conclusions references: acknowledgements

3 downloads 0 Views 3MB Size Report
1. Prepackaged foods. The prepackaged foods actually purchased were verified through the store receipts. a. Lean Cuisine was chosen as the lunch and dinner ...
y=

50

0.0000004589x4

70

90

0.0001898524x3

110

0.0281224146x2

+ - 1.6234882439x + 33.2280734891 R! = 0.9876081369

130

HR (b/min)

Figure  2.    Graph  (example,  par-cipant   EB001)  of  HR/VO2/EE  Measurement   Values  for  a  Metabolic  Profile  Over  a   Range  of  Ac-vi-es  (BMR  -­‐  70%  Age   Predicted  HRmax),  resultant  polynomial   regression  curve  and  equa-on,  and   correla-on  (r2)  

Table  8.    Polynomial  (4th  order)  Regression   Equa-on  Coefficients  Derived  from  HR/EE  Graphs   of  HR/VO2/EE  Measurement  Values  for  a   Metabolic  Profile  Over  a  Range  of  Ac-vi-es  (BMR  -­‐   70%  Age  Predicted  HRmax)    

4)Substrate-­‐specific     (CHO,   FAT)   EE   measurement   values   were   derived   from   RQ   (VCO2/VO2),   for   a   Metabolic  Profile  over  a  range  of  ac-vi-es  (BMR  -­‐  70%  Age  Predicted  HRmax,  Figure  3).    The  peak  fat   oxida-on   HR   is   iden-fied   and   followed   with   changes   in   aerobic   fitness,   along   with   the   HR   associated   with  CHO  metabolic  crossover  level  with  the  Fat  oxida-on  curve  (Benoit  2015).   5)The  VO2/HR  exercise  profile  also  provides  the  data  to  extrapolate  the  VO2max  associated  with  the   age-­‐predicted  HRmax,  using  the  linear  regression  equa-on  (Figure  4)   6)The  exercise  VO2/Ve  measurements  also  provide  the  data  to  interpolate  the  inflec-on  at  the  change   in  slope  corresponding  to  the  Respiratory  Threshold  (RT).    The  RT  is  an  indicator  of  aerobic  fitness   that  can  be  established  and  followed  to  define  benefits  of  exercise  interven-on  (Figure  4).   +,#123#!./"4"56(2"#123#!"# $!./#'74#8#,"29(57:;55"2>;0?#@5"?(6A;)*#

12334)5)6*7)8)9:;)
171! 40171!

!")-.!$%&'(!-.*/011!!

"#!2!"'!3!)-.!

49171! 48171! 46171!

!"#$%&'("

Figure  9.    Mean  %  change  week  2  –  week  1  for   energy  values,  measured  and  computed  for  all   par-cipants.      

IV.  What  is  the  apparent  effect  of  Energy  Balance  on  BMR?   A.  Energy  Balance  Effect  on  Basal  Metabolic  Rate    1.  Results      a.  BMR-­‐  All  par-cipants      b.  For  each  par-cipant        1)  ENERGY  BALANCE  =  EdBC  =  Ei  -­‐  Eo            a)  BMR  vs.  EB  (change  in  body  composi-on)    The  BMR  response  to  EB  is  represented  in  two  ways.    First,  BMR  (kcal/day)  is  normalized  rela3ve  to  lean   3ssue  content  (kcal/day/kg-­‐lean,  which  is  largely  responsible  for  BMR),  and  associated  changes  in  body   composi3on   energy   (EdBC,   kcal/day)   that   most   directly   reflect   actual   EB   and   -ssue   altera-ons.     The   correla-on   of   BMR/kg-­‐lean   with   EdBC   should   illustrate   the   strongest   rela-onship   (Figure   10).     The   rela-onship   of   BMR   to   EB   does   not   show   a   significant   linear   trend   or   correla-on   (r2   =   0.08696)   for   the   par-cipants  as  a  group.    The  EB  change  is  imposed  through  a  daily  imposi-on  of  Eo  by  walking  exercise   equivalent  to  10%  of  week-­‐1  EB  Eo.    The  posi-ve  EB  values  imply  that  the  increase  in  walking  Eo  can  be   counterbalanced  by  replacing  more  strenuous  ac-vi-es  and/or  diminishing  non-­‐exercise  ac-vity  levels.    The  trend  of  change  in  BMR  vs.  EB  (based  on  EdBC)  using  a  polynomial  regression  more  closely  follows   the   dynamic   response   across   the   range   of   EB   (r2   =   0.73908).     This   dynamic   may   indicate   an   op-mum   balance   between   acutely   imposed   daily   exercise   and   nega-ve   EB   at   the   inflec-on   of   the   curve   at   -­‐2000   kcal/week  (Figure  11).   -./)01#+(*'234'5-6-0'01#+(*''

