Crystal structure of O-ethyl N-(ethoxycarbonyl) thiocarbamate

1 downloads 0 Views 351KB Size Report
Sep 10, 2015 - Hydrogen-bond geometry (A˚ , ). D—HБББA. D—H ... structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., .... displacement ellipsoids with all non-hydrogen atoms labeled and numbered.
data reports

ISSN 2056-9890

Crystal structure of O-ethyl N-(ethoxycarbonyl)thiocarbamate 2. Experimental Matthew J. Henley, Alex M. Schrader, Victor G. Young Jr and George Barany* Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA. *Correspondence e-mail: [email protected] Received 26 July 2015; accepted 10 September 2015 Edited by S. V. Lindeman, Marquette University, USA

The title compound, C6H11NO3S, provides entries to novel carbamoyl disulfanes and related compounds of interest to our laboratory. The atoms of the central O(C S)N(C O)O ˚ from the fragment have an r.m.s. deviation of 0.1077 A respective least-squares plane. While several conformational orientations are conceivable, the crystal structure shows only the one in which the carbonyl and the thiocarbonyl moieties are anti to each other across the central conjugated C—N—C ˚ N—H  S C hydrogen bonds moiety. Pairs of 2.54 A between adjacent molecules form centrosymmetric dimers in the crystal.

2.1. Crystal data  = 102.360 (5) ˚3 V = 433.3 (3) A Z=2 Mo K radiation  = 0.34 mm1 T = 173 K 0.50  0.10  0.05 mm

C6H11NO3S Mr = 177.22 Triclinic, P1 ˚ a = 4.1782 (17) A ˚ b = 9.236 (4) A ˚ c = 11.820 (5) A  = 98.190 (5)  = 98.571 (5)

2.2. Data collection Siemens SMART Platform CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) Tmin = 0.851, Tmax = 0.984

4216 measured reflections 1518 independent reflections 1194 reflections with I > 2(I) Rint = 0.037

2.3. Refinement R[F 2 > 2(F 2)] = 0.040 wR(F 2) = 0.087 S = 1.07 1518 reflections

102 parameters H-atom parameters constrained ˚ 3 max = 0.25 e A ˚ 3 min = 0.25 e A

Keywords: crystal structure; thiocarbamate; hydrogen bonding.

Table 1

CCDC reference: 1423537

˚ ,  ). Hydrogen-bond geometry (A D—H  A i

N1—H1A  S1

1. Related literature

D—H

H  A

D  A

D—H  A

0.88

2.54

3.388 (2)

161

Symmetry code: (i) x þ 1; y þ 1; z þ 1.

A variety of methods to prepare the title compound and/or similar structures have been reported; see Delitsch (1874); Atkins et al. (1973); Barany (1977, and references therein); Vallejos et al. (2009, and references therein); Barany et al. (2015, and references therein). For closely related structures, see CSD (Groom & Allen, 2014) refcodes: BORBOA (Vallejos et al., 2009); GAPPAQ (Kang et al., 2012). For applications of the title compound in interesting chemistry, see: Atkins et al. (1973); Barany & Merrifield (1977); Shen et al. (1998, and references therein); Barany et al. (2006, 2015); Vallejos et al. (2009).

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Acknowledgements We thank the University of Minnesota CHEM 5755 class and X-Ray Crystallographic Laboratory for assistance with this structure determination. Supporting information for this paper is available from the IUCr electronic archives (Reference: LD2135).

o782

Henley et al.

doi:10.1107/S2056989015016989

Acta Cryst. (2015). E71, o782–o783

data reports References Atkins, P. R., Glue, S. E. J. & Kay, I. T. (1973). J. Chem. Soc. Perkin Trans. 1, pp. 2644–2646. Barany, G. (1977). PhD thesis, The Rockefeller University, New York, USA. Barany, G., Britton, D., Chen, L., Hammer, R. P., Henley, M. J., Schrader, A. M. & Young, V. G. (2015). J. Org. Chem. 80. Submitted. Barany, M. J., Corey, M. M., Hanson, M. C., Majerle, R. S., Hammer, R. P. & Barany, G. (2006). Understanding Biology Using Peptides. Proceedings of the Nineteenth American Peptide Symposium, edited by S. E. Blondelle, pp. 196–197. Berlin: Springer. Barany, G. & Merrifield, R. B. (1977). J. Am. Chem. Soc. 99, 7363–7365. Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Acta Cryst. (2015). E71, o782–o783

