Dokumen Kurikulum 2013-2018 Program Studi : Teknik Elektro ...

12 downloads 283758 Views 1MB Size Report
5 Sep 2013 ... Sekolah Teknik Elektro dan Informatika ... Mahasiswa Kimia /Teknik Kimia: sebagai dasar mempelajari biokimia ..... Prodi S1 Teknik Elektro.
Dokumen Kurikulum 2013-2018 Program Studi : Teknik Elektro Lampiran I

Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung

Bidang Akademik dan Kemahasiswaan Institut Teknologi Bandung

Kode Dokumen

Total Halaman

Kur2013-S1-EL

[165]

Versi

[4]

05 September 2013

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4131

Bobot sks: 3

Semester: 7

KK / Unit Penanggung Jawab: Biomedika

Sifat: Wajib

Anatomi dan Fisiologi Nama Matakuliah Anatomy and Physiology

Silabus Ringkas

Silabus LengkapIntroduction: level

Luaran (Outcomes)

Matakuliah Terkait

Introduksi, Mekanisme Fisiologi Dasar, Sistem Kontrol Tubuh; Sistem Saraf, Sistem Lokomotorik; sistem skeletal, system muscular, Sistem Distribusi dan Pertukaran; Sistem cardiovascular, Sistem Respirasi, Sistem Urinari, wrap up & Pengayaan Introduction, Basic Physiology Mechanism, Integration & Control System; Nervous System, Loco-motoric system: skeletal system, muscular system, Exchange & distribution; Cardiovascular System, Respiratory System, Urinary System, wrap up & enhancement Introduksi; orientasi dan level organisasi, kaitan Anatomi dan Fisiologi terhadap bidang engineering, parameter dan sinyal fisiologi, homeostasis. Mekanisme Fisiologi Dasar; Sel, transpor melalui membrane dan potensial membrane. Sistem integrasi dan Kontrol Tubuh; Organisasi selular Sistem Saraf, system saraf pusat dan perifer, sinaps Sistem Lokomotorik; sistem skeletal, jaringan dan fisiologi otot, system muscular. Sistem Distribusi dan Pertukaran; Sistem cardiovascular (organisasi dan fungsi, kelistrikan, mekanikal proses, vascular & hemodinamika, kontrol). Sistem Respirasi (organisasi dan fungsi, mekanikal properti, pertukaran dan transport gas, kontrol). Sistem Urinari ((organisasi dan fungsi, nefron dan fungsi dasar ginjal, peran ginjal pada homeostasis), wrap up & Pengayaan Introduction; orientation & organization level, relationship Anatomy & Physiology with biomedical engineering, physiological signal & parameter, homeostasis Basic Physiology Mechanism; cellular membranes and transport , membrane potential, cell communication, human body electricity Integration and Control System of the human body; Cellular organization of Nervous System , Central & Peripheral Nervous System, synaps Locomotoric System; Skeletal System, muscle tissue & physiology, muscular Sysytem Exchange and Distribution: Cardiovascular System (organization & function, electrical activity, mechanical event, vascular & hemodynamic, control). Respiratory System (organization & function, mechanical propertis, gas exchange & transport , control). Urinary system ((organization & function, Nefron & basic renal function, homeostatic) , wrap-up Setelah mengikuti mata kuliah ini mahasiswa selayaknya memiliki kemampuan: Mengerti dan mampu menerangkan konsep serta terminologi dasar anatomi dan fisiologi manusia Mampu menggunakan pengetahuan dasar anatomi & fisiologi tubuh manusia sebagai acuan kerangka berpikir dalam mempelajari lebih dalam mengenai bidang terkait, seperti sistem tubuh tertentu, farmakologi, dsb. Mampu menggunakan pengetahuannya dalam anatomi & fisiologi tubuh manusia sebagai acuan kerangka berpikir dalam melakukan penelitian/desain terkait biomedika di bidang ilmu masing- masing, sebagai contoh: o MahasiswaTeknik Elektro & Teknik Fisika: merancang instrumentasi biomedika dengan menggunakan prinsip-prinsip anatomi dan fisiologi manusia o Mahasiswa Teknik Informatika: membuat program simulasi kerja fisiologi manusia o Mahasiswa Teknik Mesin: aplikasi dalam bidang biomekanika o Mahasiswa Matematika: mengembangkan pemodelan matematika dari sistem hidup o Mahasiswa Kimia /Teknik Kimia: sebagai dasar mempelajari biokimia atau bidang terkait o Mahasiswa Teknik Farmasi: sebagai dasar mempelajari farmakologi KI1202 KimiaDasar IIB Prasyarat [Kode dan Nama Matakuliah] [Prasyarat, bersamaan, terlarang]

Kegiatan Penunjang

Peragaan pemeriksaan sinyal-sinyal fisiologis

Pustaka

Widmaier, Raff, Strang, Vander's Human Physiology -The Mechanisms of Body Function, 12th edition, McGrawHill, 2011 (Pustaka utama) Joseph J Feher,Quantitative Human Physiology: An Introduction, 1th Academic Press, 2012 (Pustaka pendukung) 3. http://biomed.ee.itb.ac.id/kuliah/course/view.php?id=2

Panduan Penilaian

Penilaian dilakukan berdasarkan nilai dari kuis, tugas, ujian mid-semester, serta ujian akhir

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 2 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

1

Topik

Introduksi

Sub Topik

a.Definisi, terminologi, kerangka referensi anatomis b. Ruang lingkup anatomi & fisiologi c. Kaitan anatomi & fisiologi terhadapTeknik Biomedika d. Organisasi tubuh manusia secara structural & fisiologis (system organ) e. homeostasis f. Karakteristik kehidupan g. Parameter dan Sinyal Fisiologi

Capaian Belajar Mahasiswa

 Mengetahui definisi anatomi dan fisiologi serta hubungan antara anatomi dan fisiologi  Mengetahui istilah anatomi untuk menjelaskan bagian, regio serta rongga tubuh, dan posisi relatif  Mengetahui fisiologi merupakan ’core’ masalah bagi Teknik Biomedika  Mengetahui analogi sistem fisiologis terhadap sistem engineering  Memahami kemungkinan aplikasi engineering terhadap tubuh manusia  Dapat mengidentifikasikan level organisasi dari organisme, sistem organ pada manusia serta komponen-komponennya

Sumber Materi

Pustaka 1, bab 1, sub-bab 1-8 Pustaka 2, bab 1, sub-bab 1 http://biomed.ee.itb.ac.id/kuliah/course/view.php?id=2, materi kuliah minggu I

 Memahami konsep, mekanisme serta regulasi homeostasis serta pentingnya bagi kehidupan  Mengetahui karakteristik kehidupan organisme

2

3

Mekanisme Fisiologis Dasar

Mekanisme Fisiologis Dasar

a. Sel dan Membran Sel b. transpor trans membran

c. Komunikasi antar sel d. Kelistrikan pada tubuh manusia

4

Sistem Kontrol dan Integrasi Tubuh: Sistem Saraf

Komponen, Organisasi dan Fungsi system saraf

5

Sistem Kontrol Tubuh: Sistem Saraf

Sinaps Aplikasi engineering pada system Saraf

6

Sistem Musculoskeletal: Sistem Skeletal

Komponen, organisasi dan fungsi sistem skeletal

7

Sistem Musculoskeletal: Sistem Muscular

Komponen, organisasi dan fungsi system muscular Jaringan otot Motor unit Sliding filament theory & kontrol Kelistrikan pada system muscular Aplikasi teknologi pada system musculoskeletal

8

Sistem Kardiovaskular

Komponen dan organisasi secara keseluruhan Jantung sebagai

 Mengetahui berbagai jenis sinyal yang terdapat pada tubuh manusia a. Mengetahui struktur lokasi dan fungsi plasma membran b. Menjelaskan berbagai mekanisme transpor material melalui membran c. Menjelaskan prinsip fisika & kimia yang mendasari proses difusi, osmosis a. Menjelaskan mekanisme komunikasi antar sel b. Menjelaskan prinsip dasar kelistrikan pada tubuh manusia, c. Menjelaskan asal, konduksi potensial aksi Menjelaskan komponen, organisasi sistem saraf

mengetahui mekanisme transmisi sinyal pada sinap Memahami kemungkinan aplikasi engineering terhadap sistem kontrol, dengan sistem EEG sebagai contoh Mengetahui organisasi dan fungsi system skeletal Mengetahui organisasi otot skeletal dan fungsinya Memahami terjadinya kontraksi pada tingkat jaringan beserta mekanisme pengontrolannya Mengetahui neuromuscular junction, motor unit recruitment, excitation-contraction-couplng Memiliki wawasan mengenai aplikasi teknologi dalam sistem muscular, khususnya EMG

Mengetahui struktur dan fungsi system kardiovaskular Mengetahui siklus jantung & hubungannya dengan kelistrikan

Pustaka 1. Bab 3, sub bab1, 2 Pustaka 1, bab 4, sub bab1-5 Pustaka 2, bab2 sub bab 1, 5, 6, 7, 8 http://biomed.ee.itb.ac.id/kuliah/course/view.php?id=2, materi kuliah minggu II

Pustaka 1. Bab 3, sub bab1, 2 Pustaka 1, bab 4, sub bab1-5 Pustaka 2, bab2 sub bab 1, 5, 6, 7, 8 http://biomed.ee.itb.ac.id/kuliah/course/view.php?id=2, materi kuliah minggu III Pustaka 1. Bab 6 Pustaka 4, bab2 sub bab 1, 4, http://biomed.ee.itb.ac.id/kuliah/course/view.php?id=2, materi kuliah minggu III Pustaka 1. Bab 6 Pustaka 2, bab 4, sub bab 2 http://biomed.ee.itb.ac.id/kuliah/course/view.php?id=2, materi kuliah minggu V

http://biomed.ee.itb.ac.id/kuliah/course/view.php?id=2, , materi kuliah minggu VI

Pustaka 1, bab 9 Pustaka 2, bab 3 sub bab 4,5,6 http://biomed.ee.itb.ac.id/kuliah/course/view.php?id=2, materi kuliah minggu VII

Pustaka 12, bab 9 Pustaka 2, bab 5 http://biomed.ee.itb.ac.id/kuliah/course/view.php?id=2,

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 3 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

sistem Listrik Sistem Kardiovaskular sebagai sistem mekanik Siklus jantung; Jantung sebagai pompa

dan suara jantung Memahami struktur, fungsi dan cara kerja jantung Mengetahui karakteristik potensial aksi pada sel otot jantung, sistem konduksi jantung, bagian gelombang EKG dan hubungannya dengan kontraksi jantung

materi kuliah minggu VIII

Sistem Vaskular & Hemodinamika Regulasi fungsi jantung Aplikasi teknologi pada system cardiovascular ECG & Pacemaker

Memahami struktur dan fungsi sistem vaskuler Memahami variabel sistem hemodinamik: volume, flow, pressure Memahami mekanisme kontrol jantung; regulasi intrinsik dan ekstrinsik Memiliki wawasan mengenai aplikasi teknologi dalam sistem kardiovaskular, khususnya EKG & Pacemaker

Pustaka 1, bab 9 Pustaka 2, bab 5 http://biomed.ee.itb.ac.id/kuliah/course/view.php?id=2, materi kuliah minggu IX

Mengetahui komponen dan fungsi system respirasi Memahami proses masuk keluarnya udara beserta factor-faktor yang mempengaruhinya Memahami variabel dan fungsi sistem mekanik respirasi: pressurevolume relationship dan compliance dari sistem Memahami proses pertukaran gas antara alveoli dan darah Memahami mekanisme perjalanan gas dari paru ke jaringan dan dari jaringan ke paru Memiliki wawasan mengenai aplikasi teknologi dalam sistem respirasi, khususnya ventilator dan alat pengukuran fungsi pernafasan Memahami komponen dan fungsi sisten urinari Memahami proses pembentukan urin dan kerja ginjal: filtrasi, reabsorpsi, osmosis & countercurrent multiplier system Memahami bagaimana tubuh menjaga kesetimbangan cairan : control osmolaritas, volume Memiliki wawasan mengenai aplikasi teknologi dalam sistem urinari, khususnya mesin hemodialisa Memahami interaksi system kardiovaskular, respirasi dan urinari dalam mendistribusikan nutrisi dan waste product

Pustaka 1, bab 13 Pustaka 2, bab 6 http://biomed.ee.itb.ac.id/kuliah/course/view.php?id=2, materi kuliah minggu X

Sistem Kardiovaskular

9

Sistem Respirasi Komponen dan organisasi system respirasi Proses mekanis pernafasan

10

Sistem Respirasi Proses dan Pertukaran gas Transpor gas Aplikasi teknologi pada system respirasi: ventilator

11

Sistem Urinari 12

Sistem Urinari

13

Pengayaan 14 15

Komponen dan organisasi system urinary Nefron dan fungsi renal dasar Peran system urinary dalam system homeostasis Aplikasi teknologi pada system urinary: hemodialsisa Integrated Physiology: Distribution & exchange

Pustaka 1, bab 13 Pustaka 2, bab 6 http://biomed.ee.itb.ac.id/kuliah/course/view.php?id=2, materi kuliah minggu XI

Pustaka 1, bab 14 Pustaka 2, bab 7 http://biomed.ee.itb.ac.id/kuliah/course/view.php?id=2, materi kuliah minggu XII

Pustaka 1, bab 14 Pustaka 2, bab 7 http://biomed.ee.itb.ac.id/kuliah/course/view.php?id=2, materi kuliah minggu XIII

Resume

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 4 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Fakultas Sekolah Teknik Elektro dan Informatika

Silabus dan Contoh Satuan Acara Pengajaran (SAP)

Kode Matakuliah: EL4239

Bobot sks: 3

Semester: 8

KK / Unit Penanggung Jawab: Biomedika

Sifat: Pilihan

Fenomena Transpor di Biomedika Nama Matakuliah Transport Phenomena in Biomedical Engineering

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes) Matakuliah Terkait

Deskripsi kuantitatif transportasi momentum (aliran viskos) dan transportasi massa (konveksi dan difusi) dalam sistem hidup. Penerapan metode rekayasa untuk permodelan dan pengukuran aspek-aspek dalam teknik biomedika. The quantitative description of momentum transport (viscous flow) and mass transport (convection and diffusion) in living systems. Application of engineering methods to model and quantify aspects of biomedical engineering. Perpindahan energi, massa dan momentum sangat penting untuk sistem biologi. Dalam kuliah ini akan dikembangkan deskripsi kuantitatif proses transportasi dalam system biologi yang berskala spasial dari yang kecil ke besar. Kita akan belajar bagaimana menerapkan prinsip-prinsip transportasi massa dan panas ke sistem biologis, untuk memecahkan masalah yang berkaitan dengan perpindahan massa dan panas dan menggunakan alat komputasi untuk memecahkan masalah. The transport of energy, mass and momentum are essential to biological system. In this course we will develop a quantitative description of transport processes from small to large spatial scale of biological systems. We will learn how to apply mass and heat transport principles to biological systems, to solve problems related to mass and heat transfer and to use computational tools to solve problem. 1. Memahami model matematis proses transportasi massa dan energi. 2. Mampu menggunakan model transportasi massa dan energi dalam sistem biologis. 3. Mampu menggunakan metode komputasi untuk penyelesaikan masalah transportasi dalam sistem biologis berskala besar. MA2074 Matematika Teknik II Prasyarat

Kegiatan Penunjang Pustaka

1. Basic Transport Phenomena in Biomedical Engineering, second edition, by Ronald L. Fournier. (Pustaka utama) 2. Transport Phenomena, second edition, by BSL (pendukung) 3. Transport Phenomena in Biological Systems, first edition, by GA Truskey et. al., (pendukung)

Panduan Penilaian

Tugas 20%, Proyek Akhir 25%, UTS 25%, UAS 30%

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 5 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg# 1

Topik Pengantar Kuliah

6

Permodelan transportasi massa dan energi Permodelan transportasi massa dan energy (2) Solusi model transpor dengan metode komputasi Sifat fisika cairan tubuh dan membran sel Fisika Aliran Darah

7

Fisika Aliran Darah (2)

8

Fisika Aliran Darah (3)

9

14

UTS Transportasi larutan dalam sistem biologi Transportasi larutan dalam sistem biologi (2) Transportasi larutan dalam sistem biologi (3) Transportasi oksigen dalam sistem biologi Presentasi Proyek Akhir

15

UAS

2 3 4 5

10 11 12 13

Sub Topik Pengenalan mata kuliah Review unit dan dimensi Konservasi massa dan momentum Transportasi: Momentum, Energi, Mass Solution Persamaan Transpor

Capaian Belajar Mahasiswa

Sumber Materi Bab 1 [1] Bab 2 [1]

Latihan menyelesaikan persamaan transpor Menggunakan program opensource FreeFem++ Bab 3 [1] Reologi darah

Bab 4 [1]

Aliran darah Teori Boundary layer Pipa kapiler

Bab 4 [1]

Diffusi larutan Transportasi larutan dengan filtrasi kapiler Permeabilitas larutan Transportasi membran Transportasi larutan melalui dinding kapiler

Bab 4 [1]

Bab 5 [1] Bab 5 [1] Bab 5 [1] Bab 6 [1]

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 6 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Fakultas Sekolah Teknik Elektro dan Infomatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4125

Bobot sks: 3

Semester: 7

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Pilihan

Pengolahan Citra Digital Nama Matakuliah Digital Image Processing

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

Pendahuluan, Sistem 2D dan review matriks, Peningkatan kualitas citra, Restorasi citra, Segmentasi citra, Rekonstruksi citra hasil proyeksi, Pemampatan citra, Ekstraksi fitur, Pengenalan pola Introduction, 2D System and matrix review, Image enhancement, Image restoration, Image Segmentation, Image reconstruction from projection, Image compression, Feature extraction, Pattern Recognation Pengenalan pengolahan citra: masalah, aplikasi. Persepsi citra: brightness, contrast, color, tekstur. Sistem matriks 2D konvolusi. Transformasi citra: Digital Fourier Transform , Digital Cosine Transform. Peningkatan kualitas citra: operasi titik dan spasial. Restorasi citra: filtering, noise suppression. Analisis citra dan penglihatan komputer (computer vision). Ekstraksi ciri. Operasi morfologi. Klasifikasi citra. Rekonstruksi citra. Kompresi data citra. Studi kasus: aplikasi medis, praktikum: hands-on  Matlab, image processing toolbox. Tugas besar. Introduction to Image Processing: problems, applications. Image Perception: brightness, contract, color, texture. 2D system matrix, convolution. Image transform: DFT, DCT. Image enhancement: point & spatial operation. Image restoration: filtering, noise suppression. Image analysis & computer vision. Feature extraction. Morphological operations. Image classification. Image reconstruction. Image compression. Case study: medical applications, hands-on lab works. 1. Memahami ruang lingkup pengolahan citra digital, khususnya di bidang medis dan biologi. 2. Memahami secara teori dan mengimplementasikan aspek dari dasar teknik pengolahan citra digital. 3. Mampu menganalisis masalah pengolahan citra dan merancang solusinya menggunakan teknik pengolahan citra digital 4. Mampu mengidentifikasi implementasi terkini dari pengolahan citra, terutama di bidang medis dan biologi. EL3010 Pengolahan Sinyal Digital Prasyarat

Kegiatan Penunjang

Praktikum, Kunjungan ke Klinik/RS

Pustaka

1. RC. Gonzalez & RE Woods, Digital Image Processing 3rd Ed, Prentice Hall, 2007 (Pustaka utama) 2. Jain, Anil K., Fundamentals of Digital Image Processing, Prentice Hall International, 1989, (Pustaka alternatif) 3. Castleman, Kenneth R. Digital Image Processing. Prentice Hall International. 1996. (Pustaka pendukung)

Panduan Penilaian

Praktikum 20%, Tugas 20 %, UTS 30%, UAS 30 %

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 7 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg# 1

2

3

4

5

6

7

8

9

10

11

Topik

Sub Topik

Capaian Belajar Mahasiswa

Sumber Materi

Mahasiswa memahami aturan perkuliahan: jadwal kuliah, ruang lingkup, danskema penilaian Mahasiswa memahami dasar-dasar citra digital:  Persepsi citra, penangkapan citra oleh mata, garis besar anatomi dan fungsi mata, konsep intensitas dan warna, representasi warna citra, model penglihatan, kriteria fidealitas citra  Proses pencuplikan (sampling), kuantisasi citra beserta batasannya, serta representasi citra citra digital Mahasiswa memahami system 2D, mengingat ulang konsep matriks dan operasinya, serta mengenal beberapa matriks khusus dalam pengolaha citra (Toeplitz, circulant, orthogonal, dan uniter) Mehasiswa memahami konsep transformasi orthogonal dan uniter, konsep dan sifat-sifat transformasi uniter terpisahkan, citra basis, serta konsep dekomposisi cira ke dalam himpunan citra basisnya Mahasiswa memahami konsep Transformasi Fourier Diskrit, baik untuk sinyal 1D maupun 2D; memahami konsep dekomposisi citra ke dalam citra-citra basisnya, serta mengenal berbagai macam transformasi 2D untuk citra beserta sifat-sifatnya (transformasi sinus diskrit, transformasi kosinus diskrit, transformasi Haar, transformasi Slant, transformasi KL)

Bab 1 [1]

Pendahuluan

Perkenalan: jadwal kuliah, ruang lingkup, skema penilaian

Dasar-dasar citra digital (persepsi citra dan warna; pencuplikan dan kuantisasi citra)

Persepsi citra & warna, penangkapan citra oleh mata, akusisi citra. Pencuplikan 1D dan 2D, laju Nyquist, kuantisasi, pengkuantisasi tanpa memori, ilustrasi efek kuantisasi.

Sistem 2D dan review matriks

Notasi dan defines, fungsi delta Dirac dan Kronecker, sistem linear 2D. Matriks, matriks Toeplitz dan circulant, matriks orthogonal dan uniter.

Transformasi citra (I)

Transformasi orthogonal dan uniter 2D, sifat ortonormal dan lengkap, transformasi uniter terpisahkan, citra basis.

Transformasi citra (II)

Perbaikan citra (I)

Perbaikan citra (II)

Transformasi Fourier diskrit 2D, sifat-sifat transformasi Fourier Diskrit, beberapa macam transformasi citra.

Pemodelan citra, ekualisasi histogram, operasi spasial, pengaruh blurring pada operasi low pass filter, pengaruh derah pada berbagai tingkat energy Filter median, penajaman citra, operasi high pass filter, deteksi tepi. Perbaikan citra dalam kawasan frekuensi, filter ideal, filter Butterworth

Pemulihan citra (I)

Model proses degradasi dan restorasi citra; Model derau; Pemulihan citra akibat derau spasial; Pemuliahn citra akibat derau periodik.

Pemulihan citra (I)

Inverse filter, Pseudo inverse filter, Wiener filter.

Operasi morfologi

Konsep dasar pengolahan citra morfologi, dilasi dan erosi, opening dan closing, operasi morfologi lainnya, operasi morfologi untuk citra non-biner.

Rekonstruksi citra hasil proyeksi

Geometri proyeksi, Transformasi Radon, operator proyeksi-balik (back-projection). Teorema irisan proyeksi, Inverse Radon Transform, metoda rekonstruksi aljabar.

Bab 3 [1]

Bab 2 [2]

Bab 2 [1]

Bab 5 [1]

Bab 7 [1] Mahasiswa memahami konsep dan beberapa teknik dasar dalam perbaikan citra (image enhancement) Mahasiswa memahami berbagai teknik lanjutan dalam perbaikan citra, meliputi filter median, operator HPF, deteksi tepi, serta perbaikan melalui filtering dalam kawasan frekuensi. Mahasiswa memahami konsep degradasi citra (image degradation) dan pemulihan citra (image restoration), model derau yang umum dijumpai pada citra digital, teknik pemulihan citra dalam kawasan spasial, serta teknik pemulihan citra akibat derau periodic dalam kawasan frekuensi. Mahasiswa memahami beberapa teknik lanjutan dalam pemulihan citra, yaitu inverse filter, pseudo-inverse filter, dan minimu MSE filter (wiener filter), beserta kelebihan dan kekurangannya. Mahasiswa memahami konsep dasar pengolahan citra menggunakan operator morforlogi pada citra biner, beberapa operator dasar (dilasi, erosi, opening, closing), beberapa operator lain (thinning, thickening, skeleton), serta perluasan konsep operasi morfologi terhadap citra non-biner. Mahasiswa memahami konsep rekonstruksi citra hasil proyeksi:  Geometri proyeksi (berkas parallel, kipas, dan kerucut)  Konsep pencitraan dengan proyeksi.  Transformasi Radon dan sifatsifatnya, operator proyeksi balik, tapis proyeksi balik (RamLak, Shepp-Logan, low pass cosine dan generalized Hamming).  Teorema irisan proyeksi.  Rekonstruksi proyeksi dengan Inverse Radon Transform, dan rekonstruksi proyeksi dengan metoda aljabar.

Bab 7 [1]

Bab 8 [1]

Bab 9 [1]

Bab 9 [1]

Bab 9 [2]

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 8 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Pemampatan data citra

Pengantar kompresi citra, laju informasi, pixel coding, predictive coding, transform coding, color coding

13

Dasar-dasar pengenalan pola

Konsep pengenalan pola, uji nisbah likelihood dan variasinya, peluang kesalahan, resiko Bayes, kriteria Bayes, fungsi diskriminan.

14

Studi kasus

Pengolahan citra untuk aplikasi medis

15

Tugas besar

Konsultasi dan Tanya-jawab seputar topik tugas yang dikerjakan secara berkelompok

12

Mahasiswa memahami prinsip-prinsip kompresi/pemampatan data citra (image data compression), serta mengerti beberapa teknik dasar yang umum digunakan: pixel coding (PCM, entropy coding, RLE, bit plane encoding), predictive coding (DPCM), transform coding, serta color/multispectral image coding. Mahasiwa memahami konsep pengenalan pola, serta aplikasinya bersama pengolahan citra dalam berbagai bidang; mengingat kembali konsep teori peluang dan aljabar linier, serta hubungan keduanya dengan teknik pengenalan pola; serta mengerti teori keputusan Bayes dan aplikasinya dalam pengenalan pola. Mahasiswa memahami dan mampu menerapkan konsep dan materi pengolahan citra yang sudah disampaikan dalam sebuah persoalan medis. Mahasiswa memahami kembali materi ajar yang telah disampaikan, menerapkannya dalam sebuah persoalan, memberikan analisis yang sesuai, serta menyampaikannya dalam bentuk laporan/presentasi tugas besar.

Bab 20 [3]

Bab 10 [1]

Sumber2 yang relevan, internet, dll

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 9 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi : Teknik Elektro Fakultas : Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4240

Bobot sks: 3

Semester: 8

KK / Unit Penanggung Jawab: Biomedika

Sifat: Pilihan

Pengukuran Biosinyal Nama Matakuliah

Biosignal Measurement Pengenalan karakteristik biosinyal dan proses pengukuran biosinyal berbasis komputer

Silabus Ringkas

Silabus Lengkap

A course to introduce students to the realm of biological signals and their analysis using common tools of modern computer-based signal handling. Topik kuliah mencakup : Sistem pengukuran biosinyal, Jenis dan karakteristik biosinyal, Akuisisi data biosinyal Pengukuran biosinyal berbasis komputer Teknik dasar pemrosesan biosinyal (Fourier transform, FIR, Moving average, Wavelet transform) Analisis spektrum Data filtering and Wave-shaping Analisis, ekstraksi dan interpretasi biosinyal. Studi kasus : ECG, EEG, dan EMG 1) Dapat mengklasifikasikan jenis biosinyal berdasarkan beberapa fitur 2) Dapat melakukan perekaman berbagai jenis biosinyal 3) Dapat menerapkan teknik dasar yang biasa digunakan untuk pemrosesan biosinyal 4) Dapat melakukan analisisis terahadap data biosinyal untuk mendapatkan informasi diagnosa 5) Dapat mengukur parameter biosinyal terkait 6) Dapat menginterpretasikan hasil ekstraksi parameter suatu biosinyal

Luaran (Outcomes)

Upon completion of the subject, students will be able to: Classify biomedical signals into different categories according to various features; Perform various biosignal recording Apply basic signal processsing technique involved in biosignal processing Analyze recorded biosignal to derive diagnostic information Measure related biosignal parameters Interpret extracted parameters from measured biosignal

Matakuliah Terkait

EL4131 Anatomi Fisiologi EL3010 Pengolahan Sinyal Digital

Kegiatan Penunjang

Praktikum

Pustaka

Panduan Penilaian

Prasyarat Prasyarat

[Rangaraj R. Rangayyan, Biomedical Signal Analysis : A Case Study Appraoach, John Wiley & Sons Inc., 2002] (Pustaka utama) [John M. Semlow, Biosignal and Biomedical Image Processing, John Wiley & Sons Inc., Edisi, Penerbit, Tahun terbit] (Pustaka alternatif) [Steven W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing, dapat diakses secara online di laman : http://www.dspguide.com/pdfbook.htm] ([Pustaka pendukung]) - Homework assignment - Lab Performace and Report - Mid-term Exam - Final Exam

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 10 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg# 1

2

Topik Pendahuluan

Jenis dan Karakteristik Biosinyal

Sub Topik - Sistem Pengukuran biosinyal -

Biopotensial Bentuk Waveform Karakteristik fisiologi Komponen utama sinyal Spectrum frekuensi sinyal Bioelektroda Sensor dan Tranducer Analog amplifier Analog to Digital Converter

3

Akuisisi Data Biosinyal

4

Pengukuran Biosinyal berbasis Kompouter

- Pengenalan tools BIOPAC - Pengenalan MATLAB

5

Pengenalan Teknik Pemrosesan Biosinyal

- Fourier transform, FIR, Moving average, Wavelet Transform

6

Data Filtering and Wave Shaping

7

Spectral Analysis

- FFT - Spektrum Sinyal

8

Pengukuran Sinyal ECG (1)

- Teknik pengambilan data ECG

9

Pengukuran Sinyal ECG (2)

- Pemrosesan data ECG

10

Pengukuran Sinyal ECG(3)

- Ekstraksi prameter Sinyal ECG

11

Pengukuran Sinyal EEG (1)

- Teknik pengambilan data EEG

12

Pengukuran Sinyal EEG(2)

- Pemrosesan data EEG

13

Pengukuran Sinyal EEG(3)

- Ekstraksi prameter Sinyal

14

Pengukuran Sinyal EMG (1)

- Teknik pengambilan data EMG

15

Pengukuran Sinyal EMG (2)

- Pemrosesan data EMG

16

Pengukuran Sinyal EMG (3)

- Ekstraksi prameter Sinyal

- Karakteristik Filter - Filter Parameter, - Noise reduction using Filter - Envelope Calculaton - Signal Shaping

Capaian Belajar Mahasiswa

Sumber Materi

- Mahasiswa dapat menjelaskan proses pengukuran biosinyal secara umum dan impaknya terhadap diagnossuatu penyakit

Semmlow – Ch.1

- Mahasiswa dapat menjelaskan berbagai karakteristik suatu biosinyal

Rangayyan – Ch.1

- Mahasiswa dapat menjelaskan proses pengambilan data biosinyal dari sebuah sistem instrumentasi biomedik - Mahasiswa dapat menjelaskan karakteristik tranducer untuk pengambilan biosinyal - Mahasiswa dapat menggunkan perangkat berbasis komputeruntuk pengukuran biosinyal - Mahasiswa mengenal software komputasi untuk memproses biosinyal - Dapat menjelskan konsep dan perhitungan algoritma FFT, FIR, Moving average dan Wavelet - Dapat menggunakan algoritma untuk pemrosesan biosinyal - Dapat menjelaskan karakteristik dan aparameter Filter - Dapat merancang digital filter dengan menggunakan MATLAB - Dapat mengukur kinerja filter - Dapat menerapkan rancangan filter digital untuk noise reduction, envelope calculaton, dan signal shaping - Dapat menjelaskan konsesp analisis spektrumberbasis FFT - Dapat melakukan pengambilan data ECG - Dapat melakukan perekaman dan penyimpanan data - Dapat menjelaskan tahapan pemrosesan sinyal ECG - Dapat menjelaskan pemrosesan sinyal ECG - Dapat melakukan pemrosesan sinyal ECG dengan teknik dasar DSP - Dapat melakukan ekstraksi parameter sinyal - Dapat mengidentifikasi fitur atau informasi dari sinyal ECG - Dapat menginterpretasikan parameter biosinyal terhadap karakteristik fisiologis - Dapat melakukan pengambilan data EEG - Dapat melakukan perekaman dan penyimpanan data - Dapat menjelaskan tahapan pemrosesan sinyal EEG - Dapat menjelaskan pemrosesan sinyal EEG - Dapat melakukan pemrosesan sinyal EEG dengan teknik dasar DSP - Dapat melakukan ekstraksi parameter sinyal - Dapat mengidentifikasi fitur atau informasi dari sinyal EEG - Dapat menginterpretasikan parameter biosinyal terhadap karakteristik fisiologis - Dapat Mmelakukan pengambilan data EMG - Dapat melakukan perekaman dan penyimpanan data - Dapat menjelaskan tahapan pemrosesan sinyal EMG - Dapat menjelaskan pemrosesan sinyal EMG - Dapat melakukan pemrosesan sinyal EMG dengan teknik dasar DSP - Dapat melakukan ekstraksi parameter sinyal - Dapat mengidentifikasi fitur atau informasi dari sinyal EMG - Dapat menginterpretasikan parameter biosinyal terhadap karakteristik fisiologis

Semmlow – Ch.1

Smith – Ch. 8, Ch. 12, 14, 15

Rangayyan Ch. 3 Smith Ch. 14, Semmlow Ch.5

Semmlow Ch. 3

BIOPAC user guide

Rangayyan Ch. 4

Rangayyan Ch. 4

BIOPAC user guide

Rangayyan Ch. 5, Ch. 6

Rangayyan Ch. 5, Ch. 6

BIOPAC user guide

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 11 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Fakultas Sekolah Teknik Elektro dan Informatika

Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4132

Bobot sks: 3

Semester: 7

KK / Unit Penanggung Jawab: Teknik Biomedika

Sifat: Pilihan

Teknik Biomedika Nama Matakuliah

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

Biomedical Engineering Pendahuluan. Dasar-dasar Teknik Biomedika. Dasar-dasar Sistem/Instrumentasi Biomedika. Dasar-dasar potensial bio-listrik. Berbagai jenis transducer & sensor biomedika, penguat operasional & penguat biomedika. Masalah keamanan (safety) pasien. Pengenalan anatomi & fisiologi. Topik-topik khusus. Perkembangan baru dalam Teknik Biomedika & Kuliah penutup. Introduction. Fundamentals of Biomedical Engineering. Fundamentals of Biomedical System/Instrumentation. Fundamentals of bioelectric. Various biomedical transducer and sensors. Operational amplifier & biomedical amplifier. Patient safety. Introduction to anatomy and physiology. Pendahuluan: penjelasan umum matakuliah, tujuan kuliah, topik-topik bahasan, rencana kegiatan, Evaluasi. Dasar-dasar Teknik Biomedika: pengertian Teknik Biomedika, sifat multi-disiplin, prosedur kedokteran (medical procedure), informasi kedokteran (medical information), masalah keamanan (safety), ruang lingkup; pengenalan anatomi & fisiologi, dasar istilah kedokteran. Dasar-dasar Sistem/Instrumentasi Biomedika: diagram blok, bagian-bagian & fungsinya, cara kerja sederhana, contoh-contoh alat bantu diagnosa & terapi sederhana; diagram rangkaian dan perhitungan soal sederhana. Dasar-dasar potensial bio-listrik: prinsip, contoh-contoh, karakteristik dan cara pengukurannya. Berbagai jenis transducer & sensor biomedika, penguat operasional & penguat biomedika. Masalah keamanan (safety) pasien, kejut listrik macroschock & microschock; beberapa alat pengaman dan program keamanan. Pengenalan anatomi & fisiologi, manfaat. Topik-topik khusus: Telemedika, Biomekanika & Teknik Rehabilitasi, Biomaterials & Tissue Engineering, Gelombang Elektromagnetik & ultrasonik. Perkembangan baru dalam Teknik Biomedika & Kuliah penutup: Contoh topik-topik penelitian & tugas akhir; Ringkasan kuliah. Introduction: overview, course objective, course topics, schedule, evaluation and assessment. Fundamentals of biomedical engineering: definition, multidisciplinary fields, medical procedure, medical information, safety, scope of biomedical engineering, medical therminology. Fundamentals of biomedical system/instrumentation: block diagram, it’s part and their function, principles, examples (diagnose and therapeutic device). Fundamentals of bioelectric: principles, examples, charactheristics and it’s measurement. Variuos biomedical transducer and sensors, operational amplifier and biomedical amplifier. Patient safety, electric shock: macroshock and microshock, hospital equipment safety. Introduction to anatomy and physiology. Special topics in biomedical engineering: telemedicine, biomechanics and rehabilitation engineering, biomaterials and tissue engineering. Ultrasonic and electromagnetic in biomedical engineering. Trends in biomedical engineering. Course review. 5. Memahami pengertian ruang lingkup teknik biomedika, 6. Memahami secara teori dan mengimplementasikan subbidang teknik biomedika, 7. Mampu menganalisis masalah di bidang medis & biologi dan merancang solusinya , 8. Mampu mengidentifikasi implementasi terkini di bidang teknik biomedika. EL3013 Sistem Instrumentasi Prasyarat

Kegiatan Penunjang

Praktikum, kerja lapangan

Pustaka

1. Joseph D. Bronzino, The Biomedical Engineering HandBook 2nd Edition, CRC Press LLC, 2000 (Pustaka utama) 2. John G. Webster. Medical Instrumentation: Application and Design, 4th Ed. John Wiley & Sons. 2010 (Pustaka alternatif) 3. Richard Aston, Principles of Biomedical Instrumentation and Measurement, Merril Publishing Company, 1990 (Pustaka pendukung) 4. Kramme, Rüdiger; Hoffmann, Klaus-Peter; Pozos, Robert Steven. Springer Handbook of Medical Technology. Springer. 2011.

Panduan Penilaian

Praktikum 20%, Tugas 20 %, UTS 30%, UAS 30 %

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 12 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg# 1

Topik Pendahuluan Dasar-dasar Teknik Biomedika.

2

Dasar-dasar Sistem/Instrumentasi Biomedika. 3

4

Dasar-dasar potensial biolistrik. Berbagai jenis transducer & sensor biomedika

5

6

7

8

9

10

Penguat operasional & penguat biomedika. Masalah keamanan (safety) pasien. Pengenalan anatomi & fisiologi. Topik-topik khusus: Telemedika Topik-topik khusus: Biomekanika & Teknik Rehabilitasi Topik-topik khusus: Biomaterials & Tissue Engineering

11

12

Topik-topik khusus: Gelombang Elektromagnetik & ultrasonik

Sub Topik

Capaian Belajar Mahasiswa

Sumber Materi

penjelasan umum matakuliah, tujuan kuliah, topik-topik bahasan, rencana kegiatan, Evaluasi pengertian Teknik Biomedika, sifat multi-disiplin, prosedur kedokteran (medical procedure), informasi kedokteran (medical information), masalah keamanan (safety), ruang lingkup; pengenalan anatomi & fisiologi, dasar istilah kedokteran pengenalan anatomi & fisiologi, dasar istilah kedokteran. Dasardasar Sistem/Instrumentasi Biomedika: diagram blok, bagianbagian & fungsinya, cara kerja sederhana, contoh-contoh alat bantu diagnosa & terapi sederhana; diagram rangkaian dan perhitungan soal sederhana prinsip, contoh-contoh, karakteristik dan cara pengukurannya

Mahasiswa memahami aturan perkuliahan: jadwal kuliah, ruang lingkup, danskema penilaian

Bab 1 [1], Bab 1 [2], Bab 1 [3]

Mahasiswa memahami dasar-dasar, bidang, dan ruang lingkup Teknik Biomedika

Bab 1 [1], Bab 1 [2], Bab 1 [3]

Mahasiswa memahami bagianbagian sistem dan instrumentasi biomedika. Mahasiswa dapat menyebutkan fungsi dan cara kerja instrumentasi biomedika.

