Course DEVICES & CIRCUITS

20 downloads 329772 Views 917KB Size Report
BST09. Course DEVICES & CIRCUITS. Chapter: CMOS. Michael E. Auer. Source of figures: Jaeger/Blalock: Microelectronic Circuit Design,. McGraw-Hill ...
DEVICES & CIRCUITS - CMOS

Course DEVICES & CIRCUITS Chapter: CMOS Michael E. Auer

Source of figures: Jaeger/Blalock: Microelectronic Circuit Design, McGraw-Hill

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

Course Content

Introduction and Milestones in Microelectronics Solid-state Electronics Solid-state Diodes and Diode Circuits Field-effect Transistors (FET) Bipolar Junction Transistors (BJT) Introduction to Digital Microelectronics NMOS Logic Circuits Complemetary MOS Logic (CMOS) Bipolar Logic Circuits Semiconductor Memories Application Specific Integrated Circuits (ASIC)

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

Chapter Content The CMOS Inverter / CMOS Inverter Dynamic Behavior / Dynamisches Verhalten CMOS NOR and NAND Gates / CMOS NOR und NAND Gatter Complex CMOS Logic Gates / Komplexe CMOS Gatter CMOS Transmission Gate / CMOS Transmission Gate

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

Chapter Content The CMOS Inverter / CMOS Inverter Dynamic Behavior / Dynamisches Verhalten CMOS NOR and NAND Gates / CMOS NOR und NAND Gatter Complex CMOS Logic Gates / Komplexe CMOS Gatter CMOS Transmission Gate / CMOS Transmission Gate

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

CMOS Technology •

Complementary MOS, or CMOS, needs both PMOS and NMOS devices for the logic gates to be realized



The concept of CMOS was introduced in 1963 by Wanlass and Sah, but it did not become common until the 1980’s as NMOS microprocessors were dissipating as much as 50 W and an alternative design technique/technology was needed



Michael E.Auer

CMOS dominates digital IC design today

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

MOTOROLA‘s PowerPC 620 (32/64 Bit RISC)

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

CMOS Inverter

(a) (b) (c)

Michael E.Auer

Circuit schematic for a CMOS inverter Simplified operation model with a high input applied Simplified operation model with a low input applied

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

CMOS Inverter Technology •



Michael E.Auer

The CMOS inverter consists of a PMOS device and an NMOS device, but they need to be fabricated on the same wafer To accomplish this, the technique of “n-well” implantation is needed as shown in this cross-section of a CMOS inverter

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

PMOS & NMOS Transistors Drain Currents

NMOS Transistor

NMOS

(v GS ≥ VTN )

PMOS

Linear (Triode) Region : iD = K n'

Saturation Region :

Michael E.Auer

W v  vGS − VTN − DS v DS L 2 

K n' W 2 iD = (vGS − VTN ) (1+ λv DS ) 2 L

29.09.2013

iD = K 'p

(v GS ≤ VTP ) W v   vGS − VTP − DS v DS L 2 

K 'p W 2 iD = (vGS − VTP ) (1+ λv DS ) 2 L

BST09

DEVICES & CIRCUITS - CMOS

Static Characteristics of the CMOS Inverter

Michael E.Auer

29.09.2013



The figure shows the two static states of operation with the circuit and simplified models



Notice that VH = 5V and VL = 0V, and that ID = 0A which means that there is no static power dissipation

BST09

DEVICES & CIRCUITS - CMOS

CMOS Voltage Transfer Characteristics (1) •

The VTC shown is for a CMOS inverter that is symmetrical (Kp = Kn)



Region 1: vO = VH vI < VTN Region 2: |vDS| ≥ |vGS – VTP| Region 4: vDS ≥ vGS – VTN Region 5: vO = VL vI > VDD – |VTP|

• • •

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

CMOS Voltage Transfer Characteristics (2)