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Delitsch, G. (1874). J. Prakt. Chem. 10, 116–128. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Kang, S. K., Cho, N. S. & Jeon, M. K. (2012). Acta Cryst. E68, o300. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Shen, W. Z., Fornasiero, D. & Ralston, J. (1998). Miner. Eng. 11, 145–158. Vallejos, S. T., Erben, M. F., Piro, O. E., Castellano, E. E. & Ve´dova, C. O. D. (2009). Polyhedron, 28, 937–946.

Henley et al.



C6H11NO3S

o783

supporting information

supporting information Acta Cryst. (2015). E71, o782–o783

[doi:10.1107/S2056989015016989]

Crystal structure of O-ethyl N-(ethoxycarbonyl)thiocarbamate Matthew J. Henley, Alex M. Schrader, Victor G. Young and George Barany S1. Structural commentary The title compound, O-ethyl N-(ethoxycarbonyl)thiocarbamate (1), C6H11NO3S, CAS registry # 5585-23-9, also known as (N-ethoxythiocarbonyl)urethane, was of interest to a multifaceted organosulfur research program that includes among its goals the development of amino protecting groups removable under mild conditions (Barany, 1977; Barany & Merrifield; 1977; Barany et al., 2006, Barany et al., 2015). Specifically, we have shown that reaction of 1 with (chlorocarbonyl)sulfenyl chloride gives rise to the novel (chlorocarbonyl)(N-ethoxycarbonylcarbamoyl)disulfane, rather than the expected putative N-ethoxycarbonyl-1,2,4-dithiazolidine-3,5-dione (Barany et al., 2015). Variations in reaction conditions and/or the nature of sulfenyl chlorides that react with 1 result in additional unusual structures which model previously uncharacterized intermediates in the mechanisms of reactions that successfully elaborate N-alkyl-1,2,4-dithiazolidine-3,5dione heterocycles. Thiocarbamate 1 is also useful as an entry to pharmaceutically relevant heterocycles (Atkins et al., 1973), as an additive in the purification of pyrite (Shen et al., 1998), and as a precursor to compounds of interest to the agrochemical industry (Vallejos et al., 2009). X-ray quality crystals of 1 were readily obtained after bulk purification (recrystallization from hot hexane, about 7 mL/g). All molecular parameters of 1 are within expected ranges. Ignoring the ethyl groups, the central fragment of 1 has a r.m.s. deviation of 0.1077 Å from the least squares plane [i.e., the plane consisting of atoms O1, C1, S1, N1, C2, O2, O3]. The largest deviation of any torsion angle from 0 or 180° is 11.5 (3)° for C2—N1—C1—O1. Although there are multiple theoretically stable conformations of 1 (Vallejos et al., 2009), the molecule uniquely assumes the conformation where the carbonyl and the thiocarbonyl moieties are anti to each other across the central C–N–C moiety. In the crystal, pairs of intermolecular N–H···S=C hydrogen bonds between two adjacent molecules form centrosymmetric dimers (see Figure 2). A search of the Cambridge Structural Database (CSD; Version 5.36, update of November 2014; Groom & Allen, 2014) revealed two similar structures, O-benzyl N-(ethoxycarbonyl)thiocarbamate (2) (Kang et al., 2012) [i.e., BnO(C=S)NH(C=O)OEt], and O-ethyl N-(methoxycarbonyl)thiocarbamate (3) (Vallejos et al., 2009) [i.e., EtO(C=S)NH(C=O)OMe]. Interestingly, both 2 and 3 assume the same conformation as 1, where the thiocarbonyl and carbonyl moieties are anti to each other across the C–N–C moiety. In all three structures, similar length N–H···S=C hydrogen bonds form between adjacent molecules.