Bab 70 – 88 [1]

Pengukuran fisis, elektroda, sensor elektrokimia, sensor optik

Ideal Op-Amps, Inverting & noninverting Amplifiers, Integration, Differentiation kejut listrik macroschock & microschock; beberapa alat pengaman dan program keamanan Manfaat dan hubungannya dengan Teknik Biomedika e-health & telemedicine

Gait analysis for rehabilitation Metallic Biomaterials, Ceramic Biomaterials, Polymeric Biomaterials, Composite Biomaterials, Biodegradable Polymeric Biomaterials: An Updated Overview, Biologic Biomaterials, Soft Tissue Replacements, Blood Interfacing Implants, Non-Blood-Interfacing Implants for Soft Tissues, Hard Tissue Replacements, Bone Repair and Joint Implants, Dental Implants: The Relationship of Materials Characteristics to Biologic Properties, Preservation Techniques for Biomaterials, Hip Joint Prosthesis Fixation—Problems and Possible Solutions Ultrasound Transducers, Ultrasonic Imaging, Blood Flow Measurement Using Ultrasound, Electrical Impedance Tomography

13

Perkembangan baru dalam Teknik Biomedika (I)

Tomografi, Medical Imaging

14

Perkembangan baru dalam Teknik Biomedika (II)

Lab Clinic and Home use medical devais

15

Kuliah penutup

Contoh topik-topik penelitian & tugas akhir; Ringkasan kuliah

Mahasiswa memahami dasar-dasar dan konsep potensial biolistrik beserta pengukurannya. Mahasiswa memahami konsep pengukuran fisis biolistrik dan biosinyal, elektroda. Mahasiswa dapat menyebutkan dan mengerti macam-macam sensor yang digunakan di teknik biomedika Mahasiswa memahami konsep penguatan di instrumentasi biomedika Mahasiswa memahami dan mengerti berbagai macam masalah keamanan devais biomedika beserta cara penangannya. Mahasiswa mampu memahami hubungan antara teknik biomedika dengan ilmu anatomi dan fisiologi tubuh manusia. Mahasiswa mampu memahami dan menerapkan aplikasi teknik biomedika di bidang telemedika Mahasiswa mampu mengaplikasikan teknik biomedika di bidang biomekanika, khususnya gait analysis for rehabilitation.

Mahasiswa mampu memahami berbagai macam jenis biomaterial beserta sifat-sifatnya. Mahasiswa mengetahui aplikasi biomaterial di bidang teknik biomedika.

Mahasiswa memahami karakteristik ultrasonic dan elektromagnetik beserta aplikasinya di teknik biomedika. Mahasiswa mengerti dan memahami trend terbaru di teknik biomedika, khusus di bidang tomografi dan pencitraaan medis Mahasiswa mengerti dan memahami trend terbaru di teknik biomedika, Studi kasus: devais medis di lab klinik dan rumah tangga. Review topik-topik kuliah, contoh topik-topik penelitian

Bab 4 – 6 [2], Bab 8 – 17 [1]

Bab 47 – 51 [1], Bab 2 [2]

Bab 3 [2]

Bab 13 [2]

Bab 1 – 7 [1]

Bab 58 – 67 [4]

Bab 18 – 36 [1]

Bab 37 – 46 [1]

Bab 65 & 67 [1]

Bab 62 – 64 [1] Semua referensi dan referensi tambahan dari IEEE (terutama EMBS) Semua referensi

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 13 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Sarjana Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL3011

Bobot sks: 3

Semester: 5

Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Arsitektur Sistem Komputer Nama Matakuliah Computer System Architecture [Uraian ringkas silabus matakuliah dalam Bahasa Indonesia (maksimum 30 kata)] Silabus Ringkas

This course is intended for undergraduate student so that the student will gain a comprehensive knowledge of computer hardware and its interaction with software. The course will also stress on simple MIPS processor design and implementation using VHDL. [Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)]

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

This course will give you an in-depth understanding of the inner-workings of modern digital computer systems and tradeoffs present at the hardware-software interface. You will get an understanding of the design process in the context of a complex hardware system and practical experience with computer-aided design tools. Topics include: Instruction set design, computer arithmetic, controller and datapath design, memory systems, input-output systems, networks interrupts and exceptions, pipelining, performance and cost analysis, computer architecture history, and a survey of advanced architectures 1. Identify some contributors to computer architecture and organization and relate their achievements to the knowledge area. 2. Explain the reasons and strategies for different architectures. 3. Articulate differences between computer organization and computer architecture. 4. Identify some of the components of a computer. 5. Indicate some strengths and weaknesses inherent in different architectures. 6. Describe how computer engineering uses or benefits from computer architecture and organization. EL2002 Digital System Prasyarat EL3111 Prakt. Arsitektur Sistem Komputer Bersamaan

Kegiatan Penunjang

[Praktikum, kerja lapangan, dsb.]

Pustaka

Randal E. Bryant, David R., Computer Systems A Programmer’s Perpective, 2nd Ed, 2010 [CSAP] John L. Hennessy and David A. Patterson , Computer Organization and Design: The Software Hardware Interface, Morgan Kaufmann Publishers, Fourth Edition, 2009. [P&H] [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung])

Panduan Penilaian

[Termasuk jenis dan bentuk penilaian]

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 14 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa

1.

2. 3.

1

Introduction

History of computers Performance Analysis

4. 5. 6. 7. 8. 1.

2

Integer Operations

Unsigned and Signed Numbers. Range, Arithmetic Operations

2.

1.

3

Floating Point

IEEE754, Representation, Range, Precision, Rounding, and Arithmetic operations

2.

1.

4

Intel’s ISA

Data Formats, Accesing Information, ALU Ops, Control

2.

3.

1.

2. 5

Intel’s ISA

Control and Procedure

3.

1. Intel’s ISA

Array allocations, Structures, and unions

Identify some contributors to computer architecture and organization and relate their achievements to the knowledge area. Explain the reasons and strategies for different architectures. Articulate differences between computer organization and computer architecture. Identify some of the components of a computer. Indicate some strengths and weakness inherent in different architectures. Understand the factors that contribute to computer performance. Understand the limitations of performance metrics. Select the most appropriate performance metric when evaluating a computer. Appreciate how numerical values are represented in digital computers. Understand the limitations of computer arithmetic and the effects of errors on calculations. Appreciate how numerical values are represented in digital computers. Understand the limitations of computer arithmetic and the effects of errors on calculations. Explain the relationship between the representation of machine level operation at the binary level and their representation by a symbolic assembler. Write small programs and fragments of assembly language code to demonstrate an understanding of machine level operations. Implement some fundamental high-level programming constructs at the machine-language level. Explain the relationship between the representation of machine level operation at the binary level and their representation by a symbolic assembler. Write small programs and fragments of assembly language code to demonstrate an understanding of machine level operations. Implement some fundamental high-level programming constructs at the machine-language level. Explain the relationship between the representation of machine level operation at the binary level and

Sumber Materi

[P&H] Ch1

[CSAP] Ch2

[CSAP] Ch2

[CSAP] Ch3

[CSAP] Ch3

[CSAP] Ch3

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 15 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

2.

3.

1.

2.

6

MIPS’s ISA 3.

4.

1.

2. ALU

ALU implementations 3.

1.

2.

7

MIPS Single Cycle

Datapath and Control 3. 4.

8

[P&H] Ch2

[P&H] Ch3

[P&H] Ch4

Midterm 1.

2. 9

their representation by a symbolic assembler. Write small programs and fragments of assembly language code to demonstrate an understanding of machine level operations. Implement some fundamental high-level programming constructs at the machine-language level. Explain the relationship between the representation of machine level operation at the binary level and their representation by a symbolic assembler. Write small programs and fragments of assembly language code to demonstrate an understanding of machine level operations. Implement some fundamental high-level programming constructs at the machine-language level. Explain why a designer adopted a given different instruction formats, such as the number of addresses per instruction and variable length vs. fixed length formats. Appreciate how numerical values are represented in digital computers. Understand the limitations of computer arithmetic and the effects of errors on calculations. Appreciate the effect of a processor’s arithmetic unit on its overall performance. Explain the organization of a von Neumann machine and its machine and its major functional units. Explain how a computer fetches from memory and executes an instruction. Articulate the strengths and weakness of the von Neumann architecture. Discuss the impact on control and datapath design for performance enhancements.

MIPS Single Cycle

VHDL Implementations 3. 4. 1.

MIPS Pipeline

Datapath modifications 2.

Explain the organization of a von Neumann machine and its machine and its major functional units. Explain how a computer fetches from memory and executes an instruction. Articulate the strengths and weakness of the von Neumann architecture. Understand how a CPU chip becomes a complete system. Compare alternative implementation of datapaths. Explain basic

[P&H] Ch4

[P&H] Ch4

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 16 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

10

MIPS Pipeline

Hazards, forwarding, and control

11

Memory Hierarchy

Memory Technology, Cache

12

Memory Hierarchy

Virtual memory

13

I/O Subsystem

Peripherals and Storage

Introduction to Superscalar

Performance Enhancement,

14

instruction level parallelism using pipelining and the major hazards that may occur. 1. Discuss the generation of control signals using hardwired or microprogrammed implementations. 2. Explain basic instruction level parallelism using pipelining and the major hazards that may occur. 3. Explain what has been done to overcome the effect of branches. 4. Discuss the way in which instruction sets have evolved to improve performance; for example, predicted execution. 1. Identify the main types of memory technology. 2. Explain the effect of memory latency and bandwith on performance. 3. Explain the use of memory hierarchy to reduce the effective memory latency. 4. Describe the principles of memory management. 1. Explain the use of memory hierarchy to reduce the effective memory latency. 2. Describe the principles of memory management. 3. Design an interface to memory. 1. Explain how to use interrupts to implement I/O control and data transfers. 2. Write small interrupt service routines and I/O drivers using assembly language. 3. Identify various types of buses in a computer system. 4. Describe data access from a magnetic disk drive. 5. Analyze and implement interfaces. 6. Compute the various parameters of performance for standard I/O types. 7. Explain the basic nature human computer interaction devices. 8. Describe data access from magnetic and optical disk drives. 9. Understand how to interface and use peripheral chips. 10. Write sufficient EPROM-based system software to create a basic stand-alone system 11. Specify and design simple computer interfaces. 1. Discuss how

[P&H] Ch4

[P&H] Ch5, [CSAP] Ch6

[P&H] Ch6, [CSAP] Ch10

[P&H] Ch6

[P&H] Ch7

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 17 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

ILP, Speculative execution, branch predictions, multithreading, SSE, Altivec 2.

3.

4.

5. 1.

2. 3. 15

Parallel and Distributed System

Taxonomy, granularity, system examples

4.

5.

16

various architectural enhancements affect system performance. Discuss how to apply parallel processing approaches to design scalar and superscalar processors. Discuss how to apply vector-processing techniques to enhance instruction sets for multimedia and signal processing. Understand how each of the functional parts of a computer system affects its overall performance. Estimate the effect on system performance of changes to functional units. Explain the differences between different paradigms and their usefulness and applicability. Understand how client server model works in a decentralized fashion. Understand how agents work and how they solve simple tasks. Understand the concept of logical clocks vs. physical clocks and how they affect implementation of distributed systems. Be familiar with simple election and mutual exclusion algorithms and their applicability.

[P&H] Ch7

Final Exam

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 18 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro & Informatika

Silabus dan Satuan Acara Pengajaran (SAP)

Kode Matakuliah: EL3009

Bobot sks: 3

Semester: 5

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Elektronika II Nama Matakuliah Electronics II

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

Analisis dan desain rangkaian elektronik. Amplifier rangkaian terpadu: blok bangunan, diferensial dan tahap ganda, umpan balik, rangkaian opamp. Filter dan tuned-amplifier. Rangkaian untuk pembangkitan sinyal, regulasi tegangan, elemen penyimpanan digital. Analysis and design of electronic circuits. Integrated-circuits amplifiers: building blocks, differential and multi stage, feedback, opamp circuits. Filter and tuned amplifiers. Circuits for signal generation, voltage regulation, digital storage elements. Mata kuliah ini adalah kuliah lanjutan dalam analisis dan desain rangkaian elektronika. Kuliah ini mencakup penguat diferensial dan multi tahap, penguat umpan balik, blok bangunan dan rangkaian untuk perancangan opamp, filter dan tuned-amplifier, pembangkitan sinyal: osilator dan rangkaian pembentuk gelombang, regulasi tegangan: linear dan switched-mode, rangkaian untuk elemen sirkuit digital. Setelah mengikuti kuliah ini mahasiswa diharapkan mampu mengidentifikasi, menganalisis, mendiskusikan, dan desain blok pembangun dan rangkaian terintegrasi untuk penguat operasional, mengidentifikasi dan menggunakan rangkaian filter, osilator, regulator dan rangkaian analog pendukung elemen meori digital. This course is an intermediate course in electronic circuit analysis and design. It covers differential and multi stage amplifiers, feedback amplifiers,building blocks and circuits for opamp design, filter and tuned amplifiers, signal generation: oscillators and wave shaping circuits, voltage regulation: linear and switchmode, circuits for digital circuit elements. Finishing this course student will be able to identify, analyze, discuss, and design building blocks and circuits for integrated circuit amplifiers. Identify and apply filters and tuned amplifiers, oscillators, and voltage regulators circuits, and analog circuits for digital circuit elements. 1. Understand the rationale for a differential and multi stage amplifiers, and design one to specifications. 2. List the benefits of negative feedback for amplifier circuits, identify, the type of feedback at work in a given amplifier circuit, and estimate the feedback factor, loop gain, and the allied properties, and Determine, using simulation or by analysis, the phase margin for a given feedback amplifier circuit. 3. Design an RC, LC, or crystal oscillators for a given frequency and for a desired output waveform and design a digital clock generator. 4. Identify, analyse and design filters and tuned-amplifiers. 5. Identify and calculate performance parameters of a voltage regulator, design simple series and shunt regulator, and apply IC voltage regulators. 6. Identify, analyse, and discuss properties of analog circuits for memory elements. EL2005 Elektronika Prasyarat EL3109 Praktikum Elektronika II Bersamaan

Kegiatan Penunjang A. Sedra and K. Smith, Microelectronic Circuits International 6th ed., Oxford University Press, 2011 Thomas L Floyd, Electronic Devices 9th ed, Prentice Hall, 2011 Pustaka

Panduan Penilaian

[Termasuk jenis dan bentuk penilaian]

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 19 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

1

Topik

Sub Topik

Capaian Belajar Mahasiswa

 Building Blocks of amplifiers (3)

 Gain cell  Cascode amplifier  Bias circuits

 Differential Amplifiers (3)

 MOS differential pair  Small signal operation of MOS differential pair  BJT Differential pair

 Identify building block of amplifiers  Analyze and discuss their properties  Design building blocks to meet stated specification  Use large signal and incremental LEC device models to analyze differential pairs.  Explain, compare, and contrast the input, output, and gain characteristics of differential pairs as amplifiers.  Use large signal and incremental LEC device models to analyze nonideal characteristics of differential pairs.  Explain, compare, and contrast the input, output, and gain characteristics of differential pairs with active loads.  Produce and analyse the small signal high frequency BJT and MOSFET models differential amplifier circuits.  Explain, compare, and contrast the characteristics of common twotransistor linear amplifier building block stages.  Produce and analyse the small signal high frequency multistage amplifier circuits.  Explain the benefits of negative feedback.  Distinguish the feedback circuits and the different feedback configurations in feedback amplifiers. (C2)  Apply the two-port models to include the loading effect of a feedback circuit to the main amplifier. (C3)  Analyse frequency response of feedback amplifiers. (C4)  Survey the stability of feedback amplifiers.  Design amplifier frequency compensation.  Point out what components in a circuit affect the low frequency, midband, and high frequency responses, and compute the frequency response for circuits including multiple low and high frequency poles/zeroes.  Analyse CMOS Operational Amplifier.  Subdivide a large analog circuits io its simple building blocks.  Analyse DC bias circuit of 741 opamp.  Produce the small signal equivalent circuits of 741 opamp.  Analyse the performance of 741 opamp.  Describe niches in modern opamp designs.  Draw the frequency response curves of a low-pass active filter, a highpass active filter, a band-pass active filter, and a band-stop ( notch ) filter  Construct, analyze, and troubleshoot an active low-pass filter, an active high-pass filter, a band-pass filter, or a band-stop ( notch ) filter.  Identify SC Filter.  Compare the frequency response characteristics of an ideal amplifier and a practical tuned amplifier. (C4)  Perform analyses to calculate the Q and bandwidth of an amplifier. (C4)  Describe the function and requirements of an oscillator. (C2)  Describe positive feedback, how it is produced, and how it maintains oscillations after an oscillator is triggered, and list requirements for

2

 Differential Amplifiers (3)

 Nonideal characteristics  Differential with active load  High frequency response of differential amplifier

3

 Multistage Amplifiers (3)

4

 Feedback (3)

5

6

 Feedback (3)  Feedback (3)

7  Operational Amplifier circuits (3)

 Two-stage CMOS opamps  A bipolar opamp  Wide band amplifiera and multistage frequency response  Feedback structures and properties of negative feedback.  Feedback topologies: shunt-series, shunt-shut, series-series, series-shunt.  Two-port modelling and the small signal analyses of feedback amplifier.  Analyses of feedback amplifiers.  Loop gain and amplifier stability.  Stability analyses  Frequency compensation  Two-stage Opamp.  Folded Cascode Amplifiers.  Analyses of 741 Opamp: DC bias

8

 Operational Amplifier circuits (3) 9

 Filter and Tuned Amplifier

10

11

 Signal Generators (Oscillators) and Waveform-shaping Circuits

 Analyses of 741 Opamp: small-signal  Analyses of 741 Opamp: Gain, Frequency Response and Slew rate  Modern BJT opamps  Filter specification, approximation, and transfer function  Filter topologies and implementations.  Switched-capacitor Filters  Tuned amplifier

 Principles of sinusoidal oscillators: Barkhausen Criterion and Negative Resistance.  Opamp-RC oscillators  LC, and Crystal

Sumber Materi Sedra Chp. 6. Sec. 6.1 – 6.6

Sedra Chp. 7. Sec. 7.1 – 7.3

Sedra Chp. 7. Sec. 7.4 – 7.5 Sedra Chp. 8 Sec. 8.8

Sedra Chp. 7 Sec. 7.6 Sedra Chp. 8 Sec. 8.9-8.10

Sedra Chp. 9 Sec. 9.1-9.3

Sedra Chp. 9 Sec. 9.4-9.7 Sedra Chp. 9 Sec. 9.10-9.13

Sedra Chp. 10 Sec. 10.1-10.4

Sedra Chp. 10 Sec. 10.5-10.7

Sedra Chp. 11 Sec. 11.1-11.2 Sec. 11.10-11.11

Sedra Chp. 12 Sec. 12.1-12.3

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 20 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

oscillators.

 Signal Generators (Oscillators) and Waveform-shaping Circuits

 Multivibrators and IC timers  Waveform-shaping circuits.

 Voltage and current regulations

 Shunt and series linear continuous voltage regulator circuits.  Voltage regulator circuits with monolithic integrated circuits.

12

13

 Voltage and current regulations

 Swicthed-mode regulation: Buck and Boost configurations.

14

 Circuits for digital storage elements (3)

15

 Latches and Flipflop. Multivibrator circuits.  Semiconductor memory types: RAM, ROM, and Flash.  Memories address: and sensing amplifiers, row decoder, column decoder.

proper oscillator operation. (C2)  Identify, draw the circuits and calculate the parameters for opampRC crystal oscillator circuits. (C3)  Identify, draw the circuits and calculate the parameters for LC , and crystal oscillator circuits. (C3)  Analyze different types of oscillators used in common electronics. (C4)  Analyse and understand the operation of wave shaping circuits. (C4)  List the purpose of a voltage regulator and Explain concept of regulation and methods for regulating voltage and current. (C2)  Calculate performance parameters of a voltage regulator, such as line regulation and load regulation. (C3)  Apply IC linear voltage regulator circuits to design specified output voltage levels. (C3)  Describe the circuit operation of a buck/boost switching voltage regulator. (C2)  Apply IC switched regulator sicyuits to design a simple buck/boost switching voltage regulator. (C3)  Describe the structure, configuration, timing parameters and diagrams for memory elements. (C2)  Explain and show the operation of latch circuit and flip-flop circuits and mutivibrators: bistable, monostable, astable. C(3)  Explain the operation and analyses of different types of memories. (C2)  Explain the operation of memory addressing circuits: sensing amplifiers, row decoder, column decoder. (C2)

Sedra Chp. 12 Sec. 12.4-12.9

Floyd Chp. 17

Floyd Chp. 17

Sedra Chp. 16 Sec. 16.1-12.4

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 21 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika

Silabus dan Satuan Acara Pengajaran (SAP)

Kode Matakuliah: EL2005

Bobot sks: 3

Semester: 4

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Elektronika Nama Matakuliah Electronics

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait Kegiatan Penunjang

Pustaka

Panduan Penilaian

Fisik, operasi, dan model dioda, BJT, MOSFET, dan thyristor. Analisis dan desain penguat satu tahap: bias DC, perilaku sinyal kecil, dan tanggapan frekuensi. Tahap output dan penguat daya. Logika CMOS. Physics, operation, and models of diodes, BJT, MOSFET, and thyristors. Analysis and design of singlestage amplifiers: DC bias, small-signal properties, and frequency responses. Output Stage and Power Amplifier. CMOS logics. Mata kuliah ini merupakan mata kuliah pertama dalam elektronika. Cakupan materi: Fisik, operasi, dan model dioda, BJT, MOSFET, dan thyristor, Analisis dan desain penguat satu tahap: bias DC, perilaku sinyal kecil, dan tanggapan frekuensi, Klasifikasi tahap output dan penguat daya, pemodelan Thermal dan analisis transistor daya, analisis unjuk kerja inverter CMOS dan perancangan gerbang logika CMOS. Setelah menyelsaikan mata kuliah ini mahasiswa diharapkan dapat menganalisis dan merancang sirkuit sederhana menggunakan dioda, BJT, MOSFET dan, menerapkan thyristor untuk kontrol dayalistrik sederhana, menganalisis tingkat keluaran dari penguat daya dan operasi termal aman, dan desain gerbang logika CMOS AOI. This course is the first course in electronics. It covers Physics, operation, and models of diodes, BJT, MOSFET, and thyristors, Analysis and design of single-stage amplifiers: DC bias, small-signal properties, and frequency responses, Classification of amplifier power amplifier output stages, Thermal modelling and analyses of power transistors, Analyses of CMOS inverter performances and design of CMOS and-orinvert logic gates. Finishing this course student will be able to analyse and design simple circuits utilizing diode, BJT, and MOSFET, apply thyristor for simple power controls, analyse output stage of a power amplifier and its thermal save operation, and design CMOS AOI logic gates. 1. Draw the I-V characteristics of a PN junction diode, BJT, MOSFET, and thyristors. 2. Determine the different regions of operation of diode, BJT, and MOSFET. 3. Draw the small-signal model for Diode, BJT and MOSFET. 4. Determine the small-signal parameters of a small-signal model. 5. Design the DC biasing for a single transistor amplifier. 6. Analyze the small-signal properties (input and output impedance, and gain) of a single transistor amplifier. 7. Analyze the frequency response of a single transistor amplifier. 8. Apply thyristor for a simple power control. 9. Analyse output stage of power amplifiers and its thermal properties. 10. Analyse CMOS inverter performance and design of CMOS AOI logic gates. EL2001 Rangkaian Elektrik Prasyarat EL2205 Praktikum Elektronika Bersamaan Praktikum Elektronika A. Sedra and K. Smith, Microelectronic Circuits International 6th ed., Oxford University Press, 2011 Thomas L Floyd, Electronic Devices 9th ed, Prentice Hall, 2011

Tugas, Ujian 1, Ujian 2, Ujian Akhir

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 22 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

1

Topik

Sub Topik

Capaian Belajar Mahasiswa

 History and overview (1 hr)

 Tube, transistor, and integrated circuits and the information era.  Signal representation and circuit macro modelling.

 Explain how electronics drives the exponential growth in the information era. (C2)  Illustrate the concepts of circuit macro modelling and its application for analysing large and complex circuits. (C2)  Explain and apply the semiconductor concepts of drift, diffusion, donors and acceptors, majority and minority carriers, excess carriers. (C2)  Summarize the main semiconductor properties, energy band, carrier concentration and transport, used for understanding electronic device characteristics. (C2)  Explain the underlying physics and principles of operation of p-n junction diodes. (C2)  Produce an incremental (small signal) linear equivalent circuit (LEC) model for a diode knowing its large signal characteristics, and understand and apply standard LEC models for p-n diodes. (C3)  Express the various diode models and their the limitations and choose the appropriate model for a given problem or situation. (C3)  Produce parameter values for large signal and incremental LEC models for p-n diodes based on knowledge of the device structure and dimensions, and of the bias condition. (C3)  Perform a small-signal analysis of diode circuits using small signal models for the diodes. (C4)

 Electronic properties of materials (2 hrs)

 Diodes (3 hrs)

 Basic semiconductor concepts.  Semiconductors and device properties.

 Diode structure and IV characteristics  Diode models: large signal models, DC and small signal models

2

 Diodes (3 hrs) 3

 Thyristor (2 hrs)

 Diode models: reverse breakdown (zener).  Diode applications circuits: rectifying, limiting and clamping, signal switching.  PNPN Diode and SCR  DIAC and TRIAC  Application of thyristor

4  Bipolar transistor (1 hr)

 BJT structure, modes of operation.

 Bipolar transistor (3 hrs)

 BJT IV characteristics.  BJT models: large signal and DC models  BJT models small signal models.

5

 Bipolar transistor (3 hrs)

6

 Bipolar transistor (2 hr)

 BJT as an amplifier: General Configurations  Common Emitter (CE) Amplifier  Common Collector (CC) Amplifier  Common Base (CB) Amplifier  BJT amplifier biasing circuits.  BJT as a switch.

7

8

 MOS transistor (1 hr)

 MOSFET structure, modes of operation

 MOS transistor (3 hrs)

 MOSFET IV characteristics.  MOSFET models: large signal models

 Perform an analysis of regulator circuits using zener diodes. (C4)  Design simple Diodes circuits to meet stated operating specifications. (C5)  Explain the operation of PNPN diodes and SCR.  Apply SCR and TRIAC for simple power drive.  Explain the underlying physics and principles of operation of bipolar junction transistors (BJTs). (C2)  Describes the IV characteristics of BJTs. (C2)  Express the various BJT models and their the limitations, choose the appropriate model for a given problem or situation. (C3)  Produce an incremental (small signal) linear equivalent circuit (LEC) model for a BJTknowing its large signal characteristics, and understand and apply standard LEC models for BJTs. (C3)  Produce parameter values for large signal and incremental LEC models for BJTs based on knowledge of the device structure and dimensions, and of the bias condition. (C3)  Explain, compare, and contrast the input, output, and gain characteristics of BJT amplifier. (C4)  Perform a small-signal analysis of an amplifier using small signal models for the BJTs. C(4)  Design BJT biasing circuit for a single transistor amplifier. (C5)  Design simple BJT amplifier circuits to meet stated operating specifications. (C5)  Perform analyses of BJT as a switch. (C4)  Explain the underlying physics and principles of operation of MOS field effect transistors (MOSFETs). (C2)  Describe the IV characteristic of a MOSFET  Express the various MOSFET models and their the limitations and choose the

Sumber Materi

Sedra Chp. 1. Sec. 1.1 – 1.6

Sedra Chp. 1. Sec. 1.7 – 1.12

Sedra Chp. 3 Sec. 3.1-3.3

Sedra Chp. 3 Sec. 3.4-3.6

Floyd Chp. 11

Sedra Chp. 4 Sec. 4.1

Sedra Chp. 4 Sec. 4.2-4.4

Sedra Chp. 4 Sec. 4.5-4.6

Sedra Chp. 4 Sec. 4.7-4.8

Sedra Chp. 5 Sec. 5.1 Sedra Chp. 5 Sec. 5.2-5.4

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 23 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

 MOSFET circuits at DC  MOSFET models: small signal models.





 MOS transistor (3 hrs)

 MOS transistor (2 hr)

 MOSFET as an amplifier, bias, and biasing circuits.  Basic single MOSFET amplifier configurations  Common Source (CS) Amplifier  Common Drain (SD) Amplifier  Common Gate (CG Amplifier)  MOSFET Biasing Circuits  MOSFET as a switch.

 Frequency Response (1 hrs)

 Amplifier transfer function.

 Frequency Response (3 hrs)

 Low frequency respons of amplifier  Common emitter transistor short circuit current gain. Transition frequency.  Hybrid –  model of the bipolar junction transistor.  Miller's theorem and Miller effect inthe voltage gain of common emitter and common source amplifiers.  Single Transistor Amplifier small signal circuit equivalent for the high frequency

9

10

11

 Frequency Response (3 hr) 12

 MOS logic families (1 hr)  Design parameters and issues in CMOS Logics (2 hrs)

 Basic concepts, NMOS and CMOS logic circuits.  Design and analyses of CMOS inverters.

 Design parameters and issues in CMOS Logics (3 hrs)

 Performance analyses of CMOS inverters  CMOS AOI gate structures  Classification of amplifier output stages, output signal waveform, and power disipation.  Biasing the class AB amplifier.  Thermal modelling and thermal management of the transistor power amplifier.

13

14

 Output Stage and Power Amplifier (3 hrs)

15

   

appropriate model for a given problem or situation. (C3) Produce an incremental (small signal) linear equivalent circuit (LEC) model for a MOSFET knowing its large signal characteristics, and understand and apply standard LEC models for MOSFETs. (C3) Produce parameter values for large signal and incremental LEC models for MOSFETs based on knowledge of the device structure and dimensions, and of the bias condition. (C3) Design MOS biasing circuit for a single transistor amplifier. (C5) Explain, compare, and contrast the input, output, and gain characteristics of single MOSFET amplifier. (C4) Perform a small-signal analysis of an CD, CS and CG amplifiers using small signal models for the MOS. C(4) Design simple MOS amplifier circuits to meet stated operating specifications. (C5)

 Perform analyses of MOSFET as a switch. (C4)  Sketch the magnitude and phaseof amplifiers transfer function charateristics. (C3)  Produce and apply the small signal BJT and MOSFET models for low frequency response of simple amplifier circuits. (C3)  Express the high frequency limitations of BJTs and MOSFETs. (C2)  Produce a small signal linear equivalent circuit (LEC, hybrid-) model for a MOSFET or BJT knowing its juction capacitances and terminal frequency. (C3)

 Produce and apply the small signal high frequency BJT and MOSFET models for CE or CS circuits. (C3)  Produce the small signal high frequency BJT and MOSFET models for the analyses of CC, CD, CB and CG amplifier circuits. (C3)  Explain the operation and features of common MOS logic inverter stages. (C2)Produce the transfer characteristics of a CMOS inverter and show how device dimensions and parameters impact them and inverter switching speed. (C3)  Solve the output produced by a circuit for a given set of inputs using the switch resistor model of a MOSFET. (C3)  Survey the power dissipation in digital gates and employ CMOS technology to reduce static power losses. (C4)  Design AOI gate circuits.  Explain, compare, and contrast the classes of output stages and power amplifier. (C4)  Determine the operating class (A, AB, B, C) of amplifiers, explain the applications of each type.  Perform load line analysis to predict the voltage swing of transistor circuits and sketch the transfer characteristics. (C4)  Appl y the simplified large signal model to calculate output power, dissipation power and efficiency for emitter (source) follower output stage and class B output stage. (C3)  Perform simple thermal analyses of power transistors. (C4)

Sedra Chp. 5 Sec. 5.5-5.8

 Sedra Chp. 8 Sec. 8.1

Sedra Chp. 8 Sec. 8.2-8.5

Sedra Chp. 8 Sec. 8.6-8.7

Sedra Chp. 14 Sec. 14.1 Sedra Chp. 14 Sec. 14.2-14.3

Sedra Chp. 14 Sec. 14.3-14.4

Sedra Chp. 13 Sec. 13.1-13.7

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 24 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Fakultas Sekolah Teknik Elektro & Informatika Kode Matakuliah: EL4018

Bobot sks: 2

Semester: 7

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Etika Profesi dan Rekayasa Nama Matakuliah

Professional and Engineering Ethics Pendahuluan: penjelasan umum, pokok bahasan, & evaluasi. Kemampuan dasar lulusan perguruan tinggi yang diharapkan masyarakat. Pembahasan maslah etika dalam bekerja. Bahasan khusus: kepribadian, kerjasama, kepemimpinan, manajemen, kewira-usahaan; Biodata, surat lamaran & wawancara. Sejumlah topik khusus & perkembangan baru dalam bidang-bidang keahlian Teknik Elektro terkait.

Silabus Ringkas

[Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)] Silabus Lengkap [Uraian lengkap silabus matakuliah dalam Bahasa Inggris (maksimum 100 kata)]

Luaran (Outcomes)

 Mahasiswa dapat memahami dan menjelaskan bagaimana engineering dan teknologi dalam implementasi dengan sumber daya yang terbatas merupakan juga kegiatan yang berdampak sosial - politik dengan dampak yang open-ended.  Mahasiswa kemudian dapat mengidentifikasi konteks sosial dan politik dari proses engineering dan teknologi terkini, dilihat dari sisi ekonomi, moneter & bisnis, kegunaan dan manfaat, ergonomi, kesejahteraan, industri, sejarah, keamanan dan keselamatan, lingkungan dll.  Mahasiswa memahami konsep Hak Atas Kekayaan Intelektual (HAKI) dan arti pentingnya dalam kerekayasaan, inovasi dan bisnis.  Mahasiswa dapat memahami berbagai wacana yang berkembang di seputar konsep HAKI, baik dalam tataran individu hingga Negara.  Mahasiswa perlu , khusus teknologi informasi, memahami kebaikan dari proses digitalisasi serta dampak yang terjadi akibat era digital serta teknologi informasi dalam proses rekayasa, kaitannya dengan HAKI maupun dampaknya ke industry dan ekonomi.  Mahasiswa mengetahui dan memahami etika profesi standard yang terkait dan disepakati oleh organisasi profesi IEEE dan ACM.

Matakuliah Terkait

[Kode dan Nama Matakuliah]

Kegiatan Penunjang

[Praktikum, kerja lapangan, dsb.]

Pustaka

Panduan Penilaian

[Prasyarat, bersamaan, terlarang]

J.David Irwin: On Becoming An Engineer – A Guide to Career Path, IEEE Press, 1997 (Utama) John Dustin Kemper: Engineers and their Profession, Holt Reinhart & Winston, 1991 (Utama) Gerard Blair: Starting To Manage – The Essential Skills, IEEE Press, 1995 Lloyd E. Shefsky: Entrepreneurs Are Made Not Born, McGraw-Hill, 1994 M.W. Martin, R. Schinzinger: Ethics in Engineering, McGraw-Hill, 1997 Exam 60% Assignments 20% Summary 20%

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 25 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa

Sumber Materi

Siswa dapat memahami dan menjelaskan bagaimana engineering dan teknologi dalam implementasinya merupakan juga kegiatan yang berdampak sosial - politik yang open-ended dengan sumber daya terbatas 1

EE-SPR01 Social Context of Engineering & Technology

2

EE-SPR02 Risks and Liabilities of Safety-critical Systems

Siswa dapat memberikan contoh-contoh konteks sosial dan politik dari proses engineering dan teknologi terkini, dilihat dari sisi ekonomi, moneter & bisnis, kegunaan dan manfaat, ergonomi, kesejahteraan, industri, sejarah, keamanan dan keselamatan, lingkungan dll. Siswa mengetahui dan dapat menjelaskan bagaimana semua proses engineering dan teknologi pasti terkait dengan trade-off antara manfaat, kerugian dan resiko. Siswa mengetahui dan mengidentifikasi persoalan-persoalan engineering yang terjadi dalam berbagai kasus kerekayasaan, khususnya yang terkait dengan keselamatan. Siswa mengetahui sejarah dari kode etik. Mengetahui apa tujuan dari dibuatnya kode etik dan apa saja isinya.

3

4

EE-SPR03 Professional dan Ethical Conduct

5

6

EE-SPR04 Intellectual Property

EE-SPR05 Digital Revolution

Siswa memahami secara detil dampak revolusi komputer, digital dan internet terhadap privasi dan kebebasan sipil.

11

Siswa memahami urgensi regulasi dan etika serta dapat melihat dan memahami dilema kemajuan vs. keselamatan & keamanan.

12

15

Siswa memahami secara detil tentang pelanggaran HAKI. Siswa memahami apa arti revolusi komputer dan revolusi digital serta dampaknya terhadap berbagai kegiatan manusia di berbagai bidang: perbankan, keamanan, transportasi, kreativitas dll. Siswa dapat mengidentifikasi resiko dan ancaman dalam konteks dari terjadinya revolusi komputer, revolusi digital dan internet.

10

14

Siswa memahami secara detil tentang kode etik yang terkait dengan asosiasi profesional tertentu. Studi kasus: ACM Code of Ethics & Professional Conduct & IEEE Code of Ethics Siswa memahami secara detil tentang plagiarism Siswa mengetahui sejarah dari berbagai macam HAKI. Mengetahui apa tujuan dari dibuatnya HAKI dan apa efeknya keberadaan HAKI dalam berbagai aspek kehidupan baik pada level mikro maupun makro dan global.

Siswa memahami secara mendalam perbedaan antara berbagai jenis HAKI dan mampu mengidentifikasi potensi HAKI dari berbagai kegiatan dan temuan.

8

13

IEEE/ACM Code of Conduct

Plagiarism

7

9

[Uraikan rujukan terhadap pustaka (bab, sub-bab)]

EE-SPR06 Keamanan Informasi

Siswa memahami apa arti dan nilai dari informasi dan apa yang disebut keamanan informasi . Siswa dapat mengidentifikasi potensipotensi ancaman terhadap keamanan informasi dan dampaknya dalam berbagai kegiatan sehari-hari. Siswa mengetahui dan dapat merancang berbagai cara untuk dapat mengatasi ancaman-ancaman tersebut (personal & organizational level)

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 26 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4092

Bobot sks: 2

Semester: 8

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Kerja Praktek Nama Matakuliah

Silabus Ringkas

Industrial Experiences Kerja praktek yang dilakukan oleh mahasiswa dilingkungan kerja, baik industri, lembaga riset, dll untuk memberikan gambaran kepada mahasiswa tentang lingkungan kerja yang akan dihadapinya, disamping juga untuk memberikan pengalaman kerja dan memperluas wawasannya. Mahasiswa yang diperbolehkan mengambil Kerja Praktek adalah mahasiswa yang telah memperoleh kuliah hingga semester 6. Kerja praktek dilaksanakan selama minimal 2 bulan dan maksimal hanya 1 bulan boleh dilksanakan di lembaga riset atau laboratorium/universitas.

[Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)] Silabus Lengkap [Uraian lengkap silabus matakuliah dalam Bahasa Inggris (maksimum 100 kata)] Luaran (Outcomes)

This course is intended so that students can have industrial experience.

Matakuliah Terkait

Completed at least 104 credits Lihat Catatan Tambahan

Kegiatan Penunjang

[Praktikum, kerja lapangan, dsb.]

