Dendritic and Hyperbranched Polymers

2 downloads 698 Views 2MB Size Report
Dendritic and Hyperbranched Polymers. James E. Hanson. Department of Chemistry and Biochemistry. Seton Hall University. South Orange, New Jersey ...
Dendritic and Hyperbranched Polymers James E. Hanson Department of Chemistry and Biochemistry Seton Hall University South Orange, New Jersey

Polymer Architectures ...

...

linear

OH

CO2H

O

O

HO

O

O

O

O

OH

HO

O

HO O

O

O

OH

hyperbranched

HO

O

O

O

O

O

OH

dendritic

O

Degree of Branching D +T D+T+L

%DB =

X 100% OH

CO2H

O

O

O

O

D O

L

O

HO

O

OH

T

O

HO

HO O

T hyperbranched DB = 80%

D

D

O

OH

O

O

HO

O

O

O

O

OH

T

T

T T dendritic DB = 100%

T

Dendrimer Synthesis Divergent NH3

NH

H2N

1. methyl acrylate (3 equivalents)

O

NH N

2. ethylene diamine (excess)

1. methyl acrylate (excess) 2. ethylene diamine (excess)

NH

H 2N

core

O

NH2

O generation 1

H2N NH

NH

O NH

N

O H 2N

O

NH N

HN N H2N

NH2

O

HN

N

1. methyl acrylate (excess)

O

NH

2. ethylene diamine (excess) HN

O

O

O O

NH2

NH NH2 generation 2

generation 3, etc.

Dendrimer Synthesis Convergent CO2CH3

HO

CO2CH3

CH2OH

benzyl bromide K2CO3 THF 18-crown-6

OH

KBH4 LiCl

O

THF

O

O

O

1 2 G1CO2CH3

3 G1OH

CH2Br CBr4 P(C6H5)3 THF

1 K2CO3

O

O

THF 18-crown-6

5 G2CO2CH3

KBH4 LiCl THF

6 G2OH

4 G1Br CBr4 P(C6H5)3 THF

10 G3Br

7 G2Br 1 K2CO3 THF 18-crown-6

1 K2CO3 THF 18-crown-6

11 G4CO2CH3

8 G3CO2CH3 KBH4 LiCl THF

KBH4 LiCl THF

12 G4OH

9 G3OH MsCl (CH3CH2)3N THF

CBr4 P(C6H5)3 THF

13 G4OMs

Hyperbranched Polymer Synthesis SH

SH

K2CO3 Cl Cl

NMP 150oC

S S

Cl S

Cl

S S

Cl

Cl

S Cl

Cl Cl

Cl

New Methods for Synthesis: Poly(arylmethyl Ether) Dendrimers

• Original Frechet synthesis based on 3,5dihydroxybenzyl alcohol • Polymers above 4th generation difficult • Activation step problematic (Ph3P, CBr4) • Electrophilic focal group (benzyl bromide)

Monomer Synthesis OH

CH3O2C

CO2CH3

C16H33SO2Cl triethylamine toluene

OSO2C16H33

CH3O2C

CO2CH3 3

2 OSO2C16H33 KBH4, LiCl

SOCl2

THF OH

OH 4

OSO2C16H33

OSO2C16H33 NaBr, CH2Br2 DMF (2X)