Michael E.Auer

29.09.2013



The simulation results show the varying VTC of the inverter as VDD is changed



The minimum voltage supply for CMOS technology is VDD = 2VT ln(2) V

BST09

DEVICES & CIRCUITS - CMOS

Noise Margins for the CMOS Inverter (1) Noise margins are defined by the points shown in the given figure

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

Noise Margins for the CMOS Inverter (2) KR =

VIH

KN KP

VIL =

Michael E.Auer

NM H = VOH − VIH

2 K R (VDD − VTN + VTP ) (VDD − K RVTN + VTP ) − = K R −1 (K R − 1) 1 + 3K R

VOL =

VOL

NM L = VIL − VOL

(K R + 1)VIH − VDD − K RVTN − VTP 2K R

2 K R (VDD − VTN + VTP )

( VDD − K RVTN + VTP ) −

(K R − 1) K R + 3 ( K R + 1)VIL + VDD − K RVTN − VTP =

K R −1

2

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

Noise Margins for the CMOS Inverter (3) CMOS inverter noise margins versus KR with a 5V power supply and 1V thresholds

KR = 1 corresponds to a symmetrical design

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

CMOS Inverter Layout

Michael E.Auer

29.09.2013



Two methods of laying out a CMOS inverter are shown



The PMOS transistors lie within the n-well, whereas the NMOS transistors lie in the psubstrate



Polysilicon is used to form common gate connections, and metal is used to tie the two drains together

BST09

DEVICES & CIRCUITS - CMOS

CMOS Inverter Layout

Michael E.Auer

29.09.2013



Two methods of laying out a CMOS inverter are shown



The PMOS transistors lie within the n-well, whereas the NMOS transistors lie in the psubstrate



Polysilicon is used to form common gate connections, and metal is used to tie the two drains together

BST09

DEVICES & CIRCUITS - CMOS

Chapter Content The CMOS Inverter / CMOS Inverter Dynamic Behavior / Dynamisches Verhalten CMOS NOR and NAND Gates / CMOS NOR und NAND Gatter Complex CMOS Logic Gates / Komplexe CMOS Gatter CMOS Transmission Gate / CMOS Transmission Gate

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

Propagation Delay Estimate (1)

Discharging the load

Michael E.Auer

Charging the load

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

Propagation Delay Estimate (2)    VH − VTN t PHL = RonN C ln 4    VH + VL 1 RonN = K n (VH − VTN )

  2VTN   − 1 +    VH − VTN 

t PHL + t PLH tp = = t PHL 2 •

Michael E.Auer

If it is assumed the inverter is “symmetrical” with (W/L)P = 2.5(W/L)N, then tPLH = tPHL 29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

Rise and Fall Times •

The rise and fall times are given by the following approximate expressions:

t f = 2t PHL

Symmetrical inverter:

t r = 2t PLH

Michael E.Auer

tf = tr

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

Inverter Design Example (1) Design a reference inverter to achieve a delay of 250ps with a 0.1pF load given the following information:

VDD = 3.3V C = 0.1 pF t p = 250 ps VTN = −VTP = 0.75V

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

Inverter Design Example (2) Given:

K = 25 ' n

K = 10 ' p

µA V

2

µA 2

VTN = 0.75 V VTP = −0.75 V

V t p = t PHL = t PLH = 250 ps We assume the inverter is symmetrical.