Pustaka Panduan Penilaian Catatan Tambahan

Prasyarat Prasyarat

[Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung]) [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung]) [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung]) Written report 80% Seminar 20% Mahasiswa yang diperbolehkan mengambil Kerja Praktek adalah mahasiswa yang telah mengikuti kuliah hingga semester 6

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 27 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg# 1

Topik [Cantumkan Topik bahasan]

Sub Topik

Capaian Belajar Mahasiswa

Sumber Materi

[Uraikan sub-topik bahasan]

[Uraikan capaian spesifik topik dengan merujuk kepada capaian matakuliah]

[Uraikan rujukan terhadap pustaka (bab, sub-bab)]

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 28 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL3012 Nama Matakuliah

Silabus Ringkas

Silabus Lengkap

Bobot sks: 3

Semester: 5

KK/ Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Material Teknik Elektro Electrical Engineering Material Introduksi : klasifikasi material : conductor, semiconductor and insulator ; Struktur Material : Kristal, polikristal dan amorph; Struktur kristal dan parameters : konstanta kisi2, sel satuan, 14 sistem Bravais,indeks Miller (kisi2 resiprokal ). Vibrasi Kisi2 : mekanika gelombang; Emisi Phonon : phonon akustik, phonon optik; Ikatan Kristal : enerji kohesif dan tipe ikatan Kristal ; Model Ban Enerji : Potensial periodic kisi2 kristal; Model Kronnig-Penney, Model Ban Enerji ; Konsep electron (konduksi) dan hole Statistika partikel : Statistika Fermi Dirac, Fermi Dirac function Density of states (DOS), konsentrasi pembawa muatan : elektron dan hole, level enerji Fermi level (eF); Scattering pembawa muatan : scattering-kisi2 (Lattice Scattering), Scattering Ketidakmurnian (ionized impurity/Coulombic scattering), scattering rate, mobilitas electron (hole) (m); Relasi mobilitas terhadap temperatur, medan listrik dan kecepatan saturasi; Arus Drift ; Proses Difusi : Arus difusi ; Persamaan Kontinyuitas : mekanisme R(ekombinasi) – G(enerasi) pembawa muatan; Mekanisme fisika Dioda P-N Junction : proses difusi antar junction, ruang-muatan (daerah deplesi) dan barier potensial ‘built-up’. Penurunan karakteristik arus-tegangan Dioda P-N (Karakteristik I-V) : relasi terhadap to beda potential (catu daya ‘forward’ and ‘reverse’ bias), komponen arus dioda Introduction: classification : conductor, semiconductor and insulator. Structure of Material ; Crystal Structure, parameters : Lattice constant, Unit cell, Bravais system, Miller index (reciprocal lattice). Lattice vibration : Phonon emission : acoustical and optical phonon Crystal Bonding : cohesive energy, : type of crystal bonding Energy Band Model: Periodic potentials of crystal lattice : Kronnig-Penney model, (simplified) Energy Band Model; Concept of Electron and Hole. Particle Statistics in material : Carrier Statistics (electron (and hole) in material (semiconductor) : Fermi Dirac Statistics, Fermi Dirac function Density of States (DOS), Carrier (electrons and holes) concentration, Fermi level (eF) ; Carrier Scattering phenomenon : Lattice and ionized impurity scattering ; Mobility (), scattering rate, effective mass ; Mobility relation to temperature, electric field and saturation velocity; Drift current ; Carrier Diffusion Process ; Diffusion Current density ; Continuity equation, carrier Recombination – Generation process mechanism; Physics of P-N Junction Diode : junction diffusion process, spacecharge (depletion region) and potential barrier built-up. Origin of Diode current-voltage ( I-V ) Characteristics : relation to applied potential (forward and reverse bias) ; Diode current components. Introduksi : aplikasi material relasi di teknik elektro sesuai dengan sifat material; Classification based on  (conductivity) : conductor, semiconductor and insulator. Abstraksi 'microscopic view’ electron dalam ‘lautan’ enerji potensial kisi-kisi material ; Klasifikasi material (berdasarkan, , konduktivitas) : konduktor, semikonduktor and insulator ; Struktur Material : Kristal, polikristal dan amorph; Struktur kristal dan parameters : konstanta kisi2, sel satuan, 14 sistem Bravais, indeks Miller (kisi2 resiprokal), ‘atomic packing fraction’ (APF), kerapatan permukaan. Model pegas Vibrasi Kisi2 : Emisi Phonon : phonon akustik, phonon optik; penurunan persamaan gelombang (vibrasi) : 1-D Monatomic and Diatomic ; mode vibrasi longitudinal and transversal phonon akustik dan optik : Ikatan Kristal : enerji kohesif dan tipe ikatan Kristal : ikatan Van der Waals, ikatan ionik, ikatan kovalen, ikatan metalik dan ikatan Hidrogen. Model Ban Enerji : Potensial periodik kisi2 kristal; Model Kronnig-Penney, Model Ban Enerji (disederhanakan) : gap enerji (g), Ban Konduksi (C), Ban Valensi (V), level enerji intrinsic (i) ; Konsep elektron (konduksi) dan hole. Statistika partikel di material : statistika klasik Boltzmann statistics; statistika kwantum: Statistik Bose-Einstein,Statistik Fermi Dirac(FD), Fungsi Fermi Dirac Density of states (DOS), konsentrasi pembawa muatan : elektron dan hole, level enerji Fermi level (eF) di model Ban Enerji ; ‘Scattering’ pembawa muatan : scatteringkisi2 (Lattice Scattering), Scattering Ketidakmurnian (ionized impurity), hokum Matthiessens’ ; Mobilitas elektron (hole) dalam konduktivitas material (Semikonduktor), scattering rate/waktu relaksasi, massa efektip; Relasi mobilitas terhadap temperature dan medan listrik, kecepatan saturasi; Arus Drift ; Proses Difusi : gradien konsentrasi, relasi Einstein, Arus difusi ; Total arus Drift dan Difusi. Persamaan Kontinyuitas: mekanisme R(ekombinasi)–G(enerasi) pembawa muatan ;

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 29 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Luaran (Outcomes)

Mekanisme fisika Dioda P-N Junction : proses difusi antar junction, ruang-muatan (daerah deplesi) dan barier potensial ‘built-up’. Penurunan karakteristik arus-tegangan Dioda P-N (Karakteristik I-V) : relasi terhadap to tegangan catu daya ‘forward’ and ‘reverse’, komponen arus Dioda. Introduction : application of material related to their properties in electrical engineering; Classification based on  (conductivity) : conductor, semiconductor and insulator. Initial 'microscopic' view of electrons travelling bounced by potential energy of material lattice . Structure of Material ; Crystal Structure, parameters : Lattice constant, Unit cell : 14 Bravais system, Miller index (reciprocal lattice): crystal orientation, symmetry, plane distance, angle of crystal plane intersection; APF (atomic packing fraction), surface density Lattice Vibration : collision with electron ; Phonon emission : acoustical and optical phonon,derivation (vibration) wave mechanics 1-D Monatomic and Diatomic longitudinal and transversal vibration wave: Crystal Bonding : cohesive energy, type of bonding : Van der Waals, Ionic bonding, Covalent bonding, Metalic bonding and Hydrogen bond Energy Band Model : Periodic potentials of crystal lattice : Kronnig-Penney model, (simplified) Energy Band Model : energyi gap (g), Ban Konduksi (C), Ban Valensi (V), level enerji Intrinsic (i); Concept of (conducting) Electron and Hole. Particle Statistics in material : classical Boltzmann statistics; Quantum Statistics : Bose-Einstein, Fermi Dirac (FD) Statistics, FD Function Density of States (DOS), Carrier (electrons and holes) concentration, Fermi level (eF) in energy band model ; Carrier Scattering : Lattice and ionized impurity scattering; Mobility () as conductivity property of material, scattering rate (relaxation time), effective mass; Mobility relation to temperature and electric field, Saturation velocity ; Drift current ; Carrier Diffusion Process : concentration gradient; relasi Einstein; Diffusion Current density ;Total current of Drift and Diffusion Continuity equation, carrier Recombination – Generation process; Physics of P-N Junction Diode : junction diffusion process, space-charge (depletion region) and potential barrier built-up. Origin of Diode current-voltage ( I-V ) Characteristics : relation to applied potential (forward and reverse bias) ; Diode current components. Student acquires first view of application of material(s) related to their properties in device, PCB, module and system of electrical engineering; Student understands origin of the (conductivity) as properties of the material which governs current in relation to apllied voltage (electric field) known as R(esistance). Students are recalled to class of material related to conducting behavior (conductivity) : conductor, insulator (dielectric) and semiconductor. Student will have initial 'microscopic' view of electrons travelling ‘sea of wave of potential energy of atomic lattice of material, which is material element as unique. Student understands structure of material : crystal, poly-crystal and amorph ; Student understands crystal structure in direct lattice and parameters : bases, lattice constant and unit cell. Students will be knowledgeable of Bravais systems of 14 basic structures. Students becomes knowledgeable in indirect (reciprocal) lattice and understand use of index Miller to derive crystal plane orientation, direction and symmetry. Students understand packing fraction and surface densityof various crystal especially of Cubic and hexagonal closed pack system. Understands mechanical-physics lattice (atoms in crystal) vibrating as spring-like - mechanical wave of atoms; Know the origin of lattice vibration: energy and momentum exhange of collision with (conducting) electrons. Comprehend derivation of lattice wave equation and mechanism of absorption and emission of phonon (heat in material) in either one : acoustical or optical phonon mode. Know how to derive simple 1-D monatomic and diatomic crystal - lattice wave and find solution : lattice vibrating wave as function of k (wave vector); Understand the lattice wave relation to longitudinal and transversal vibration of atoms. Understands nature of physics of Crystal Bonding : cohesive energy in lattice as combination of attractive and repulsive forces of atom nucleus and valence electrons. Becomes knowledgeable of type of material crystal bonding : Van der Waals, metalic, covalent, ionic and Hydrogen bonding and material properties. Comprehends energy potential (band) of material element and alloy; (2) Knowledgeable existence of periodic potential energy (Kronnig-Penney model) and origin (simplified) Energy Band Model of material ; (3) Acquiring the practical knowledge of the Energy Band Model and the reference (potential) energy levels of the model, from the basic knowledge of the properties of electrical (conductivity and dielectric) of materials as conductor, insulators & semiconductor conductors to concept of electron and hole with potential (energy) levels and their potential gradient in Energy Band Model, as well as introduction the use in the structure of electronic (semiconductor) devices. Students will have introductory knowledge of class and application of statistics in determining particles and other constituents in material and solid state universe such as electron/hole, phonon, photon and other states. Students will be acquainted derivation of Fermi Dirac statistics using Langrangian multiplier. Students will have scientifical-engineering view on 'learning - exponential curve' of governing I-V characteristics of diode and other other junction devices which is explained by statistics of carrier population. Student posseses practical knowledge of Boltzmann and Fermi-Dirac statistics as probability in finding charge/carrier (electron and hole) in material (semiconductor). Students understand essence of Density of states (DOS) as (potential energy) level clusters for carrier to occupy : electrons in Conduction band and holes in Valence band, respectively. Students will know origin (derivation) DOS equation and its relation to energy (potential) in conduction and valence band of semiconductor material. Students know to derive electron (n) and hole concentration (p) equations thru integration of Fermi Dirac probability ((as fuction of Fermi level = doping level) and density of

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 30 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Matakuliah Terkait

states as function of energy (of the carrier) in respective band (conduction and valence bands). Students becomes familiar in calculating carrier concentration (electron, n and hole, p) and plot Fermi level (EF) in Energy Band Model. Students understand the scattering process of electron collision in lattice of material : (1) Coulombic scattering (ionized impurity), Acoustical and Optical Phonon scattering . Student can (2) describe mobility ( ) related to scattering rate () and effective mass of electron (or hole, m*); Student can (3) figure out combined effect of all scattering mechanisms using Matthiessen’s rule and qualitatively explains dominant effect of either lattice or impurity scattering according to temperature. (4) Understand drift current as result of existence of electric field (E) and mobility - where electron drift due to electric field overcoming random motion of thermal drift. Qualitatively able to describe (5) drift speed as function electric field (E) and saturation velocity (vsat) above the critical field (ECR) as result of optical phonon scattering. Student understands diffusion transport of carrier (electron,hole) in semiconductor due to gradient concentration. Student is able to derive diffusion current from the gradient concentration and understands Einstein relationship of diffusion coeffient to electron (hole) mobility. Student will have comprehensive knowledge on total current in semiconductor due to Drift and Diffusion of electron and hole. Student understands essence of Continuity equation which leads to carrier conservation in semiconductor. Student becomes knowledgeable in carrier Generation - electron-hole pair generation as result of thermal excitation or other form energy excitation mechanism such as photo-excitation (due to photon-illumination), pressure (piezoelectric) and others. Student understand physic mechanism of carrier Recombination - direct and indirect thru intermediate states in forbidden gap (SRH : Schockley-Read-Hall recombination and surface recombination), especially in the origin of PN junction recombination current. Students are able to (1) explain the physical mechanism of P-N Junction : diffusion of electron and hole accross P-N sides of the junction, space charge and potential barrier built-up in depletion region. Students are able to derive (2) current-voltage (I-V) characteristics of PN Junction Diode. Students can (3) explain physics of carriers crossing junction barrier when the applied bias in forward and reverse condition : depletion region width and junction barrier increase. Students can sort out the P-N Junction diode current components and differentiate each origin from diode I-V characteristics. KI1202 Kimia IIB Prasyarat EL2006 Medan Eelktromagnetik Prasyarat

Kegiatan Penunjang

-

Pustaka

1:B.G Streetman, S. Banerjee, “Solid State Electronic Devices”, Prentice Hall 2: C. Kittel, “Introduction to Solid State Physics”, John Wiley & Sons 3: Handout Module Bab I sd Bab XI , Dosen Pengajar ((Basuki R. Alam)

Panduan Penilaian

Tugas (20%) , UTS (35 %) , UAS (45%)

Catatan Tambahan

-

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 31 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

1

2

3

4

5

Topik

Introduction

Material Structure

Sub Topik

 Introduction : application of material related to their properties in electrical engineering;  Classification based on  (conductivity) : conductor, semiconductor and insulator.  Initial 'microscopic' view of electrons in sea of potential energy of lattice .

 Crystal Structure, parameters : Lattice constant, Unit cell : 14 Bravais system,  Miller index (reciprocal lattice): crystal orientation, symmetry, plane distance, angle of crystal plane intersection;  APF (Atomic packing fraction), surface density

Lattice Vibration

 Lattice Vibration : collision with electron; Phonon emission : Acoustical and Optical phonon,  (vibration) wave mechanics 1-D Monatomic and Diatomic  Longitudinal and transversal vibration wave:

Crystal Bonding

 Crystal Bonding : cohesive energy,  Type of bonding : Van der Waals, Ionic bonding, Covalent bonding, Metalic bonding, Hydrogen bond

Energy Band Model

 Periodic potentials of crystal lattice : KronnigPenney model,  (Simplified Potential) Energy Band Model : energyi gap (g), Ban Konduksi (C), Ban Valensi (V), level enerji Intrinsic (i);  Concept of (conducting) Electron and Hole.

Capaian Belajar Mahasiswa  Understand application of material(s) related to their properties in main/supporting components,devices, circuits (PCB), modules, equipments and systems of electrical engineering;  Student understands the origin of the s (conductivity) as properties of the material which determine current in relation to apllied voltage (electric field) known as resistance.  Students become knowledgeable to class of material related to conducting behavior (conductivity) : conductor, insulator (dielectric, semiconductor.  Student will have initial 'microscopic' view of electrons travelling affected by potential energy of atomic lattice of material as unique.  Student understands structure of material : crystal, poly-crystal and amorph ;  Student understands crystal structure in direct lattice and parameters : bases, lattice constant and unit cell. Students will be knowledgeable of Bravais systems of 14 basic structures.  Students becomes knowledgeable in indirect (reciprocal) lattice and understand use of index Miller to derive crystal plane orientation, direction and symmetry.  Students understand packing fraction and surface densityof various crystal especially of Cubic and hexagonal closed pack system.  Understands mechanical-physics lattice (atoms in crystal) vibrating as spring-like - mechanical wave of atoms;  Know the origin of lattice vibration: energy and momentum exhange of collision with (conducting) electrons.  Comprehend derivation of lattice wave equation and mechanism of absorption and emission of phonon (heat in material) in either one : acoustical or optical mode.  Know how to derive simple 1-D monatomic and diatomic crystal - lattice wave and find solution : lattice vibrating wave as function of k  Understand the lattice wave relation to longitudinal and transversal vibration of atoms.  Understands nature of physics of Crystal Bonding : cohesive energy in lattice as combination of attractive and repulsive forces of atom nucleus and valence electrons.  Becomes knowledgeable of type of material crystal bonding : Van der Waals, metalic, covalent, ionic and Hydrogen bonding and material properties.  Comprehends energy potential (band) of material element and alloy;  Knowledgeable existence of periodic potential energy (Kronnig-Penney model)  Know origin (simplified) Energy Band Model  Acquiring practical knowledge of the Energy Band Model and the reference (potential) energy levels of the model, from the basic knowledge of the properties of electrical (conductivity and dielectric) of materials as conductor, insulators & semiconductor conductors to concept of electron and hole with potential (energy) levels and their potential gradient in Energy Band Model,  Acquire introduction usage of energy band model of structure of semiconductor devices.

Sumber Materi

 Reference # :  1  3

 Reference # : 1 2 3

 Reference # :  2  3

 Reference # :  2  3

 Reference # :  1  2  3

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 32 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

6

Particle Statistics

 Particle Statistics in material (classification) : classical Boltzmann statistics; Quantum Statistics : Bose-Einstein,  Fermi Dirac (FD) Statistics : derivation, Langrangian multiplier  Fermic Dirac Function

7

Density of States (DOS),

 Density of States (DOS)  Carrier (electrons and holes) concentration,  Fermi level (eF) in energy band model ;

8

Carrier Scattering

 Carrier Scattering : Lattice and ionized impurity scattering;  Matthiessen’s rule : dominant scattering (related to T)  Mobility () : conductivity of material, scattering rate, effective mass;  Mobility relation to temperature (T)  Mobility relation to electric field (E)  Saturation velocity (vsat) ;  Drift current ;

9

Carrier Diffusion Process

 Carrier Diffusion Process : concentration gradient; relasi Einstein; Diffusion Current density;Total current of Drift and Diffusion

10

Continuity equation,

 Continuity equation,  Generation process :  Recombination : SRH Recombination, Surface Recombination

 Students will have introductory knowledge of class and application of statistics in determining particles and other constituents in material and solid state universe such as electron/hole, phonon, photon and others.  Students will be acquainted derivation of Fermi Dirac statistics using Langrangian multiplier.  Students will have scientifical-engineering view on 'learning - exponential curve' of governing IV characteristics of diode and other other junction devices which is explained by statistics of carrier population.  Student posseses practical knowledge of Boltzmann and Fermi-Dirac statistics as probability in finding charge/carrier (electron and hole) in material (semiconductor).  Students understand essence of Density of states (DOS) as (potential energy) level clusters for carrier to occupy : electrons in Conduction band and holes in Valence band, respectively.  Students will know origin (derivation) DOS equation and its relation to energy (potential) in conduction and valence band of semiconductor material.  Students know to derive electron (n) and hole concentration (p) equations thru integration of Fermi Dirac probability ((as fuction of Fermi level = doping level) and density of states as function of energy (of the carrier) in respective band (conduction and valence bands).  Students becomes familiar in calculating carrier concentration (electron, n and hole, p) and plot Fermi level (EF) in Energy Band Model.  Students understand the scattering process of electron collision in lattice of material : (1) Coulombic scattering (ionized impurity), Acoustical and Optical Phonon scattering  Student can describe mobility ( ) related to scattering rate () and effective mass of * electron (or hole, m );  Student can figure out combined effect of all scattering mechanisms using Matthiessen’s rule and qualitatively explains dominant effect of either lattice or impurity scattering according to temperature.  Understand drift current as result of existence of electric field (E) and mobility - where electron drift due to electric field overcoming random motion of thermal drift.  Qualitatively able to describe (5) drift speed as function electric field (E) and saturation velocity (vsat) above the critical field (ECR) as result of optical phonon scattering.  Student understands diffusion transport of carrier (electron,hole) in semiconductor due to gradient concentration.  Student is able to derive diffusion current from the gradient concentration and  understands Einstein relationship of diffusion coeffient to electron (hole) mobility.  Student will have comprehensive knowledge on total current in semiconductor due to Drift and Diffusion of electron and hole.  Student understands essence of Continuity equation which leads to carrier conservation in semiconductor.  Student becomes knowledgeable in carrier Generation - electron-hole pair generation as result of thermal excitation or other form energy excitation mechanism such as photo-excitation (due to photon-illumination), pressure (piezoelectric) and others.

 Reference # :  3

 Reference # :  1  2  3

 Reference # :  1  3

 Reference # :  1  3

 Reference # :  1  3

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 33 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

11

P-N Junction Diode

 Physics of P-N Junction : junction diffusion process, space-charge (depletion region), potential barrier built-up.  Origin of Diode currentvoltage(I-V) Characteristics :  relation to applied potential (forward and reverse bias) ;  Diode current components

 Student understand physic mechanism of carrier Recombination - direct and indirect thru intermediate states in forbidden gap (SRH : Schockley-Read-Hall recombination and surface recombination), especially in the origin of P-N junction recombination current.  Students are able to explain the physical mechanism of P-N Junction : diffusion of electron and hole accross P-N sides of the junction, space charge and potential barrier built-up in depletion region.  Students are able to derive current-voltage (I-V) characteristics of PN Junction Diode.  Students can explain physics of carriers crossing junction barrier when the applied bias in forward and reverse condition : depletion region width and junction barrier increase.  Students can sort out the P-N Junction diode current components and differentiate each origin from diode I-V characteristics.

 Reference # :  1  3

12







13 14 15







 









Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 34 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL2006

Bobot sks: 3

Semester: 4

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Medan Elektromagnetik Nama Matakuliah

Silabus Ringkas

Electromagnetics

History and Overview; Vector Analysis; Coulomb’s Law, Electric Field Intensity; Electric Flux Density, Gauss’s Law, Divergence; Energy, Potential, Gradient; Conductors, Dielectrics, Capacitance; Poisson’s and Lapace’s Equations; The steady magnetic field, curl; Magnetic Forces, materials, inductance; Time Varying Fields, Maxwell’s Equations; Uniform Plane Wave, Plane Waves at boundaries and in dispersive media; Transmission lines; Waveguide and antenna fundamentals; Huygens-Freshnel Principle, spatial frequency, angular spectrum

[Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)] Silabus Lengkap

Students learn topics rannging from Coulomb’s Law to Huygens-Freshnel Principle, i.e. History and Overview; Vector Analysis; Coulomb’s Law, Electric Field Intensity; Electric Flux Density, Gauss’s Law, Divergence; Energy, Potential, Gradient; Conductors, Dielectrics, Capacitance; Poisson’s and Lapace’s Equations; The steady magnetic field, curl; Magnetic Forces, materials, inductance; Time Varying Fields, Maxwell’s Equations; Uniform Plane Wave, Plane Waves at boundaries and in dispersive media; Transmission lines; Waveguide and antenna fundamentals; Huygens-Freshnel Principle, spatial frequency, angular spectrum

Understand electrostatics and electrodynamics phenomena Understand and apply Coulomb’s Law, Gauss’s Law, Poisson’s and Lapace’s Equations Luaran (Outcomes)

Understand magnetostatics and magnetodynamics phenomena Understand and apply Maxwell’s Equations to palne wave in transmission line Understand wave guide and antenna fundamentals Understand Huygens-Freshnel Principle, spatial frequency, angular spectrum

Matakuliah Terkait

FI1201 Fisika IIA MA2072 Matematika Teknik I

Prasyarat Prasyarat

Kegiatan Penunjang

[Praktikum, kerja lapangan, dsb.]

Pustaka

Willam H. Hayt, Jr., John A. Buck, Engineering Electromagnetics, 8th Edition, McGraw Hill, 2012 Fawwaz T. Ulaby, Fundamentals of Applied Electromagnetics, 6th Edition, Prentice Hall, 2010 G.B. Arfken and H.J. Weber: Mathematical Methods for Physicists; 4th edition, Academic Press, Jerrold Franklin, Classical Electromagnetism, Addison Wesley, 2005 Joseph W. Goodman, Introduction to Fourier Optics, McGraw-Hill, 1996

Panduan Penilaian

UTS 40%, UAS 40%, Assignments 20%

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 35 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa

History and Overview; Vector Analysis

History of electromagnetics, overview of electromagnetics, vector algebra, coordinate systems, line integral, surface integral, volume integral



  

 1 

 

Coulomb’s Law, Electric Field Intensity

Charge distributions, Coulomb’s law, electric field intensity

 

2

Electric Flux Density, Gauss’s Law, Divergence 3

Energy, Potential, Gradient 4

Gauss’s law and applications, divergence and Maxwell’s first equation, divergence theorem

Energy and potential difference, potential gradient, energy density in the electrostic field

  



 Conductors, Dielectrics, Capacitance

5

Current density, conductance and resistance of metallic conductors, polarization of dielectric materials, capacitance

   

6

Poisson’s and Lapace’s Equations The steady magnetic field, curl

Poisson’s and Laplace’s equations in various coordinate systems Biot-Savart and Ampre’s law, curl and Stoke’s theorem, magnetic flux and magnetic flux density, scalar and vector magnetic potentials

 



7   Magnetic Forces, materials, inductance 8

9

Time Varying Fields,

Lorentz’s Law, the nature of magnetic materials, magnetization and permeability, magnetic boundary conditions, magnetic circuits, self and mutual inductance Faraday’s law, displacement

    

Identify some contributors to electromagnetic-optics and relate their achievements to the knowledge area. Appreciate the importance of electromagnetics from a historical perspective. Explain why electromagnetic-optics is important to this subject. Articulate why charge distributions and current density are the fundamental elements of an electromagnetic-optics systems. Describe how electrical engineering uses or benefits from electromagnetics-optics Demonstrate skill in solving problems of vector algebra and integral vector and presenting problem solutions Interpret the physical meaning and phenomena behind mathematical equations and computed results. Be able to apply mathematical techniques to formulate the fundamental field equations and to analyse electromagnetic phenomena related to electrical engineering systems. Compare and contrast the inverse square nature of gravitational and electric fields State Coulomb’s Law and solve problems for more than one electric force acting on a charge. Include: one and two dimensions Apply Gauss’s and Coulomb’s laws Interpret the physical meaning and phenomena behind mathematical equations and computed results. Calculate simple geometry of charge distributions to derive their electric fields by using divergence and divergence theorem. Derive an equation for the electric potential energy between two oppositely charged parallel plates (Ee = qEΔd). Define and calculate the gradient of electric potentials. Distinguish between materials, based on their electromagnetic properties Apply Maxwell’s equations in dielectric materials using vector D, E, and P fields Design resistors and analyse their characteristics Design capacitors and analyse their characteristics solve simple boundary value problems, using the method of images and Poisson’s equation. Define the magnetic field as the region of space around a magnet where another magnet will experience a force. Diagram and describe qualitatively the magnetic field around a current carrying wire. Describe the concept of magnetic poles and demonstrate that like poles repel and unlike poles attract. Diagram and describe qualitatively the magnetic field of a solenoid. Apply Maxwell’s equations in magnetic materials using vector B, H, and M fields Design inductors and analyse their characteristics Describe the concepts of magnetic material characteristics Solve magnetic circuit problems Formulate and solve problems in

Sumber Materi

[Uraikan rujukan terhadap pustaka (bab, sub-bab)]

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 36 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Maxwell’s Equations

current, Maxwell’s equations, retarded potentials     Wave propagation in free space, in dielectric, in conductor, wave polarization, Poynting’s theorem and wave power



The Plane Waves at boundaries and in dispersive media

Reflection and refraction, standing wave ratio, wave propagation in dispersive media



Transmission Lines

Transmission line equations, voltage standing wave ratio, transmission lines of finite length, the Smith chart Basic waveguide operation, metalic waveguide, optical fiber, basic radiation principles, Antenna specitication, wire antenna, arrays antenna, aperture antenna Kirchoff formulation of diffraction by a planar screen, Rayleigh-Sommerfeld formulation of diffraction, Huygens-Freshnel principle, spatial frequency, angular spectrum and its physical interpretation, propagation of angular spectrum



Uniform Plane Wave

10





11

12

13

14

Waveguide and antenna fundamentals Waveguide and antenna fundamentals Huygens-Freshnel Principle, spatial frequency, angular spectrum

15



 

electrodynamics using Faraday’s and Ampere’s laws. Demonstrate how a change in magnetic flux induces voltage. Use Gauss’, Ampere’s and Faraday’s Laws in the context of electrical devices. Describe the operation of an AC generator. Describe the operation of transformers. Describe a wave as a transfer of energy. Describe the engineering uses of electromagnetic waves, by frequency band, and the respective hazards associated with them Calculate wave power from electric-magnetic field distributions Describe, demonstrate, and diagram the transmission and reflection of electromagnetic waves. Recognize and describe dispersion and its effects Define core loss in an electromagnetic device, and recognise & describe its effect Use and interpret a Smith chart Describe & recognise fundamental properties of waveguide modes



Use dipole antennas in simple communication links



Describe light as an electromagnetic wave. Huygens-Freshnel equations for planar source problem Describe and calculate twodimensional Fourier transform Understand and capable to calculate propagation of monochromatic light as Fourier transform

  

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 37 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Fakultas Sekolah Teknik Elektro & Informatika

Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL1200

Bobot sks: 2

Semester: 2

KK/Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Pengantar Analisis Rangkaian Nama Matakuliah

Silabus Ringkas

Introduction to Circuit Analysis Konsep dasar, hukum-2 dasar, metoda analisis, teorema rangkaian, operational amplifier, kapasitor & induktor, rangkaian orde-1, rangkaian orde-2, rangkaian sinusoidal: fasor, pemodelan, dan analisa steady state rangkaian orde-1 dan 2. Basic concepts, basic laws, methods of analysis, circuit theorems, operational amplifier, capacitors and inductors, firstorder circuits, second-order circuits, sinusoidal circuits: phasors , circuit modelling, and steady state analysis of the 1st and 2nd order circuits. [Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)]

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait Kegiatan Penunjang

Pustaka

Panduan Penilaian

Basic Concept: Charge and current, Voltage, Power and energy, Circuit Elements. Basic Laws: Ohm’s and Kirchhoff laws, series resistor & voltage divider, parallel resistors and current divider, delta-wye conversion. Methods of analysis: Nodal and Mesh. Circuit theorems: superposition, source transformation, Thevenin & Norton Theorems, maximum power transfer . Operational Amplifier: ideal op amps, inverting & non-inverting amplifier, summing, difference, and cascaded amplifiers. First-order circuits: source free and step response of RL and RC circuits, and singular function. Second-order circuits: source free and step response of series & paralle RLC circuits. Sinusoidal circuits: phasor concept, its relationships for circuits elements, circuits modelling and steady state analysis of 1st and 2nd order circuits At the end of this subject, students should be able to: 1. Understand the fundamental concepts of charge, current, voltage, power, energy, and circuit elements. 2. Apply basic laws (Ohm & Kirchhoff) for analysis resistive networks using nodal and mesh analysis. 3. Analyse resistive networks and simplify complicated networks using various circuit theorems (superposition, source transformation, Thevenin & Norton, maximum power transfer). 4. Analysis and design simple networks containing operational amplifier. 5. Deal with circuit containing energy storage elements. 6. Determine transient and steady state response of the first and second order circuits. 7. Perform 1st & 2nd order sinusoidal circuits modelling 8. Determine steady state analysis of 1st and 2nd order sinusoidal circuits 9. Use SPICE to analyst DC and AC circuits. 10. Use Matlab as a tool to solve the network problems. FI1101 Fisika Dasar IA Prerequisites MA1101 Matematika IA Prerequisites Penggunaan Tools (MATLAB dan SPICE) C.K. Alexander & M.N.O. Sadiku, Fundamentals of Electric Circuits, Mc Graw Hill, Fifth Edition, 2013 [Pustaka Utama] R.C. Dorf & J. A. Svoboda, Introduction to Electric Circuits, John Wiley & Sons, Sixth Edition, 2004 [Pustaka Pendukung] Bobot penilaian: PR 15%, Kuis 15%, UTS 35% dan UAS 35%

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 38 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Importance of Electric Circuits in Engineering World. Basic Concept

1

2

Basic Laws

3

Methods of Analysis

4

Methods of Analysis

5

Circuits Theorems

6

Circuits Theorems

7

Operational Amplifiers

8

Operational Amplifiers

9

Capacitors and Inductors

10

11

First-Order Circuits

First-Order Circuits

Sub Topik History & introduction Systems of units. Charge and current. Voltage. Power and energy. Circuit Elements. Applications Ohm’s law. Kirchhoff’s laws. Series resistors and voltage division. Parallel resistors and current division. Wye-Delta transformations. Applications. Nodal analysis. Nodal analysis with voltage sources. Nodal Analysis by inspection. Mesh analysis. Mesh analysis with current sources. Nodal analyses by inspection. Applications. Linearity property, superposition, source transformation. Thevenin & Norton theorems, maximum power transfer. Applications. Ideal op-amp, inverting & non-inverting amplifiers. Summing & difference amplifiers, cascaded op amps circuits. Applications. Capacitors. Series and parallel capacitors. Inductors. Series and parallel inductors. Applications (differentiator, integrator, and analog computer). Source-free RC circuits. Source-free RL circuits. Singularity functions.

Step response of an RC circuit. Step response of an RL circuit. First-order op amp circuits. Transient analysis

Capaian Belajar Mahasiswa Know the importance of electric circuits in Engineering World. Understand relationship between charge & current, power & energy. Know circuit elements and the metric units of electrical quantities Analyze circuit SYSTEMS using direct application of Kirchoff's Current and Voltage Laws along with Ohm's Law.

Apply node-voltage analysis techniques to analyze circuit behavior. Apply cramer’s rule and Gaussian elimination to solve simultaneous equations.

Apply mesh-current analysis techniques to analyze circuit behavior. Apply circuit theorems (superposition, source transformation) to analyze circuit behaviour. Apply circuit theorems (Thevenin & Norton theorems, maximum power transfer) to analyze circuit behaviour. Analyse an ideal op. amp in various applications in dc circuits.

Sumber Materi

Alexander & Sadiku : Chapter 1

Alexander & Sadik: Chapter 2

Alexander & Sadiku: Chapter 3: 3.1 – 3.3, 3,6

Alexander & Sadiku: Chapter 3: 3.4 – 3.9

Alexander & Sadiku: Chapter 4: 4.1 – 4.4

Alexander & Sadiku: Chapter 4: 4.5 – 4.10 Alexander & Sadiku: Chapter 5: 5.1 – 5.5

Analyse an ideal op. amp in various applications in dc circuits.

Alexander & Sadiku: Chapter 5: 5.6 – 5.10

Explain the characteristics of capacitor and inductor as a circuit element.

Alexander & Sadiku: Chapter 6

Compute initial conditions for current and voltage in first order R-L and R-C capacitor and inductor circuits. Construct any waveform of signal using step and ramp functions.

Alexander & Sadiku: Chapter 7: 7.1 – 7.4

Compute time response of current and voltage in first order R-L and R-C circuits.

Alexander & Sadiku: Chapter 7: 7.5 – 7.9

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 39 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Second-Order Circuits

12

Second-Order Circuits

13

Sinusoids and Phasors 14

Sinusoids and Phasors

15

using SPICE. Applications. Finding initial and final values. Source-free series RLC circuits. Source-free parallel RLC circuits. Step response of a series RLC circuit. Step response of a parallel RLC circuit. General second-order circuits. Second-order op amp circuits. Duality. SPICE analysis of RLC circuits Applications. Sinusoids. Phasors. Phasor relationships for circuits elements. Impedance and admittance. Kirchhoff’s laws in frequency domain. Impedance combinations. Applications.

Compute initial conditions for current and voltage in second order RLC circuits. Compute time response of current and voltage in second order RLC circuits.

Alexander & Sadiku: Chapter 8: 8.1 – 8.4

Alexander & Sadiku: Chapter 8: 8.5 – 8.11 Compute time response of current and voltage in general second order RLC circuits. Understand the relationship between phasor concept and its diagram to sinusoidal signals and RLC elements in circuits. Understand the relationship between phasor concept and its diagram to sinusoidal signals and RLC elements in circuits. Convert problems involving differential equations into circuit analysis problems using phasors and complex impedances

Alexander & Sadiku: Chapter 9: 9.1 – 9.4

Alexander & Sadiku: Chapter 9: 9.5 – 9.8

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 40 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4093

Bobot sks: 3

Semester: 7/8

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Pilihan

Pengembangan Keprofesian & Komunitas Nama Matakuliah

Proffession & Community Development

Silabus Ringkas

Sebagai bagian dari pelatihan nyata, mahasiswa dapat mengikuti berbagai lomba/kompetisi nasional maupun internasional atau membuat kegiatan berbasis untuk masyarakat dalam bidang terkait rekayasa. Kegiatan akademik mahasiswa dalam mempersiapkan tim lomba/kompetisi tersebut mesti dilakukan dalam waktu minimal 4 bulan di masa semester berjalan.

