - foundation level At = 58,3 m2 λ=

l0 imin

≥λlim

λlim = 20

ABC ν

NEd ν= A c fcd A=

1 1 + 0,2ϕEF

B = 1 + 2ω

C = 1,7 −

M01 M02

|M02| ≥ |M01|

EC2 Default values: A = 0,7 (φEF = 2) B = 1,1 ( ω = 0,1) C = 0,7 for buildings with insufficient bracing elements

EUROCODE 2 Background and Applications

Columns – 2nd order effects

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

8

Column B2 - foundation level At = 58,3 m2 0,7⋅1,1⋅ 0,7 10,8 λlim = 20 = ν ν

Column (0,50x0,50) m

ν =1,10

λlim =10,3

Ac = (0,50x0,50) = 0,25 < 0,30 m2

EUROCODE 2 Background and Applications

Torsional rigidity

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

9

Asymmetry of wind loading causes dangerous torsional effects: torsional rigidity should always to be looked at. EC8 rules to verify if the plane distribution of bracing elements is correct («regularity in plan») Horizonatal forces (wind, earthquake) resultant is applied at a given point in (x,y) direction The intersection of (x,y) directions identify the conventional «center of masses» CM. In case of an earthquake, CM is the centroid of masses.

EUROCODE 2 Background and Applications

Torsional rigidity

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

EC2 Appendix I : shear walls simplified action distribution.

Horizontal forces transferred to cores by rigid plane behaviour.

10

EUROCODE 2 Background and Applications

Lateral stiffness

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

Shear type

11

Bending type.

Interaction beetween frames, cores and walls Columns in frames are retained by walls at lower levesl and retain walls at upper levels

EUROCODE 2 Background and Applications

Lateral stiffness

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

12

MMM - Modified Muto Model (including shear flexibility) Columns + beams subframe

βin Ecm A 1 kx,y = l   2  l α   + 2 βint (1+ν)    ρy,x     ns 1 1 columns: α = ; cores, walls: α = ns =n. storeys 12  3  3K1 1  4K1+ 3K2 + 3K3 

EUROCODE 2

Lateral stiffness

Background and Applications

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

13

LATERAL GLOBALSTIFFNESSES

K X = Σk xi STIFNESSES CENTER

xCR =

Σk yi xi Ky

K Y = Σk yi

Σk xi y i y CR = Kx

TORSIONAL STIFFNESS

KT = Σ kyi (xi - xCR)2 + Σ kxi (yi - yCR)2

EUROCODE 2 Background and Applications

Lateral stiffness

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

e 0x = xCR - x CM

14

e 0y = y CR - y CM

“Torsional” radius

KT rX = Kx

KT rY = KY

EC8: the bracing system is «torsionally rigid» if: e0X / rx ≤ 0,30

e0y / ry ≤ 0,30

EUROCODE 2

Ellypsis of stiffnesses

Background and Applications

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

2

2

15

2

2

x y x y + 2 = 2 + 2 =1 2 a b rx ry STIFFNESSES’ VARIATION AROUND CR

EUROCODE 2 Background and Applications

Ellypsis of stiffnesses

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

16

CORES AND WALLS ONLY («PRIMARY ELEMENTS»)

www.auto-ca.it

EUROCODE 2 Background and Applications

Ellypsis of stiffnesses

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

17

CORES, WALLS AND COLUMNS («SECONDARY ELEMENTS»)

www.auto-ca.it

EUROCODE 2 Background and Applications

Conclusions

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

1. Column sizes and area easily identified 2. For global horizontal forces in x,y direction, minimum shear wall area may be determined on the basis of the variable truss method with truss inclination of 45°. (N,V) interaction should be taken into account

3. The “ellypsis of stifnesses” allows the visual control of spatial distribution of shear walls and cores in plan and identifies critrical elements