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

Inverter Design Example (3) Solve for Ronn: RonN =

t PHL    VDD − VTN C ln 4    VDD

  2VTN   − 1 +  − V V DD TN    

= 1890 Ω V

DD

M

Now solve for the transistor ratios: W  L W  L

Michael E.Auer

1 8.30  =  = ' 1  n K n RonN (VDD − VTN ) 20.8  W  2 . 5 = =    1 p  L n

29.09.2013

v

= 3.3 V

20.8 P

1 v

I

O

M

N

8.3 1

BST09

DEVICES & CIRCUITS - CMOS

Static Power Dissipation

Michael E.Auer



CMOS logic is considered to have no static power dissipation



This is not completely accurate since MOS transistors have leakage currents associated with the reverse-biased drainto-substrate connections as well as sub-threshold leakage current between the drain and source

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

Dynamic Power Dissipation



There are two components that add to dynamic power dissipation:

1)

Capacitive load charging at a frequency f given by: PD = CV2DDf The current that occurs during switching which can be seen in the figure

2)

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

Power Delay Product The power-delay product is given as:

PDP = Pav t P Pav = CV

2 DD

f

1 f = T

The figure shows a symmetrical inverter switching waveform.

2t r 2(2τ P ) T ≥ t r + t a + t f + tb = = = 5τ P 0.8 0.8 2 2 CVDD CVDD PDP ≥ τP = 5τ P 5

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

Chapter Content The CMOS Inverter / CMOS Inverter Dynamic Behavior / Dynamisches Verhalten CMOS NOR and NAND Gates / CMOS NOR und NAND Gatter Complex CMOS Logic Gates / Komplexe CMOS Gatter CMOS Transmission Gate / CMOS Transmission Gate

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

CMOS NOR Gate

Y=A+B

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

CMOS NOR Gate Layout

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

CMOS NOR Gate

Y=A+B+C

It is possible to extend this same design technique to create multiple input NOR gates

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

CMOS NAND Gate

Y=A·B

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

Multi-Input CMOS NAND Gates

Y=A·B·C·D·E

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

Chapter Content The CMOS Inverter / CMOS Inverter Dynamic Behavior / Dynamisches Verhalten CMOS NOR and NAND Gates / CMOS NOR und NAND Gatter Complex CMOS Logic Gates / Komplexe CMOS Gatter CMOS Transmission Gate / CMOS Transmission Gate

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

Complex CMOS Logic Gate Design

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

Complex CMOS Logic Gate Example

Y = A + B · (C + D)

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

Chapter Content The CMOS Inverter / CMOS Inverter Dynamic Behavior / Dynamisches Verhalten CMOS NOR and NAND Gates / CMOS NOR und NAND Gatter Complex CMOS Logic Gates / Komplexe CMOS Gatter CMOS Transmission Gate / CMOS Transmission Gate

Michael E.Auer

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

CMOS Transmission Gate

Michael E.Auer

29.09.2013



The CMOS transmission gate (T-gate) is a useful circuits for both analog and digital applications



It acts as a switch that can operate up to VDD and down to VSS

BST09

DEVICES & CIRCUITS - CMOS

CMOS Transmission Gate (2) •

The main consideration that needs to be considered is the equivalent on-resistance which is given by the following expression:

REQ

Michael E.Auer

RonP RonN = RonP + RonN

29.09.2013

BST09

DEVICES & CIRCUITS - CMOS

Summary • • • •





Michael E.Auer

In CMOS logic each gate contains both an NMOS and a PMOS switching network and every logical input is connected to at least one NMOS and one PMOS transistor. The high and low output voltage are VDD and VSS and therefore the noise margins are maximal. NAND gates, NOR gates and complex CMOS logic gates can all be designed as for NMOS circuitry. The NMOS and the PMOS switching networks are behavioral or structural dual. CMOS power dissipation is determined by the energy required to charge and discharge the load capacitance at the desired switching frequency. The static power dissipation is nearly disappearing. During switching of the CMOS gate a pulse of current occursbetween the positive and negative power supplies. This current causes an additional component of the power dissipation in CMOS gates that can be as much as 20 to 30 percent of the dissipation resulting from charging and discharging the load capacitance. A new bidirectional circuit element, the CMOS transmission gate that utilizes the parallel connection of an NMOSand a PMOS transitor was introduced. When the transmission gate is on, it provides a low-resistance connection between it‘s input and output terminals over the entire input voltage range.

29.09.2013

BST09