Silabus Lengkap

Sebagai bagian dari pelatihan nyata, mahasiswa dapat mengikuti berbagai lomba/kompetisi nasional maupun internasional atau membuat kegiatan berbasis untuk masyarakat dalam bidang terkait rekayasa. Kegiatan akademik mahasiswa dalam mempersipakan tim lomba/kompetisi tersebut mesti dilakukan dalam waktu minimal 4 bulan di masa semester berjalan. [Uraian lengkap silabus matakuliah dalam Bahasa Inggris (maksimum 100 kata)]

Luaran (Outcomes) Matakuliah Terkait Kegiatan Penunjang Pustaka

Panduan Penilaian

Mahasiswa dapat mengapresiasi masalah nyata beserta berbagai kendala nyata Mahasiswa dapat mengembangkan soft-skill (bekrjasama, komunikasi, etika dll) EL2005 Elektronika Prasyarat [Kode dan Nama Matakuliah] [Prasyarat, bersamaan, terlarang] Kerja Mandiri terbimbing Rujukan Pilihan Terkait Topik Lomba/Kompetisi Rujukan Buku Pilihan Pembimbing Lomba/Kompetisi/Exchange Program [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung]) Written reports 25% Logbook 25% Poster and paper 25% Seminar/Progress 25%

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 41 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

2

Informasi, Aturan, dan Jadwal Kegiatan Kegiatan Mandiri 1

3

Kegiatan Mandiri 1

4

Kegiatan Mandiri 2

5

Kegiatan Mandiri 2

6

Kegiatan Mandiri 3

7

Kegiatan Mandiri 3

8

Persiapan Penulisan Laporan

1

9

Laporan Kemajuan Awal

10

Kegiatan Mandiri 4

11

Kegiatan Mandiri 4

12

Kegiatan Mandiri 5

13

Kegiatan Mandiri 5 Persiapan Penulisan Laporan, Makalah, dan Pembuatan Poster Laporan Kemajuan Akhir

14 15

Sub Topik

Capaian Belajar Mahasiswa

Sumber Materi

[Uraikan sub-topik bahasan]

[Uraikan capaian spesifik topik dengan merujuk kepada capaian matakuliah]

[Uraikan rujukan terhadap pustaka (bab, sub-bab)]

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 42 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika

Silabus dan Contoh Satuan Acara Pengajaran (SAP)

Kode Matakuliah: EL3010

Bobot sks: 3

Semester: 5

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Pengolahan Sinyal Digital Nama Matakuliah Digital Signal Processing

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes)

Sejarah dan Tinjauan Pengolahan Sinyal Digital, Teori dan Konsep, Sinyal dan Sistem Waktu Diskrit, Analisis Sistem LTI dengan transformasi-z, Analisis frekuensi dari sinyal dan sistem, Discrete Fourier Transform (DFT) dan Fast Fourier Transform (FFT), Analisis Spektrum, Implementasi Sistem Waktu Diskrit, Perancangan Filter Digital History and Overview in Digital Signal Processing, Theories and Concepts, Discrete Time Signals and Systems, Analysis of LTI Systems Using z-Transfoms, Frequency Analysis of Signals and Systems, The Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT), Spectrum analysis, Implementation of Discrete-Time Systems, Design of Digital Filter Sejarah dan tinjauan pengolahan sinyal digital; Teori dan konsep sinyal dan sistem, Konsep frekuensi di dalam sinyal waktu kontinyu dan sinyal waktu diskrit, dan Analog-to-Digital and Digital-to-Analog Conversion; Sinyal dan sistem waktu diskrit, Analisis sistem LTI waktu diskrit, dan Sistem LTI dikarakterisasi persamaan differens dengan koefisien konstan; Konsep transformasi-z dan inversinya, analisis sistem LTI menggunakan transformasi-z; Analisis frekuensi dari sinyal dan sistem, Sistem LTI sebagai frekuensi pemilih frekuensi; Discrete Fourier Transform (DFT) dan Fast Fourier Transform (FFT); Analisis spektrum dengan DFT dan konsep fungsi window; Implementasi sistem waktu diskrit untuk sistem FIR dan IIR; Perancangan filter digital, perancangan FIR, perancangan IIR dari filter analog yang ditransformasi menggunakan transformasi bilinear. History and overview in digital signal processing field; Theories and concepts of signal and system, the concept of frequency in continuous-time and discrete-time signals, and Analog-to-Digital and Digital-toAnalog Conversion; Discrete-time signals and systems, analysis of discrete-time LTI systems, and LTI system characterized by constant-coefficient difference equation (LCCDE); The concept of z-transform and its inversion, analysis of LTI systems using z-transfoms; Frequency analysis of signals and systems, LTI systems as frequency selective filters; The Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT); Spectrum Analysis using DFT and concept of window function; Implementation of Discrete-Time Systems for FIR and IIR systems; Design of digital filter, FIR designs, IIR designs from analog filters transformed using bilinear transformation. Identify the difference between analog and discrete signals, Indicate some of the characteristic of filters; Describe the concept of frequency, amplitude, and phase of discrete time signals and continuous time signals and its properties, Explain the concept of Harmonically Related Complex Exponentials and fundamental frequency, Explain the process of analog-to-digital conversion (sampling, quantization, coding); Describe the discrete-time representation of signals, Distinguish between energy signals and power signals, periodic and aperiodic signals, symetric and antisymetric signals, Describe the input-output description of the systems and the their block diagram representation, Distinguish between time-invariant and time-variant systems, linear and nonlinear systems, causal and noncausal systems, stable and unstable systems, Apply the techniques for the analysis of Linear Systems; Describe the definition of z-transform and Region of Convergence (RoC), Explain the important properties of z-transform such as linearity, time shifting, scaling, and time reversal, Explain z-transform to characterize signals in terms of their pole-zero patterns, Explain the definition of inversion of the z-transform, Explain the methods for inverting the ztransform of a signal so as to obtain the time-domain representation of the signal, Apply the z-transform in the analysis of LTI systems; Explain the Fourier series representation for continuous-time periodic (power) signals and the Fourier transform for finite energy aperiodic signals, Explain the Fourier series representation for discrete-time periodic (power) signals and the Fourier transform for finite energy aperiodic signals, Explain the properties of the Fourier Transform (linearity, time shifting, and timereversal), Explain the characterization of LTI systems in the frequency domain that is described by its frequency response, Produce the frequency response of LTI systems that have rational system functions, Apply the filter (LTI system) to perform spectral shaping or frequency-selective filtering; Explain the DFT and its properties (periodicity, linearity and circular symmetry), Apply the DFT to perform linear filtering in the frequency domain, Apply the DFT for frequency analysis of signals, Explain the FFT as a method for computing the DFT efficiently; Apply the DFT for spectrum analysis, Apply the linear filtering to compute DFT, Explain how window functions improve transform properties; Explain the issues in realization of Discrete-Time Systems, Explain the structures for FIR Systems (Direct Form, Cascade Form, Frequency Sampling Structure, Lattice Structure), Explain the structures for IIR Systems (Direct Form, Signal Flow Graphs and Transposed, Cascade Form, Parallel Form, Lattice and Lattice-Ladder Structures); Design Linear-Phase FIR Filters using windows (Rectangular, Berlett, Hanning, Hamming, Blackman), Design Linear-Phase FIR Filters by Frequency-Sampling Method, Design Optimum Equiripple LinearPhase FIR Filters, Explain the concept of designing IIR filters from analog filters by the Bilinear Transformation, Design analog low pass filters (Butterworth, Chebyshev, Elliptic, and Bessel), Design IIR Filters from Analog Filters by the Bilinear Transformation (Low Pass, High Pass, Bandpass, Bandstop)

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 43 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Matakuliah Terkait

EL2007 Sinyal dan Sistem EL3110 Prakt. Pengolahan Sinyal Digital

Kegiatan Penunjang

Tugas Proyek

Pustaka

Prasyarat Bersamaan

[PrMa07] J.G. Proakis and D. G. Manolakis, Digital Signal Processing, Principles, Algorithms, and Applications. Upper Saddle River, NJ: Prentice Hall, 2007. ISBN 0–13–2287315. (pustaka utama) [InPr97] V. K. Ingle and J. G. Proakis, Digital Signal Processing Using Matlab v.4. Boston, MA: PWS Publishing Company, 1997. (pustaka pendukung untuk Tugas Proyek)

Panduan Penilaian

Pretest (5%), Posttest (30), Tugas Proyek (30%), UAS (35%)

Catatan Tambahan

Website penunjang perkuliahan ada di http://kuliah.itb.ac.id/course/view.php?id=287

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 44 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

1

2

3

4

5

Topik

Sub Topik

Capaian Belajar Mahasiswa

History and Overview

 Reasons for studying DSP  Highlight some people that contributed in the area of DSP  The need for using transform  Some technique of transformations

 Identify the difference between analog and discrete signals  Indicate some of the characteristic of filters, in particular low- and highpass filters  Describe how computer engineering uses or benefits from digital signal processing and multimedia  Express the definition and mathematical representation of signals and systems  Describe the basic elements of DSP systems  Distinguish between real and complex signals, multichannel and single channel, multidimensional and single dimensional, continuous time and discrete time, continuous valued and discrete valued, digital signal and analog signal, deterministic and random  Describe the concept of frequency, amplitude, and phase of discrete time signals and continuous time signals and its properties  Explain the concept of Harmonically Related Complex Exponentials and fundamental frequency  Explain the process of analog-todigital conversion (sampling, quantization, coding)  Explain the concept of aliasing  Describe the process of digital-toanalog conversion  Describe the discrete-time representation of signals  Explain the elementary signals (sample, step, ramp, exponential, complex exponential, sinusoidal)  Distinguish between energy signals and power signals, periodic and aperiodic signals, symetric and antisymetric signals  Explain the basic operation on signals (shifting, folding, addition, product, scaling)  Describe the input-output description of the systems and the their block diagram representation  Distinguish between static and dynamic systems, time-invariant and time-variant systems, linear and nonlinear systems, causal and noncausal systems, stable and unstable systems  Apply the techniques for the analysis of Linear Systems

Theories and Concepts

Discrete Time Signals and Systems

Discrete Time Signals and Systems

Analysis of LTI Systems Using z-Transfoms

 Signals, systems, and signal processing  Classification of Signals  The concept of frequency in Continuous-Time and Discrete-Time Signals  Analog-to-Digital and Digital-to-Analog Conversion

 Discrete-Time Signals  Discrete-Time Systems  Analysis of Discrete-Time Linear Time-Invariant Systems

 Discrete-Time Systems Described by Difference Equations  Implementation of Discrete-Time

 The z-Transform  Properties of the zTransform  Rational z-Transforms  Inversion of the zTransform  Analysis of LTI in the zDomain

6

Analysis of LTI Systems Using z-Transfoms

 One-Sided z-Transform  Analysis of LTI in the zDomain

7

Frequency Analysis of Signals and Systems

 Frequency Analysis of Continuous-Time Signals

 Describe the definition of ztransform and Region of Convergence (RoC)  Explain the important properties of z-transform such as linearity, time shifting, scaling, and time reversal  Explain z-transform to characterize signals in terms of their pole-zero patterns  Explain the definition of inversion of the z-transform  Explain the methods for inverting the z-transform of a signal so as to obtain the time-domain representation of the signal  Explain the definition of one-sided z-transform  Explain the properties of one-sided z-transform  Apply the z-transform in the analysis of LTI systems  Explain the Fourier series representation for continuous-time periodic (power) signals and the

Sumber Materi

 [PrMa07] 1.1-1.5

 [PrMa07] 2.1-2.3

 [PrMa07] 2.4-2.5

 [PrMa07] 3.1-3.4

 [PrMa07] 3.5

 [PrMa07] 4.1-4.3

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 45 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

 Frequency Analysis of Discrete-Time Signals





8

Frequency Analysis of Signals and Systems

 Properties of the Fourier Transform for DiscreteTime Signals  Frequency-Domain Characteristics of LTI Systems

9

Frequency Analysis of Signals and Systems

 LTI Systems as Frequency Selective Filters

10

The Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT)

 The Discrete Fourier Transform (DFT) and Its Properties  Linear Filtering Methods Based on the DFT



    

11

The Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT)

 Frequency Analysis of Signals Using the DFT  The Fast Fourier Transform (FFT)

 

   12

Spectrum Analysis

 Spectrum Analysis using DFT  Definition and purpose of a window function

   

13

Implementation DiscreteTime Systems

 Structures for the Realization of DiscreteTime Systems  Structures for FIR Systems  Structures for IIR Systems





  14

Design of Digital Filter

 FIR Filters    

15

Design of Digital Filter

 IIR Filters





Fourier transform for finite energy aperiodic signals Explain the Fourier series representation for discrete-time periodic (power) signals and the Fourier transform for finite energy aperiodic signals Explain the properties of the Fourier Transform (linearity, time shifting, and time-reversal) Explain the characterization of LTI systems in the frequency domain that is described by its frequency response Produce the frequency response of LTI systems that have rational system functions Apply the filter (LTI system) to perform spectral shaping or frequency-selective filtering Explain the DFT and its properties (periodicity, linearity and circular symmetry) Apply the DFT to perform linear filtering in the frequency domain Apply the DFT for frequency analysis of signals Explain the FFT as a method for computing the DFT efficiently Explain the divide-and-conquer approach to derive fast algortihm for computing DFT (Radix-2 and Radix-4 FFT algorithms) Apply the DFT for spectrum analysis Explain the concept of zero padding Apply the linear filtering to compute DFT and implement this on Goertzel Algorithm Explain the definition of a window function Explain why window functions are important to digital signal processing Explain how window functions improve transform properties Explain the issues in realization of Discrete-Time Systems Explain the structures for FIR Systems (Direct Form, Cascade Form, Frequency Sampling Structure, Lattice Structure) Explain the structures for IIR Systems (Direct Form, Signal Flow Graphs and Transposed, Cascade Form, Parallel Form, Lattice and Lattice-Ladder Structures) The concept of symmetric and antisymmetric FIR filters Design Linear-Phase FIR Filters using windows (Rectangular, Berlett, Hanning, Hamming, Blackman) Design Linear-Phase FIR Filters by Frequency-Sampling Method Design Optimum Equiripple LinearPhase FIR Filters Explain the concept of designing IIR filters from analog filters by the Bilinear Transformation Design analog low pass filters (Butterworth, Chebyshev, Elliptic, and Bessel) Design IIR Filters from Analog Filters by the Bilinear Transformation (Low Pass, High Pass, Bandpass, Bandstop) Design IIR Filters by the Matched-z Transformation

 [PrMa07] 4.4, 5.1-5.2

 [PrMa07] 5.3  [PrMa07] 7.1-7.3

 [PrMa07] 7.4, 8.1-8.2

 [PrMa07] 8.3-8.4

 [PrMa07] 9.1-9.3

 [PrMa07] 10.1-10.2

 [PrMa07] 10.3-10.4

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 46 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Sarjana Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL2008

Bobot sks: 3

Semester: 4

Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Penyelesaian Masalah dengan C Nama Matakuliah Problem Solving with C [Uraian ringkas silabus matakuliah dalam Bahasa Indonesia (maksimum 30 kata)] Silabus Ringkas

This course lays the foundation of algorithm analysis and data structures for the electrical engineering curriculum. In this class, students will experience applications of concepts learned in the classroom. They will learn through hands-on experience how to read and understand problem statements and develop the algorithm and implement it using C to solve the problem. [Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)]

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

Provide an introduction to problem solving tools using an engineering workstation 1. Focus on teaching you the C programming language while emphasizing problem solving techniques and software engineering skills that are applicable in a wide variety of fields. 2. Provide students with the necessary skills to solve a variety of engineering and programming problems as needed throughout their undergraduate work. KU1072 Introduction to Information Prasyarat Technology B EL2003 Struktur Diskrit Prasyarat

 

Kegiatan Penunjang

[Praktikum, kerja lapangan, dsb.]

Pustaka

Hanly, Jeri, and Koffman, Elliot, "Problem Solving and Program Design in C", 5th ed, Addison Wesley, New York, 2007 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, “Introduction to Algorithms”, The MIT Press, 3rd edition, 2009 [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung])

Panduan Penilaian

[Termasuk jenis dan bentuk penilaian]

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 47 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa

Introduction

History and Overview

1.

2. 3. 1

4. 5. 6. Programming Construct

Variables, types, expressions, and assignment Simple I/O

1.

2

2. Programming Construct

Conditional Structures

1.

3

2. Programming Construct

Iterative control structures, Pointers

1.

4

2. Programming Construct

Functions and parameter passing, File I/O

1.

5

2.

Algorithms and problemsolving

Problem-solving strategies, Structured decomposition Debugging strategies

1. 2. 3.

6

4.

Data Structure

Arrays and Records Strings and string processing

7

8

1.

2.

Data Structure

Data representation in memory

1.

Sumber Materi

Identify some contributors to programming fundamentals and relate their achievements to the knowledge area. Define the meaning of algorithm and data structure. Know the reasons that a way to solve problems is by using algorithms. Distinguish the difference between a stack and a queue. Identify the difference between various programming paradigms. Explain recursion and the way it works. Analyze and explain the behavior of simple programs involving the fundamental programming constructs covered by this unit. Write a program that uses basic computation and simple I/O. Analyze and explain the behavior of simple programs involving the fundamental programming constructs covered by this unit. Write a program that uses standard conditional. Analyze and explain the behavior of simple programs involving the fundamental programming constructs covered by this unit. Write a program that uses iterative structures and pointers. Analyze and explain the behavior of simple programs involving the fundamental programming constructs covered by this unit. Write a program that uses procedure, functions, parameter passing, and File I/O. Define the basic properties of an algorithm. Develop algorithms for solving simple problems. Use a suitable programming language to implement, test, and debug algorithms for solving simple problems. Apply the techniques of structured decomposition to break a program into smaller pieces. Identify data structures useful to represent specific types of information and discuss the tradeoffs among the different possibilities. Write programs that use each of the following data structures: arrays, records, strings, linked lists, stacks, queues, and hash tables. Identify data structures

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 48 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Static, stack, and heap allocation Runtime storage management Linked structures 2.

9

Midterm Data Structure

10

Recursion

Implementation strategies for stacks, queues, and hash tables Implementation strategies for graphs and trees

1.

The concept of recursion Recursive mathematical functions Divide-and-conquer strategies Recursive backtracking

1. 2. 3.

11

4. Basic Algorithm Analysis

12

13

Algorithm Strategy 14

Algorithm Strategy 15

Asymptotic analysis of upper and average complexity bounds Identifying differences among best, average, and worst case behaviors

Big "O," little "o," omega, and theta notation Empirical measurements of performance Time and space tradeoffs in algorithms Brute-force/exhaustive search algorithms Greedy algorithms Divide-and-conquer Backtracking

Computing Algorithm

Simple numerical algorithms

Computing Algorithm

Sequential and binary search algorithms Sorting algorithms Hash tables Binary search trees

Intro to Parallel and Distributed

Why parallel computation?, Task/Thread, concurrency, OpenMP

16

17

18

1. 2.

useful to represent specific types of information and discuss the tradeoffs among the different possibilities. Describe the way a computer allocates and represents these data structures in memory. Identify data structures useful to represent specific types of information and discuss the tradeoffs among the different possibilities. Explain the concept of recursion. Explain the structure of the divide-and-conquer approach. Write, test, and debug simple recursive functions and procedures. Describe how recursion can be implemented using a stack Determine the time complexity of simple algorithms. Deduce the recurrence relations that describe the time complexity of recursively-defined algorithms, and solve simple recurrence relations.

Use big O, omega, and theta notation to give asymptotic upper, lower, and tight bounds on time and space complexity of algorithms. Design algorithms using the brute-force, greedy, and divideand-conquer strategies. Design an algorithm using at least one other algorithmic strategy from the list of topics for this unit. Use and implement the fundamental abstract data types— specifically including hash tables, binary search trees, and graphs— necessary to solve algorithmic problems efficiently. 1. Solve problems using efficient sorting algorithms, and fundamental graph algorithms, including depthfirst and breadth-first search, single-source and all-pairs shortest paths, transitive closure, topological sort, and at least one minimum spanning tree algorithm. 2. Demonstrate the following abilities: to evaluate algorithms, to select from a range of possible options, to provide justification for that selection, and to implement the algorithm in simple programming contexts 1. Discuss the concept of parallel processing beyond the classical von Neumann model. 2. Describe alternative architectures such as SIMD, MIMD, and VLIW.

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 49 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

3.

4.

5. 6. 7.

8.

9.

19

Explain the concept of interconnection networks and characterize different approaches. Discuss the special concerns that multiprocessing systems present with respect to memory management and describe how these are addressed. Explain the distributed paradigm. Explain one simple distributed algorithm Explain the various method of communication method for data movement with a specific topology Understand the types of problem can be parallelize and the limit of performance gain Write a program that uses all programming concept of MPI, OpenMP, and CUDA.

Final Exam

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 50 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Sarjana Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Contoh Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL3111

Bobot sks: 1

Semester: 3

Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Praktikum Arsitektur Sistem Komputer Nama Matakuliah Computer System Architecture Laboratory Mata kuliah praktikum ini memberikan pemahaman tentang teknik implementasi prosessor modern Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes) Matakuliah Terkait

This course is intended for undergraduate student so that the student will gain a comprehensive knowledge of computer hardware and its interaction with software. The course will also stress on simple MIPS processor design and implementation using VHDL. Mata kuliah praktikum ini memberikan pemahaman tentang teknik implementasi prosessor modern. Implementasi prosessor menggunakan VHDL. Pengujian kerja prosessor dan simulasi setiap bagian prosessor menggunakan alat-alat perancangan modern.

Praktikum ini menunjang konsep-konsep yang diberikan dalam mata kuliah Arsitektur Sistem Komputer . 1. Memahami konsep implementasi prosesor modern 2. Memahami teknik implementasi prosessor menggunakan VHDL EL2102 Praktikum Sistem Digital Prasyarat EL3011 Arsitektur Sistem Komputer Bersamaan

Kegiatan Penunjang

Pustaka

Randal E. Bryant, David R., Computer Systems A Programmer’s Perpective, 2nd Ed, 2010 [CSAP] John L. Hennessy and David A. Patterson , Computer Organization and Design: The Software Hardware Interface, Morgan Kaufmann Publishers, Fourth Edition, 2009. [P&H] Lab Manuals

Panduan Penilaian

[Termasuk jenis dan bentuk penilaian]

Catatan Tambahan

Mg#

Topik

Sub Topik

Implementasi ALU

1. Implementasi Operasi Logika 2. Implementasi Operasi Aritmatika 3. Pengujian 1. Implementasi Register File 2. Implementasi Memori Instruksi 3. Implementasi Memori Data 4. Pengujian 1. Implementasi PC dan PC+4 2. Implementasi Branch 3. Pengujian

1

2

3

Implementasi Register File, Memori Instruksi, dan Memori Data Implementasi PC dan Branch Implementasi Kontrol Unit

1. Implementasi Kontrol Unit Single Cycle 2. Pengujian

Penggabungan semua unit dalam Prosessor

Pengujian Prosessor

4

5

Capaian Belajar Mahasiswa

Sumber Materi

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 51 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL3109

Bobot sks: 1

Semester: 5

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Praktikum Elektronika II Nama Matakuliah Electronics Laboratory II

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

Tahap output dan penguat daya; Karakteristik amplifier diferensial dan respon frekuensi penguat; Penguat umpan balik dan sifat-sifatnya; Osilator; Regulator tegangan: linear dan beralih-mode. Output stage and power amplifiers; Characteristics of the differential amplifiers and Frequency response of amplifiers. Feedback amplifiers and their properties. Oscillators; Voltage regulators: linear and switchmode. Mata kuliah ini adalah praktikum kedua untuk elektronik. Dalam praktikum ini, mahasiswa bekerja dengan rangkaian penguat diferensial, penguat multi transistor, tahap output penguat daya dan penguat umpan balik, rangkaian pembangkitan sinyal: osilator, pembentuk sinyal dan multivibrators astabil, rangkaian regulasi tegangan linier dan switched-mode. Setelah menyelesaikan kuliah ini, mahasiswa diharapkan dapat memahami sifat bagian penguat secara lengkap dan menggunakannya dalam perancangan penguat, memilih, menganalisa, dan membangun rangkaian osilator dan regulator sesuai spesifikasi yang diberikan dalam tugas perancangan. This course is the second lab for electronics. In this lab, students work with a differential amplifier circuit, multi-transistor amplifier, power amplifier output stage and feedback amplifiers, signal generation circuits: oscillators, signal shapers and astable multivibrators, linear voltage regulation circuits and switched-mode. After completing this course, students are expected to understand fully the properties of the building blocks for amplifier and to use them in the amplifier design, select, analyze, and construct the oscillator and the regulator circuits to the specifications given in a design project. 11. Understand the classification of the final stage of the power amplifier and circuit design required for the application, measure and evaluate the efficiency of a power amplifier and design the required heatsink for its thermal dissipation. 12. Design differential amplifiers to meet large-signal swing and small-signal gain specifications and confirm the design with actual circuits. 13. Relate capacitance in devices to the frequency performance of circuits and estimate the bandwidth of an amplifer. 14. Determine the loaded gain of a feedback amplifier using two-ports, predict the stability using Bode plots, andcompare with the result of measurements of actual circuits. 15. Analyze and design various types of oscillators and multivibrators. 16. Understand the principles of voltage regulation, choosing regulator topology for the desired application, build a voltage regulation circuit using IC regulator to the given specifications. EL2205 Praktikum Elektronika Prasyarat EL3009 Elektronika II Bersamaan

Kegiatan Penunjang

Pustaka

Panduan Penilaian

A. Sedra and K. Smith, Microelectronic Circuits International 6th ed., Oxford University Press, 2011 Thomas L Floyd, Electronic Devices 9th ed, Prentice Hall, 2011

Lab preparation and conduct (42%), Lab Reports (42%), Lab Note Book (15%), Review Exams (11%)

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 52 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa

 Introduction

 Classroom and Lab Rules and Regulation  Laboratory Note Book  Lab Safety

 Connect the lab rulesand regulations to the lab activities  Write important information before, during and after the lab activities  Cite lab safety while in labs  Learn how to write a proper lab report (both content and presentation).  Compare the trade-off of distortion and the power efficiency among varios class of output stage  Design bias circuit for the class AB pushpull amplifiers

1

 Output stage and power amplifier 2

3

4

5

 Output stage and power amplifier  Differential and multitransistor amplifiers  Differential and multitransistor amplifiers  Frequency response

 Output stage classification: bias, waveform, and power efficiency  Class AB power amplifier circuits  Power dissipation, thermal modelling, and heatsink selection  Differential pairs: gain and CMRR  Current Sink/ Source in differential amplifier  Load resistance in differential amplifier  Differential amplifier with active load  Single transistor amplifiers

6  Frequency response

 Cascode amplifiers

7 8

 Review 2



 Feedback amplifiers

 Small signal amplifier with feedback circuits  Feedback amplifier configuration  Feedback and amplifier pole frequency  Feedback and power amplifier  RC oscillators  LC oscillators

9  Feedback amplifiers 10  Oscillators and multivibrators 11

12

 Oscillators and multivibrators  Voltage regulators

 Voltage regulators

 Xtal oscillators  Multivibrators  Liniear voltage regulator: shunt and series configuration  Switching regulators: boost and buck  IC regulators

 Review 2



13

14 15

 Design heat sink for a required power dissipation of power amplifiers  Measure the CMRR of a different amplifier  Identify the effect of current source resistance in differential amlifier  Identify the effect of load resistance in differential amlifier  Identify the benefit of active load in differential amlifier  Analyse the frequency response of an ampifiers  Identify the components that most effecting components  Differentiate the amplifier architecturesfor their frequency response performance   Identify the impact of feedback in amplifier gains  Identify the impact of feedback in amplifier input and output resistance  Identify the impact of feedback in frequency response  Identify the impact of feedback in distortion  Understand the positive feedback mechanism for oscillators and how they are implemented  Understand the requirement of amplifier gainof oscillators to start oscillation  Design oscillators and multivibrators for a given specification  Understand the principle of regulations  Calculate the power efficiency in regulators  Apply IC regulators in design of voltage regulators 

Sumber Materi

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 53 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika

Silabus dan Satuan Acara Pengajaran (SAP)

Kode Matakuliah: EL2205

Bobot sks: 1

Semester: 4

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Praktikum Elektronika Nama Matakuliah Electronics Laboratory

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

Pengamatan dan penentuan karakteristik device semikonduktor. Sirkuit-sirkuit dioda. Penentuan bias DC. Penguat transistor tunggal dengan BJT dan MOSFET. Transistor sebagai saklar. Perancangan dan implementasi penguat sederhana dengan transistor pada PCB. IV characteristization of the semiconductor devices. Diode circuits. Determination of DC bias. Single transistor amplifiers with BJT and MOSFET. Transistors as switches. Design and implementation of transistor amplifiers on PCB. Mata kuliah ini adalah praktikum untuk mata kuliah elektronik. Dalam mata kuliah ini, mahasiswa mengukur dan mengamati karakteristik IV perangkat semikonduktor dioda, BJT dan MOSFET; sirkuit dioda penyearah dengan filter RC-nya, clipper, dan clamping; mengamati dan menentukan bias tegangan dan arus pada transistor penguat; mengukur dan membandingkan resistansi input, gain, dan resistansi output pada penguat CE, CC, dan CB untuk BJT dan CS, CD, dan CG untuk MOSFET; mengamati penggunaan transistor sebagai saklar dan keterbatasannya; melakukan siklus perancangan hingga implementasi penguat transistor pada PCB untuk spesifikasi yang diberikan. This course is a laboratory course for electronics. In this course, students measure and observe the IV characteristics of a semiconductor device diode, BJT and MOSFET; diode rectifier circuits with RC filters, clipper and clamping circuits; determine the bias voltage and current in a transistor amplifier; measure and compare of the input resistance, gain, and output resistance of the amplifier CE, CC, and CB for the BJT and CS, CD and CG for the MOSFET; observe the use of transistors as switches and their limitations; perform cycle transistor amplifier design to implementation on the PCB for a given specification. 17. Expand the mastery of use of the lab instruments, SPICE simulator, and PCB design tools. 18. Produce plots of IV characteristics for Diode, BJT and MOSFET and point out what cause certain important parts of the plots. 19. Sketch the output of halfwave and fullwave diode rectifiers with RC filters, shows the ripple effect of the RC filter and diode current. 20. Sketch the voltage transfer characteristics of clipper and clamping circuits. 21. Survey the bias of transistor and itseffect on small signal current amplification linearity. 22. Measure, analyse and compare the input resistance, gain and output resitance of of the amplifier CE, CC, and CB for the BJT and CS, CD and CG for the MOSFET; 23. Point out the limitation of BJT as current controlled switch and the advantages of CMOS inverter through the measurement results. 24. Design and construct a transistor amplifier for a given specification. 25. Produce PCB lay out and BOM for the group design. 26. Test and evaluate the design and discuss the results and conclusion in the report. EL2005 Elektronika Bersamaan EL2101 Praktikum Rangk. Elektrik Prasyarat

Kegiatan Penunjang

Pustaka

Panduan Penilaian

Lab preparation and conduct (42%), Lab Reports (42%), Lab Note Book (15%), Review Exams (11%)

Catatan Tambahan

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa

 Introduction

 Classroom and Lab Rules and Regulation  Laboratory Note Book  Lab Safety

 Connect the lab rulesand regulations to the lab activities  Write important information before, during and after the lab activities  Cite lab safety while in labs  Learn how to write a proper lab report (both content and presentation).  Apply the scheme for ploting IV characteristics of two terminal devices on an oscilloscope  Produce plots of IV characteristics

1

 Diodes 2

 Diode IV characterization  Silicon, Germanium, and Zener Diode IV characterics

Sumber Materi

Lab Manual and Class Hand-outs

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 54 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

 Diodes

3

 BJT IV charaterization and Bias Point Selection 4

5

 BJT IV charaterization and Bias Point Selection  Single BJT Amplifier Configurations

8 9

10

 BJT IV characterization: Base and collector current vs base-emitor voltage  collector current vs collctor-emitor voltage and base current  BJT Operation regions and current gain liniearity

 Single BJT Amplifier Configurations

 Amplifier properties: input resistance, gain, and output resistance  Measuremet techniques for input resistance, gain, and output resistance  Properties of CE, CC, and CB amplifiers.

 Review 1



 MOSFET IV Characteristics and Amplifier  MOSFET IV Characteristics and Amplifier

 MOSFET operation regions and current gain liniearity  Properties of CS, CD, and CG amplifiers.

 BJT and MOSFET as Switches

 BJT in cut-off and saturation regions  MOSFET cut-off and triode regions  MOSFET inverters  Manual design  SPICE simulation and design iteration

6

7

 Diode rectifier circuits  RC filter for diode rectifiers  Clipper circuits  Clamping circuits

11  Amplifier Design and Implementation 12

 Amplifier Design and Implementation 13  Amplifier Design and Implementation

 Component selections PCB design and PCBdesign tools  Design testing scheme for amplifier  PCB construction

14

15

 Review 2



   

for Diode point out what cause certain important parts of the plots. Sketch the output of halfwave and fullwave diode rectifiers with RC filters Shows the ripple effect of the RC filter and diode current. Sketch the voltage transfer characteristics of clipper and clamping circuits. Produce plots of IV characteristics for BJT and point out what cause certain important parts of the plots.

 Survey the bias of transistor and itseffect on small signal current amplification linearity.  Write and construct the amplifier properties observation and measurement schemes.

 Measure, analyse and compare the input resistance, gain and output resitance of of the amplifier CE, CC, and CB for the BJT.   Survey the bias of transistor and itseffect on small signal current amplification linearity.  Measure, analyse and compare the input resistance, gain and output resitance of of the amplifier CS, CD and CG for the MOSFET;  Point out the limitation of BJT as current controlled switch.  Show the advantages of CMOS inverter through the measurement results.  Expand the mastery of use of the lab instruments, SPICE simulator, and PCB design tools.  Design a transistor amplifier for a given specification.  Simulate the design and design iteration to get accepted results  Produce BOM for the group design.  Produce PCB lay out  Produce testing and evaluation scheme for the amplifier  Construct a transistor amplifier Produce BOM for the group design.  Test and evaluate the design and discuss the results and conclusion in the report. 

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 55 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika

Silabus dan Satuan Acara Pengajaran (SAP)

Kode Matakuliah: EL3110

Bobot sks: 1

Semester: 5

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Praktikum Pengolahan Sinyal Digital Nama Matakuliah Digital Signal Processing Laboratory

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

Pengenalan MATLAB, Simulasi filter FIR realtime, Visual DSP++ 5.0, Disain filter dan implementasi algoritma DSP, Implementasi algoritma DSP lanjut, Disain dan implementasi filter IIR menggunakan Blackfin DSP Processor Introduction to MATLAB, Simulation of Realtime Finite Impulse Response Filter, Visual DSP++ 5.0, Filter Design and Implementation of DSP Algorithm, Implementation of Advanced DSP Algorithm, Design and Implementation of Infinite Impulse Response Filter using Blackfin DSP Processor Pengenalan MATLAB, MATLAB untuk pemrosesan sinyal, Menulis fungsi MATLAB, Filtering realtime vs offline, Algoritma filtering realtime, Isu numerik di prosesor DSP, Pengenalan Visual DSP++ Integrated Development Environment, Audio talkthrough menggunakan Blackfin DSP, Pemrosesan audio sederhana menggunakan Blackfin DSP, Algoritma filtering menggunakan Blackfin DSP, Implementasi Low Pass Filter menggunakan Blackfin DSP, Implementasi High Pass Filter menggunakan Blackfin DSP, Implementasi Band Pass Filter menggunakan Blackfin DSP, Pengukuran respon frekuensi dari filter menggunakan white noise, Algoritma voice scrambler sederhana, Algoritma stereo widening, Disain filter IIR, Implementasi filter IIR Introduction to MATLAB, MATLAB for signal processing, Writing custom MATLAB function, Realtime vs offline filtering, Algoritma realtime filtering, Numerical Issues in DSP processor, Introduction to Visual DSP++ Integrated Development Environment, Audio Talkthrough using Blackfin DSP, Simple Audio Processing using Blackfin DSP, FIR filtering algorithm using Blackfin DSP, Implementation of Low Pass Filter using Blackfin DSP, Implementation of High Pass Filter using Blackfin DSP, Implementation of Band Pass Filter using Blackfin DSP, Measurement of frequency response of implemented filter using white noise, Simple Voice Scrambler Algorithm, Stereo widening algorithm, Infinite Impulse Response Filter Design, Infinite Impulse Response Filter implementation Explain how to use MATLAB functions that related to signal processing, Produce digital signal using MATLAB, Analyze spectra of digital signal using MATLAB, Produce FIR filter coefficient using fir1 and fir2, Produce and analyze frequency response of FIR filter, Produce digital signal output specified by input and LCCDE coefficient, Develop FIR filtering algorithm, Distinguish realtime filtering vs offline filtering algorithm, Develop, simulate and verify realtime FIR filtering algorithm using C programming, Apply circular buffer concept to FIR filtering algorithm, Explain advantages using fractional integer, Develop, simulate and verify realtime FIR filtering algorithm using C programming using fractional integer, Explain audio talkthrough source code for Blackfin DSP processor, Apply simple audio processing algorithm to Blackfin DSP processor, Apply FIR filtering algorithm using circular buffering to Blackfin DSP processor, Apply Low Pass FIR filter to Blackfin DSP processor, Apply High Pass FIR filter to Blackfin DSP processor, Apply Band Pass FIR filter to Blackfin DSP processor, Explain how to measure frequency response of filter using white noise, Produce and Analyze frequency response of implemented filter using DSP hardware, Apply simple voice scrambler algorithm to Blackfin DSP processor, Apply stereo widening algorithm to Blackfin DSP processor, Produce Butterworth IIR filter coefficient using MATLAB Compare and Analyze Butterworth IIR filter coefficient to specification, Apply IIR filter algorithm to Blackfin DSP processor, Produce and Analyze frequency response of implemented filter using DSP hardware EL3010 Pengolahan Sinyal Digital Bersamaan

Kegiatan Penunjang

Pustaka

[PrMa07] J.G. Proakis and D. G. Manolakis, Digital Signal Processing, Principles, Algorithms, and Applications. Upper Saddle River, NJ: Prentice Hall, 2007. ISBN 0–13–2287315. [InPr97] V. K. Ingle and J. G. Proakis, Digital Signal Processing Using Matlab v.4. Boston, MA: PWS Publishing Company, 1997.

Panduan Penilaian Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 56 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

1

2

3

Topik

Introduction to MATLAB

Simulation of Realtime Finite Impulse Response Filter

Visual DSP++ 5.0

4

Filter Design and Implementation of DSP Algorithm

5

Implementation of Advanced DSP Algorithm

6

Design and Implementation of Infinite Impulse Response Filter using Blackfin DSP Processor

Sub Topik

 Introduction to MATLAB  MATLAB for signal processing  Writing custom MATLAB function

 Realtime vs offline filtering  Algoritma realtime filtering  Numerical Issues in DSP processor

 Introduction to Visual DSP++ Integrated Development Environment  Audio Talkthrough using Blackfin DSP  Simple Audio Processing using Blackfin DSP  FIR filtering algorithm using Blackfin DSP  Implementation of Low Pass Filter using Blackfin DSP  Implementation of High Pass Filter using Blackfin DSP  Implementation of Band Pass Filter using Blackfin DSP  Measurement of frequency response of implemented filter using white noise  Simple Voice Scrambler Algorithm  Stereo widening algorithm

 Infinite Impulse Response Filter Design  Infinite Impulse Response Filter implementation

Capaian Belajar Mahasiswa

Sumber Materi

 Explain how to use MATLAB functions that related to signal processing  Produce digital signal using MATLAB  Analyze spectra of digital signal using MATLAB  Produce FIR filter coefficient using fir1 and fir2  Produce and analyze frequency response of FIR filter  Produce digital signal output specified by input and LCCDE coefficient  Develop FIR filtering algorithm  Distinguish realtime filtering vs offline filtering algorithm  Develop, simulate and verify realtime FIR filtering algorithm using C programming  Apply circular buffer concept to FIR filtering algorithm  Explain advantages using fractional integer  Develop, simulate and verify realtime FIR filtering algorithm using C programming using fractional integer

Modul 1

Modul 2

Modul 3  Explain audio talkthrough source code for Blackfin DSP processor  Apply simple audio processing algorithm to Blackfin DSP processor  Apply FIR filtering algorithm using circular buffering to Blackfin DSP processor  Apply Low Pass FIR filter to Blackfin DSP processor  Apply High Pass FIR filter to Blackfin DSP processor  Apply Band Pass FIR filter to Blackfin DSP processor  Explain how to measure frequency response of filter using white noise  Produce and Analyze frequency response of implemented filter using DSP hardware

Modul 4

 Apply simple voice scrambler algorithm to Blackfin DSP processor  Apply stereo widening algorithm to Blackfin DSP processor  Produce Butterworth IIR filter coefficient using MATLAB  Compare and Analyze Butterworth IIR filter coefficient to specification  Apply IIR filter algorithm to Blackfin DSP processor  Produce and Analyze frequency response of implemented filter using DSP hardware

Modul 5

Modul 6

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 57 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Sarjana Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Contoh Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL2208

Bobot sks: 1

Semester: Genap

Unit Penanggung Jawab: Program Studi Sarjana TE

Sifat: Wajib Prodi

Praktikum Penyelesaian Masalah dengan C Nama Matakuliah Problem Solving with C Laboratory [Uraian ringkas silabus matakuliah dalam Bahasa Indonesia (maksimum 30 kata)] Silabus Ringkas

This course provides the foundation of algorithm analysis and data structures for the electrical engineering curriculum. In this class, students will experience applications of concepts learned in the classroom through pratical lab works. They will learn through hands-on experience how to read and understand problem statements and develop the algorithm and implement it using C to solve the problem. [Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)]

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

Provide an introduction to problem solving tools using an engineering workstation 1. Focus on teaching you the C programming language while emphasizing problem solving techniques and software engineering skills that are applicable in a wide variety of fields. 2. Provide students with the necessary skills to solve a variety of engineering and programming problems as needed throughout their undergraduate work. EL2008 Problem Solving with C Bersamaan/co-requisite [Kode dan Nama Matakuliah] [Prasyarat, bersamaan, terlarang]

Kegiatan Penunjang

[Praktikum, kerja lapangan, dsb.]

Pustaka

Hanly, Jeri, and Koffman, Elliot, "Problem Solving and Program Design in C", 5th ed, Addison Wesley, New York, 2007 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, “Introduction to Algorithms”, The MIT Press, 3rd edition, 2009 [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung])

Panduan Penilaian

[Termasuk jenis dan bentuk penilaian]

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 58 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg# 1

Topik

Sub Topik

Introduction Programming Construct

Compiling usning GNU Variables, types, expressions, and assignment Simple I/O Conditional Structures Iterative control structures, Pointers

2 3

Programming Construct Programming Construct

4

5 6 7

Programming Construct Data Structure Data Structure Data Structure

8

Data Structure 9

Recursion 10

11 12

Algorithm Strategy Computing Algorithm Computing Algorithm

13

14 15 16

Computing Algorithm Computing Algorithm Computing Algorithm

Functions and parameter passing, File I/O Arrays and Records Strings and string processing Data representation in memory Static, stack, and heap allocation Runtime storage management Linked structures Implementation strategies for stacks, queues, and hash tables Implementation strategies for graphs and trees The concept of recursion Recursive mathematical functions Divide-and-conquer strategies Recursive backtracking Divide-and-conquer Backtracking Simple numerical algorithms Sequential and binary search algorithms Sorting algorithms

Capaian Belajar Mahasiswa

Sumber Materi

.

.

Complex Algebra Sound Processing Image Processing

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 59 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Sarjana Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Contoh Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL2208

Bobot sks: 1

Semester: Genap

Unit Penanggung Jawab: Program Studi Sarjana TE

Sifat: Wajib Prodi

Praktikum Penyelesaian Masalah dengan C Nama Matakuliah Problem Solving with C Laboratory [Uraian ringkas silabus matakuliah dalam Bahasa Indonesia (maksimum 30 kata)] Silabus Ringkas

This course provides the foundation of algorithm analysis and data structures for the electrical engineering curriculum. In this class, students will experience applications of concepts learned in the classroom through pratical lab works. They will learn through hands-on experience how to read and understand problem statements and develop the algorithm and implement it using C to solve the problem. [Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)]

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

Provide an introduction to problem solving tools using an engineering workstation 1. Focus on teaching you the C programming language while emphasizing problem solving techniques and software engineering skills that are applicable in a wide variety of fields. 2. Provide students with the necessary skills to solve a variety of engineering and programming problems as needed throughout their undergraduate work. EL2008 Problem Solving with C Bersamaan/co-requisite [Kode dan Nama Matakuliah] [Prasyarat, bersamaan, terlarang]

Kegiatan Penunjang

[Praktikum, kerja lapangan, dsb.]