Acta Cryst. (2015). E71, o782–o783

sup-1

supporting information

Figure 1 Crystallographic structure of O-ethyl N-(ethoxycarbonyl)thiocarbamate (1) showing 50% probability displacement ellipsoids with all non-hydrogen atoms labeled and numbered.

Acta Cryst. (2015). E71, o782–o783

sup-2

supporting information

Figure 2 View of crystal packing down the a-axis, with hydrogen bonds highlighted and atoms involved in hydrogen bonding labeled and numbered. O-Ethyl N-(ethoxycarbonyl)thiocarbamate Crystal data C6H11NO3S Mr = 177.22 Triclinic, P1 a = 4.1782 (17) Å b = 9.236 (4) Å c = 11.820 (5) Å α = 98.190 (5)° β = 98.571 (5)° γ = 102.360 (5)° V = 433.3 (3) Å3

Acta Cryst. (2015). E71, o782–o783

Z=2 F(000) = 188 Dx = 1.358 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 1518 reflections θ = 2.3–25.1° µ = 0.34 mm−1 T = 173 K Thin plates, colorless 0.50 × 0.10 × 0.05 mm

sup-3

supporting information Data collection Siemens SMART Platform CCD diffractometer Radiation source: normal-focus sealed tube Graphite monochromator area detector, ω scans per phi Absorption correction: multi-scan (SADABS; Bruker, 2001) Tmin = 0.851, Tmax = 0.984

4216 measured reflections 1518 independent reflections 1194 reflections with I > 2σ(I) Rint = 0.037 θmax = 25.1°, θmin = 1.8° h = −4→4 k = −10→11 l = −14→14

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.040 wR(F2) = 0.087 S = 1.07 1518 reflections 102 parameters 0 restraints

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0343P)2 + 0.149P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.25 e Å−3 Δρmin = −0.24 e Å−3

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

S1 O1 O2 O3 N1 H1A C1 C2 C3 H3A H3B C4 H4A H4B H4C C5 H5A H5B C6 H6A H6B

x

y

z

Uiso*/Ueq

0.08610 (15) 0.0371 (4) 0.5131 (4) 0.8025 (4) 0.4306 (5) 0.5091 0.1822 (5) 0.5755 (6) −0.2164 (6) −0.1188 −0.4004 −0.3422 (6) −0.5151 −0.4363 −0.1576 0.9980 (6) 1.1317 0.8494 1.2223 (7) 1.3678 1.0865

0.30032 (7) 0.25383 (16) 0.40638 (17) 0.61521 (17) 0.4541 (2) 0.5211 0.3340 (2) 0.4835 (3) 0.1158 (2) 0.0435 0.1381 0.0515 (3) −0.0417 0.1245 0.0295 0.6597 (3) 0.5862 0.6647 0.8123 (3) 0.8447 0.8850

0.46293 (5) 0.67694 (13) 0.85405 (13) 0.80409 (13) 0.66587 (16) 0.6247 0.60663 (19) 0.78377 (19) 0.6252 (2) 0.5797 0.5728 0.7242 (2) 0.6936 0.7687 0.7750 0.92221 (18) 0.9389 0.9798 0.9279 (2) 1.0045 0.9153

0.0321 (2) 0.0305 (4) 0.0346 (4) 0.0331 (4) 0.0300 (5) 0.036* 0.0254 (5) 0.0273 (5) 0.0304 (6) 0.037* 0.037* 0.0402 (6) 0.060* 0.060* 0.060* 0.0301 (6) 0.036* 0.036* 0.0413 (7) 0.062* 0.062*

Acta Cryst. (2015). E71, o782–o783

sup-4

supporting information H6C

1.3588

0.8068

0.8675

0.062*

Atomic displacement parameters (Å2)

S1 O1 O2 O3 N1 C1 C2 C3 C4 C5 C6

U11

U22

U33

U12

U13

U23

0.0366 (4) 0.0307 (9) 0.0404 (10) 0.0388 (10) 0.0348 (11) 0.0242 (12) 0.0302 (13) 0.0296 (13) 0.0386 (15) 0.0317 (13) 0.0447 (15)