!"#$67$2!$.$8))$

/,**"

)$%$$"

),**" %,**"

&$%$$"

',**"

$'****,**"

$3***,**"

$4***,**"

$/***,**"

$%***,**"

*,**" *,**" $',**"

%***,**"

/***,**"

$%,**"

01$$$$%$$"

0*$$$%$$"

0.$$$%$$"

0)$$$%$$"

$),**"

/$%$$" 0/$$$%$$" $%$$"

/$$$%$$"

)$$$%$$"

2!$3$+!4$%&'()*5//&.(6-1$

!"#"$%$$$&'"("&)%&*+" ,-"#"$%$*.+."

$/,**"

!"#$%,**!'

!"#"$%&$'%()"$"'&$*+(%"$"*,***-("."*,/))/" 01"#"*,+)2*3"

Figure  10.    BMR  (kcal/day/kg-­‐lean)  at  the  end   of  each  week  related  to  EB  based  on  the   body  composi-on  change  in  energy  content   (EdBC),  for  all  par-cipants  collec-vely.      

Figure  11.    Change  in  BMR  (kcal/day/kg-­‐lean)  at   the  end  of  each  week  related  to  EB  based  on  the   body  composi-on  change  in  energy  content   (EdBC),  for  all  par-cipants  collec-vely.    

The   BMR   vs.   EB   rela-ons   can   most   per-nently   be   examined   for   the   individual   trends,   where   specific   responses  to  singular  condi-ons  are  demonstrated  dis-nctly  for  each  par-cipant.    Three  of  the  four  trends   show  a  decline  in  BMR  with  more  nega-ve  EB  (EdBC)(Figure  12).   BMR vs EB: Ei-Eo [individual-polynomial]