Pustaka

Hanly, Jeri, and Koffman, Elliot, "Problem Solving and Program Design in C", 5th ed, Addison Wesley, New York, 2007 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, “Introduction to Algorithms”, The MIT Press, 3rd edition, 2009 [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung])

Panduan Penilaian

[Termasuk jenis dan bentuk penilaian]

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 60 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg# 1

Topik

Sub Topik

Introduction Programming Construct

Compiling usning GNU Variables, types, expressions, and assignment Simple I/O Conditional Structures Iterative control structures, Pointers

2 3

Programming Construct Programming Construct

4

5 6 7

Programming Construct Data Structure Data Structure Data Structure

8

Data Structure 9

Recursion 10

11 12

Algorithm Strategy Computing Algorithm Computing Algorithm

13

14 15 16

Computing Algorithm Computing Algorithm Computing Algorithm

Functions and parameter passing, File I/O Arrays and Records Strings and string processing Data representation in memory Static, stack, and heap allocation Runtime storage management Linked structures Implementation strategies for stacks, queues, and hash tables Implementation strategies for graphs and trees The concept of recursion Recursive mathematical functions Divide-and-conquer strategies Recursive backtracking Divide-and-conquer Backtracking Simple numerical algorithms Sequential and binary search algorithms Sorting algorithms

Capaian Belajar Mahasiswa

Sumber Materi

.

.

Complex Algebra Sound Processing Image Processing

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 61 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika

Silabus dan Satuan Acara Pengajaran (SAP)

Kode Matakuliah: EL2101

Bobot sks: 1

Semester: 3

KK/Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Praktikum Rangkaian Elektrik Nama Matakuliah Measurement and Circuit Laboratory

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

Penguasaan instrumen laboratorium. Percobaan dengan rangkaian dasar dengan resistor, kapasitor, induktor, dan op-amp. Rangkaian DC and teorema rangkaian, rangkaian opamps, gejala transient, impedansi, prinsip frekuensi respon, rangkaian resonansi. Familiarization with lab instruments. Experiments with basic circuits containing resistors, capacitors, inductors, and op-amps. DC circuits and circuit theorems, circuits with opamps, transient phenomena, impedances, frequency response principles, resonance circuits. Mata kuliah ini merupakan mata kuliah praktikum. Dalam praktikum ini, mahasiswa akan belajar menggunakan: meltimeter, osiloskop, generator fungsi, catu daya dan aksesorisnya. Percobaan yang dilakukan mencakup sirkuit DC dan teorema sirkuit, sirkuit dengan opamp, gejala transient, rangkaian ac, impedansi, fasor dan respons frekuensi, rangkaian resonansi. Setelah menyelesaikan mata kuliah ini, mahasiswa diharapkan menguasi penggunaan instrumen laboratorium, memahami fenomena dan teori dalam rangkaian, dan mampu menggunakan opamp untuk implementasi fungsi sederhana. This course in a laboratory course. In this class student will familiarize themself with laboratory instruments: Multimeter, Oscilloscope, Signal Generators, Regulated Power Supply and their accessories. Experiments conducted include DC circuits and circuit theorems, circuits with opamps, transient symptoms, AC circuits, impedance, phasors and frequency response, and resonant circuit. After completing this course, students are expected to master the use of laboratory instruments, to understand phenomena and theories in the series, and was able to use opamp to implement simple functions. 27. Use of laboratory instruments: multimeter, oscilloscope, function generator, regulated power supply. 28. Understand and compare circuit theorems with actual working circuits. 29. Understand how Thevenin, Norton, and Superposition Theorems, simplify circuit analyses. 30. Understand and design simple math functions with opamp circuits. 31. Understand and design an oscillator circuit using an opamps. 32. Understand and contrast the transient phenomena in electric circuits. 33. Learn about AC signals and the concept of phasor and impedance. 34. Observe and understand the behavior of RC and RL circuits as LPF and HPF and as integrator and differentiator. 35. Understand the Bode plot of a signal transfer ratio. 36. Design and understand RLC circuits, both parallel and series. 37. Learn how to write a proper lab report (both content and presentation). EL2001 Rangkaian Elektrik Prasyarat [Kode dan Nama Matakuliah]

Kegiatan Penunjang

Pustaka

Panduan Penilaian

Lab preparation and conduct (42%), Lab Reports (42%), Lab Note Book (15%), Review Exams (11%)

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 62 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa

 Introduction

 Classroom and Lab Rules and Regulation  Laboratory Note Book  Lab Safety

 Connect the lab rulesand regulations to the lab activities  Write important information before, during and after the lab activities  Cite lab safety while in labs  Learn how to write a proper lab report (both content and presentation).  Use of laboratory instruments: multimeter, oscilloscope, function generator, regulated power supply.  Interpret schematic circuits to construct measurement set up  Perform measurements of voltage and currents both AC and DC and resistance.  Observe, compare, and discuss the limitation of lab instruments  Perform the oscilloscope calibration checking and justify the measurement results done with the instruments  Perform, observe, and record the physical quantity being measured  Compare the results to the expected values and discuss the observation  Construct and perform the circuit and scheme for ploting IV characteristics of two terminal devices on an oscilloscope  Understand and compare circuit theorems with actual working circuits.  Understand how Thevenin, Norton, and Superposition Theorems, simplify circuit analyses. 

1

 Lab instruments: Multimeter, regulated poer supply, and function generator. 2

 Lab instruments: Oscilloscope

3

 DC Circuits and Circuit Theorems 4

5

 DC Circuits and Circuit Theorems  Circuits with Opamp

6  Circuits with Opamp 7 8

 Review 1  Transient Phneomena

9

 Transient Phneomena

10

 AC and RC and RL circuits

11

 AC and RC and RL circuits 12

 Resonance circuits

13

 Voltage and current measurement for AC and DC and intrument limitations  Resistance measuments: 2W and 4W

 Checking the instrument calibration  Reading the voltage, frequency, and phase difference.  Use oscilloscope for ploting IV characteristics of two terminal devices  Basic circuit laws: Ohm and Kirchoff  Thevenin and Norton Theorems  Maximum power transfer  Superposition theorem  Reciprocity theorem  Basic opamp circuits: inverting, noninverting, summing amplifiers, integrator and differentiators  Implementing math function in opamp circuits  Opamp nonidealities   General first order response  Reading the time constant  Observations on the effect of resistance and capacitance to the time constant  Second order response: under and over-damped.  Observations on the effect of resistance and capacitance to the second order response.  Impedance dan voltage phasor observation in RC and RL ac circuits  RC circuit as integrator and differentiator  RC circuits as LPF and HPF  Effect of the signal frequency and time circuit constant on RC response  Sketching Bode Plot from measurement  Series and shunt resonance observation  Observation and reading of quality factor of series resonance

Sumber Materi

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

 Understand and design simple math functions with opamp circuits. Lab Manual and Class Hand-outs  Understand and design an oscillator circuit using an opamps.    Understand and contrast the transient phenomena in electric circuits.  Perform, observe, and record the time contant of a first order circuit in the time domain measurements  Observe the effect of resistance and capacitance to the time constant  Perform, observe, and record the time contant and the natural frequency which may appear in a second order circuits  Observe the effect of resistance and capacitance to the second order response  Learn about AC signals and the concept of phasor and impedance.  Observe and understand the behavior of RC and RL circuits as LPF and HPF and as integrator and differentiator.  Observe and understand the effect of the signal frequency and time circuit constant on RC circuit response  Understand and sketch the Bode plot of a signal transfer ratio from measurement  Design and understand RLC circuits, both parallel and series.  Construct, observe and record the series and shut resonance phenomena in RLC circuits  Show the resonance frequency of series and shunt resonances  Measure the quality factor of series resonance

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 63 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

 Resonance circuits

14

15

 Review 2

 Curcuits with series and shunt resonance: frequency response prediction and observation  Use of resonance circuit as bandpass and bandstop filters 

 Construct, predict, observe, and record the series and shut resonance of multiple L and C circuits  Apply resonance circuit in bandpass and bandstop filter design.

Lab Manual and Class Hand-outs



Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 64 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika

Silabus dan Contoh Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL2102

Bobot sks: 1

Semester: 3

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Praktikum Sistem Digital Nama Matakuliah

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

Digital System Laboratory Pengamatan dan penentuan karakteristik teknologi implementasi sistem digital. Implementasi pada FPGA. Perancangan sistem kombinasional, sistem sekuensial, dan perancangan kontroler/aplikasi dengan tingkat kompleksitas sedang. Characteristization of the implementation technology of a digital system. Implementation of a digital system on FPGA. Design of combinational and sequential circuit. Design of controller/digital system with intermediate complexity. Mata kuliah ini adalah praktikum untuk mata kuliah sistem digital. Dalam mata kuliah ini, mahasiswa mengukur dan mengamati karakteristik dari teknologi implementasi dari suatu gerbang logika (VTC, fanin, fan out, dll). Mahasiswa juga belajar mengimplementasikan suatu sistem digital dengan FPGA. Sistem yang harus dirancang oleh mahasiswa: sistem kombinasional, sekuensial. Pada praktikum terakhir mahasiswa merancang suatu aplikasi/kontroler dengan kompleksitas sedang/menengah. Artinya design tersebut harus meliputi bagian sekuensial, bagian kombinasional, dan terhubung dangan sistem/peripheral yang sudah ada seperti monitor VGA, sound card,dll. Namun belum perlu menggunakan konsep/blok yang lanjut seperti processor, memory, bus kompleks, dll. This course is a laboratory course for digital systems. In this course, students measure and observe characteristics of the implementation technology of a digital gates: VTC, fan in, fan out, etc. The student learns to use FPGA as implementation of a digital system. In the laboratory work, the student must design a combinational and sequential logic. In the last experiment, the student must design a digital controller/application with intermediate complexity: a system with combinational, sequential part combined with existing peripheral such as VGA monitor, sound card, etc. It is not required for the student to use complex building block such as processor or memory and memory controller. 38. Measure various characteristics of logic gate: VTC, fan in,etc. 39. Able to chose a digital logic implementation based on characteristics and logic functions 40. Able to use FPGA using schematics, and VHDL entryo 41. Write VHDL code for simulation, synthesis, and test bench 42. Design a combinational circuit and implement it on FPGA 43. Design a sequential circuit and implement it on FPGA 44. Design a digital system with intermediate complexity 45. Able to create interface for existing digital system (VGA) EL2002 Sistem Digital Bersamaan

Kegiatan Penunjang

Pustaka

Panduan Penilaian

Lab preparation and conduct (42%), Lab Reports (42%), Lab Note Book (15%), Review Exams (11%)

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 65 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa

 Introduction

 Classroom and Lab Rules and Regulation  Laboratory Note Book  Lab Safety

 Connect the lab rulesand regulations to the lab activities  Write important information before, during and after the lab activities  Cite lab safety while in labs  Learn how to write a proper lab report (both content and presentation).  Knowing charactheristic of logic gate, noise margin and propagation delay  Understand operating point of logic range  Able to create simple combinational logic using CMOS

1

 Logic Gate parameter

2

 Design using FPGA 3

 Combinational logic circuit

 Characteristic of logic gate  Operating point of logic gate  Combinational logic using CMOS  Design using schematic diagram  Design using VHDL  Simulation  Synthesis  Testbench  Simple logic circuit  Abstraction in digital system

4

 Sequential logic circuit

 FSM  Sequential logic on VHDL

5

6

7

 Design and implementation LCD display using VGA modul on FPGA  Design Project

 VGA  Controller    

Specification Data path and control path Testing Interfacing

 Learning a design method using FPGA as target  Able to use tool/software for synthesis and simulation  Able to design simple circuit  Design BCD-to-7-segment  Using functional simulation to verify logic function  Able to analyse worst case delay using simulation  Measure propagation delay  Undesrstand abstraction level in digital system  Design and implement sequential circuit using FPGA  Understand design hierarchy  Understand of using FPGA as prototype system for verifying a circuit  Able to use peripheral on FPGA board  Understand how FPGA work  Able to specify a digital system  Separate data and control  Designing datapath  Designing Control path  Integrating data and control  Implementing a digital system with intermediate complexity on FPGA  Testing a digital system

Sumber Materi

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Lab Manual and Class Hand-outs

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 66 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL3215

Bobot sks: 3

Semester: 6

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Praktikum Sistem Kendali Nama Matakuliah

Silabus Ringkas

Silabus Lengkap

Control System Laboratory Mahasiswa melakukan praktek realisasi sistem kendali baik posisi maupun kecepatan pada pada sebuah motor DC dengan perangkat modular analog/digital yang tersedia. Praktikum ini fokus pada sistem kendali analog dengan pengenalan pada sistem kendali digital sederhana. Mahasiswa melakukan proses identifikasi motor DC, melakukan simulasi sistem kendali analog dan digital sederhana, merancang dan merealisasikan pengendali PID , merealisasikan sistem kendali posisi/kecepatan, kemudian membandingkan antara hasil perhitungan, simulasi, dan pengukuran langsung.

Mahasiswa melakukan praktek realisasi sistem kendali baik posisi maupun kecepatan pada pada sebuah motor DC dengan perangkat modular analog/digital yang tersedia. Praktikum ini fokus pada sistem kendali analog dengan pengenalan pada sistem kendali digital sederhana. Mahasiswa melakukan proses identifikasi motor DC, melakukan simulasi sistem kendali analog dan digital sederhana, merancang dan merealisasikan pengendali PID , merealisasikan sistem kendali posisi/kecepatan, kemudian membandingkan antara hasil perhitungan, simulasi, dan pengukuran langsung. [Uraian lengkap silabus matakuliah dalam Bahasa Inggris (maksimum 100 kata)]

Luaran (Outcomes)

Matakuliah Terkait

Mahasiswa mampu merangkai dan mengukur kinerja sistem kendali analog dengan alat ukur Mahassiwa mampu mengaapresiasi perbedaan dan kemiripan antara teori, simulasi, dan realisasi sistem kendali Mahasiswa mampu merangkai dan mengukur kinerja sistem kendali digital sederhana dengan alat ukur Mahasiswa mampu menggunakan MATLAB dan Simulink untuk validasi perhitungan/rancangan sistem kendali PID analog maupun digital sederhana EL3015 Sistem Kendali Bersamaan [Kode dan Nama Matakuliah] [Prasyarat, bersamaan, terlarang]

Kegiatan Penunjang Pustaka

Lab Manual MATLAB Guide SIMULINK Guide

Panduan Penilaian

Lab reports 100%

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 67 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa 

1

Pengenalan perangkat MS-150 dan alat ukur

[Uraikan sub-topik bahasan]

 

2

Pengukuran fungsi alih dan Pengenalan MATLAB

  

 3

Sistem Kendali Kecepatan Motor dengan Kendali PID



 

4

Sistem Kendali Posisi Sudut Motor dengan Kendali PID

 

5

Simulasi Sistem Kendali Analog dan Digital dengan MATLAB dan SIMULINK



Mengenal kegunaan dan karakteristik alat-alat praktikum MS-150 Mampu mengoperasikan motor dengan kontroller yang ada. Mampu melakukan pengukuran fungsi transfer secara sederhana, dengan kasus motor arus searah pengaturan jangkar. Mampu menggunakan fungsi/perintah dasar terkait sistem kendali pada MATLAB Mampu menggunakan SIMULINK untuk simulasi sistem kendali Memahami kelebihan dan kekurangan sistem kontrol lingkar tertutup dibandingkan sistem kontrol terbuka. Mampu melakukan analisa kinerja suatu sistem kontrol. Mengetahui pengaruh kontroler proporsional, kontroler integral, kontroler derivatif pada sistem kontrol. Memahami sistem kontrol kecepatan sederhana Mampu melakukan analisis kinerja sistem pengaturan posisi motor arus searah. Mampu menerangkan pengaruh kecepatan pada kinerja suatu sistem pengaturan posisi. Mampu menerangkan pengaruh kontroler PD pada kinerja sistem pengaturan posisi. Mampu menggunakan MATLAB dan SIMULINK untuk simulasi sistem kendali analog maupun digital

Sumber Materi [Uraikan rujukan terhadap pustaka (bab, sub-bab)]

6 7 8 9 10 11 12 13 14 15

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 68 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL3216

Bobot sks: 1

Semester: 6

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Praktikum Sistem Komunikasi Nama Matakuliah

Commuication Systems Lab [Uraian ringkas silabus matakuliah dalam Bahasa Indonesia (maksimum 30 kata)]

Silabus Ringkas

It is a companion lab to EL3016. It covers: fundamental elements of communications systems and the hardware usually used: use of measurement instruments typically encountered in communication systems; analog modulation AM/FM; various modulations and channel coding for digital communications; digital baseband pulse transmission; digital bandpass transmission. [Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)]

Silabus Lengkap

It is a companion lab to EL3016. It covers: fundamental elements of communications systems and the hardware usually used: use of measurement instruments typically encountered in communication systems; analog modulation AM/FM; various modulations and channel coding for digital communications; digital baseband pulse transmission; digital bandpass transmission.

Luaran (Outcomes) Matakuliah Terkait

EL3016 Sistem Komunikasi [Kode dan Nama Matakuliah]

Prerequisite [Prasyarat, bersamaan, terlarang]

Kegiatan Penunjang

[Praktikum, kerja lapangan, dsb.]

Pustaka

[Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung]) [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung]) [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung])

Panduan Penilaian

Lab reports 100%

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 69 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg# 1

Topik

Sub Topik

Capaian Belajar Mahasiswa

Sumber Materi

[Uraikan sub-topik bahasan]

[Uraikan capaian spesifik topik dengan merujuk kepada capaian matakuliah]

[Uraikan rujukan terhadap pustaka (bab, sub-bab)]

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 70 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro & Informatika

Silabus dan Contoh Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL3214

Bobot sks: 3

Semester: 6

KK / Unit Penanggung Jawab: Prodi Teknik Elektro

Sifat: Wajib

Praktikum Sistem Mikroprosesor Nama Matakuliah

Silabus Ringkas

Silabus Lengkap

Microprocessor System Laboratory Menggunakan toolchain untuk pemrograman mikrokontroler 8 bit. Bus mikroprosesor 8 bit. Antar muka digital. Antar muka analog. Komunikasi serial. Display LCD. Menggunakan toolchain untuk pemrograman mikrokontroler 8 bit . Input output digital mikrokontroler 32 bit. Menggunakan sistem operasi untuk mikrokontroler 32 bit. Membuat aplikasi 32 bit sederhana.

Menggunakan toolchain untuk pemrograman mikrokontroler 8 bit. Mengukur dan menganalisa sinyal pada bus mikroprosesor 8 bit. Antar muka digital meliputi input (sakelar dan keypad) dan output (LED tunggal, LED matrix, 7 segment, shift register). Antar muka analog (ADC dan PWM sebagai DAC). Komunikasi serial asinkron. Display LCD. Menggunakan toolchain untuk pemrograman mikrokontroler 8 bit . Input output digital mikrokontroler 32 bit. Menggunakan sistem operasi untuk mikrokontroler 32 bit. Membuat aplikasi 32 bit sederhana. Komunikasi serial CAN.

46. 47. 48.

Luaran (Outcomes)

Matakuliah Terkait

Mampu menggunakan toolchain untuk memprogram mikrokontroler 8 bit Menggunakan sakelar sebagai input digital Menggunakan LED tunggal, LED Matrix dan LED 7 segmen sebagai output digital pada mikrokontroler 8 bit 49. Menggunakan ADC sebagai input analog 50. Menggunakan PWM sebagai output analog 51. Menggunakan toolchain untuk memprogram mikrokontroler 32 bit 52. Menguasai Input output digital pada mikrokontroler 32 bit 53. Menganalisa sinyal pada bus sistem mikroprosesor 8 bit 54. Menggunakan sistem operasi 32 bit untuk mikrokontroler 55. Membuat aplikasi sederhana berbasis sistem operasi pada mikrokontroler 32 bit EL2205 Praktikum Elektronika Prasyarat EL2208 Prakt. Pemecahan Masalah dgn C Prasyarat EL3014 Sistem Mikroprosesor Bersamaan

Kegiatan Penunjang

Pustaka

Panduan Penilaian

Lab preparation and conduct (42%), Lab Reports (42%), Lab Note Book (15%), Review Exams (11%)

Catatan Tambahan

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa

 Introduction

 Classroom and Lab Rules and Regulation  Laboratory Note Book  Lab Safety

 Connect the lab rules and regulations to the lab activities  Write important information before, during and after the lab activities  Cite lab safety while in labs  Learn how to write a proper lab report (both content and presentation).  Compile and upload program

1

2

 Toolchain 8 bit  Microprocessor Bus

3

 Digital Input 4

5

 Digital Output Sederhana

 Compiler

Sumber Materi

Lab Manual and Class Hand-outs

 Mengukur sinyal pada bus sistem mikroprosesor dengan logic analyzer  Interpretasi sinyal yang diukur  Mencocokkan sinyal yang diukur dengan teori dari datasheet  Membuat software untuk membaca kondisi sakelar dan input digital lainnya  Mencoba software digital input dengan interupsi  Membuat software untuk mengendalikan LED tunggal, shift

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 71 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

 Digital Output Kompleks

6

 Analog Input  Analog Output

7  Derau 8  Komunikasi 9 Toolchain 32 bit 10 Sistem Operasi 11

register  Mencoba software dan hardware untuk menjalankan LED matrix dan 7 segment dengan metode scanning berbasis interupsi  Membuat software untuk mengukur tegangan analog melalui ADC  Membuat software dan hardware untuk menghasilkan sinyal analog melalui PWM  Mengukur sinyal analog yang dihasilkan  Mengukur derau pada rangkaian sistem mikroprosesor  Mengukur pengaruh teknik reduksi derah pada sistem mikroprosesor  Komunikasi serial asinkron  Komunikasi serial SPI  Komunikasi serial CAN bus  Compile and upload program  Menjalankan Digital input output sederhana pada prosesor ARM 32 bit  Menjalankan sistem operasi pada prosesor ARM 32 bit  Membuat aplikasi sederhana berbasis sistem operasi ARM 32 bit

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 72 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL3217

Bobot sks: 1

Semester: 6

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Praktikum Sistem Tenaga Elektrik Nama Matakuliah

Silabus Ringkas

Power Systems Laboratory Penggunaan modern engineering tools (MATLAB dll) untuk melakukan analisa jejaring sistem tenaga mengenai kestabilan, aliran dan transmisi daya, parameter transmisi, harmonik, kualitas daya.

[Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)] Silabus Lengkap [Uraian lengkap silabus matakuliah dalam Bahasa Inggris (maksimum 100 kata)] Luaran (Outcomes) Matakuliah Terkait

Mahasiswa mampu menggunakan modern engineering tools (MATLAB dll) untuk melakukan analisa jejaring sistem tenaga mengenai kestabilan, aliran dan transmisi daya, parameter transmisi, harmonik, kualitas daya, dll EL3017 Sistem Tenaga Elektrik Bersamaan [Kode dan Nama Matakuliah] [Prasyarat, bersamaan, terlarang]

Kegiatan Penunjang

[Praktikum, kerja lapangan, dsb.]

Pustaka

[Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung]) [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung]) [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung])

Panduan Penilaian

Lab reports 100%

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 73 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

1

Aliran dan Transmisi Daya

2

Parameter Transmisi Kestabilan dan Transien Analisa Harmonik Analisa Kualitas Daya

3 4 5

Sub Topik

Capaian Belajar Mahasiswa

Sumber Materi

[Uraikan sub-topik bahasan]

[Uraikan capaian spesifik topik dengan merujuk kepada capaian matakuliah]

[Uraikan rujukan terhadap pustaka (bab, sub-bab)]

6 7 8 9 10 11 12 13 14 15

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 74 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Sarjana Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL2004

Bobot sks: 3

Semester: 3

Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Probabilitas dan Statistik Nama Matakuliah Probability and Statistics [Uraian ringkas silabus matakuliah dalam Bahasa Indonesia (maksimum 30 kata)] Silabus Ringkas

The concept of probability, random variables and their distributions, combinatorial and geometric elements, conditional probability, Bayes theorem, distribution functions, bivirate random variables, functions of random variables, estimation, hypothesis testing. Applications may be from digital communications, signal processing, automatic control, computer engineering, computer science. [Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)]

Silabus Lengkap

Luaran (Outcomes) Matakuliah Terkait

Achieving knowlege and understanding of probability, random variables and their distributions, combinatorial and geometric elements, conditional probability, Bayes theorem, distribution functions, bivirate random variables, functions of random variables, estimation, hypothesis testing. MA1201 - Matematika IIA Prasyarat

Kegiatan Penunjang

Pustaka

Panduan Penilaian

Douglas C. Montgomery; George C. Runger, Applied Statistics and Probability for Engineers, 5th Edition, John Wiley, 2010 Walpole and Myers, Probability and Statistics for Engineer and Scientist Probability and Statistics for Engineers and Scientists, 4th ed., by Anthony Hayter The Probability Tutoring Book, Carol Ash, IEEE Press Homework 20% Exam 70% Quiz 10%

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 75 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

Probability Concepts

Probabilities, Events, Union, Intersection, Conditional Probability, Bayes' Theorem, Counting Techniques

1

2 3 4

Combinational Elements & Geometric Probability Conditional Probability, Bayes Theorem and Independence Distribution Functions Random Variables

5

6

Bivariate Random Variables Function of Random Variables

7

8

9

Discrete Probability Distributions Continuous Probability Distributions Normal Distribution

10

Descriptive Statistics 11

12

13

14

Statistical Estimation and Sampling Distributions Inferences on a Population Mean Comparing Two Population Means Simple Linear Regression and Correlation

15

Capaian Belajar Mahasiswa

Sumber Materi

Discrete and Continuous Distributions, Expectation, Variance, Combinations and Functions, Joint Distributions, Correlation, Covariance Functions of one random variable, Functions of more than one, one random variable, The Characteristic Function (Moment generating function) Binomial, Geometric, Negative Binomial, Hypergeometric and Poisson Distributions Uniform, Exponential, Gamma and Weibull Distributions Probability Calculations, Linear Combinations, Normal Approximation to Binomial Distribution, Central Limit Theorem Data Presentation, Charts, Histograms, Sample Statistics, Mean, Median, Variance, Coefficient of Variation, Outliers, Percentiles Point Estimates and their Properties, Sampling Distributions, Construction Parameter Estimates Confidence Intervals, Hypothesis Testing (Variance known/unknown) Two Independent Samples Confidence Intervals and Hypothesis Testing, Paired Samples Regression, Inferences on the Slope Parameter, Prediction Intervals, Coefficient of Determination, Residual Analysis, Correlation Analysis

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 76 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Fakultas Sekolah Teknik Elektro & Informatika

Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL2001

Bobot sks: 4

Semester: 3

KK/Unit PenanggungJawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Rangkaian Elektrik Nama Matakuliah

Silabus Ringkas

Electric Circuits

Sinusoidal steady-state analysis, AC power analysis, three-phase circuits, magnetically coupled-circuits, frequency response, Laplace transform and its application to circuit analysis, Fourrier series, Fourrier Transform, two-port networks. [Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)]

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait Kegiatan Penunjang

Pustaka

Sinusoidal steady-state analysis: review of phasor concepts, circuit analysis and theorems. AC power analysis: Instantaneous & Average Power, Maximum Average Power Transfer, Effective or RMS value, Apparent Power & Power Factor, Complex Power, Conservation of AC Power and Power factor correction. Three-phase circuits: balanced & unbalanced delta-delta, delta-wye, wye-delta, and wye-wye connections. Power measurement using wattmeters. Magnetically coupled-circuits: Mutual inductances and its energy, linear & ideal auto-transformers. Frequency response: transfer function, Bode plot, series & parallel resonance, active & passive filters and its scaling factor. Laplace transform and its application to circuit analysis: Laplace Transform and its inverse. Analysis of circuits using Laplace transform. Representation of state space for RLC circuits. Fourrier series: Trigonometric and exponential Fourier series, symmetry considerations, circuit applications and average power & RMS values. Fourrier Transform: definition, Properties, circuit applications, Parseval Theorem, comparing the Fourier & Laplace Transforms. Two-port networks: Impedance, Admittance, hybrid, and transmission Parameters, conversion between parameters, interconnection of networks. At the end of this subject, students should be able to: 1. Apply phasor frequency domain analysis using various techniques. 2. Apply phasor concept to analyse AC power and three-phase circuits. 3. Deal with circuits containing magnetically coupled. 4. Draw Bode plot of transfer function and use frequency domain to analyse resonance and filter networks. 5. Apply Laplace transform to analyse DC and AC steady state networks. 6. Apply Fourier series and Fourier transformation to analyse the networks with non sinusoidal exitation. 7. Analyse 2-port networks using various parameters. 8. Use SPICE to analyst DC and AC circuits. 9. Use Matlab as a tool to solve the network problems. EL1200 Pengantar Analisis Rangkaian Prasyarat EL2101 Praktikum Rangk.Elektrik Bersamaan Penggunaan Tools (MA TLAB dan SPICE) C.K. Alexander & M.N.O. Sadiku, Fundamentals of Electric Circuits, Mc Graw Hill, Fifth Edition, 2013 [Pustaka Utama] L. O. Chua, C. A. Desoer, and E. S. Kuh, Linear and NonLinear Circuits, McGraw-Hill Interational Editions, 1987.

Panduan Penilaian

Bobot penilaian: PR 15%, Kuis 15%, UTS 35%, UAS 35%

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 77 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

1

Topik

Introduction to Circuit Analysis.

Sinusoidal Steady-state Analysis

2

AC Power Analysis

3

Three-phase Circuits

4

Three-phase Circuits 5 Magnetically Coupled Circuits

6

Frequency Response 7

8

Frequency Response

Sub Topik Nodes, branches, loops, Directed graphs. Kirchhoff’s laws and cut sets Lumped of Circuit’s element. Circuit graph. Tableau Analysis. Extended Nodal Analysis. Applications. Tellegen’s theorem. Applications. Reciprocal and Millman Theorem. Review of phasor concept. Nodal Analysis. Mesh Analysis. Superposition Theorem. Source Transformation. Thevenin & Norton Equivalent Circuits. Op Amp AC Circuits. Applications. Instantaneous & Average Power. Maximum Average Power Transfer. Effective or RMS value. Apparent Power & Power Factor. Complex Power. Conservation of AC Power. Power factor correction. Applications. Balanced Three-phase voltages. Balances Wye-Wye Connection. Balances Wye-Delta Connection. Balances Delta-Wye Connection. Balances Delta-Delta Connection. Power in balanced system. Unbalances three-phase systems. Applications. Mutual inductances. Energy in a coupled circuits. Linear transformers. Ideal Transformer. Ideal Autotransformer. 3-phase transformer. Applications.

Capaian Belajar Mahasiswa

Understand the condition fulfilled for lumped circuits. Apply Tableau & extended nodal analysis techniques to analyze circuit behavior.

Convert problems involving differential equations into circuit analysis problems using phasors and complex impedances.

Analyze RLC circuits under sinusoidal steady state conditions. Analyze complex power and its relationship to real and reactive power using complex phasor notation.

Sumber Materi

Chua: Chapter 1

Alexander & Sadiku: Chapter 10

Alexander & Sadiku: Chapter 11

Alexander & Sadiku: Chapter12: 12.1 – 6 Analyse balanced three-phase system in AC steady state. Calculate power in balanced system. Analyse unbalanced threephase system in AC steady state.

Transfer function. Bode Plot. Series & Paralel resonances

Understand the concept of mutual inductance and how it affects circuit performance and its use in transformers. Analyze circuits involving mutual inductance or transformers using phasor techniques. Plot the frequency response of RLC circuits using Bode. Interpret the Bode plot in order to get its transfer function.

Passive and active

Design simple filter using

Alexander & Sadiku: Chapter12.7 – 12.9

Alexander & Sadiku: Chapter 13

Alexander & Sadiku: Chapter 14: 14.1 – 14.6 Alexander & Sadiku: Chapter

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 78 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Introduction to Laplace Transform

9

10

11

Applications of Laplace Transform

Circuit element models. Circuit analysis. Transfer functions.

Applications of Laplace Transform

State variables. Applications.

The Fourrier Series

Trigonometric Fourier series. Symmetry considerations. Circuit applications. Average power & RMS values. Exponential Fourier series. Applications.

12

The Fourier Transform 13

Two-port Networks 14 Two-port Networks 15

Filters. Scaling. Frequency response using SPICE. Applications Definition of Laplace Transform. Properties of Laplace transform. Inverse Laplace Transform. Convolution Integral. Applications.

scaling technique.

Understand Laplace Transform, its properties and its inverse in order to solve the differential equations. Solve and analyze RLC circuits under both transient and steady state conditions using Laplace transform techniques. Describe RLC circuits using state space concept and then solve it using Laplace transform techniques. Analyse any periodic waveforms into its DC and ac components. Analyse the circuits with any periodic waveforms excitation. Analyse any periodic waveforms into its DC and ac components. Analyse the circuits with any periodic waveforms excitation.

Definition, Properties, circuit applications, Parseval Theorem, comparing the Fourier & Laplace Transforms, Applications. Impedance, Admittance, hybrid, and transmission Parameters.

Apply Fourier Transform to analysis circuits. Model an electric circuit as an electrical network with two separate ports, i.e. input and output ports.

Relationship between parameters. Interconnection of networks. Applications

Find parameters of 6 types of two port networks (impedance, admittance, hybrid, inverse hybrid, transmission, inverse transmission)

14: 14.7 – 14.12

Alexander & Sadiku: Chapter 15

Alexander & Sadiku: Chapter 16: 16.1 – 16.4

Alexander & Sadiku: Chapter 16: 16.5 – 16.6

Alexander & Sadiku: Chapter 17

Alexander & Sadiku: Chapter 18

Alexander & Sadiku: Chapter 19: 19.1 – 19.5

Alexander & Sadiku: Chapter 19: 19.6 – 19.9

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 79 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL2007

Bobot sks: 3

Semester: 4

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Sinyal dan Sistem Nama Matakuliah Signal and System

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

Introduction; Mathematical Description of Signals (Continuous); Mathematical Description of Signals (Discrete); Description of System; Time Domain Analysis; Fourier Series; Circuit Analysis with Fourier Series; Fourier Transform; Laplace Transform; Analysis with Laplace Transform; Frequency Response Analysis; Sampling and Signal Processing; The Z Transform; State Space representation or Examples of application

Introduction : Signals and System Defined, Types of Signals, Examples of Systems, Familiar Signals and Systems Examples; Mathematical Description of Continuous Signals : Periodicity, Amplitude Scaling, Time Shifting, Time Scaling, Combination of operation,Even and Odd Signals, Derivative and Integral, Signal Energy and Power, Complex Sinusoid; Mathematical Description of Discrete Signals : Periodicity, Amplitude Scaling, Time Shifting, Time Scaling, Combination of operation,Even and Odd Signals, Derivative and Integral, Signal Energy and Power; Description of System : Cont Time System (System modelling, properties, dynamics of 2nd order system), Discrete Time System, Complex Sinusoid Exitation Time Domain Analysis : Impulse respons for continuous system,Impulse response for discrete time system, discrete time convolution,continuous time convolution, system property from impulse response; Fourier Series : Conceptual basis, trigonometric fourier series, Fourier series of even and odd function, complex form of Fourier Series; Circuit Analysis with Fourier Series; Circuit analysis with Phasor Fourier Transform : Extending Fourier Series to aperiodic signal, properties of Fourier Transform, Analysis Examples; Laplace Transform : Development of Laplace transform from Fourier Transform, Properties of Laplace Transform, Inverse Laplace Transform, Partial Fraction Expansion, Transfer Function; Analysis with Laplace Transform Analysis Examples, Pole Zero Map, RoC, Matlab Examples; Frequency Response Analysis : Introduction to Frequency Response, Bode Diagram, How to draw Bode Diagram; Sampling and Signal Processing : Sampling method, sampling theorem, aliasing, anti aliasing filter; The Z Transform : Generalizing Discrete Time Fourier Transform, Properties of Z Transform, Inverser Z Tansform, Bilinear Transform, RoC; State Space representation or Examples of application : State space concept, State space solution, FFT in image / video compression Knows the importance of signals and systems, excitation, response Knows how to describe continuous signals in mathematic equation Knows how to describe discrete signals in mathematic equation Knows how to describe system in mathematic equation Knows how to do time domain analysis using impulse response and convolution Knows the concept about decompose signal by its frequency propery, knows how to calculate fourier series of signals Knows how to do circuit analysis with Fourier Series Knows about Fourier Transform, and its limitation, knows how to do analysis with Fourier Transform Knows about Fourier Transform, its properties, Transfer Function, and PFE Knows how to do analysis with Laplace Transform and system properties from transfer function Knows how to make Bode Diagram, and use it to quickly understand about system characteristic Knows about sampling, sampling theorem, aliasing, and anti aliasing filter Introduced to Z Transform Introduced to state space representation and examples of signals and system application MA2074 Matematika Teknik II Bersamaan

Kegiatan Penunjang

Pustaka

M.J. Robert, Signals and Systems: Analysis of Signals Through Linear Systems, McGraw-Hill Science/Engineering/Math; 1 edition, June 18, 2003 (Pustaka Utama) M.J. Roberts, Signals and Systems: Analysis Using Transform Methods & MATLAB Second, McGraw-Hill Science/Engineering/Math, Mar 17, 2011 (Pustaka Pendukung) Steven T. Karris, Signals and Systems with MATLAB Computing and Simulink Modeling, Fifth Edition, Orchard Publications, March 19, 2012 (Pustaka Pendukung)

Panduan Penilaian

UTS : 40%, UAS : 40%, Tugas (PR dan Kuis) : 20%

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 80 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

1

Introduction

2

Mathematical Description of Signals (Continuous)

3

Mathematical Description of Signals (Discrete)

4

Description of System

5

Time Domain Analysis

6

Fourier Series

8

Circuit Analysis with Fourier Series UTS

9

Fourier Transform

10

Laplace Transform

11

Analysis with Laplace Transform

12

Frequency Response Analysis

13

Sampling and Signal Processing

14

The Z Transform

15

State Space representation or Examples of application

16

UAS

7

Sub Topik Signals and System Defined, Types of Signals, Examples of Systems, Familiar Signals and Systems Examples Periodicity, Amplitude Scaling, Time Shifting, Time Scaling, Combination of operation,Even and Odd Signals, Derivative and Integral, Signal Energy and Power, Complex Sinusoid Periodicity, Amplitude Scaling, Time Shifting, Time Scaling, Combination of operation,Even and Odd Signals, Derivative and Integral, Signal Energy and Power Cont Time System (System modelling, properties, dynamics of 2nd order system), Discrete Time System, Complex Sinusoid Exitation Impulse respons for continuous system,Impulse response for discrete time system, discrete time convolution,continuous time convolution, system property from impulse response Conceptual basis, trigonometric fourier series, Fourier series of even and odd function, complex form of Fourier Series Circuit analysis with Phasor Extending Fourier Series to aperiodic signal, properties of Fourier Transform, Analysis Examples Development of Laplace transform from Fourier Transform, Properties of Laplace Transform, Inverse Laplace Transform, Partial Fraction Expansion, Transfer Function Analysis Examples, Pole Zero Map, RoC, Matlab Examples Introduction to Frequency Response, Bode Diagram, How to draw Bode Diagram Sampling method, sampling theorem, aliasing, anti aliasing filter Generalizing Discrete Time Fourier Transform, Properties of Z Transform, Inverser Z Tansform, Bilinear Transform, RoC State space concept, State space solution, FFT in image / video compression

Capaian Belajar Mahasiswa

Sumber Materi

Knows the importance of signals and systems, excitation, response

Chapter 1 Pustaka Utama

Knows how to describe continuous signals in mathematic equation

Chapter 2 Pustaka Utama

Knows how to describe discrete signals in mathematic equation

Chapter 3 Pustaka Utama

Knows how to describe system in mathematic equation

Chapter 4 Pustaka Utama

Knows how to do time domain analysis using impulse response and convolution

Chapter 5 Pustaka Utama

Knows the concept about decompose signal by its frequency propery, knows how to calculate fourier series of signals

Chapter 6 Pustaka Utama

Knows how to do circuit analysis with Fourier Series

Examples

Knows about Fourier Transform, and its limitation, knows how to do analysis with Fourier Transform

Chapter 7 Pustaka Utama

Knows about Fourier Transform, its properties, Transfer Function, and PFE

Chapter 8 Pustaka Utama

Knows how to do analysis with Laplace Transform and system properties from transfer function Knows how to make Bode Diagram, and use it to quickly understand about system characteristic Knows about sampling, sampling theorem, aliasing, and anti aliasing filter

Chapter 8 Pustaka Utama Chapter 11 Pustaka Utama Chapter 10 Pustaka Utama

Introduced to Z Transform

Chapter 9 Pustaka Utama

Introduced to state space representation and examples of signals and system application

Chapter 16 Pustaka Utama , External source

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 81 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Sarjana Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL2002

Bobot sks: 3

Semester: 3

Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Sistem Digital Nama Matakuliah Digital System [Uraian ringkas silabus matakuliah dalam Bahasa Indonesia (maksimum 30 kata)] Silabus Ringkas

Fundamentals of digital logic design. Covers combinational and sequential logic circuits, programmable logic devices, hardware description languages, and computer-aided design (CAD) tools. Laboratory component introduces simulation and synthesis software and hands-on hardware design [Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)]

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

The following topics will be covered: 1. Digital systems: digital computers and digital systems; binary, octal and hexadecimal number systems; complements; signed binary numbers; decimal and binary codes; introduction to binary logic 2. Boolean algebra: basic definitions, theorems and properties of Boolean algebra; Boolean functions;standard forms of Boolean functions; logic operations 3. Simplification of Boolean functions: Karnaugh map method; don’t care condition; NAND and NOR 4. implementation; KMAP_MEV; Quine-McCluskey 5. Combinational circuits: analysis and design procedures; adders, subtractors, multilevel NAND/NOR circuits and code conversion; transistor switches and practical design considerations 6. MSI and PLD devices: magnitude comparators, decoders, encoders, multiplexers, read-only memory (ROM), Programmable Logic Array (PLA), and Programmable Array Logic (PAL) 7. Analysis of synchronous sequential circuits: flip-flops; analysis of clocked sequential circuits; statereduction and assignment 8. Design of sequential circuits: flip-flop excita tion tables, design procedures, counter designs 9. Analysis and design of Asynchronous sequential circuit: fundamental mode; pulse mode; race; hazard; incompletey specified machine; state assigment; state reduction 10. Registers, counters and memory devices: shift registers, ripple counters, synchronous counters, timing 11. sequences, and Random Access Memory (RAM) 1. Be able to represent and manipulate numbers in the binary two's complement number system, and convert numbers between different positional number systems. Be able to do negation and addition in the two’s complement number system, and detect overflow. 2. Carry out transformations of Boolean algebra expressions, using the theorems of Boolean algebra and Karnaugh maps. The student can find the minimal sum-of-products (SOP) and product-of-sums (POS) expressions, and create a corresponding circuit from AND, OR, NAND, and NOR gates. 3. The student will be able to analyze the functional and electrical behavior of digital CMOS circuits, including noise margins, allowable fan-in/out, and power dissipation. Given an NMOS or CMOS circuit diagram, the student can determine its logic function, using switch models for the transistors. The student can map simple functions onto programmable logic devices manually. 4. The student can analyze and design digital systems of moderate complexity using contemporary technology methods, including programmable logic devices and CAD tools. The student can use standard combinational and sequential digital building blocks including adders, multiplexers, decoders, encoders, and registers. 5. The student can analyze and design both synchronous and asynchronous state machines. 6. The student will be able to write proper lab reports, communicating their objectives, approach, observations, and conclusions EL1200 Introduction to Circuit Analysis Prasyarat EL2003 Struktur Diskrit Bersamaan EL2102 Digital System Laboratory Bersamaan

Kegiatan Penunjang

[Praktikum, kerja lapangan, dsb.]