0.0312 (4) 0.0285 (9) 0.0341 (9) 0.0286 (9) 0.0271 (10) 0.0229 (12) 0.0290 (13) 0.0245 (12) 0.0377 (15) 0.0327 (13) 0.0356 (15)

0.0232 (3) 0.0258 (9) 0.0241 (9) 0.0228 (8) 0.0229 (10) 0.0281 (12) 0.0222 (12) 0.0325 (13) 0.0406 (15) 0.0202 (12) 0.0337 (14)

0.0006 (3) −0.0040 (7) −0.0032 (8) −0.0064 (8) −0.0034 (9) 0.0053 (10) 0.0064 (11) 0.0004 (10) −0.0014 (12) 0.0004 (11) −0.0040 (12)

−0.0001 (2) 0.0025 (7) 0.0031 (7) −0.0022 (7) 0.0018 (9) 0.0024 (10) 0.0056 (10) 0.0023 (11) 0.0064 (12) −0.0021 (10) −0.0033 (12)

0.0045 (2) 0.0037 (7) 0.0103 (8) 0.0054 (7) 0.0082 (8) 0.0048 (10) 0.0037 (10) 0.0027 (10) 0.0121 (12) 0.0047 (10) 0.0055 (11)

Geometric parameters (Å, º) S1—C1 O1—C1 O1—C3 O2—C2 O3—C2 O3—C5 N1—C1 N1—C2 N1—H1A C3—C4 C3—H3A

1.654 (2) 1.319 (3) 1.459 (3) 1.191 (3) 1.338 (3) 1.462 (3) 1.366 (3) 1.397 (3) 0.8800 1.498 (3) 0.9900

C3—H3B C4—H4A C4—H4B C4—H4C C5—C6 C5—H5A C5—H5B C6—H6A C6—H6B C6—H6C

0.9900 0.9800 0.9800 0.9800 1.503 (3) 0.9900 0.9900 0.9800 0.9800 0.9800

C1—O1—C3 C2—O3—C5 C1—N1—C2 C1—N1—H1A C2—N1—H1A O1—C1—N1 O1—C1—S1 N1—C1—S1 O2—C2—O3 O2—C2—N1 O3—C2—N1 O1—C3—C4 O1—C3—H3A C4—C3—H3A O1—C3—H3B C4—C3—H3B H3A—C3—H3B

118.15 (17) 115.13 (16) 128.02 (19) 116.0 116.0 112.26 (19) 126.16 (16) 121.57 (17) 125.7 (2) 127.0 (2) 107.34 (18) 106.44 (18) 110.4 110.4 110.4 110.4 108.6

C3—C4—H4B H4A—C4—H4B C3—C4—H4C H4A—C4—H4C H4B—C4—H4C O3—C5—C6 O3—C5—H5A C6—C5—H5A O3—C5—H5B C6—C5—H5B H5A—C5—H5B C5—C6—H6A C5—C6—H6B H6A—C6—H6B C5—C6—H6C H6A—C6—H6C H6B—C6—H6C

109.5 109.5 109.5 109.5 109.5 106.43 (18) 110.4 110.4 110.4 110.4 108.6 109.5 109.5 109.5 109.5 109.5 109.5

Acta Cryst. (2015). E71, o782–o783

sup-5

supporting information C3—C4—H4A

109.5

C3—O1—C1—N1 C3—O1—C1—S1 C2—N1—C1—O1 C2—N1—C1—S1 C5—O3—C2—O2

−175.56 (18) 4.8 (3) 11.6 (3) −168.77 (18) 3.6 (3)

C5—O3—C2—N1 C1—N1—C2—O2 C1—N1—C2—O3 C1—O1—C3—C4 C2—O3—C5—C6

−175.86 (18) 2.0 (4) −178.5 (2) −178.52 (19) −177.19 (19)

Hydrogen-bond geometry (Å, º) D—H···A i

N1—H1A···S1

D—H

H···A

D···A

D—H···A

0.88

2.54

3.388 (2)

161

Symmetry code: (i) −x+1, −y+1, −z+1.

Acta Cryst. (2015). E71, o782–o783

sup-6