BMR (kcal/d kg-lean) vs EB (Body Comp Change) 40.00

Table  13.  (see  below)  Changes  in  Body   Composi-on  Energy;  Fat,  Lean,  Total  (DEXA,  Date   Span,  %,  kg,  kcal)        2.  Walking  Exercise  Energy  Expenditure  and  Targeted  Energy  Deficit   a.  The  addi-onal  walking  -me  calculated  and  employed  to  increase  Eo  (based  on  HR)  by  approximately   10%  in  the  second  week  was  around  19  minute  per  day,  using  the  4.0  mph  pace  HR  on  the  treadmill.      3.  Energy  Balance  Calcula-ons        Summary   The   energy   balance   equa-on   can   be   arranged   three   different   ways,   using   two   values   to   calculate   the   third,  allowing  comparison  between  measured  values  and  computed  values  for  each  component  of  the   EB  equa-on.        a.  Energy  of  BC  Changes  (from  DEXA)  =  Energy  Intake  –  Energy  Output            (EdBC  =  Ein  -­‐  Eo)   Changes   in   the   energy   content   of   body   cons-tuents   directly   reflect   actual   energy   balance,   since   the   difference   between   energy   intake   and   output   draws   on   energy   content   of   body   -ssues.     The   three   DEXA   measurements   produced   two   calculated   energy   balance   values,   for   the   first   and   second   weeks,   and   a   third  for  the  total  change  over  two  weeks,  from  the  first  to  the  third  measurements.     The  technical  accuracy  is  mainly  dependent  on  the  two  repeated  measures  each  session,  and  the  period   of  -me  between  measurements  (±718  kcal/day  error  for  a  7  day  interval,  ±359  kcal/day  error  for  a  14  day   interval;  Elia,2003).    The  rela-ve  accuracy  depends  on  the  total  change  in  the  type  and  amount  of  body   -ssues  (error  %  of  measured  energy  change).                1)  Results:  Measured  BC  E  Changes   The   general   energy   deficit   imposed   by   an   increase   in   walking   -me   in   the   second   week,   with   Ei   held   constant  at  first-­‐week  EB  levels,  resulted  in  an  overall  average  net  loss  in  adipose  (-­‐0.52  ±0.63  %,  -­‐0.43   ±0.33  kg,  -­‐3604  ±2844  kcal),  and  net  gain  in  lean  -ssue  (+0.52  ±0.63  %,  0.40  ±1.13  kg,  468  ±1308  kcal),   which  reflected  a  total  EdBC  deficit  (-­‐3145  (±2530  kcal)(Table  13,  see  above).          b.  Energy  Output  (HR)    =  Energy  Intake  –  BC  Changes            [Eo(HR)  =  Ei  -­‐  EdBC]   A   comparison   to   the   es-mate   of   energy   output   from   the   HR/E   equa-on   (Table   14)   is   produced   by   the   difference   between   energy   of   intake   and   body   content   changes   over   the   interval   of   a   week.     This   comparison  may  provide  a  means  to  roughly  calibrate  the  HR/E  equa-ons.        c.  Energy  Intake  (food)  =  Energy  Output  +  BC  Changes              [Ein(food)  =  Eo  +  EdBC]   Since  food  can  be  accurately  quan-fied  for  a  single  day  it  was  combined  with  the  Daily  TEE  to  calculate  a   Daily  Energy  Balance  with  reasonable  precision  over  a  week  average  (Table  14).    This  in  turn  more  exactly   matches   food   intake   to   the   different   ac-vity   of   each   unique   day   that   predicts   energy   differences   of   body   composi-on  changes.        d.  Results:  Comparison  of  Measured  and  Calculated  Values  for  each  Par-cipant     The   data   demonstrates   disparity   in   values   from   direct   measurements,   and   when   Eo(HR)   is   involved   directly  or  as  part  of  a  computed  EB  component  for  each  par-cipant  over  one-­‐week  spans  (Table  14),  and   collec-vely  averaged  over  the  en-re  14  day  span  of  the  trial  (Table  15,  Figures  7  &  8).    The  differences   imply  that  Eo(HR)  produces  a  systema-c  overes-mate  of  energy  expenditure  (Eo)  in  comparison  to  the   values  computed  by  the  other  directly  measured  components,  Ei  –  EdBC  =  Eo.    However,  the  overlap  of   SD  ranges  may  imply  a  non-­‐significant  difference,  and  substan-al  individual  variance.  The  measured  and   computed   values   for   each   specific   component   are   displayed   adjacently   to   illustrate   the   comparison   of   each  component  most  directly  (Figure  7).    The  measured  and  computed  EB  components  are  also  grouped   separately,  to  illuminate  the  dis-nc-ons  of  the  different  parts  of  the  whole  EB  equa-ons  (Figure  8).  

!"'!$%&'(!+,*!

6444!

17444!

73!:;"0;>"1;??!@A-B".C@!

16444!