Pustaka

S. Brown and Z. Vranesic: Fundamentals of Digital Logic and VHDL Design, 3rd Edition McGraw-Hill, 2009 Donald D. Givone, Digital Principles and Design, McGraw-Hill, 2002 J. M. Yarborough, Digital Logic Application and Design, West Publishing Co, St. Paul, 1997 V. P. Nelson, H. T. Nagle, B. D. Carroll, and D. Irwin, Digital Logic Circuit Analysis and Design, Prentice Hall, Englewood Cliffs, 1995

Panduan Penilaian

[Termasuk jenis dan bentuk penilaian]

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 82 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Introduction

Sub Topik

Capaian Belajar Mahasiswa

1.

2. 1

3. 4. Boolean Algebra + Logic Circuit

1. 2. 3. 4.

5.

Boolean Algebra + Logic Circuit

1. 2. 3.

2

4.

5.

Implementation Technology

1. 2.

3.

Implementation Technology

1. 2.

3

3.

Optimized Implementation of Logic Functions - KMAP

1. 2.

4

Optimized

1.

Identify some contributors to digital logic and relate their achievements to the knowledge area. Explain why Boolen logic is important to this subject. Articulate why gates are the fundamental elements of a digital system. Describe how electrical engineering uses or benefits from digital logic. Derive and manipulate switching functions that form the basis of digital circuits. Apply digital system design principles and techniques. Model and simulate a digital system using schematic diagrams. Model and simulate a digital system using a hardware description language, such as VHDL or Verilog. Understand timing issues in digital systems and know how to study these via digital circuit simulation. Derive and manipulate switching functions that form the basis of digital circuits. Apply digital system design principles and techniques. Model and simulate a digital system using schematic diagrams. Model and simulate a digital system using a hardware description language, such as VHDL or Verilog. Understand timing issues in digital systems and know how to study these via digital circuit simulation. Realize switching functions with networks of logic gates. Explain and apply fundamental characteristics of relevant electronic technologies, such as propagation delay, fan-in, fanout, and power dissipation and noise margin. Utilize programmable devices such as FPGAs and PLDs to implement digital system designs. Realize switching functions with networks of logic gates. Explain and apply fundamental characteristics of relevant electronic technologies, such as propagation delay, fan-in, fanout, and power dissipation and noise margin. Utilize programmable devices such as FPGAs and PLDs to implement digital system designs. Derive and manipulate switching functions that form the basis of digital circuits. Reduce switching functions to simplify circuits used to realize them. Derive and manipulate

Sumber Materi

(S. Brown and Z. Vranesic) Chapter 1

(S. Brown and Z. Vranesic) Chapter 2

(S. Brown and Z. Vranesic) Chapter 2

(S. Brown and Z. Vranesic) Chapter 3

(S. Brown and Z. Vranesic) Chapter 3

(S. Brown and Z. Vranesic) Chapter 4 (S. Brown and Z. Vranesic)

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 83 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Implementation of Logic Functions - KMAP 2. Optimized Implementation of Logic Functions - MEV

1. 2.

5

Optimized Implementation of Logic Functions - MEV

2. Optimized Implementation of Logic Functions - Quine McCluskey

6

7 8

1.

Optimized Implementation of Logic Functions - Quine McCluskey

1. 2. 1. 2.

Number Representation & Arithmetic Circuit Midterm Exam

1.

Combinational Circuit Building Blocks

1. 2.

Combinational Circuit Building Blocks

1. 2.

9

Sequential Circuit Elements

1. 2. 3. 4. 5.

6. Sequential Circuit Elements

1. 2.

10

3. 4. 5.

switching functions that form the basis of digital circuits. Reduce switching functions to simplify circuits used to realize them. Derive and manipulate switching functions that form the basis of digital circuits. Reduce switching functions to simplify circuits used to realize them. Derive and manipulate switching functions that form the basis of digital circuits. Reduce switching functions to simplify circuits used to realize them. Derive and manipulate switching functions that form the basis of digital circuits. Reduce switching functions to simplify circuits used to realize them. Derive and manipulate switching functions that form the basis of digital circuits. Reduce switching functions to simplify circuits used to realize them. Work with binary number systems and arithmetic. Analyze and explain uses of small- and medium-scale logic functions as building blocks. Analyze and design combinational logic networks in a hierarchical, modular approach, using standard and custom logic functions. Analyze and explain uses of small- and medium-scale logic functions as building blocks. Analyze and design combinational logic networks in a hierarchical, modular approach, using standard and custom logic functions. Contrast the difference between a memory element and a register. Indicate some uses for sequential logic. Design and describe the operation of basic memory elements. Analyze circuits containing basic memory elements. Apply the concepts of basic timing issues, including clocking, timing constrains, and propagation delays during the design process. Analyze and design functional building blocks and timing concepts of digital systems. Contrast the difference between a memory element and a register. Indicate some uses for sequential logic. Design and describe the operation of basic memory elements. Analyze circuits containing basic memory elements. Apply the concepts of basic

Chapter 4

(S. Brown and Z. Vranesic) Chapter 4

(S. Brown and Z. Vranesic) Chapter 4

(S. Brown and Z. Vranesic) Chapter 4

(S. Brown and Z. Vranesic) Chapter 4 (S. Brown and Z. Vranesic) Chapter 5 (S. Brown and Z. Vranesic) Chapter 1-4

(S. Brown and Z. Vranesic) Chapter 6

(S. Brown and Z. Vranesic) Chapter 6

(S. Brown and Z. Vranesic) Chapter 7

(S. Brown and Z. Vranesic) Chapter 7

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 84 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

6. Synchronous State Machine

7. 8. 9.

Synchronous State Machine

1. 2.

11

3. Synchronous State Machine

1. 2.

12

3. Asynchronous State Machine

1. 2. 3.

13

4. 5. Asynchronous State Machine

1. 2. 3.

14

4. 5. Asynchronous State Machine

1. 2. 3.

15

4. 5. Final Exam

timing issues, including clocking, timing constrains, and propagation delays during the design process. Analyze and design functional building blocks and timing concepts of digital systems. Analyze the behaviour of synchronous machines. Design synchronous sequential machines. Reduce the number of states to simplify circuits used to realize them. Analyze the behaviour of synchronous machines. Design synchronous sequential machines. Reduce the number of states to simplify circuits used to realize them. Analyze the behaviour of synchronous machines. Design synchronous sequential machines. Reduce the number of states to simplify circuits used to realize them. Analyze the behaviour of asynchronous machines. Design asynchronous sequential machines. Reduce the number of states to simplify circuits used to realize them. Apply state assignment to eliminate race. Apply hazard elimination technique. Analyze the behaviour of asynchronous machines. Design asynchronous sequential machines. Reduce the number of states to simplify circuits used to realize them. Apply state assignment to eliminate race. Apply hazard elimination technique. Analyze the behaviour of asynchronous machines. Design asynchronous sequential machines. Reduce the number of states to simplify circuits used to realize them. Apply state assignment to eliminate race. Apply hazard elimination technique.

(S. Brown and Z. Vranesic) Chapter 8

(S. Brown and Z. Vranesic) Chapter 8

(S. Brown and Z. Vranesic) Chapter 8

(S. Brown and Z. Vranesic) Chapter 9

(S. Brown and Z. Vranesic) Chapter 9

(S. Brown and Z. Vranesic) Chapter 9

All

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 85 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL3013

Bobot sks: 3

Semester: 4

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Sistem Instrumentasi Nama Matakuliah

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

Instrumentation System Kuliah ini memuat materi tentang peran Instrumentasi pada berbagai bidang rekayasa; karakteristik komponen; methoda pengukuran, methoda kalibrasi, methoda pengolahan data pengukuran. Klasifikasi sensor dan tranduser: mekanik; termal; optik.; akustik, LVDT konversi sinyal, Penguatan dan modulasi, pengkondisi sinyal Analog dan digital, rangkaian Konverter Pengendali akhir, aktuatur mekanik; actuator elektrik, actuator hidrolik; Rangkaian pengendali analog; filter, Pengenalan perekam sinyal, komunikasi, serta peraga dan pembacaan This course contains material about the role of instrumentation system in various fields of engineering; the characteristic of system’s components; the method of measurement, the method of calibration, data processing methods in the measurement. Classification of sensor and transducer: mechanical; thermal; optics; acoustic, LVDT signal conversion, amplification and modulation, analog signal conditioning and digital converter circuit, final controller, mechanical actuator; electric actuator; hydraulic actuator; analog controller circuits; filters, signal recordings, communications, and displays and readings Kuliah ini memuat materi tentang peran Instrumentasi pada berbagai bidang rekayasa karakteristik komponen (respon waktu, delay, rambatan sinyal); methoda pengukuran sensor dan tranduser, methoda kalibrasi, methoda pengolahan data pengukuran,. Klasifikasi sensor dan tranduser, konsep penguatan dan modulasi daya. karakteristik penguatan Konsep Pengolah Sinyal dan Pengkondisi sinyal Analog, merancang rangkaian penguatan dan modulasi, karakteristik komponen, pengukuran methoda rangkaian jembatan dalam pengukuran sensor; Konsep Pengolah sinyal dan Pengkondisi sinyal Digital, Filter, macam-macam rangkaian Konverter ADC, DAC, frekuensi to voltage; Macam-macam Sensor mekanik; Sensor termal ;Macam-macam Sensor Optik. Karakteristik sensor mekanik; karakteristik sensor termal dan methoda pengukuran suhu; karakteristik sensor optik.; karakteristik sensor akustik, konversi sinyal dengan methoda oscilator, methoda LVDT, perancangan filter pada sistem instrumentasi ;Aktuator dan Pengendali akhir, Elektronika daya; aktuatur mekanik; elektrik, hidrolik; Rangkaian pengendali analog; berbasis OP-Amp, aktuator, sistem penggerak, kendali proses kejadian diskrit dan pengenalan pengendali digital. instrumentasi: perekam sinyal, komunikasi, serta peraga dan pembacaan.

 Untuk mengenalkan dan memahami konsep dari sistem kendali mulai dari pemodelan, analisis transient dan steady-state dan kestabilan sistem-sistem linier, hingga perancangan sistem-sistem kendali di domain waktu dan domain frekuensi  Mahasiswa belajar sistem instrumentasi dengan pola top-down dan merancang bagian atau subsitem atau instrumentasi sederhana dengan pengetahuan yang telah dimilikinya atau dengan memodifikasi blok pembangun yang diajarkan.  Mahasiswa mempunyai kemampuan analisis untuk merancang rangkaian pengukuran komponen sensor dan mengkalibrasi sistem sensor, mampu membuat rangkaian pengkondisi sinyal, mampu membuat rangkain insrumentasi pengukuran variabel kendalian. Mampu membuat rangkaian pengendali berbasis Op-Amp, dan mampu membuat rangkaian pengendali daya (penguat daya) berbasis elektronik pada sistem instrumentasi. EL2005 Elektronika Prasyarat [Kode dan Nama Matakuliah] [Prasyarat, bersamaan, terlarang]

Kegiatan Penunjang

[Praktikum, kerja lapangan, dsb.]

Pustaka

Rangan; Sarma ; Instrumentation Devices and Systems (3rd Edition); Tata McGraw-Hill, New Delhi 1992 Rarold Wobschall, Circuit Design for Eelctronic Instrumentation (2nd ed), Mc Grwa Hill, 1987, New York, 1987 Halit Eren, Electronic Portable Instruments: Design and Applications, CRC Press, 2003 Johnson, Curtis, Process Control Intrumentation Technology, Prentice Hall Inc., Simon & Schuster division, Singapore, Eighth Edition, 2006 Op-amp book on nonlinear circuits AND Biomedical instrumentation book Rangan; Sarma ; Instrumentation Devices and Systems, 3 Edition; Tata McGraw-Hill, New Delhi 1992

Panduan Penilaian

[Termasuk jenis dan bentuk penilaian]

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 86 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

1

Measurement & Electronics Intrumentation System

2

Operational Amplifiers

3

Temperature Sensors

4

Electro-optical Sensors

5

Displacement & Vibration Sensors

6

Chemical & Biological Sensors

7

Pressure, Force, Fluid Measurement Sensors

8

Active Filters

9

A/D and D/A Conversions

10

Modulation & Demodulation

11

Noise Reduction

12

 Pulse timer & Counters  Multiplexing

13

Power Supplies

14

Power Aplification & Drivers

15

Power Aplification & Drivers

Sub Topik  Basic concept of mesueremts; sersor & transducer classifications  parts of electronic instrument; IC advantages; interfacing & matching; build or buy; analog or digital  performance charateristics of instrumentation system (zer0, 1st, 2nd order, dead-time, linearity. error, offset, drift  I-V converter, bridge amp.; intrumentation amp.; transconductance op amp; analog multiplier; current differencing amp.  Nonlinear op-amp circuits: hysterisis, precision rectifier,  I-V converter, bridge amp.; intrumentation amp.; transconductance op amp; analog multiplier; current differencing amp.  Comparator; multivibrator; peak detector; output limiter & clipper Thermistor; linierization;bridge amp for resistance sensors; RTD; thermocouples, IC thermosensor optical spectara & energy relations;photo -diodes & -transistors with lenses; photovoltaic & semiconductor photocells; LED; photomultipliers; optical pyrometer; thermal radiotion detectors; optical isolators strain gauges; inductive & electromagnetic sensors; LVDT; capacitive sensors; piezoelectric; Hall magnetic sensorsl proximity detectors; digital-optical displacement transducers reversible & reference electrodes; membrane potentials; pH meter; specific ion electrodes; oxygen & skin electrodes; microelectrodes; ECG & its amplifiers; electric shock hazards; isolation amplifier  load cells; diaphragm type sensors; silicon pressure transducers; other types; sensors error & nonlinearity  pressure drop flowmeter; other flowmeters; liquid level sensors; sonar level sensors; humidity sensor; moisture LPF, notch, BPF, HPF active filters; Butterworth & Chebychev filters; state var filters; swithed capacitor filters; voltage tunable filters D/A specs; V-f converters and its ICs; VFC as A/D converters; D/A converters; counters & servo ADC; Successive approx ADC; Flash ADC Diode rectifiers; AC-DC converters, phase sensistive detectors; Amplitude & Freq modulations, FM detectors; PLL noise sources & terminologies; semiconductor & amplifier noises; BW limitation; signal averaging; signal amplification & processing deisgn example Various Pulse timer & Counters; analog switches, MUX & DEMUX; latches; digital switches; Serialparallel conversion; S/ circuits, charge coupled devices PS characteristics; rectifier-capacitor input section; unregulated PS; Zener diode voltage regulators; op-amp regulators; Power Output Transistors Configurations; highoutput op amps; AC amplifiers; SCR & Triac drives; small DC motors & drivers; stepping motor Drivers; power circuit design and examples

Capaian Belajar Mahasiswa

Sumber Materi

[Uraikan capaian spesifik topik dengan merujuk kepada capaian matakuliah]

[Uraikan rujukan terhadap pustaka (bab, sub-bab)]

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 87 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro & Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL3015

Bobot sks: 3

Semester: 6

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Sistem Kendali Nama Matakuliah Control Systems [Uraian ringkas silabus matakuliah dalam Bahasa Indonesia (maksimum 30 kata)] Silabus Ringkas

The course covers control systems analysis and design for linier systems in case of stability or performance. System analysis and design are implemented using traditional approach in time and frequency domain. Introduction odern concept of state space and digital control system are also provided in the course. [Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)]

Silabus Lengkap [Uraian lengkap silabus matakuliah dalam Bahasa Inggris (maksimum 100 kata)]

Luaran (Outcomes)

Matakuliah Terkait Kegiatan Penunjang Pustaka

Panduan Penilaian

Catatan Tambahan

Ability to analyse and design of control system concepts including modeling, transient analysis, steady-state and linier systems stability, and designing control system in time and frequency domain. Ability to use state space concept for modelling and its connection with transfer function model Ability to analyze and design of simple digital control system EL2007 Sinyal dan Sistem Prerequisite EL3215 Praktikum Sistem Kendali Corequisite Laboratorium works and assignments using hardware and MATLAB Norman S. Nise, Control System Engineering, John Wiley, 2011, 6th edition (Pustaka Utama) Katsuhiko Ogata, Modern Control Engineering, Prnetice Hall, 2010, 5th edition, (Pustaka Utama) Gene F.Franklin, et al., Feedback Control of Dynamic Systems, Addison Wesley, 1994 Assignments, Quizzes, (30%) Midsemester Exam (35%) Final Exam (35%) or (50% with remedial) Remedial Exam (50% with Final exam) Emphasize basic concepts introduction using application examples

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 88 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

1

2

3

Topik Basic elements of a control system, concept of feedback, open and closed-loop systems Mathematical modeling of physical SISO systems, linearized models, and transfer function  Mathematical modeling of physical SISO systems, linearized models, and transfer function  Time-domain analysis and stability of control systems.

4

Time-domain analysis and stability of control systems.

5

PID controller design for SISO systems

6

 PID controller design for SISO systems  Feedback control system analysiss & design via root-locus method.

7

Feedback control system analysiss & design via rootlocus method.

8

Feedback control system analysiss & design via rootlocus method.

9

10

11

12

13

14

15

Feedback control system Analysis via frequencydomain method.

Feedback control system analysis via frequency-domain method.

Feedback control system design and implementation via frequency-domain method. Feedback control system design and implementation via frequency-domain method.

Introduction to sampled data systems, discrete equivalents, and sample rate selection. Introduction to sampled data systems, discrete equivalents, and sample rate selection.  Introduction to sampled data systems, discrete equivalents, and sample rate selection  Analysis & design of feedback control systems using MATLAB

Sub Topik

Capaian Belajar Mahasiswa  Identify the basic elements and structures of feedback control systems.  Derive mathematical model, linearized models and their transfer function representations for SISO system  Derive state space representations of linear systems and its connection to transfer function  Use signal-flow graphs to derive system'ss input-output relations.

Sumber Materi [Uraikan rujukan terhadap pustaka (bab, sub-bab)]

 Use signal-flow graphs to derive system'ss input-output relations.  Correlate the pole-zero configuration of transfer functions and their time-domain response to known test inputs  Apply Routh-Hurwitz criterion to determine the domain of stability of linear time-invariant systems in the parameter space.  Apply Final-value Theorem to determine the steady-state response of stable control systems.  Explain the effect of each component of PID controller to system's performance  Calculate the PID parameters to meet a closed loop design requirements of 2nd orderd systems  Apply Ziegler-Nichols methods for PID controller tuning  Construct and recognize the properties of root-locus for feedback control systems with a single variable parameter.  Specify design region in the s-plane in terms of settling-time, rise-time and overshoot to step-response.  Use root-locus method for the design of feedback control systems.  Use root-locus method for the design of feedback control systems.  Synthesize feedback control systems in terms of specified closed-loop pole-zero configuration.  Construct Bode (overview) and polar or Nyquist plots for rational transfer functions.  Specify control system performance and stability in Bode plot in terms of gain and phase margins, error steady state coeffiicents  Determine the system's stability based on gain & phase margins and Nyquist criterion  Design lead compensators to achieve the desired performance using Bode plot  Design lag compensators to achieve the desired performance using Bode plot  Understand the way to implement an analog controller using electronics components  Design sampled data systems using discrete equivalents.  Understand the effects of sample rate and calculate a suitable sample rate  Determine the stability of sampled data systems using Routh-Hurwitz criterion after bilinear trasformation  Design and implement a discrete time PID controller  Design and implement a discrete time PID controller  Analyze and design of practical feedback control systems (continuous and discrete time) using MATLAB

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 89 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL3016

Bobot sks: 3

Semester: 4

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Sistem Komunikasi Nama Matakuliah Communication System

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

Analog Modulation, Random Signals and Noise, Digital Baseband Pulse Transmission, Digital Bandpass Transmission, Capacity Sharing Technique, Introduction to Channel Coding. Analog Modulation, Random Signals and Noise, Digital Baseband Pulse Transmission, Digital Bandpass Transmission, Capacity Sharing Technique, Introduction to Channel Coding. AM Modulation/Demodulation, FM Modulation/Demodulation, Quick Review of Probability, Random Processes, Statistical Characterization of Random Processes, Power Spectral Density, Gaussian Random Processes, Noise and Its Representation, Signal-to-Noise Ratio of analog Modulations, Sampling and Pulse Code Modulation (PCM), Wavefrom representation of binary digits, Matched Filters, Probability of Error due to Noise, Intersymbol Interference (ISI), Equalizations, Signal-space representations of Bandpass signals, Detection of Known Signals in Noise, Correlation and Matched Filter Receivers, Binary and nonbinary Modulation Techniques, Probability of Error due to Noise of Digital Bandpass Transmission, Noncoherent Detection, Differential Detection, FDMA, TDMA, CDMA, OFDM, Channel coding fundamentals, Linearity and Hamming distance, Coding gain, Random error detection and correction capabilities, Encoding & Decoding, Probability of decoding and bit error. AM Modulation/Demodulation, FM Modulation/Demodulation, Quick Review of Probability, Random Processes, Statistical Characterization of Random Processes, Power Spectral Density, Gaussian Random Processes, Noise and Its Representation, Signal-to-Noise Ratio of analog Modulations, Sampling and Pulse Code Modulation (PCM), Wavefrom representation of binary digits, Matched Filters, Probability of Error due to Noise, Intersymbol Interference (ISI), Equalizations, Signal-space representations of Bandpass signals, Detection of Known Signals in Noise, Correlation and Matched Filter Receivers, Binary and nonbinary Modulation Techniques, Probability of Error due to Noise of Digital Bandpass Transmission, Noncoherent Detection, Differential Detection, FDMA, TDMA, CDMA, OFDM, Channel coding fundamentals, Linearity and Hamming distance, Coding gain, Random error detection and correction capabilities, Encoding & Decoding, Probability of decoding and bit error. Compute a modulated analog signal from an analog message signal (modulation) using AM and FM, Compute an analog message signal from an analog modulated signal (demodulation) using AM and FM, Apply the probability in communication systems, Compute the autocorrelation function of a random process, Determine whether a random process is stationary (if possible) or wide-sense stationary (WSS), Determine the power spectral density (PSD) of WSS random processes, Apply the Gaussian random processes in communication system, Determine the mathematical model of noise, Compute the receiver signal-to-noise ratio (SNR) of analog modulations, Explain the sampling theorem and process of PCM, Compare various waveform types of binary signaling, Design a matched filter to facilitate maximum signal-to-noise power ratio, Compute probability of error performance of binary signaling, Design intersymbol interference-free pulse shapes under bandwidth constraints, Determine equalizer filter to compensate ISI, Find the orthonormal basis functions of a digital modulation system, Analyze a digital modulation system with noise in signal space, computing union bounds on error probability, Compare different detection techniques, Understand and compare of various capacity sharing techniques, Explain the meaning and significance of Shannon's channel coding theorem, Explain how Hamming distance between codewords directly affects the performance of error-correction codes, Explain the encoding and decoding process of channel coding, Compute the probability of decoding and bit error. EL2007 Sinyal dan Sistem Prasyarat EL2004 Probabilty and Statistics Prasayarat EL3216 Praktikum Sistem Komunikasi

Bersamaan/Corequisite

Kegiatan Penunjang

Tugas dan Simulasi

Pustaka

Proakis and Salehi, Digital Communications, 5th ed., McGraw-Hill Science/Engineering/Math, 2007 (pustaka utama) Haykin, Communication Systems, 5th ed., Wiley, 2009, (pustaka utama) Sklar, Digital Communications: Fundamentals and Applications, 2nd ed., Prentice Hall, 2001 (pustaka alternatif) Silage, Digital Communication Systems using MATLAB and Simulink, 1st ed., Bookstand Publishing, 2009 (pustaka pendukung)

Panduan Penilaian

[Termasuk jenis dan bentuk penilaian]

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 90 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa  Compute a modulated analog signal from an analog message signal (modulation) using AM and FM  Compute an analog message signal from an analog modulated signal (demodulation) using AM and FM  Compute a modulated analog signal from an analog message signal (modulation) using AM and FM  Compute an analog message signal from an analog modulated signal (demodulation) using AM and FM  Apply the probability in communication systems  Compute the autocorrelation function of a random process  Determine whether a random process is stationary (if possible) or wide-sense stationary (WSS)  Determine the power spectral density (PSD) of WSS random processes  Apply the Gaussian random processes in communication system  Determine the mathematical model of noise

Sumber Materi

1

Analog Modulation

AM Modulation/ Demodulation

2

Analog Modulation

FM Modulation/ Demodulation

3

Random Signals and Noise

 Quick Review of Probability  Random Processes  Statistical Characterization of Random Processes

4

Random Signals and Noise

 Power Spectral Density  Gaussian Random Processes  Noise and Its Representation

5

Random Signals and Noise

 Signal-to-Noise Ratio of analog Modulations

 Compute the receiver signal-to-noise ratio (SNR) of analog modulations.

6

Digital Baseband Pulse Transmission

 Sampling and Pulse Code Modulation (PCM)  Wavefrom representation of binary digits

7

Digital Baseband Pulse Transmission

 Matched Filters  Probability of Error due to Noise

8

Digital Baseband Pulse Transmission

 Intersymbol Interference (ISI)  Equalizations

9

Digital Bandpass Transmission

 Signal-space representations of Bandpass signals  Detection of Known Signals in Noise

10

Digital Bandpass Transmission

 Correlation and Matched Filter Receivers  Binary and non-binary Modulation Techniques

11

Digital Bandpass Transmission

 Probability of Error due to Noise of Digital Bandpass Transmission  Non-coherent Detection  Differential Detection

 Explain the sampling theorem and process of PCM  Compare various waveform types of binary signaling  Design a matched filter to facilitate maximum signal-to-noise power ratio  Compute probability of error performance of binary signaling  Design inter-symbol interference-free pulse shapes under bandwidth constraints  Determine equalizer filter to compensate ISI  Find the orthonormal basis functions of a digital modulation system  Analyze a digital modulation system with noise in signal space, computing union bounds on error probability  Compare different detection techniques  Find the orthonormal basis functions of a digital modulation system  Analyze a digital modulation system with noise in signal space, computing union bounds on error probability  Compare different detection techniques  Find the orthonormal basis functions of a digital modulation system  Analyze a digital modulation system with noise in signal space, computing union bounds on error probability  Compare different detection techniques

12

Capacity Sharing Technique

 FDMA  TDMA

Understand and compare of various capacity sharing techniques

13

Capacity Sharing Technique

 CDMA  OFDM

Understand and compare of various capacity sharing techniques

14

Introduction to Channel Coding

 Channel coding fundamentals  Linearity and Hamming distance  Coding gain  Random error detection and correction capabilities

 Explain the meaning and significance of Shannon's channel coding theorem  Explain how Hamming distance between codewords directly affects the performance of error-correction codes

 Proakis and Salehi, Digital Communications  Sklar, Digital Communications: Fundamentals and Applications

15

Introduction to Channel Coding

 Encoding & Decoding  Probability of decoding and bit error

 Explain the encoding and decoding process of channel coding  Compute the probability of decoding and bit error

 Proakis and Salehi, Digital Communications  Sklar, Digital Communications: Fundamentals and Applications

Haykin, Communication Systems

Haykin, Communication Systems

 Haykin, Communication Systems  Proakis and Salehi, Digital Communications

 Haykin, Communication Systems  Proakis and Salehi, Digital Communications  Haykin, Communication Systems  Proakis and Salehi, Digital Communications  Proakis and Salehi, Digital Communications  Sklar, Digital Communications: Fundamentals and Applications  Proakis and Salehi, Digital Communications  Sklar, Digital Communications: Fundamentals and Applications  Proakis and Salehi, Digital Communications  Sklar, Digital Communications: Fundamentals and Applications  Proakis and Salehi, Digital Communications  Sklar, Digital Communications: Fundamentals and Applications  Proakis and Salehi, Digital Communications  Sklar, Digital Communications: Fundamentals and Applications  Proakis and Salehi, Digital Communications  Sklar, Digital Communications: Fundamentals and Applications  Proakis and Salehi, Digital Communications  Sklar, Digital Communications: Fundamentals and Applications  Proakis and Salehi, Digital Communications  Sklar, Digital Communications: Fundamentals and Applications

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 91 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Sarjana Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL3014

Bobot sks: 3

Semester: 4

Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Sistem Mikroprosesor Nama Matakuliah Microprocessor System

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes)

Pada kuliah ini diajarkan tentang sistem mikroprosesor serta implementasi hardware sistem mikroprosesor berbasis mikrokontroler 8 bit, antar muka analog & digital, periferal dan serial/paralelkomunikasi, serta proyek perancangan sebuah sistem mikroposesor This course covers topics microprocessor systems and the hardware implementation based on 8-bit microprocontroller, analog & digital interfaces, peripherals & parallel/serial communication, and the design project of microprocessor systems Pada kuliah ini diajarkan tentang sistem mikroprosesor serta implementasi hardware sistem mikroprosesor berbasis mikrokontroler 8 bit . Peranan sistem mikroprosesor, arsitektur sistem mikroprosesor, address decoder, antar muka digital, antar muka analog, periferal, komunikasi serial, tool chain, proyek perancangan This course covers topics on 8-bit microprocessor systems and the hardware implementation of the microprocessor system. The role of microprocessor systems, microprocessor system architecture, address decoder, digital interfaces, analog interfaces, peripherals, serial communication, tool chain, the project design 7. Memahami arsitektur sistem mikroprosesor 8. Menjelaskan cara kerja sistem mikroprosesor 9. Merancang address decoder 10. Menggunakan toolchain untuk membuat software sampai memasukkannya ke mikrokontroler 11. Membuat software berbasis arsitektur super loop dan interupsi 12. Memahami periferal internal mikrokontroler 13. Merancang antar muka digital dan analog 14. Menggunakan komunikasi serial 15. Merancang dan mengimplementasikan sistem mikrokontroler meliputi hardware dan software

Matakuliah Terkait

EL2008 Pemecahan Masalah dengan C EL2005 Elektronika EL3214 Praktikum Sistem Mikroprosesor

Kegiatan Penunjang

Praktikum Sistem Mikroprosesor

Pustaka

Prasyarat Prasyarat Bersamaan

Ardi Winoto, Mikrokontroler AVR ATmega8/32/16/8535 dan Pemrogramannya dengan Bahasa C pada WinAVR Ronald J Tocci, Neal S Widmer, Gregory L Moss, Digital Systems Principles and Applications 10th edition, Pearson, 2007; Dhananjay Gadre, Programming And Customizing the AVR Microcontroller, Mc Graw Hill, 2001 [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung])

Panduan Penilaian

[Termasuk jenis dan bentuk penilaian]

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 92 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

1

2

Topik

Sub Topik

Implementasi sistem digital



Mengetahui peranan sistem mikroprosesor

2.

peranan sistem mikroprosesor



3.

Sejarah Mikroprosesor

Menjelaskan sejarah mikroprosesor & mikrokontroler (4004 dst)

Pengenalan

Arsitektur Sistem Mikroprosesor

Arsitektur Umum

Stack dan interupsi

3

Capaian Belajar Mahasiswa

1.

 

Menjelaskan cara kerja sistem mikroprosesor



menjelaskan cara kerja bus,



timing pada bus



tahu Von neumann vs Harvard



menjelaskan peran stack pada interrupt



menjelaskan cara kerja interupsi , termasuk hubungannya dengan stack



Membuat peta memori



Merancang address decoder dalam persamaan Boolean & rangkaian



Menghitung timing akses memory

Address Decoder

4

 

5

6

Software Mikroprosesor

Sumber Materi

Membuat software dengan arsitektur super loop



Membuat software dengan arsitektur foreground background (interrupt)



Membuat flow chart program



Mengetahui cara kerja periferal internal mikrokontroler



membuat software untuk memakai timer, adc, pwm



Membuat software & hardware untuk memakai ADC

Arsitektur Software

Periferal mikrokontroler



Aplikasi PWM

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 93 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Komunikasi Serial

7



Memahami cara kerja komunikasi serial



Membuat software komunikasi serial



Membuat software sampai menjalankannya ke dalam mikrokontroler



Melakukan proses debugging



Merancang hardware & software untuk mengakses LED, switch, 7 segment, LED matrix, keypad matrix Merancang hardware & software untuk mengakses perangkat analog seperti sensor temperatur LM35 dan sensor cahaya Tahu hardware sistem mikroprosesor secara umum Tahu teknik reduksi derau Metodologi perancangan System Engineering (ringkas)

Microprocessor Toolchain

8

Antar Muka

9

Digital I/O  Analog I/O

10

 11

Hardware Sistem Mikroprosesor

 

12

Perancangan Mikroprosesor

13

Perancangan Mikroprosesor

14

Perancangan Mikroprosesor (2hr)

14

Operating System (1 hr)

15

Operating System (3hr)

  

Merancang sistem mikroprosesor sederhana sesuai dengan metodologi perancangan baku  Merancang sistem mikroprosesor sederhana sesuai dengan metodologi perancangan baku Menjelaskan konsep concurrency, context switch, layering OS

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 94 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL3017

Bobot sks: 3

Semester: 6

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Sistem Tenaga Elektrik Nama Matakuliah

Power Systems [Uraian ringkas silabus matakuliah dalam Bahasa Indonesia (maksimum 30 kata)]

Silabus Ringkas

This course is an introductory subject in the field of electric power systems and electrical to mechanical energy conversion. Electric power has become increasingly important as a way of transmitting and transforming energy in industrial, military and transportation uses. Examples of new uses for electric power include all manners of electric transportation systems (electric trains that run under catenary, diesel-electric railroad locomotion, 'maglev' medium and high speed tracked vehicles, electric transmission systems for ships and diesel-electric locomotives, replacement of hydraulics in high performance actuators, aircraft launch and recovery systems, battery powered factory material transport systems, electric and hybrid electric cars and buses, even the 'more electric' airplane). Electric power systems are also at the heart of alternative energy systems, including wind and solar electric, geothermal and small scale hydroelectric generation. [Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)] The course material includes:

Silabus Lengkap

      

fundamentals of energy-handling electric circuits, power electronic circuits such as inverters, and electromechanical apparatus modeling of magnetic field devices and description of their behavior using appropriate models simplification of problems using transformation techniques analysis of power electric circuits, magnetic circuits, and elements of linear and rotating electric machinery use of lumped parameter electromechanics to understand power systems models of synchronous, induction, and DC machinery the interconnection of electric power apparatus and operation of power systems

Luaran (Outcomes)

[Uraian hasil/luaran (kompetensi mahasiswa) yang diharapkan setelah penyelesaian matakuliah ini]

Matakuliah Terkait

EL2001 Rangkaian Elektrik EL3217 Praktikum Sist.Tenaga Elektrik

Kegiatan Penunjang

Praktikum

Pustaka

Kirtley, James. Electric Power Principles: Sources, Conversion, Distribution and Use. Wiley, 2010 [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung]) [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung])

Panduan Penilaian

[Termasuk jenis dan bentuk penilaian]

Prasyarat Bersamaan

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 95 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa

 Electrical Energy, Active and Reactive Power  Power System Network Matrices Analysis and Computation

 Electric power generation and transmission and distribution system  Primary source of generating plant  Concept of active and reactive power for single phase and three phase system  Simple calculation of active power, reactive power and complex power  Energy consumption and daily load curve, load duration curve  Power factor, demand factor, coincident factor, utility factor  DC versus AC system  Incidence matrices for simple power system network  Incidence matrices for simple power system network  Primitive network, formation of network matrices  Balanced and unbalanced network element  Y-matrices and Z matrices  Per unit representation, power and circuits formula in per unit system  Transmission lines model representation  Underground cable and overhead transmission lines  Resistance, inductance and capacitance and Voltage drop calculation.  Calculation of power losses and line sizing

 Memahami konsep daya aktif dan daya reaktif melakukan perhitungan untuksistem 1single phase, 3 phase dan multi phasa  Mampu memahami dan menghitung konsumsi energi listrik dan damak karakteristik kurva beban terhadap pemakaian listrik  Mampu melakukan perhitungan aspek keserempakan beban dan loading komponen  Mampu melakukan perhitungan matrik incidence dari pengaruhnya perubahan jaringan

1

Power System Network Matrices Analysis and Computation 2

Per-unit systems and Transmission Lines Parameters

3

Transformers and Electrical Machine

 Concept of transformers, design features, physical transformers  Accounting for magnetizing and core loss and winding losses  Three phase transformers and its connection

Transformers and Electrical Machine

 Classical machine description  Voltage generation, open circuit voltage, armature reaction and terminal voltage  Power delivered by generator, synchronizing generator to Grid  Role of synchronous machine excitation in controlling reactive power  Transient machine behavior  Calculation simple power flow in power system network  Power flow calculation using Gauss Seidel iteration, Newton Raphson  Using MatLab for power flow calculation  Mechanism for voltage improvement in power system network  Short circuits characteristics in power system network  Simple short circuit calculation using IEC and

4

5

6

7

 Transformers and Electrical Machine  Power Flow Analysis and Voltage Control System

Power Flow Analysis and Voltage Control System

Short Circuits and Unbalanced System Operation 8

Sumber Materi

[Uraikan rujukan terhadap pustaka (bab, sub-bab)]

 Mampu melakukan perhitungan matrik incidence dari pengaruhnya perubahan jaringan  Mampu membentuk matrik Y Bus dan Z bus dengan menggunakan branch and bound methods  Mampu menghitung matrik impedansi jaringan sistem tenaga  Mampu melaukan dalam per unit system untuk semua besaran dan komponen di sistem tenaga  Mampu melakukan menghitung parameter model saluran transmisi dan distribusi listrik baik kabel maupun saluran udara  Mampu melakukan sizing terdapat pemilihan karakteristik saluran transmisi dan distribusi dengan kriteria yang diberikan  Mampu memodelkan dengan menggunakan MAthLAb untuk saluran kabel dan saluran udara  Memahami proses dan mekanisme trafo dan pemodelannya  Mampu membuat model dan karakteristik trafo serta menurunkan parameter trafo dari data pengujian trafo  Mampu melakukan perhitungan kapasitas trafo untuk keperluan tertentu

 Mampu melakukan pemodelan mesin listrik dan  Mampu menurunkan parameter mesin dari hasil pengujian.