Cl

Cl 5

Br

Br 1

Monodendron Synthesis OH

OSO2C16H33

OH

OSO2C16H33 NaOH Br

Br

K2CO3 acetone

1 monomer 10 G3-hds

NaOH ethanol

O

ethanol

O

O

6 G1-hds 11 G3-OH

O

1 K2CO3 acetone

8 G2-hds

1

14 G5-hds

NaOH ethanol

9 G2-OH

1 K2CO3 acetone

15 G5-OH

1 K2CO3 acetone

7 G1-OH

1

NaOH

12 G4-hds

K2CO3 acetone

O

13 G4-OH

ethanol O

O

O

O

O

O

O

O

O

O

O

O

O O

O

O

O

O

O

O

O

O

O O

O

O

O

O

O

O

O O

K2CO3 acetone

O

O

O

O

O

O

O

O

O

O

O

O

O O

O

O

O

O

O

O

O

O

O

O

O O

O

OSO2C16H33

O

O O

O O

O O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O O

O

O

O

O

O

16 G6-hds

O

O O

O

O

O

O

O

NaOH ethanol

NMR

G3-hds

Tridendron Synthesis O(CH2)8Br

OH

K2CO3 18-crown-6

+ O

O

Br(CH2)8O

acetone

O(CH2)8Br

C8

O

O

G1OH O

O

O

O

O

O

O

O

O

O

G1C8

Size Exclusion Chromatography

SEC of G1OH – G5OH

SEC Data - Monodendrons Compound

Nominal MW

LS Mw

Polydispersity

G1-hds

595

601

1.02

G2-hds

1019

1015

1.01

G3-hds

1868

1819

1.01

G4-hds

3566

3546

1.01

G5-hds

6963

6512

1.01

G6-hds

13754

13529

1.01

G1-OH

306

397

1.01

G2-OH

731

713

1.01

G3-OH

1580

1494

1.01

G4-OH

3278

3303

1.01

G5-OH

6674

6581

1.02

SEC Data - Tridendrons

Compound

Nominal MW

LS Mw

Polydispersity

C8G0

783

825

1.00

C8G1

1374

1387

1.00

C8G2

2636

2412

1.01

C8G3

5190

5183

1.00

C8G4

10278

10369

1.00

Summary: Poly(arylmethyl Ether) Dendrimer Synthesis • Robust synthetic method, simple coupling and deprotection chemistry • Monodendrons up to sixth generation prepared • Nucleophilic focal group • Apparently indistinguishable from isomeric Frechet poly(arylmethyl ether) dendrimers

Photophysics of Pyrene Labeled Poly(arylmethyl Ether) Monodendrons • Little known about size and dynamics of dendritic polymer • Pyrene as a photophysical reporter well established in polymer science • Ham effect, O2 quenching, excimer formation, rotational depolarization

Monodendron Synthesis CO2CH3

HO

CO2CH3

CH2OH

benzyl bromide K2CO3 THF 18-crown-6

OH

KBH4 LiCl

O

THF

O

O

O

1 2 G1CO2CH3

3 G1OH

CH2Br CBr4 P(C6H5)3

1 K2CO3

THF

THF 18-crown-6

O

O

5 G2CO2CH3

KBH4 LiCl THF

6 G2OH

4 G1Br CBr4 P(C6H5)3 THF

10 G3Br

7 G2Br 1 K2CO3 THF 18-crown-6

1 K2CO3 THF 18-crown-6

11 G4CO2CH3

8 G3CO2CH3 KBH4 LiCl THF

KBH4 LiCl THF

12 G4OH

9 G3OH MsCl (CH3CH2)3N THF

CBr4 P(C6H5)3 THF

13 G4OMs

Pyrene Labeling

OH

OR RX K2CO3 THF 18-crown-6

O

O O

O

O

O

15 MeOPy, R = CH3 , X = I 16 G0OPy, R = C6H5CH2 , X = Br 17 G1OPy, R = G1 , X = Br 18 G2OPy, R = G2 , X = Br 19 G3OPy, R = G3 , X = Br 20 G4OPy, R = G4 , X = OMs

O

O

O

O

O

O O

O

O

O

O O

O

O

O

O

O

O

O O

O O

O O

G4Py 20

O

SEC – Pyrene Labeled Monodendrons

Compound

Nominal MW

LS Mw

Polydispersity

G1Pyrene

521

543

1.02

G2Pyrene

945

932

1.02

G3Pyrene

1795

1822

1.01

G4Pyrene

3492

3495

1.01

Absorbance and Emission Spectra

Absorbance spectrum: 1-methoxypyrene

Fluorescence spectrum: 1-methoxypyrene

Frequency Domain Fluorometry

Fluorescence Modulation Data 1-G4OP (20) in THF Degassed

1-G4OP (20) in THF Oxygen Saturated

90

1.0

90

80

80

50 40 0.4 30 20

0.2

10

60

Phase

0.6

Modulation

60

0.8

70

0.6

50 40

0.4

30 20

0.2

10

0

0.0 2

2

3

4

5

6

7

9

Frequency Phase exp. Phase calc. Modulation exp. Modulation calc.

11

14 17

(MHz)

21

26

32

40

0

0.0 15 18

22

26

31

38

46

55

Frequency Phase exp. Phase calc. Modulation exp. Modulation calc.