18

EUROCODE 2 Background and Applications

The engineers’ tolbox

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

19

EUROCODE 2 Background and Applications

The engineers’ tolbox

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

20

EUROCODE 2 Background and Applications

The engineers’ tolbox

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

21

EUROCODE 2 Background and Applications

The engineer’s toolbox

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

22

EC based design software - commercial COMMERCIAL SOFTWARE Name SCIA Engineer FRILO BetonExpress, Fedra.. STAAD Dolmen Win Fedra, Frame2D PowerConnect/Frame AxisVM Midas Robot Straus 7 SOFiStik suite 1-2 Build, Diamonds Advance Matrixframe Sap2000 Winstrand SAM Bridge design 3muri MatrixFrame AmQuake GSA Suite Jasp Tekla Structures EC6design GEO RCCe11/21/41 RING Stainless steel Timbersizer

Eurocodes SW House Count. Lan 2 3 4 5 6 7 8 Nemetschek D Y x x x x x x x Nemetschek D Y x x x x x x x Runet NO Y x x x x x x Bentley USA/UK Y x x x x x x CDM Dolmen IT N x x x x x Runet NO Y x x x x x BuildSoft BE Y x x x x x AxisVM H Y x x x x Midas ROK Y x x x x Autodesk USA Y x x x G + D Computing AU/UK Y x x x x SOFiStik D Y x x x x BuildSoft BE Y x x x Graitec UK Y x x x Matrix Software NL Y x x CSI USA Y x x Enexsys IT Y x x Bestech UK Y x x x S.T.A. Data IT Y x x x Matrix Software NL Y x x AmQuake CZ Y x x Oasys UK Y x x IngegneriaNet IT N x x Teckla FIN Y x x DTI - Danish Techn. DK Y x LimitState UK Y x Reinf. Con. Counc. UK Y x LimitState UK Y x Steel const. Inst. GB Y x Trada GB Y x

9 x

x

x x

Tot Ecs 8 7 6 6 5 5 5 4 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2 1 1 1 1 1 1

Link www.scia-online.com www.frilo.com www.runet-software.com www.bentley.com www.cdmdolmen.it www.runet-software.com www.buildsoft.eu www.axisvm.eu www.cspfea.net/midas_gen.html usa.autodesk.com www.strand7.com/ www.sofistik.com www.buildsoft.eu www.graitec.co.uk www.matrix-software.com www.csiberkeley.com/sap2000 www.enexsys.com www.lrfdsoftware.com www.3muri.com www.matrix-software.com www.amquake.eu www.oasys-software.com www.ingegnerianet.it www.tekla.com www.ec6design.com www.limitstate.com www.civl.port.ac.uk/rcc2000 www.limitstate.com www.steel-stainless.org/software/ www.trada.co.uk

The engineer’s toolbox

EUROCODE 2 Background and Applications

Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

23

EC based design software - free SW House Masterseries Prof. P Gelfi Freelem IngegneriaNet Tracon APIS ArcelorMittal DTI - Danish Techn. Reinf. Con. Counc. The steel const. Inst. Trada

Count. Lan 2 UK Y x IT N x FR N IT N x IT x x UK Y x L Y DK Y UK y x GB y GB y

3 x x x

4

Eurocodes 5 6 7 x

8

x

x x x

x x x x

9 Tot 3 3 3 2 1 1 1 1 1 1 1

Link www.masterseries.co.uk dicata.ing.unibs.it/gelfi www.freelem.com www.ingegnerianet.it www.cdmdolmen.it www.apiscalcs.com www.arcelormittal.com/sections www.ec6design.com www.civl.port.ac.uk/rcc2000 www.steel-stainless.org/software www.trada.co.uk

EUROCODE 2 Background and Applications Dissemination of information for training – Brussels, 20-21 October 2011 – F: Biasioli – G: Mancini – Conceptual design

24

Conceptual design – Columns Thanks for your attention!

Francesco Biasioli Giuseppe Mancini Dipartimento di Ingegneria Strutturale e Geotecnica Politecnico di Torino – Italy e-mail: [email protected]