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 96 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

9

10

11

 Short Circuits and Unbalanced System Operation  Power System Control : Voltage and Frequency Control Power System Control : Voltage and Frequency Control

 Power System Control : Voltage and Frequency Control  Harmonic and Power Quality Harmonic and Power Quality

12

13

Overvoltage Protection

14

Over current Protection System

15

SCADA System and Smart Grid

ANSI standard  Electrical component sizing based on short circuit calculation  Mechanism for voltage improvement in power system network  Mechanical power and governor system and secondary control  Load sharing (active and reactive) based on droop and isochronous  Dynamic system of generating plant  Harmonic characteristics and source of harmonics  Introduction for Distortion Power Factor, true RMS measurement  Minimizing harmonic in power system network. (active filter introduction)  Overvoltage phenomena Lightning and switching transient  Overvoltage protection for low voltage system  Grounding system TN, TT, TNC , TNCS for LV system  Need for over current protection and its measure  Characteristics of over current protection, (fuse, relay, thermal, magnetic)  Earth leakage  Simple coordination protection system  Concept of SCADA and its benefit for power system network  Simple calculation for telemeasurement and telecontrol and alarm calculation  Master control /station system configuration and its software requirements  Smart Grid concepts  Renewable Energy

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 97 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL3017

Bobot sks: 3

Semester: 6

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Sistem Tenaga Elektrik Nama Matakuliah

Power Systems [Uraian ringkas silabus matakuliah dalam Bahasa Indonesia (maksimum 30 kata)]

Silabus Ringkas

This course is an introductory subject in the field of electric power systems and electrical to mechanical energy conversion. Electric power has become increasingly important as a way of transmitting and transforming energy in industrial, military and transportation uses. Examples of new uses for electric power include all manners of electric transportation systems (electric trains that run under catenary, diesel-electric railroad locomotion, 'maglev' medium and high speed tracked vehicles, electric transmission systems for ships and diesel-electric locomotives, replacement of hydraulics in high performance actuators, aircraft launch and recovery systems, battery powered factory material transport systems, electric and hybrid electric cars and buses, even the 'more electric' airplane). Electric power systems are also at the heart of alternative energy systems, including wind and solar electric, geothermal and small scale hydroelectric generation. [Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)] The course material includes:

Silabus Lengkap

      

fundamentals of energy-handling electric circuits, power electronic circuits such as inverters, and electromechanical apparatus modeling of magnetic field devices and description of their behavior using appropriate models simplification of problems using transformation techniques analysis of power electric circuits, magnetic circuits, and elements of linear and rotating electric machinery use of lumped parameter electromechanics to understand power systems models of synchronous, induction, and DC machinery the interconnection of electric power apparatus and operation of power systems

Luaran (Outcomes)

[Uraian hasil/luaran (kompetensi mahasiswa) yang diharapkan setelah penyelesaian matakuliah ini]

Matakuliah Terkait

EL2001 Rangkaian Elektrik EL3217 Praktikum Sist.Tenaga Elektrik

Kegiatan Penunjang

Praktikum

Pustaka

Kirtley, James. Electric Power Principles: Sources, Conversion, Distribution and Use. Wiley, 2010 [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung]) [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung])

Panduan Penilaian

[Termasuk jenis dan bentuk penilaian]

Prasyarat Bersamaan

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 98 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa

 Electrical Energy, Active and Reactive Power  Power System Network Matrices Analysis and Computation

 Electric power generation and transmission and distribution system  Primary source of generating plant  Concept of active and reactive power for single phase and three phase system  Simple calculation of active power, reactive power and complex power  Energy consumption and daily load curve, load duration curve  Power factor, demand factor, coincident factor, utility factor  DC versus AC system  Incidence matrices for simple power system network

 Memahami konsep daya aktif dan daya reaktif melakukan perhitungan untuksistem 1single phase, 3 phase dan multi phasa  Mampu memahami dan menghitung konsumsi energi listrik dan damak karakteristik kurva beban terhadap pemakaian listrik  Mampu melakukan perhitungan aspek keserempakan beban dan loading komponen  Mampu melakukan perhitungan matrik incidence dari pengaruhnya perubahan jaringan  Mampu melakukan perhitungan matrik incidence dari pengaruhnya perubahan jaringan  Mampu membentuk matrik Y Bus dan Z bus dengan menggunakan branch and bound methods  Mampu menghitung matrik impedansi jaringan sistem tenaga  Mampu melaukan dalam per unit system untuk semua besaran dan komponen di sistem tenaga  Mampu melakukan menghitung parameter model saluran transmisi dan distribusi listrik baik kabel maupun saluran udara  Mampu melakukan sizing terdapat pemilihan karakteristik saluran transmisi dan distribusi dengan kriteria yang diberikan  Mampu memodelkan dengan menggunakan MAthLAb untuk saluran kabel dan saluran udara  Memahami proses dan mekanisme trafo dan pemodelannya  Mampu membuat model dan karakteristik trafo serta menurunkan parameter trafo dari data pengujian trafo  Mampu melakukan perhitungan kapasitas trafo untuk keperluan tertentu  Mampu melakukan pemodelan mesin listrik dan  Mampu menurunkan parameter mesin dari hasil pengujian.

1

Power System Network Matrices Analysis and Computation

 Incidence matrices for simple power system network  Primitive network, formation of network matrices  Balanced and unbalanced network element  Y-matrices and Z matrices

Per-unit systems and Transmission Lines Parameters

 Per unit representation, power and circuits formula in per unit system  Transmission lines model representation  Underground cable and overhead transmission lines  Resistance, inductance and capacitance and Voltage drop calculation.  Calculation of power losses and line sizing

Transformers and Electrical Machine

 Concept of transformers, design features, physical transformers  Accounting for magnetizing and core loss and winding losses  Three phase transformers and its connection

Transformers and Electrical Machine

 Classical machine description  Voltage generation, open circuit voltage, armature reaction and terminal voltage  Power delivered by generator, synchronizing generator to Grid  Role of synchronous machine excitation in controlling reactive power  Transient machine behavior  Calculation simple power flow in power system network  Power flow calculation using Gauss Seidel iteration, Newton Raphson  Using MatLab for power flow calculation  Mechanism for voltage improvement in power system network  Short circuits characteristics in power

2

3

4

5

6

7

8

 Transformers and Electrical Machine  Power Flow Analysis and Voltage Control System

Power Flow Analysis and Voltage Control System

Short Circuits and Unbalanced

Sumber Materi

[Uraikan rujukan terhadap pustaka (bab, sub-bab)]

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 99 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

System Operation

9

10

11

 Short Circuits and Unbalanced System Operation  Power System Control : Voltage and Frequency Control Power System Control : Voltage and Frequency Control  Power System Control : Voltage and Frequency Control  Harmonic and Power Quality Harmonic and Power Quality

12

13

Overvoltage Protection

14

Over current Protection System

15

SCADA System and Smart Grid

system network  Simple short circuit calculation using IEC and ANSI standard  Electrical component sizing based on short circuit calculation  Mechanism for voltage improvement in power system network  Mechanical power and governor system and secondary control  Load sharing (active and reactive) based on droop and isochronous  Dynamic system of generating plant  Harmonic characteristics and source of harmonics  Introduction for Distortion Power Factor, true RMS measurement  Minimizing harmonic in power system network. (active filter introduction)  Overvoltage phenomena Lightning and switching transient  Overvoltage protection for low voltage system  Grounding system TN, TT, TNC , TNCS for LV system  Need for over current protection and its measure  Characteristics of over current protection, (fuse, relay, thermal, magnetic)  Earth leakage  Simple coordination protection system  Concept of SCADA and its benefit for power system network  Simple calculation for telemeasurement and tele-control and alarm calculation  Master control /station system configuration and its software requirements  Smart Grid concepts  Renewable Energy

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 100 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4090

Bobot sks: 3

Semester: 7

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Tugas Akhir I (Capstone Design) Nama Matakuliah

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait Kegiatan Penunjang Pustaka

Panduan Penilaian

Catatan Tambahan

Final Project I (Capstone Design) Kuliah mencakup kegiatan perencanaan suatu projek rekayasa skala kecil/ sederhana yang akan dilanjutkan pengerjaannya menjadi tugas akhir 2. Hasil akhir dari kuliah ini adalah dokumen rekayasa B100 (product concept), B200 (persyaratan rancangan), dan B300 (preliminary design) The student is planned to do preliminary study / design of her / his final-year project. Under his / her supervisor, the student has to submit the final-year proposal, abstract and finally full paper which should be presented in student’s seminar. The student has to work in the laboratory to do his / her research during the semester time. Kuliah ini merupakan studi awal / desain awal dari Tugas Akhir mahasiswa yang akan diteruskan pada matakuliah Tugas Akhir 2. Dengan demikian, mahasiswa harus sudah memiliki Pembimbing TA sejak awal kuliah. Mahasiswa harus membuat proposal Tugas Akhirnya bersama-sama dengan Pembimbing dan diserahkan kepada koordinator Kuliah pada jadwal yang ditentukan. Kuliah tatap muka memberikan penjelasan tentang pelaksanaan kuliah / Tugas Akhir, plagiarism, penilaian, penyusunan proposal serta dokkumen rekayasa B100 s/d B600, penulisan Abstrak, penulisan paper, jadwal-jadwal waktu pemasukan tugas-tugas dan presentasi, dan teknik-teknik penelitian dan presentasi dalam beberapa pekan kuliah yang dijadwalkan. Mahasiswa harus melaksanakan Tugas Akhir I nya di laboratorium yang telah disepakati bersama dengan Pembimbingnya sesuai dengan proposal yang telah disusun. Dokumen rekayasa B100 (product concept), B200 (persyaratan rancangan), dan B300 (preliminary design) dibuat oleh satu untuk satu tim (2-3 orang) dengan pemantauan progres terjadwal.

This course is intended as the capstone of all the knowlegde in Electrical Engineering Kegiatan Tugas Akhir ditujukan untuk memberikan pengalaman kepada mahasiswa pada sebuah siklus proses perancangan rekayasa yang lengkap pada sebuah kasus penyelesaian masalah rekayasa nyata (capstone design). Selain itu, pengerjaan dalam tim yang membutuhkan soft-skill (kerjasama, komunikasi, multidisiplin, tanggung jawab, kedisplinan, dll) diharapkan terbangun dalam proses ini. Lulus minimal 104 sks (lihat catatan tambahan) Prasayarat EL4018 Etika Profesi & Rekayasa Bersamaan [Praktikum, kerja lapangan, dsb.] Aciek Ida WS, Tata Cara PEnulisan Buku Tugas Akhir (?), Teknik Elektro ITB, 2004. Plagiarism reference (notes, books etc) [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung]) Written Document 60% Logbook 20% Progress report seminar 20% Syarat Tambahan: (1) Lulus semua MK Tk.2, dan (2) Lulus min 5 MK breadth Tk3, dan (3) Sudah melaksanakan KP minimal 1 bulan, dan (4) Lulus minimal 104 SKS

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 101 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg# 1

Topik [Cantumkan Topik bahasan]

Sub Topik

Capaian Belajar Mahasiswa

Sumber Materi

[Uraikan sub-topik bahasan]

[Uraikan capaian spesifik topik dengan merujuk kepada capaian matakuliah]

[Uraikan rujukan terhadap pustaka (bab, sub-bab)]

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 102 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4091

Bobot sks: 3

Semester: 8

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Wajib

Tugas Akhir II (Capstone Design) Nama Matakuliah

Silabus Ringkas

Final Project II (Capstone Design) Kuliah mencakup kegiatan lanjutan projek rekayasa skala kecil/ sederhana di matakuliah El4090. Hasil akhir dari kuliah ini adalah dokumen rekayasa B100 s/d B600. Tiap anggota tim juga harus membuat laporan dan makalah dari kontribusinya dan menampilkannnya pada acara presentasi/seminar, poster , dan demo dengan penilai dari 3 orang dosen. In this individual assignment, the student should continue her/his previous work in EL4090 course under the same supervisor. The work resulted in this project could be in the form of any implementation (software/hardware), even in the form of recommendation of solution to the electrical engineering problems. At the end of this project, the student should write the final report, and then defended in front of 3 examiners (lecturers). [Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)]

Silabus Lengkap [Uraian lengkap silabus matakuliah dalam Bahasa Inggris (maksimum 100 kata)]

Luaran (Outcomes)

Matakuliah Terkait Kegiatan Penunjang Pustaka

Panduan Penilaian

This course is intended as the capstone of all the knowlegde in Electrical Engineering Kegiatan Tugas Akhir ditujukan untuk memberikan pengalaman kepada mahasiswa pada sebuah siklus proses perancangan rekayasa yang lengkap pada sebuah kasus penyelesaian masalah rekayasa nyata (capstone design). Selain itu, pengerjaan dalam tim yang membutuhkan soft-skill (kerjasama, komunikasi, multidisiplin, tanggung jawab, kedisplinan, dll) diharapkan terbangun dalam proses ini. EL4090 Tugas Akhir I (Capstone Design) Prerequisite [Kode dan Nama Matakuliah] [Prasyarat, bersamaan, terlarang] [Praktikum, kerja lapangan, dsb.] [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung]) [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung]) [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung]) Written Final Project Report 35% Logbook 30% Paper, Seminar & Demo 35%

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 103 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg# 1

Topik [Cantumkan Topik bahasan]

Sub Topik

Capaian Belajar Mahasiswa

Sumber Materi

[Uraikan sub-topik bahasan]

[Uraikan capaian spesifik topik dengan merujuk kepada capaian matakuliah]

[Uraikan rujukan terhadap pustaka (bab, sub-bab)]

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 104 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4130

Bobot sks: 3

Semester: 7

KK / Unit Penanggung Jawab: Elektronika

Sifat: Pilihan

Analisis dan Perancangan IC Digital Nama Matakuliah

Analysis and Design of Digital IC [Uraian ringkas silabus matakuliah dalam Bahasa Indonesia (maksimum 30 kata)]

Silabus Ringkas

Introduction to CMOS devices, manufacturing technology, CMOS inverters and gates. The course includes the understanding of CMOS design parameters and methodology such as propagation delay, noise margins, and power dissipation digital circuits with respect to different quality metrics: cost, speed, power dissipation, and reliability. The course also teaches the student to design and optimize the standard cell of combinatorial and sequential digital circuits [Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)]

Silabus Lengkap [Uraian lengkap silabus matakuliah dalam Bahasa Inggris (maksimum 100 kata)]

Luaran (Outcomes)

Matakuliah Terkait

1. Participants understand the Digital IC methodology 2. Participants understand the factors that affect the performance of Digital IC 3. Participants can design combinatorial and sequential standard cell IC 4. Participants can design a simple system. EL 2002 Sistem Digital Prasyarat [Kode dan Nama Matakuliah] [Prasyarat, bersamaan, terlarang]

Kegiatan Penunjang

[Praktikum, kerja lapangan, dsb.]

Pustaka

Basics of CMOS Cell Design , by Etienne Sicard, Sonia Delmas Bendhia Digital Integrated Circuits (2nd Edition) by Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic CMOS VLSI Design: A Circuits and Systems Perspective (3rd Edition) by Neil H.E. Weste and David Harris Modern VLSI Design: System-on-Chip Design (3rd Edition) by Wayne Wolf

Panduan Penilaian

Assignments (20%), Midterm Project (30%), Final Project (50%)

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 105 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

1

Topik

Sub Topik

 Introduction to Digital Integrated Circuits  MOS Devices Technology

 Introduction, overview of MOS Device structures and process technology, and Design Parameters  Design Rules  Design Rules  Layout Design and Analysis Tools MOS Modeling

MOS Devices Technology 2 3 4

MOS Devices Technology Inverters Inverters

5

6

 Inverters  Interconnects

7

 Interconnects  Gate Design and layout

8

Gate Design and layout Combinational Logic

9

10

 Combinational Logic  Sequential Logic

11

 Sequential Logic  Analog Cell  Analog Cell  Project - I

12  Project – I  Memories 13

Project - II 14

15

Project - II

CMOS Invereters Structurs and Characteristics  CMOS Invereters Structurs and Characteristics  Propagation Delay  Inverter Sizing  Inverter Sizing  Interconnect Design Rule and Characteristics  Interconnect Design Rule and Characteristics  Basic GateDesign  Basic GateDesign  Complex Gate Design  Combinational Logic Design  Arithmatic Combinational Logic Design  Arithmatic Combinational Logic Design  Sequential Logic Components Design  Analog Cell Design  Sequential Logic Components Design  Analog Cell Design  Digital Logic Timming Issues  A Very-SimpleMicroprocessor  A Very-SimpleMicroprocessor  Memory Design  Combinational Design Principle and Guideline  Sequential Design Principle and Guideline  Design for syntehsis and Constrain  Project Formulation, Design, Implementation and Verification  Design methodology  Modul Design  Modul Design  Design Verification

Capaian Belajar Mahasiswa

Sumber Materi

 To introduce a technology priciples and applications  Function of Design Rules

[Uraikan rujukan terhadap pustaka (bab, sub-bab)]

 Provide students an opportunity to practice team work and communicate their design experience orally and in writing  Learn to design a complete system

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 106 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: El4129

Bobot sks: 3

Semester: 7

KK / Unit Penanggung Jawab: Elektronika

Sifat: Pilihan

Devais Semikonduktor Nama Matakuliah

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes) Matakuliah Terkait

Semiconductor Devices Review material semikonduktor, sambungan PN, Kapasitor MOS, MOSFET, Transistor Bipolar, Devais semikonduktor aplikasi khusus Review on semiconductor material, PN junction, MOS capacitor, MOSFET, Bipolar Transistor, and application specific semiconductor devices Review material semikonduktor: representasi kristal, konsep band energi; sambungan PN: kondisi thermal equilibrium, karakteristik arus tegangan; Kapasitor MOS, MOSFET: diagram band energi dan karakteristik arus-tegangan untuk mode saturasi, linier, dan cut off; Transistor Bipolar: mode oparasi BJT, penguatan arus; Devais semikonduktor aplikasi khusus: devais optik, power, Review on semiconductor material: kristal, band energy concept, carrier transport; PN junction: equilibrium, band energy diagram, IV characteristics, MOS capacitor, MOSFET: band energy and IV characteristic in saturation, linear, and cut off mode; Bipolar Transistor: mode of operation, current amplification; and application specific semiconductor devices: optic and power Memahami elektronika fisika devais-devais aktif elektronika dan mampu melakukan analisis terhadap karakteristik yang dimulai dengan menurunkan karakteristik Orde Pertama Arus-Tegangan (Karakteristik I-V). Analisis mengikutsertakan pemodelan devais untuk simulasi rangkaian (SPICE) EL3012 Material Teknik Elektro Prasyarat EL2005 Elektronika Prasyarat

Kegiatan Penunjang

Pustaka

S.M. Sze, Semiconductor devices Physics and Technology, 2nd Ed, John Wiley, 2002 (Pustaka utama) Donald A. Neamen, Semiconductor Physics and Devices Basic Principles, 3rd Ed, McGraw Hill, 2003 (Pustaka alternatif) J.P. Colinge & C. A. Colinge, Physics of Semiconductor Devices, Kluwer Academic (Pustaka alternatif)

Panduan Penilaian

30% Kuis dan PR + 30% UTS + 40% UAS

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 107 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

1

Pengenalan

Pengenalan kuliah,

2

Perkembangan devais dan teknologi semikonduktor

Perkembangan devais dan teknologi semikonduktor

3

Review material physic (1)

Kristal semikonduktor, konsep band energi, pita konduksi dan pita valensi, doping dan ketidak murnian, semikonduktor intrinsik dan ekstrinsik

4

Review Material Physic (2)

Drift VS difusi, carrier scattering dan mobilitas, rapat arus dalam material

5

Sambungan PN

6

Dioda Sambungan PN

7

Kontak metal-semikonduktor

8

JFET, MESFET, Kapasitor MOS

Struktur JFET dan MOSFET, thermal equilibrium, struktur MOS, band diagram, dan lapisan deplesi

9

MOSFET (1)

Konsep tegangan Threshold, mode operasi MOSFET

10

MOSFET (2)

karakteristik arus tegangan, modeling, fabrikasi MOSFET

11

BJT (1)

Struktur BJT, short channel VS long channel, mode operasi, karakteristik statis

12

BJT (2)

Respon frekuensi, penguatan arus, pemodelan, fabrikasi BJT

13

Power devices

Thyristor, power devices,

14

Optical devices

Photovoltaic cell, laser, LED, photo absorption and luminescence

15

Quantum devices

Electron tunneling and tunnel junction, tunnel diode, nanoscale devices, single electron transistor

Kondisi thermal equilibrium, daerah deplesi, kapasitansi deplesi, karakteristik arus tegangan, efek bias Rapat arus, pemodelan, arus generasi dan rekombinasi, charge storage dan karakteristik transien, breakdown, fabrikasi dioda Schottky diode dan kontak ohmic: diagram band energi, karakteristik arus tegangan, hetero junction

Capaian Belajar Mahasiswa Mahasiswa memahami aturan perkuliahan: jadwal kuliah, ruang lingkup, danskema penilaian. Mahasiswa mengetahui sejarah perkembangan devais dan teknologi semikonduktor. Mahasiswa memahami konsep band energi suatu atom, pita konduksi dan valensi elektron, dan konsep band gap energy, konsep doping: donor dan aseptor elektron, dan efeknya terhadap karakteristik material serta diagram band energi Mahasiswa memahami mekanisme fisis pembawa muatan, konsep mobilitas, dan menghitung rapat arus. Mengetahui efek doping terhadap karakteristik arus. Mahasiswa memahami proses fisis pada suatu sambungan PN, karakteristik arus tegangan dan efek pemasangan bias pada sambungan PN Mahasiswa memahami rapat arus dioda, pemodelan, kondisi dadal/breakdown suatu sambungan PN, memahami proses pembuatan suatu dioda sambungan PN Mahasiswa memahami konsep fisis suatu sambungan metal dan semikonduktor, serta karakteristik arus tegangan. Mahasiswa memahami struktur dan karakteristik Junction FET, membandingkannya dengan struktur MOSFET, mengetahui band diagram dan karakteristik deplesinya Mahasiswa memahami cara kerja MOSFET, mode operasi mosfet berdasar tegangan gate, dan menguasai konsep tegangan threshold. Mahasiswa memahami dan mampu menjelaskan karakteristik MOSFET pada berbagai mode operasi: cut off, linier, dan saturasi. Mampu memodelkan dan mengetahui proses fabrikasi MOSFET. Mahasiswa memahami struktur dan prinsip dasar operasi transistor bipolar. Memahami karakteristik statis, mampu membedakan karakteristik short dan long channel BJT. Mahasiswa memahami respon frekuensi BJT, memahami mekanisme penguatan arus dalam BJT, dan proses dasar fabrikasi BJT. Mahasiswa memahami struktur, cara beroperasi, dan karakteristik power devices Mahasiswa memahami struktur, cara beroperasi, dan karakteristik optical devices Mahasiswa memahami konsep fisika kuantum yang mendasari pengembangan struktur, cara beroperasi, dan karakteristik quantum devices

Sumber Materi

Sze, Ch. 1

Sze, Ch. 2

Sze, Ch. 3

Sze, Ch. 4

Sze, Ch. 4

Sze, Ch. 7

Sze, Ch. 6

Sze, Ch. 6

Sze, Ch. 6

Sze, Ch. 5

Sze, Ch. 5

Sze, Ch. 5 Sze, Ch. 9

Sze, Ch. 8

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 108 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4241

Bobot sks: 3

Semester: 8

KK / Unit Penanggung Jawab: Elektronika

Sifat: Pilihan

Mikroelektronika RF dan Mixed Signal Nama Matakuliah

RF and Mixed Signal Microelectronics Introduksi, Rangkaian Kutub-2 RF:Parameter S (catttering) ; Jalur Transmisi : ‘Distributed element‘, Konstanta propagasi, Koefisien refleksi, ; Smith Chart, Teknik Penyesuaian impedansi; Penguat RF (Desain): Kestabilan, Penguatan Daya dan Penyesuaian Impedansi Simultan; Desain Penguat RF Sinyal Kecil; Penguat Derau Rendah (LNA), Teknik ‘Mixer’ Sinyal dan Osilator ; Pemrosesan Baseband (Introduksi), Modulasi / Demodulasi Dijital, Teknik Pengkodean Dijital, Osilator Terkontrol Numerik, Konversi Sinyal Dijital, Pemrosesan Sinyal Dijital Analog : DAC/ADC Kecepatan tingi, ‘Filtering’ FIR

Silabus Ringkas

Introduction, RF 2-port network: Parameter Z,Y,T (cascade), H(ybrid) and S(catttering), Parameter Conversion : S  parameter Z, Y, H, T, Implementation : Modeling of RF Transistor ; Transmisission Lines : Distributed element, Propagation Constant and Impedance Characteristics, reflection constant,  and VSWR; Bilinear transform : Z = f (), Smith Chart, Impedance Maching Techniques; Design RF Amplifier : Stability, Power Gain and techniques of impedance matching (simultaneous) ; Small signal RF Amplifier Design; Low Noise Amplifier (LNA) Design, Signal Mixing (Mixer) and Oscillator Design ; Baseband Processing (Introduction), Digital Modulation / Demodulation, Digital Coding/Decoding, NCO, Digital Frequency Conversion, Digital Signal Processing  Analog : High Speed DAC/ADC, FIR Filtering Introduksi : Elektronika RF/Microwave vs LF, Rangkaian Kutub-2, Kutub-2 di frekuensi tinggi/RF: Parameter S (catttering), Kutub-2 : Transistor RF (Model Rangkaian Pengganti), konvesi S  parameter Z, Y, H(ybrid) atau T(cascade), Jalur Transmisi : Distributed element ; Konstanta propagasi, (,  dan ), karakteristik impedansi (ZO), Koefisien refleksi,  dan VSWR; Bilinear transform : Pemetaan Z = f (), definisi Smith Chart, Penyesuaian impedansi : teknik penyesuaian shunt /seri : lumped, line-stub : Penguat RF : definisi kestabilan : Lingkaran Kestabilan (Stability Circle), Faktor Kestabilan , Deskripsi Penguatan (Gain) : Lingkaran Penguatan Daya (Gain Circle) ; Penyesuaian Impedansi ‘Conyugate’ Simultan (Simultaneous Conjugate Match), Desain Penguat RF Sinyal Kecil; Introduksi : Desain Penguat Derau Rendah (LNA), teknik mixer dan Osilator, Pemroses Baseband (Introduksi), Modulasi/Demodulasi Digital, Pengkodean Dijital Enkoder/Dekoder, NCO (Numerical Controlled Oscilator), DUC/DDC (Digital Up /Down Conversion), Pemroses Sinyal Dijital  Analog : DAC/ADC Kecepatan Tinggi, Penyaring FIR

Silabus Lengkap Introduction : Elektronika RF/Microwave vs LF, Mixed Signal Electronics ; RF 2-port Network : S(cattering) Parameter, Parameter conversion : S  parameter Z, Y, H(ybrid) atau T(cascade), implementation in RF Transistor Modeling; Transmission Line : Distributed element : Propagation constant (,  and ), characteristic impedance (ZO), reflection coefficient,  and VSWR ; Bilinear transform : Smith Chart definition ; Impedance matching, shunt /seri : lumped, line-stub ; RF Amplifier : Stability Circle, Gain Description, Gain Circle; Simultaneous Conjugate Match, Small Signal Amplifier Design; Theory and Design of Low Noise Amplifier (LNA), Mixer techniques : Diode Mixer, Balanced Mixer (I-Q), Oscilator technique ; Mixed Signal : Baseband Processing (Introduksi), Digital Modulation / Demodulation, Digital Encoder/Decoder, NCO (Numerical Controlled Oscilator), DUC/DDC (Digital Up /Down Conversion), Digital Signal Processing  Analog : High Speed DAC/ADC, FIR Filter

Luaran (Outcomes)

Mindseting difference (treatment) of RF Electronics vs ‘LF/DC’ Electronics, Becoming knowledgeable in the ‘mixed signal’ and its purpose in digital wireless telecommunication; Understand concept and know-how of Scattering parameter (S-parameter); Becoming know-how to use S-parameter in acquiring other circuit/network parameters : Z, Y, H(ybrid) and T (cascade) and implementing in extracting RF Transistor (FET) equivalent circuit model; Understand the ‘distributed element’ nature of RF circuit line and origin of transmission line propagation with its Propagation constant ((, ) and characteristics impedance (ZO). Know how to interpret information in Smith Chart and determine impedance, Z (or Y) from  thru Smith Chart and vice-versa, as well as the standing wave (VSWR) and position of load impedance or other point to maxima dan minima. Understand stability condition and description of power gain of RF Amplifier. Become proficient in design procedure of RF Amplifier : from stability condition to plotting gain circle. Know how to implement simultaneous conyugate matching procedure. Knowledgeable noise property of amplifier and know how to plot noise circle on Smith Chart. Proficient in design of LNA (low noise amplifier). Gaining experience in the use microwave circuit simulation-design tool of Microwave circuit: Libra/Touchstone and Volterra series based (CNL2) as well as another circuit-graphic based design tool. Becomes knowledgeable on mixer techniques and circuit from diode mixing to balanced I-Q quad cold-FET: Diode Mixer. Understand condition and various oscilator microelectronic circuits ; Mixed Signal : Baseband Processing (Introduksi), Digital Modulation/Demodulation, Digital Encoder/Decoder, NCO (Numerical Controlled Oscilator), DUC/DDC (Digital Up /Down Conversion), Digital Signal Processing  Analog : High Speed DAC/ADC, FIR Filter ;Becomes knowledgeable on the purpose digital baseband processing. Understand basics of various digital modulation : QPSK, 16-QAM and 64-QAM . Understand basics of digital encoding/decoding. Knowledgeable of both techniques of NCO generation – LUT (look up Table) and CORDIC, as well as DUC (digital up conversion) and DDC (Digital Down Conversion). Becomes knowledgeable on purpose and digital process of RF-IF signal. Know the principle of DAC/ADC technical aspect : a  (sigma)-(delta) ADC, - multistage converters and pipeline ADC. Knowledgeable on principle and various architectures of high speed DAC. Knowledgeable on FFT/IFFT, FIR Filtering

Matakuliah Terkait

EL2006 Electromagnetics EL2007 Signal and System

Prerequisite Prerequisite

Kegiatan Penunjang

Tugas, Simulasi-Desain, Pengukuran S-parameter

Pustaka

G. Vendelin, A.M Pavio, U.L. Rohde, "Microwave Circuit Design using Linear and Non-linear Techniques’. Wiley Interscience (terbaru)

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 109 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Handout/copy excerpt modul disusun Dosen pengajar , dibagikan waktu kuliah. Sklar, Digital Communications: Fundamentals and Applications, 2nd ed., Prentice Hall, 2001 (pustaka alternatif) Panduan Penilaian

PR/Tugas : 10 % , Mid-Term : 40 % , Final Design Project : 50%

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 110 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg# 1

Topik Introduction , 2-port network

Sub Topik Lecture plan ; Introduction, 2-port network : Concept of reflection-transmission, Sparameter, Conversion of parameter Z, Y, H, T  S, 2-port in Paralel, Seri and Cascade;

2

2-port network : RF Transistor Modeling

Equivalent circuit of FET /Bipolar ; Derivation of S-parameter as function equivalent circuit elements – intrinsic model and extrinsic model of FET

3

Transmission-line : Distributed Element

4

Smith Chart

5.

Smith Chart (Impedance Matching) 2-port RF Ampilifer –

Transmission lines : strip,CPW, Wavecuide etc Distributed Element Model : describe ZO, propagation constant :  =  + j, line impedance : Z = (), Z = f (ZL ,d), open/short stub, /4-transformer ; Standing wave : VSWR, Vmax, Vmin Bilinear Transform – Derivation of mapping of  = f(Z) (Smith Chart); Usage of Smith Chart : (d) Z   ,Y  , Y  Z, VSWR, determine maxima-minima, open /short stub, /4-transformer Impedance Matching: Impedance matching on Smith Chart RF Amplifier as 2-port : stability condition, Input/otput Stability (Stability circle)

6.

Power transfer definition : Conjugate match ; Simultaneous Conjugate Match; Description of Power Gain ; Power gain Circle : gain mapping on Smith Chart ; Mid-term exam

7

Power Gain ; Simultaneous Conjugate Match ;

8.

Mid-term

9

Design of RF Amplifier

Design of Small Signal RF Amplifier ; Use of Design Tool : LIBRA/Touchstone, CNL2, ADS; Noise figure of RF Amplifier ; Design of Low Noise Amplifier (LNA ); Plot of Noise Circle on Smith Chart

10

Mixer ; Oscillator

11

Baseband Processing;

Mixing theory , topology of diode mixer, balanced mixer, quad FET I-Q topology ; Oscillation condition, oscillator IC topology, PLL (Phase Lock Loop) : principle and working mechanism Baseband processing : principle & techniques : Digital Modulation : QPSK, 16-QAM, 64QAM, Digital Coding (Encoding, Decoding),

12

NCO (Numerical Controlled Oscilator), Digital Frequency Conversion Digital Signal Processing  Analog

Techniques of NCO : LUT (look up table), CORDIC, Digital Frequency Conversion : Digital Up Conversion (DUC), Digital Down Conversion (DDC) Digital to-from Analog Signal Processing techniques : High speed ADC /ADC; Principle of DAC/ADC :  (sigma)-(delta), - multistage converters and pipeline ADC. Knowledgeable on principle & architectures of high speed DAC

14

FFT/IFFT , FIR Filter

15

Final Design Project (seminar)

FFT/IFFT (Fast Fourier Transform Method), Principle of FIR Filtering Seminar of Final Design Project : Groups of student present their pre-design final project

13.

Capaian Belajar Mahasiswa Mindseting difference (treatment) of RF Electronics vs ‘LF/DC’ Electronics, & knowledgeable on ‘mixed signal’ and its purpose in digital wireless telecommunication; Understand concept and know-how of Scattering parameter (S-parameter); Becoming know-how to use S-parameter in acquiring other circuit/network parameters : Z, Y, H(ybrid) and T (cascade Know how to implement the S-parameter data in extracting RF Transistor (FET) equivalent circuit model

Understand the ‘distributed element’ nature of RF circuit line, derivation of transmission line propagation constant (, ) and ZO ; Know how of VSWR and to find maximaminima

Knowledgeable origin of Smith Chart and mapping plane of Z (or Y) to  and vice-versa ; Know how to use Smith Chart to find VSWR and position of maxima dan minima.

Understand in using Smith Chart in impedance matching : using open/short stub, /4-transformer and Become proficient on determining stability condition and using Smith Chart to plot stability circle in determing input/output stability of RF Amplifier Description of power gain of RF Amplifier. : from stability condition to plotting gain circle Know how to implement simultaneous conyugate matching procedure

Become proficient in design of small signal RF Amplifier Knowledgeable noise property of amplifier and know how to plot noise circle on Smith Chart. Proficient in design of LNA (low noise amplifier). Gaining experience in the use microwave circuit simulation-design tool of Microwave circuit: Libra/Touchstone and Volterra series based (CNL2) as well as another circuit-graphic based design tool. Becomes knowledgeable on mixer techniques and circuit from diode mixing to balanced I-Q quad cold-FET: Diode Mixer. Understand condition and topology of microelectronic oscilalator circuits Acquiring intoroductory knowledge of Baseband Processing ; Knowledgeable on DigitalModulation : QPSK, 16-QAM, 64-QAM ; Knowledgeable on Digital Encoding , Becomes knowledgeable NCO tmethods : LUT (Look up Table), CORDIC (Coordinate Rotation Digital Computer) ; Know how to digital up-down frequency conversion Knowledgeable on Digital Signal Processing to and from Analog signal Becomes knowledgeable on purpose and digital process of RF-IF signal. Know the principle of DAC/ADC technical aspect : a  (sigma)-(delta) ADC, - multistage converters and pipeline ADC. Knowledgeable on principle and various architectures of high speed DAC. Knowledgeable on FFT/IFFT conept and digital FIR Filtering Student groups presents their preparation and pre-design of their chosen topic of final design project

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 111 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

SumberMateri

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Sarjana Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4121

Bobot sks: 3

Semester: 7

Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Pilihan

Perancangan Sistem Embedded Nama Matakuliah Embedded System Design Pada kuliah ini diajarkan tentang sistem embedded, sistem real time, real time OS dan perancangan sistem embedded Silabus Ringkas

Silabus Lengkap

Peranan sistem embedded , sistem real time, model state chart, model data flow diagram , real time operating system, mikroprosesor 32 bit

Matakuliah Terkait

16. Menggunakan model state chart dan DFD untuk membuat software sistem embedded 17. Membuat software real time 18. Mampu menggunakan mutex dan semaphore pada RTOS 19. Mengatasi masalah shared data 20. Membuat fungsi reentrant 21. Menggunakan toolchain untuk prosesor ARM 22. Penjadwalan real time 23. Membuat sistem real time berbasis RTOS EL3014 Sistem Mikroprosesor Prasyarat EL4122 Prakt.Peranc. Sistem Embedded Bersamaan

Kegiatan Penunjang

Praktikum Sistem Embedded

Pustaka

Miro Samek, Practical UML Statecharts in C/C++, Elsevier, 2009 Peter Marwedel, “Embedded System Design Kim Fowler, Misson-Critical And Safety-Critical Systems Handbook: Design And Development for Embedded Applications, Elsevier, 2010 Kim R. Fowler, What Every Engineer Should Know About Developing Real-Time Embedded Products, Taylor * Francis Group LLC, 2008 Daniel Lewis, Fundamentals of Embedded Software: Where C and Assembly Meet, Pearson Richard Barry, Using the FreeRTOS Real Time Kernel - A Practical Guide - LPC17xx Edition. [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung])

Panduan Penilaian

[Termasuk jenis dan bentuk penilaian]

Luaran (Outcomes)

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 112 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa

 Pengenalan

1

  Pemodelan

2

State Chart

Data Flow Diagram

3

Arsitektur Software

4



Membuat software berbasis state chart



Membuat DFD sebuah sistem



Membuat software berbasis DFD

 

Arsitektur super loop Arsitektur foreground background Arsitektur multithreading Pengenalan prosesor ARM Tahu cara menggunakan prosesor 32 bit dan periferalnya Membuat software pada prosesor 32 bit Menggunakan toolchain untuk membuat software Context Switching, semaphore, mutex, deadlock, priority inversion, pre-emptive scheduler, cooperative scheduler Menggunakan open source RTOS untuk membuat sistem embedded Mengetahui konsep shared data / critical section / atomic code Membuat software dengan shared data yang aman Mengetahui terjadinya reentrancy Teknik membuat fungsi yang reentrant Menguji software dengan unit test Melakukan manajemen pengembangan software dengan tools source tracking / revision control system

  Prosesor 32 bit

5

Pengenalan

 

Toolchain

6

 

Real Time OS

7

Dasar RTOS

8

Real Time Scheduler

9

Open Source RTOS

   

10

Shared Resource

Shared Data

 

Reentrant Function

11

12

Tools

Unit Test

  

Source Code Management

13



Embedded System Project

 14 15

Multicore Embedded System

Pengenalan Implementasi

   

Sumber Materi

Memahami peranan sistem embedded Memahami sistem real time Membuat hierarchical state chart [Miro Samek]

[Yourdon]

[lewis]

Datasheet ARM

[Lewis] [Lewis] [Marweddel] [Richard Barry]

[Lewis]

[Lewis]

Merancang sistem real time dengan tools DFD & State Chart Pengujian Sistem Arsitektur Parallax Propeller Bahasa SPIN Toolchain Parallax Scheduling

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 113 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4238

Bobot sks: 3

Semester: 8

KK / Unit Penanggung Jawab: Elektronika

Sifat: Pilihan

Perancangan Sistem VLSI Nama Matakuliah

VLSI System Design [Uraian ringkas silabus matakuliah dalam Bahasa Indonesia (maksimum 30 kata)]

Silabus Ringkas

This course has an objective to provide student with the capabily in designing Application Specific Integrated Circuits (ASICs). In this course, ASICs implementation is more focus on Semicustom Technology using CMOS Standard Cell. The course covers the introduction of various VLSI Technology Implementation and its design flow. The design process includes Architecture Design, Logic Synthesis, Placement and Routing, Design Testing and Verification. The design also involves back annotation and static timing analysis. In order to have complete understanding of design flow, the student will design medium size ASICs as a project. [Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)]

Silabus Lengkap [Uraian lengkap silabus matakuliah dalam Bahasa Inggris (maksimum 100 kata)]

Luaran (Outcomes)

Matakuliah Terkait

1. Participants understand the methodology of VLSI system design. 2. Participants understand the factors that affect the performance of VLSI systems. 3. Participants can design VLSI systems. 4. Participants can use HDL language for VLSI design systems. 5. Participants can work together in a group design. 6. Participant can implement their design in FPGA EL2002 Sistem Digital Prasyarat [Kode dan Nama Matakuliah] [Prasyarat, bersamaan, terlarang]

Kegiatan Penunjang

[Praktikum, kerja lapangan, dsb.]