66 79

(MHz)

95 115 138 166 200

Modulation

0.8

70

Phase

1.0

Fluorescence Lifetimes Compound

τo nsec

τ, air nsec

τ, O2 nsec

kq (x 1010)

Pyrene

346

16.8

3.8

3.7

MeOPy

20.1

10.2

3.4

3.4

G0Py

20.9

10.2

3.3

3.4

G1Py

20.5

10.8

3.8

3.0

G2Py

20.8

11.2

3.9

2.8

G3Py

20.7

11.3

4.1

2.7

G4Py

20.7

11.4

4.5

2.3

Fluorescence Quenching • Quenching data obtained in 3 solvents: acetonitrile, THF, cyclohexane • Two oxygen concentrations: air saturated and O2 saturated • Quenching rates by Stern-Volmer analysis: τo/τ = 1 + kqτo[O2]

Smoluchowski Analysis • The Smoluchowski equation is used to describe quenching: kq = α4π(Dox + Dpy)RoN • Quenching data does not provide an internally consistent data set: Dox from MeOPy won’t work with G4Py

Diffusion Coefficients by PFG-NMR • NMR with a z-gradient allows measurement of diffusion coefficients ln (I) = D ( 2)

ln (I)

10

9

0 .0

0 .1

0 .2

0 .3 2 2 (T /m )

0 .4

0 .5

Diffusion Data (THF) Compoun d

Dpy (cm2sec-1)a

RStokes (Å)b

VStokes (Å3)c

ρStokes (D/Å3)d

Vfree (Å3)e

Pyrene

1.7 x 10-5 f

2.8

92

2.19

-

MeOPy 15

1.7 x 10-5

2.8

92

2.52

-

G0Py 16

1.3 x 10-5

3.7

210

1.47

-

G1Py 17

0.97 x 10-5

4.9

490

1.06

25

G2Py 18

0.78 x 10-5

6.1

950

0.99

106

G3Py 19

0.48 x 10-5

10

4200

0.43

2600

G4Py 20

0.34 x 10-5

14

11500

0.30

8400

Radii vs. MW 15

THF

a

R (A)

10

5

solid line: log

0 0

1000

2000

3000

4000

M W (D )

dashed line: power

6

acetonitrile

b

R (A)

5

4

3

2 0

1000

2000

M W (D )

3000

4000

Density vs MW 3

ρ (D/A3)

2

1

0 0

1000

2000 MW (D)

3000

4000

o acetonitrile i THF

Shielding Model R' φ R

pyrene

α calc

R'

monodendron

 R'  2 R sin −1    R + R'  = 1− 2πR

Analysis of Quenching and Diffusion Data (THF) Compound

αexp

αcalc

Prel

DO2 + Dpy (cm2sec1)

DO2 (cm2sec1)

ηeff

Pyrene

-

1.00

-

8.82 x 10-5

7.12 x 10-5

-

MeOPy 15

-

1.00

-

8.05 x 10-5

6.35 x 10-5

1.00

G0Py 16

-

0.92

-

8.17 x 10-5

6.87 x 10-5

0.92

G1Py 17

0.97

0.86

0.8

7.09 x 10-5

6.12 x 10-5

1.04

G2Py 18

0.94

0.82

0.7

6.71 x 10-5

5.93 x 10-5

1.07

G3Py 19

0.94

0.75

0.7

6.44 x 10-5

5.96 x 10-5

1.07

G4Py 20

0.82

0.70

0.4

5.46 x 10-5

5.12 x 10-5

1.24

Iodine Quenching

Iodine Quenching: Static Quenching

Summary: Quenching and Diffusion • Combination of quenching data and diffusion coefficients gives insight into dendrimer shape, size, and dynamics • Smaller monodendrons are less of a barrier than larger monodendrons, with more open structures • Solvent is important: structures are more extended in THF than acetonitrile • Static quenching with iodine

Excimer Formation • Pyrene forms excimers in solution: excited state dimers • Excimer kinetics first worked out by Birks in the 1940s; more recent models are also known • Pyrene excimer formation has been widely used to study the dynamics of polymers in solution