 D.  Ac-vity  Records   1.  Par-cipants  were  asked  to  record  the  -me  and  type  of  major  changes  in  ac-vity  in  a  Daily  Ac-vity  Log.   a.   Ac-vity   records   appear   to   have   been   consistently   completed,   specifying   the   nature   of   events,   their   subjec-ve  intensity,  and  when  changes  occurred.   b.  The  frequency  of  event  recording  varied  between  days  and  par-cipants.       c.  The  specificity  of  event  descrip-ons  had  some  varia-on.    When  there  were  events  with  short  periods   and   frequent   changes   the   event   descrip-ons   tended   to   be   generalized   (i.e.   working,   loading   and   unloading  trucks,  for  13  hours).   d.  In  certain  situa-ons  par-cipants  would  record  events  on  smaller,  more  easily  carried  paper,  and  then   transcribe  the  notes  to  the  official  record.    E.  Rela-vely  Normal  Living  Condi-ons      1.  Time  Required  for  Measurements   The  -me  required  to  perform  the  measurements  was  es-mated  through  informal  verbal  recall  ques-ons,   -me  scheduled  in  the  labs,  and  daily  records  of  exercise  -me.        a.  Recall  es-mates   An  analysis  of  the  es-mated  -me  invested,  distribu-on  of  -me  for  the  various  types  of  measurements,  and   subjec-ve  impact  is  provided  in  the  table  below.  The  responses  were  not  available  for  all  par-cipants  for   the   two   weeks.     No   informa-on   was   obtained   from   EB006,   and   only   one   week   for   EB007   (par-al)   and   EB009.          1)  Results   The   -me   es-mated   to   perform   measurements   each   day,   excluding   lab   measurements   and   exercise,   ranged   from  51  to  104  minutes  per  day.    The  independent  responses  were  fairly  consistent  for  the  two  par-cipants   who   provided   informa-on   on   both   weeks   (104   and   96,   64   and   51).     These   es-mated   imply   that   rou-ne   measurements  were  perceived  to  be  slightly  more  efficient  in  the  second  week.        b.  Lab  measurements   The   records   indicate   that   lab   measurements   required   approximately   2   hours   on   one   day   (7   days   average   of   17  min/day)  and  three  hours  on  a  second  day  (7  days  average  of  26  min/day),  summing  to  5  hours  per  week   (7  days  average  of  43  min/day).        c.  Exercise  -me   Exercise  -me  demanded  30  minutes  per  day  in  the  first  week,  and  average  of  49  minutes  (±5.9  min)  per  day   in  the  second  week  to  achieve  an  approximate  10%  increase  in  Eo  (based  on  Ei-­‐EdBC)  from  the  first  week.        d.  Total  -me  requirement   In  the  first  week  the  total  -me  invested  for  all  measurements  averaged  71  (±27  min/d)  for  general  ac-vi-es   +   26   (min/d)   avg.   for   Full   labs   +   17   min/d   avg.   for   BMR   Labs   +   30   min/d   walking,   totaling   an   average   of   144   min/d,  or  16.8  hours/week.    In  the  second  week  improved  efficiency  for  general  ac-vi-es  combined  with  an   increased  walking  -me  elevated  the  average  total  daily  -me  invested  to  171  min/d,  or  20.0  hours/week.         III.  To  what  degree  can  individual  energy  balance  values  be  calculated  for  the  par-cipants  on  the  basis  of   the  laboratory  and  field  measurements?    A.  Energy  Balance      1.  Calculated  Total  Energy  Expenditure  (TEE)  and  HR  Record  Comple-on   The   completed   daily   HR   data   was   entered   in   to   an   Excel   spreadsheet   and   applied   to   the   refined   HR/E   rela-onship   polynomial   regression   equa-on   to   generate   an   es-mate   of   Total   Energy   Expenditure   for   24-­‐ hour  periods  for  all  par-cipants.    The  14-­‐day  average  TEE  was  computed  for  all  par-cipants  (3231  ±1587   kcal/day,   and   range   of   6592   –   2728   kcal/day).     The   %   Completeness   of   HR   record   was   also   included   (65   ±14.1  kcal/day,  range  95  –  57  kcal/day,  Table  12).        a.  Results     Body Comp. Changes DEXA

Table  12.    14-­‐Day  Average  Daily  %  HR  Record   Comple-on  and  Energy  Expenditure,  Eo(HR)  

9444!

17444!

Time of Day (hh:mm)

Figure  5.    Daily  HR  Record  (example,  par-cipant   EB001)  

9444!

!"#$%&#'(

80

(!"

!"#$%&#'(

!"#$%&'()'*+,'#-.'/0'1234'

120 100

)*+,-'(.#$#*"+(/0120*+*3(4#$5+6( 78,+"3(9+#65,+(:6;(/01253+&(?(7#'(@:+,#-+(;BC7=(D(@$$(C5EF+"36(

)*+,-'(.#$#*"+(/0120*+*3(4#$5+6( 78,+"3(9+#65,+(:6;(/01253+&(