Excimer Kinetics hν M

k1 M* + M

kD D*

k-1

kM +

+

Q

Q

kQM M + Q

kQD 2M + Q

M + M

Monomer and Excimer Fluorescence

Methoxypyrene in THF

a 5 x 10-2 b 1 x 10-2 c 1 x 10-3

Monomer Lifetime Data

Excimer Lifetime Data

Excimer Kinetic Analysis

Methoxypyrene in THF: a = λ1; b = λ2

Excimer Kinetics in THF Compound

k1 M-1s-1

k-1 s-1

K M-1

-∆ ∆G kcal/mol

Pyrene

5.56 x 109

2.53 x106

2.20 x103

4.56

MeOPy

2.12 x 109

5.88 x106

3.60 x102

3.48

G0Py

2.10 x 109

6.24 x106

3.36 x102

3.44

(MeO)2G0Py

1.95 x 109

5.84 x106

3.33 x102

3.44

G1Py

1.99 x 109

5.59 x106

3.34 x102

3.44

G2Py

1.85 x 109

5.57 x106

3.32 x102

3.41

Oxygen Quenching Compound

kQD, acetonitrile

kQD, THF

Pyrene 1

3.40x1010

2.86 x1010

MeOPy 2

3.33 x1010

2.84 x1010

G0Py 3

3.28 x1010

2.81 x1010

G0’Py 4

3.23 x1010

2.78 x1010

G1Py 5

3.19 x1010

2.33 x1010

G2Py 6

---b

2.27 x1010

Iodine Quenching

Iodine Quenching

Pyrene 1

ACN kQD (M-1 s-1) 2.16x1010

THF kQD (M-1 s-1) 1.26x1010

CH kQD (M-1 s-1) 1.22x1010

MeOPy 2

1.95x1010

1.23x1010

1.21x1010

G0Py 3

1.74x1010

1.06x1010

1.08x1010

G0’Py 4

1.66x1010

9.96x109

1.08x1010

G1Py 5

1.38x1010

9.89 x109

--- b

G2Py 6

--- b

9.87x109

--- b

Compound

Excimer Studies: Summary • Alkoxypyrenes form excimers, but these excimers are less stable than pyrene excimers • Smaller pyrene labeled monodendrons form excimers; diffusion coefficients do not fully explain excimer formation rates • Excimer fluorescence is quenched by oxygen and iodine

Dendritic Coatings for Capillary Electrochromatography • Capillary electrophoresis is a powerful separation method • Coating of capillary walls can add chromatographic effect • Separation of neutrals and cations is then possible

Capillary Electrophoresis / Electrochromatography

Coating Methodology CH2OH (C2H5O)3Si O

NCO

O

Toluene (2) O (C2H5O)3Si

N H

O

O

(9) G1 carbamate

O

EOF

Separation - Neutrals

Separation - Proteins

Separation – Pyrrolopyridine Isomers

Summary – Capillary Electrochromatography • Dendritic coatings are useful in capillary electrochromatography • Dendritic coatings reduce and stabilize EOF • Dendritic coatings allow separation of neutrals and basic compounds, including proteins • Dendritic coatings appear to be superior to linear coatings (i.e. C18)

Hyperbranched Poly(phenylene Sulfide) and Poly(phenylene Sulfone)

• Poly(phenylene sulfide) and poly(phenylene sulfone) are important engineering polymers • Hyperbranched versions have potential for rheology modification

Synthesis Linear Poly(phenylene sulfide) Na2S Cl

S

Cl

n

Hyperbranched Poly(phenylene sulfide) SH

SH

K2CO3 Cl Cl

NMP 150oC

S S

Cl S

Cl

S S

Cl

Cl

S Cl

Cl Cl

Cl

Molecular Model G3 Sulfide

SEC

DSC

TGA

MALDI

Hyperbranched Poly(phenylene Sulfone) SH

SO3H

H2O2 S

SO2

S

Cl S

Cl

S S

SO2

Cl

Cl

Cl

Cl

Cl

SO2

Cl

Cl

Cl Cl

SO2 SO2

S Cl

SO2

Cl

Cl Cl

Cl

IR

DSC

TGA

Summary: Hyperbranched PPS and PPSO2 • Hyperbranched poly(phenylene sulfide) readily prepared from dichlorothiophenol. • Hyperbranched poly(phenylene sulfone) from oxidation of HPPS • HPPS has higher Tg (~120 oC), apparently noncrystalline • HPPSO2 has high Tg > 200 oC, insoluble

Acknowledgements Arylmethyl Sulfones Neil Gargiulo Angela Harris Yazmin Hernandez Don Motta Denise Pingor

Photobase Generators Kathryn Jensen Toni Watt

Dendritic and Hyperbranched Polymers Shana Kelley Jeanne Riley Berk Wajiha Khan Tammy Tyler Shannon Alfredo Mellace Hye Jung Han Qiuxia Lucy Zhao Helen Chao Sibel Alkan Jim Wilckens Elizabeth Miklius Dr. W.R.Murphy & Group

Molecular Imprinting & Nanoparticles Wajiha Khan Sueyuan Li Jim Wilckens Katie Poremba Guida Reis

Polymer Photophysics Sean Healy Jeanne Riley Berk

Lucent Technologies Bell Laboratories Petroleum Research Fund Research Corporation National Science Foundation ACS Project SEED Seton Hall University Research Council