Pustaka

Digital Integrated Circuits (2nd Edition) by Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic CMOS VLSI Design: A Circuits and Systems Perspective (3rd Edition) by Neil H.E. Weste and David Harris Modern VLSI Design: System-on-Chip Design (3rd Edition) by Wayne Wolf (Link..)

Panduan Penilaian

Assignments (20%), Midterm project (30%), Final project (50%)

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 114 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

1

2

Topik

Sub Topik

Capaian Belajar Mahasiswa

Sumber Materi

Introduction to VLSI Technology

 Introduction, overview of VLSI Technology Advancement, Technology Scaling and Design Parameters  VLSI Technology Performance Parameters (Cost, Power Consumption, Speed, Size)

 Able to describe technology principles and its applications  Understand VLSI technology design parameters

[Uraikan rujukan terhadap pustaka (bab, sub-bab)]

VLSI Technology Implementation

 Full Custom and Semicustom Technology (Standard Cell Circuit and layout Design)  FPGA Technology  FPGA Technology  Design Level and The Complete Design flow in ASIC from Design Specification to Layout  Design Level and The Complete Design flow in ASIC from Design Specification to Layout  Adder and Substractor  Multiplier and Divisor  Complex architecture (CORDIC)  Complex architecture (CORDIC)  Architecture Parameters and Performance (Latency, Throughput and Delay)

3

 VLSI Technology Implementation  ASIC Design Flow

4

 ASIC Design Flow  ASIC Arithmetic Architecture Design

5

ASIC Arithmetic Architecture Design

6

 ASIC Arithmetic Architecture Design  ASIC System Architecture Design

7

ASIC System Architecture Design

 Parallel and Pipeline Architecture  Architecture for Area

8

ASIC System Architecture Design

 Architecture for Area  Architecture for timing

9

ASIC Physical Design

Logic Synthesis

10

ASIC Physical Design

 Floorplaning  Placement and Routing

11

Design Verification

 Static Timing Analysis  Design for Manufacturing

12

 Design Verification  RTL Design

 Design for Manufacturing  Behaviour Design

13

RTL Design

Combinational Design Principle and Guideline

14

 RTL Design  Project

 Sequential Design Principle and Guideline  Design for synthesis and Constraint

 Students will learn the implementation technology alternative in digital technology  Compare the benefit in performance and design cost  To introduce an FPGA technology and its design methodology  To introduce an FPGA technology and its design methodology  To learn design flow of ASIC digital integrated circuits particularly using standard cell technology To learn design flow of ASIC digital integrated circuits particularly using standard cell technology To learn design flow of ASIC digital integrated circuits particularly using standard cell technology  To learn design flow of ASIC digital integrated circuits particularly using standard cell technology  Learn the principles and its application in ASIC design  Students will learn how to design a parallel and pipeline architecture, measure its performance, benefit and drawback of this architecture  Students will learn the architecture design technique to achieve small design size  Students will learn the architecture design technique to achieve small design size  Students will learn the architecture design technique to achieve target design speed  Develop capabilities in using modern CAD tools for complete standard cell based implementation -- initial design entry to layout.  Specify design constrain to achieve design target  Analyse the result for timing, area, DRC, ERC and LVS  Develop capabilities in using modern CAD tools for complete standard cell based implementation -- initial design entry to layout.  Specify design constrain to achieve design target  Analyse the result for timing, area, DRC, ERC and LVS  Learn how to analyze the design timing  Consider the design for timing closure  Learn how to design test scenario for manufacturing test  Learn how to design test scenario for manufacturing test  Develop capabilities in using verilog HDL language for complete system design -- initial specifications to design implementation in FPGA. Develop capabilities in using verilog HDL language for complete system design -- initial specifications to design implementation in FPGA  Develop capabilities in using verilog HDL language for complete system design -- initial specifications to design implementation in FPGA  Provide students an opportunity to

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 115 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

15

Project

Project Formulation, Design, Implementation and Verification

practice team work and communicate their design experience orally and in writing.  Provide students an opportunity to practice team work and communicate their design experience orally and in writing.  Learn to design a complete system

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 116 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro & Informatika

Silabus dan Contoh Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4122

Bobot sks: 1

Semester: 7

KK / Unit Penanggung Jawab: Prodi Teknik Elektro

Sifat: Pilihan

Praktikum Perancangan Sistem Embedded Nama Matakuliah

Silabus Ringkas

Silabus Lengkap

Embedded System Design Laboratory Menguasai toolchain ARM 32 bit. Membuat aplikasi USB Membuat aplikasi real time tanpa OS Menguasai sistem operasi real time FreeRTOS Membuat aplikasi real time berbasis FreeRTOS Menguasai toolchain multicore embedded. Membuat aplikasi berbasis multicore embedded

Menguasai toolchain ARM 32 bit. Membuat aplikasi real time tanpa OS Membuat aplikasi USB Mengukur waktu respon sistem real time Menguasai sistem operasi real time FreeRTOS Membuat aplikasi real time berbasis FreeRTOS Menguasai toolchain multicore embedded. Membuat aplikasi berbasis multicore embedded

Luaran (Outcomes)

56.

Matakuliah Terkait

EL4121 Perancangan Sistem Embedded EL3214 Prakt. Sistem Mikroprosesor

Bersamaan Prasyarat

Kegiatan Penunjang

Pustaka

Panduan Penilaian

Lab preparation and conduct (42%), Lab Reports (42%), Lab Note Book (15%), Review Exams (11%)

Catatan Tambahan

Mg# 1

Topik

Sub Topik

Capaian Belajar Mahasiswa

Dasar ARM 32 bit

 Toolchain ARM 32 bit

Compile dan upload program ke ARM 32 bit Menguasai Interfacing digital dan analog pada ARM32 Membuat aplikasi real time tanpa OS dengan model state chart

 Interfacing 2

Aplikasi real time tanpa OS

 Membuat aplikasi  Mengukur waktu

3

Aplikasi khusus

respon sistem real time Membuat aplikasi USB Membuat aplikasi Flash

4

5

6

7

Sistem operasi real time FreeRTOS Aplikasi real time berbasis RTOS



Toolchain multicore embedded.



Aplikasi berbasis multicore embedded





Sumber Materi

Mengukur waktu respon sistem real time dengan alat ukur Menjalankan aplikasi berbasis USB pada board ARM32 Membuat aplikasi yang membaca Flash memory dengan file system FAT / NTFS

Menguasai sistem operasi real time FreeRTOS Membuat aplikasi real time berbasis FreeRTOS dengan model state chart Compile dan upload program ke prosesor multicore Menguasai interfacing pada prosesor multicore Membuat aplikasi real time berbasis prosesor multicore

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 117 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4237

Bobot sks: 3

Semester: 8

KK / Unit Penanggung Jawab: Elektronika

Sifat: Pilihan

Teknologi IC Nama Matakuliah

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait Kegiatan Penunjang

Pustaka

Panduan Penilaian

IC Technology Tinjauan material, divais, dan proses semikonduktor; penumbuhan kristal; oksidasi silikon; fotolitografi dan etsa; difusi dan implantasi ion; deposisi lapisan tipis; proses fabrikasi BJT dan MOSFET; integrasi proses; simulasi proses; manufaktur IC Overview of semiconductor materials, devices, and process; crystal growth; silicon oxidation; photolithography and etching; diffusion and ion implantation; thin film deposition; BJT and MOSFET fabrication process; process integration; process simulation; IC manufacturing Tinjauan material, divais, dan teknologi proses semikonduktor. Kunjungan ke clean-room (lab) memahami proses fabrikasi NMOSFET. Studi material fokus penumbuhan kristal dan wafer silikon. Teknologi proses silikon dasar; oksidasi silikon, fotolitografi, etsa, difusi, implantasi ion, deposisi lapisan tipis dan epitaksi. Fabrikasi chip rangkaian terintegrasi (IC) dengan teknologi BJT, MOSFET/MESFET, dan MEMS. Simulasi proses. Manufaktur IC menjelaskan uji elektrik, pengemasan, kontrol proses secara statistik, dan manufaktur yang diintegrasikan komputer. Trend dan tantangan masa depan tentang integrasi dan system-on-a-chip Overview of semiconductor materials, devices & process technology. A clean-room (lab) visit to understand N-MOSFET fabrication process. Study of materials focus on silicon crystal growth and wafer. Basic silicon processess; silicon oxidation, photolithography, etching, diffusion, ion implantation, thin film deposition and epitaxy. Fabrication of integrated circuit (IC) chips using BJT, MOSFET/MESFET, and MEMS technologies. Process simulation. IC manufacturing describes electrical testing, packaging, statistical process control, and computer-integrated manufacturing. Future trends and challenges in integration and system-on-a-chip Setelah mengikuti kuliah ini dengan penuh, mahasiswa mampu : memahami teknologi proses fabrikasi divais semikonduktor & rangkaian terintegrasi (IC), khususnya teknologi MOSFET dan bipolar. melakukan simulasi proses semikonduktor. memahami manufaktur IC After fullly attending this course, students have capabilities : to understand fabrication process technology of semiconductor devices and integrated circuit (IC), especially MOSFET and bipolar technology. to do simulation of semiconductor processes. to understand IC manufacturing. EL4129 Devais Semikonduktor Prasyarat [Praktikum, kerja lapangan, dsb.] G.S. May & S.M. Sze: Fundamentals of Semiconductor Fabrication, John Wiley & Son, 2004. ISBN. 9812-53-072-X S.A. Campbell: The Science and Engineering of Microelectronic Fabrication, Oxford University Press, 1996. ISBN. 0-19510508-7 R. R. Tummala: Fundamentals of Microsystem Packaging, McGraw-Hill, 2001. ISBN. 0-07-137169-9 Tugas/Kuis 10% Praktikum 20% UTS 30% UAS 40%

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 118 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

1

Topik

Sub Topik

Capaian Belajar Mahasiswa

Sumber Materi

Overview of Semiconductor History, Material, Devices, & ICs.

Semiconductor history, material, devices, and ICs. Moore Law. NMOSFETbased IC Design & Fabrication Sequences.

May & Sze, Bab 1

NMOSFET Fabrication & Clean room visit

Wafer cleaning, field oxidation, lithography, etch, gate oxidation, source & drain diffusion, contact hole, metallization. Silicon crystal growth material, technique, dopant, and characterization. Thermal oxidation process, impurity, properties, quality, and characterization. Design software, maskmaking, photolithography & etching.

Mengetahui sejarah penemuan transistor semikonduktor dan bagaimana kemajuan elektronika mengubah dunia. Mengenal bahan dan proses pembuatan divais semikonduktor. Memahami urutan fabrikasi transistor NMOS secara umum dan singkat. Mengunjungi fasilitas fabrikasi IC di lab. Memahami teknik penumbuhan kristal silikon sehingga menghasilkan wafer silikon yang berkualitas. Memahami teori, proses fabrikasi dan karakterisasi dari lapisan silikon dioksida berkualitas baik. Menjelaskan tahap mulai perancangan hingga pemindahan pola kepada lapisan di permukaan substrat semikonduktor. Memahami teori, proses fabrikasi dan karakterisasi dari lapisan difusi tipe-N & tipe-P.

May & Sze, Bab 2

Memahami teori, proses fabrikasi dan karakterisasi dari lapisan tipe-N dan tipe-P yang dibentuk dari teknik implantasi ion.

May & Sze, Bab 7

Process modelling, simulation, and SUPREM exercise. Epitaxial growth techniques: CVD&MBE, structures & defects, dielectric deposition, polysilicon deposition, and metallization.

Mempelajari dan berlatih memodelkan suatu proses fabrikasi dengan simulator SUPREM-III. Mengenal teknik deposisi lapisan tipis secara epitaksi, CVD dan PVD. Memahami kualitas lapisan tipis dan proses fabrikasi isolator, polysilicon gate dan lapisan metal pada IC.

May & Sze, Bab 2-9

Bipolar Transistor Fabrication

Epitaxial layer, burried layer, island isolation, base & emitter formation, resistor, diode & capacitor fabrication.

May & Sze, Bab 9

Process Integration; Contact & Interconnect

Contact & interconnect, passive components, bipolar technology, MOSFET technology, MESFET technology, and MEMS technology. Single chip package, types, materials, process and properties. Multichip modules, type, design & technology Electrical testing, statistical process control, experimental design, yield, and computer integrated manufacturing. Challenges for integration, System-on-a-Chip, etc.

Mempelajari proses fabrikasi transistor bipolar mulai dari substrat silikon hingga terbentuk divais transistor berikut komponen resistor, dioda dan kapasitor. Memahami pentingnya peran kontak dan interkoneksi agar divais yang difabrikasi menjadi rangkaian terintegrasi (IC). Memahami integrasi proses pada teknologi bipolar, MOSFET, MESFET, dan MEMS. Mempelajari teknik pengemasan IC agar siap digunakan untuk berbagai aplikasi. Mempelajari teknik proses kontrol, pengemasan dan pengujian IC agar siap digunakan untuk berbagai aplikasi.

May & Sze, Bab 10 Tummala, Bab

Membahas peluang dan tantangan teknologi IC di masa depan.

May & Sze, Bab 11

2

3

Crystal Growth and Silicon Wafer Silicon Oxidation

4 Pattern Transfer 5 Diffusion 6 Ion Implantation 7 8 9

UTS Process Simulation (SUPREM) Thin Film Deposition: Epitaxy, CVD & PVD

10

11

12

IC Manufacturing; IC Packaging 13

14

15

IC Manufacturing; Test & Reliability Future Trends and Challenges

Diffusion equation & profiles, evaluation of diffused layer, lateral diffusion. Ion distribution, stopping & channeling, implant damage and annealing.

www.

May & Sze, Bab 3 May & Sze, Bab 4 dan 5

May & Sze, Bab 6

May & Sze, Bab 8

May & Sze, Bab 9

May & Sze, Bab 10 Tummala, Bab

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 119 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4233

Bobot sks: 3

Semester: 8

KK / Unit Penanggung Jawab: Sistem Kendali dan Komputer

Sifat: Wajib

Dasar Sistem dan Kendali Cerdas Nama Matakuliah Introduction to Intelligent Systems and Control

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes)

Intro to Inteligent Systems/Machines and Intelligent Control, Fuzzy Set Theory, Fuzzy rules, Fuzzy Reasoning, Fuzzy Inference Systems, Fuzzy Control, Biological Neural Networks, Neuron Model and Computation, Perceptron, Supervised Learning, Adaptive Linear Networks, Multilayer Feedforward Neural Networks, BackPropagation, Applications of Intelligent Systems and Intelligent Control, Matlab Implementation, Robotics Intro to Inteligent Systems/Machines and Intelligent Control, Fuzzy Set Theory, Fuzzy rules, Fuzzy Reasoning, Fuzzy Inference Systems, Fuzzy Control, Biological Neural Networks, Neuron Model and Computation, Perceptron, Supervised Learning, Adaptive Linear Networks, Multilayer Feedforward Neural Networks, BackPropagation, Applications of Intelligent Systems and Intelligent Control, Matlab Implementation, Robotics Intro to Inteligent Systems and Intelligent Control, Characteristics of Intelligent Systems, Fuzzy Set Theory: basic definition and terminology, membership function(MF), fuzzy set theoritic operations, membership function formulation, MF of two dimension, Fuzzy Rules : fuzzy relations, fuzzy relation composition, fuzzy if-then rules, Fuzzy reasoning : compositional rule of inference, fuzzy reasoning, Fuzzy Inference Systems (FIS), Mamdani FIS model, Fuzzy Control : fuzzy control architecture and components, fuzzification, defuzzification, fuzzy rules, fuzzy inference mechanism, fuzzy control structure, fuzzy rules development, fuzzy embedded systems, fuzzy control applications, Biological Neural Networks, Neuron Model and Computation, Artificial Neural Networks (ANN) Topology, Perceptron, Supervised Learning, Perceptron Training, Adaptive Linear Networks, Delta Rule, Multilayer Feedforward Neural Networks (MFNN), MFNN forward computation, MFNN backward computation and Backpropagation, MFNN learning mechanism, ANN application in pattern recognitions and controls, Matlab implementation, Intro to mobile robots as a platform of intelligent systems Intro to Inteligent Systems and Intelligent Control, Characteristics of Intelligent Systems, Fuzzy Set Theory: basic definition and terminology, membership function(MF), fuzzy set theoritic operations, membership function formulation, MF of two dimension, Fuzzy Rules : fuzzy relations, fuzzy relation composition, fuzzy if-then rules, Fuzzy reasoning : compositional rule of inference, fuzzy reasoning, Fuzzy Inference Systems (FIS), Mamdani FIS model, Fuzzy Control : fuzzy control architecture and components, fuzzification, defuzzification, fuzzy rules, fuzzy inference mechanism, fuzzy control structure, fuzzy rules development, fuzzy embedded systems, fuzzy control applications, Biological Neural Networks, Neuron Model and Computation, Artificial Neural Networks (ANN) Topology, Perceptron, Supervised Learning, Perceptron Training, Adaptive Linear Networks, Delta Rule, Multilayer Feedforward Neural Networks (MFNN), MFNN forward computation, MFNN backward computation and Backpropagation, MFNN learning mechanism, ANN application in pattern recognitions and controls, Matlab implementation, Intro to mobile robots as a platform of intelligent systems After completing this course students should able to : Compare crisp set and fuzzy set, Formulate fuzzy membership function, Understand continuous and discrete fuzzy set, Perform various fuzzy set operations, Compute fuzzy relation composition, Compute membership function of fuzzy rules, Understand fuzzy reasoning, Compute Fuzzy Inference System, Design fuzzy logic control, Determize fuzzy rules in fuzzy control, Program fuzzy concepts in Matlab, Understand neuron model, Compute neuron output given an input signal, perform perceptron training, understand adaptive networks, understand supervised learning, comprehend MFNN, perform MFNN forward computation, perform Backpropagation to update MFNN weights, comprehend fuzzy embedded control, program fuzzy control on microprocessor/microcontroller, understand the use of ANN in pattern recognition and in control, compare model based design with intelligent systems methods, use Fuzzy Logic Toolbox in Matlab, use Neural Networks Toolbox in Matlab, implement fuzzy inference system in embedded microcontroller/microprocessor, Understand basic pinciples of mobile robots

Matakuliah Terkait

EL3015 Sistem Kendali EL3014 Sistem Mikroprosesor

Kegiatan Penunjang

Assignment, programming and experimental project

Pustaka

Panduan Penilaian

Prasyarat Prasyarat

Neurofuzzy and Soft Computing : A computational Approach to Learning and Machine Intelligence, J.S.R. Jang, C.T. Sun, E. Mizutani, Prentice-Hall, 1997 Fuzzy Control and Identification, J. Lily, 2010 Neural Networks : A comprehensive Foundation, S. Haykin, 2002 Tugas Ujian Tertulis Projek

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 120 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa

Sumber Materi

1

Intro to the course

 Course objective, course syllabus  Intro to intelligent systems  Characteristic of intelligent systems

 Understand basic principles of intelligent system method  Compare model based design and intelligent system method

Nurofuzzy and Soft-computing

2

Fuzzy set

 Understand fuzzy set  Characterize fuzzy set using membership function  Provide examples of fuzzy set  Compare crisp and fuzzy sets

Nurofuzzy and Soft-computing

3

Fuzzy set operations MF formulation

 Perform fuzzy set operations  Formulate MF

Neurofuzzy and Soft-computing

4

Matlab programming of fuzzy concepts

5

Fuzzy Relation and Fuzzy Rules

6

Fuzzy Reasoning and Its Matlab program

7

Fuzzy Inference System (FIS)

8

 Basic definition and terminology  Membership function  Continuous and Discrete fuzzy set  Fuzzy set examples  Fuzzy intersection, fuzzy union, fuzzy complement, fuzzy subset  MF shape and formulation  Matlab code of MF  Fuzzy set operation in Matlab  Fuzzy relation  Fuzzy composition : maxmin composition, maxproduct composition  Fuzzy rules  Linguistic variables  Fuzzy reasoning  Matlab code for fuzzy relations, fuzzy rule composition

 Program MF in matlab  Program fuzzy set operation in Matlab  Understand fuzzy relation and its MF  Perform fuzzy composition  Determine MF of fuzzy rule  Derived composite linguistic values from primary linguistic values

Neurofuzzy and Soft-computing

Neurofuzzy and Soft-computing

 Understand fuzzy reasoning  Program fuzzy relation, fuzzy rule composition in Matlab

Neurofuzzy and Soft-computing

 FIS with single antecedent  Mamdani FIS with multiple antecedents

 Compute FIS for single and multiple antecedents  Perform graphical representation of FIS with two-inputs and one output

Neurofuzzy and Soft-computing

Fuzzy Control

 Fuzzy control architecture  Fuzzy control components : fuzzification, defuzzification, fuzzy rules, fuzzy inference

 Comprehend fuzzy control  Compute defuzzification

Neurofuzzy and Soft-computing Fuzzy Control and Identification

9

Fuzzy Control Design and Matlab

 Fuzzy rules construction  Fuzzy control in Matlab

10

Fuzzy control design examples and fuzzy embedded control

11

Intro to Mobile robots

12

Biological Neural Networks and neuron Model

13

ANN learning

14

Feedforward Multilayer Neural Networks and Backpropagation

15

ANN training with Backpropagation and Applications

 Fuzzy control applications  Fuzzy rules examples  Fuzzy embedded processor  Fuzzy programming  Intro to mobile robots  Robot sensor  Robot control  Biological neural networks  Neuron model and computation  Supervised learning  Perceptron model and perceptron learning algorithm  Adaptive linear networks  Matlab examples  MLNN topology  MLNN forward computation  MLNN backward computation  Matlab examples  MLNN training  ANN applications in pattern recognition and in control

 Develop fuzzy rules based on ideal respons  Design fuzzy control using Matlab  Design fuzzy control  Understand fuzzy embedded processor/controller  Fuzzy programming on microcontroller  Undersand mobile robot  Understand robot sensor  Understand robot control  Understand basic principles of biological neural networks  Comprehend neuron model  Compute output of nuron model given input signal  Understand supervised learning  Train perceptron to form classification  Comprehend adaptive linear networks and its learning algorithm

Fuzzy Control and Identification

Fuzzy Control and Identification

Mobile robot

Neural Networks : A Comprehensive Foundation

Neural Networks : A Comprehensive Foundation

 Comprehend MLNN  Perform forward computation  Perform back-propagation

Neural Networks : A Comprehensive Foundation

 Understand ANN training mechanism  Understand ANN applications

Neural Networks : A Comprehensive Foundation

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 121 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4124

Bobot sks: 1

Semester: 7

KK / Unit Penanggung Jawab: Sistem Kendali & Komputer

Sifat: Pilihan

Praktikum Sistem Kendali Digital Nama Matakuliah

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

Digital Control System Lab Mahasiswa melakukan praktek realisasi sistem kendali digital pada sebuah motor DC dengan perangkat digital mikrokomputer (PC) dan mikroprosesor dan digital interfacing. Mahasiswa melakukan proses identifikasi motor DC, memilih periode sampling, melakukan simulasi sistem kendali analog/digital, merancang pengendali PID digital, merealisasikan pengendali dgnPC dan uP, kemudian membandingkan antara hasil perhitungan, simulasi, dan pengukuran langsung. Modeling, Analysis, and Simulation of Digital Control System with MATLAB, Introduction to implementation equipment, Digital Speed Control System, Digital Position Control System. Menentukan model objek kendali, Analisis dengan Root Locus, Simulasi Sistem Kendali Digital dengan Simulink, Mengenal Perangkat Lunak Akusisi data, Mengenal Modular Sistem Servo MS150, H-Bridge dan pengkondisi sinyal, Pemakaian MS-150 sebagai alat praktikum Sistem Kendali Digital, Mengenal Mikrokontroler dan pemrogramannya, Kalibrasi alat untuk sistem kendali kecepatan Digital , Rangkaian sistem kendali kecepatan Digital, Sistem Kendali Kecepatan Digital lingkar tertutup dengan pengendali PID, Kalibrasi alat untuk sistem kendali posisi digital, Rangkaian sistem kendali posisi digital, Pengenalan sistem kendali posisi digital, Sistem Kendali Posisi dengan pengendali PID. Model and validate plant transfer function Analyse control system using Root Locus, Simulate digital control system by MatlabSimulink, Explain the characteristic of H-Bridge, Signal Conditioning, Modular Servo System MS-150, Implement digital control algorithm in microcontroller system, Calibrate the equipment for Digital Speed control system experiment, Implement the Digital speed control system and Digital posisiton control system using PID controller. Mahassiwa mampu mengaapresiasi perbedaan dan kemiripan antara teori, simulasi, dan realisasi sistem kendali digital Mahasiswa mampu merangkai dan mengukur kinerja sistem kendali digital dengan alat ukur Mahasiswa mampu menggunakan MATLAB dan Simulink untuk validasi perhitungan/rancangan sistem kendali digital Mahasiswa mampu merangkai sistem kendali digital menggunakan mikroprosesor maupun mikrokomputer EL4123 Sistem Kendali Digital Bersamaan EL3215 Praktikum Sistem Kendali Prasayarat

Kegiatan Penunjang

[Praktikum, kerja lapangan, dsb.]

Pustaka

Modul Praktikum Sistem Kendali Digital [Pustaka Utama] Katsuhiko Ogata, Discrete Time Control System, Second Edition, Prentise Hall 1995, [Pustaka Utama] [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung])

Panduan Penilaian

Lab preparation and conduct (42%), Lab Reports (42%), Lab Note Book (15%), Review Exams (11%)

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 122 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

1

2

3

4

5

6

Topik

Digital Control System Simulation

Introduction to implementation equipment

Implemention of the digital control algorithm using microcontroller system

Sub Topik

 Plant Transfer Function  Root Locus Analysis,  Digital Control System Simulation using Simulink  Introduction to Modular Servo System MS-150  MS-150 as Digital Control System implementation Equipment  Introduction of microcontroller system as a digital controller  Interfacing microcontroller with H-bridge and signal conditioning  Programming microcontroller system  Implementation of digital control algorithm  Data communication with PC

Data Acquisition

 Data Acquisition software  Data communication PC and microcontroller system  Data acquisition of digital control system

Implementation of Digital Speed Control System

 Equipment Calibration for Digital Speed Control System,  Circuit wiring of Digital Speed Control System,  Close Loop Digital Speed Control System with PID

Implementation of Digital Posistion Control System

 Equipment Calibration for Digital Position Control System,  Circuit wiring of Digital Position Control System,  Introduction to Digital Position Control System,  Digital Position Control System with speed feedback,  Digital Position Control System using PID controller.

Capaian Belajar Mahasiswa

 Explain how to model the plant in digital transfer function  Apply Root Locus method to analyse digital control system  Simulate digital control system using Matlab-Simulink  Describe the type of Modular MS-150, H-bridge, and Signal conditioning  Describe input-output relation of Modular MS-150, H-bridge, and Signal conditioning  Explain the microcontroller system as a digital controller  Explain the interface between microcontroller with H-bridge and signal conditioning  Produce a microcontroller code as digital control implementation  Perform wiring circuit of digital control system  Set up data communication to PC  Explain the data acquisition feature  Set up data communication between PC and microcontroller  Perform data transfer between PC and microcontroller  Prepare and calibrate the equipment for Digital speed control system implementation  Perform the circuit wiring of Digital speed control system  Implement the close loop Digital speed control system with PID controller

 Prepare and calibrate the equipment for Digital posistion control system implementation  Perform the circuit wiring of Digital position control system  Implement the close loop Digital position control system with PID controller

Sumber Materi

Modul 1

Modul 2

Modul 3

Modul 4

Modul 5

Modul 6

7 8 9 10 11 12 13 14 15

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 123 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4126

Bobot sks: 3

Semester: 7

KK / Unit Penanggung Jawab: Sistem Kendali dan Komputer

Sifat: Pilihan

Robotika Nama Matakuliah

Silabus Ringkas

Silabus Lengkap

Robotics 1) Pendahuluan:, 2) Sistem Mekanik Perpindahan Gerak Robot , 3)Model Kinematika maju dan kinematika balik , 4)Model Dinamik , 5)Perencanaan Gerak Robot : Manipulator dan Bergerak (roda dan kaki) , 6)Sensor Robot 7)Sistem Kendali Robot : Desain dan Implementasi 1) Introduction:, 2) Robot Locomotion, 3) kinematics and invers kinematics model, 4) Dynamic Model, 5) Robot Motion Planning : Manipulators and Mobile (wheel and leg), 6) Robot Sensors 7) Robot Control Systems: Design and Implementation 1) Pendahuluan:Sejarah, Definisi, Tugas, aplikasi (industry, ;layanan), Tipe robot, komponen, 2) Sistem Mekanik Perpindahan Gerak robot : tipe perpindahan, konsep link//bar-joint, Transmisi daya : roda gigi, tali/sabuk, rack-pinion, Sistem Aktuator : Elektrik, Pneumatic, hidrolik, Struktur Robot : Manipulator dan Robot Bergerak (roda dan kaki), Derajat Mobilitas , 3)Model Kinematika : Konsep Kerangka Koordinat, Matriks rotasi Dasar, Vektor Translasi dan Transformasi Homogen, Kinematika dan Kinematika balik Robot manipulator (metoda Denavit Hatenberg) dan Robot Roda , 4)Model Dinamik : Pendekatan melalui Representasi Model Kinematika, Pendekatan Geometri, studi kasus robot 3 DOF, 5)Perencanaan Gerak Robot : Robot manipulator dan robot roda 6)Sensor Robot : proprioceptive-exteroceptive, active-pasive, contact-non contact 7)Sistem Kendali Robot : Desain dan Implementasi robot Roda atau kaki 1) Introduction: history, definition, task, applications (industrial, services), robot type, robot components, 2) Robot Locomotion : type of movement, the concept of link/bar-joint, Power transmission : gear, belt, rack-pinion, Actuators: Electric, Pneumatic, hydraulic, Robot structure : Manipulator and mobile (wheels and legs), Degree of Mobility, 3) Kinematics Model : coordinates Framework Concepts, Basic rotation matrix, translation and transformation of Homogeneous Vectors, kinematics and invers kinematics : robot manipulator (Denavit-Hatenberg method) and robot wheels, 4) Dynamics Model: Lagrange Euler formulation : Model reprsentation approach through kinematics and geometry approach, case study 3 DOF robot 5) Robot Motion Planning: manipulator and wheels, 6) robot Sensor: proprioceptiveexteroceptive, active-passive , contact- non-contact 7) Robot control systems: design and implementation of robot wheels or legs

Luaran (Outcomes)

Memahami definisi robot dan penggunaannya, mampu menjelaskan komponen pembentuk sistem robot,

Matakuliah Terkait

EL3015 Sistem Kendali -

Kegiatan Penunjang

Praktikum

Pustaka

KS FU, RC Gonzales, CSG Lee, Robotics, Control, Sensing Vision and Inteligence, Mc. Graw-Hill, 1993 [utama] A Lazinica, Robotics, Infinity Science Press, 2007 [Pendukung] BM Dean, Mechanism and Robot Analysis using MATLAB, Springer Verlag, 2008 [Pendukung]

Panduan Penilaian

Quiz 1/2/3 (20%), UTS (20%), UAS (30 %), Tugas dan Demonstrasi (30%)

Prasayarat -

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 124 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa

Sumber Materi

1

Pendahuluan

Sejarah, Aplikasi Robot, Definisi , Tugas dan fungsi Tipe Robot, Komponen sistem Robot (sub-sistem : mekanik, elektrik, elektronik, sensor, Pengendali utama, teach pendant)

mengetahui sejarah, memahami perspektif aplikasi robot, memahami definisi dan tugas dan fungsi robot Mengetahui tipe-tipe robot dan dan mampu menjelaskan komponen sistem robot

Sumber dari Internet (update) dan buku utama Bab 1

2

Sistem Mekanik Perpindahan Gerak Robot

Tipe perpindahan gerak, mekanisme dasar : 4 bar-link, link-joint, rack-pinion, pegas, Tipe roda gigi dan tali

3

Sistem Mekanik Perpindahan Gerak Robot

4

Model Kinematik

5

Model Kinematik

6

Model Dinamika

7

Model Dinamika

Tipe link-joint, Tipe roda, tipe kaki, derajat manuverabilitas/ mobilitas/ pengemudian, tipe aktuator Konsep Kerangka Koordinat : Diam dan Bergerak, Matrik Rotasi dasar, Vektor Translasi, Rotasi dan Tranlasi terhadap Sumbu sembarang, Transformasi Homogen Model Kinematik dengan Metoda Denavit Hatenberg untuk Robot Manipulator, Perhitungan Model Kinematik Robot bergerak tipe roda Model Dinamika Robot manipulator dengan Pendekatan Lagrange-Euler melalui model kinematik dan geometri Model dinamika Robot Bergerak tipe roda Trayektori pergerakan joint dan ujung lengan manipulator (Cartesian) Trayektori pergerakan robot bergerak (roadmap, cell decomposition, potensial field, bug algotihm)

Mampu menyusun konfigurasi link-bar untuk gerakan rotasi dan translasi Mampu menghitung energi static dan, kecepatan pada robot yang menggunakan sistem transmisi energi Memahami mekanisme gerak manipulator, roda dan kaki. Mampu menghitung derajat manuverabilitas/ mobilitas/pengemudian dan komponen

Bab 2 buku pendukung

Bab 2 buku pendukung

Mampu menghitung posisi dan orientasi Kerangka Koordinat relatif terhadap Kerangka Koordinat yang lain yang mengalami rotasi dan translasi

Bab 3 Buku Utama, dan Simulasi Matlab Buku Pendukung

Mampu menurunkan model transformasi homogen setiap lengan (link) robot manipulator relative terhadap lengan tetangganya dan model kinematik robot bergerak tipe roda

Bab 3 Buku Utama, dan Simulasi Matlab Buku Pendukung

Mampu menurunkan model dinamika robot manipulator 3 DOF

Bab 4 Buku Utama, dan Simulasi Matlab Buku Pendukung

Mampu menurunkan model

Bab 4 Buku Utama, dan Simulasi Matlab Buku Pendukung

Memahami cara menurunkan profil posisi, kecepatan dan percepatan joint melalui pendekatan polynomial 4-3-4 Mampu menurunkan tryektori pergerakan robot bergerak dengan pendekatan roadmap, cell decomposition dan bug algorithm Mengetahui prinsip kerja dari berbagai jenis sensor yang digunakan dalam robot

8

Perancangan Gerak Robot

9

Perancangan Gerak Robot

10

Sistem Sensor

Berbagai sensor untuk keperluan robot

11

Desain Sistem Kendali Robot

Rangkain pengkondisi sinyal untuk sensor, rangkaian penggerak (drive) actuator (stepper, DC), sistem kendali berbasis microcontroller

Memahami pembuatan rangkain elektronik/elektronika daya untuk Sesnor dan Aktuator

Bahan Kuliah Sisitem Intrumentasi Kendali, Bahan Kuliah Sistem Kendali, Bahan Kuliah Sistem Mikroprosesor

12

Desain Sistem Kendali Robot

Desain pengendali PID dan implementasi dalam sistem digital (mikrokontroller)

Memahami implementasi Sistem kendali dalam sebuah mikrokontroller

Bahan Kuliah Sisitem Intrumentasi Kendali, Bahan Kuliah Sistem Kendali, Bahan Kuliah Sistem Mikroprosesor

13

Presentasi Tugas Individu

Presentasi didepan kelas tentang ide robot untuk sebuah aplikasi

14

Presentasi Tim (Fungsional)

15

Demonstrasi Tim (Lomba)

Presentasi Global dan tugas masing personil dalam pembuatan robot Demonstrasi Tim yang dilombakan dalam sebuah arena

Bab 5 Buku Utama,

Bab 3 Buku Pendukung

Bab 6 buku Pendukung

Mampu menjelaskan ide yang disampaikan, merinci komponen pembentuk sistem robot dan implikasi terhadap penggunaan robot tersebut Mampu bekerjasama dan berperan dalam sebuah tim, mampu menjelaskan aspek teknis dari system yang dibangun Mampu membuat aplikasi sederhana dan melakukan trouble shooting

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 125 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4123

Bobot sks: 3

Semester: 7

KK / Unit Penanggung Jawab: Sistem Kendali & Komputer

Sifat: Pilihan

Sistem Kendali Digital Nama Matakuliah Digital Control Systems

Silabus Ringkas

Kuliah ini menjelaskan analisis dan desain kendali digital, dengan perhatian pada proses pencuplikan sinyal pada sistem , proses pengukuran sinyal, analisis kendali diskrit melalui model konvensioanal (transformasi Z), analisis kendali diskrit melalui model variabel-keadaan (moderrn), rancangan kendali melalui pendekatan klasik dan modern, implementasi kendali dengan perangkat keras dan perangkat lunak [Uraian ringkas silabus matakuliah dalam Bahasa Indonesia (maksimum 30 kata)] [Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)]

Silabus Lengkap [Uraian lengkap silabus matakuliah dalam Bahasa Inggris (maksimum 100 kata)] Luaran (Outcomes) Matakuliah Terkait

Mahasiswa mempunyai kemampuan analisis dan perancangan sistem kendali digital linier dengan menggunakan methoda klasik dan methoda modern (pengenalan), dan mengimplementasikan pengendali digital pada perangkat keras dan perangkat lunak EL3015 Sistem Kendali Prasyarat EL3010 Pengolahan Sinyal Digital Prasyarat

Kegiatan Penunjang

[Praktikum, kerja lapangan, dsb.]

Pustaka

Ogata, Katsuhiko. ; Discrete-Time Control Systems; 3rd Edition, Prentice-Hall Houpis and Lamont, , Digital Control Systems : Theory, Hardware and Software, Prentice-Hall, 1992 Phillips, Digital Control System Analysis and Design, Prentice-Hall, 1995 Leigh, J. R.; Appplied Digital Control : (theory, design, and implementation); 2nd Edition, Prentice Hall, New York, 1992

Panduan Penilaian

UTS (40%), UAS (30%), Tugas (20%), Lainnya (10%)

Catatan Tambahan

Strategi Pedagogi dan Pesan Untuk Pengajar: Pada minggu pertama kuliah, dosen harus mampu menggali penguasaan mahasiswa terhadap analisis pada sistem kendali (sistem kendali klasik, kontinyu), yang diperoleh pada kedua mata kuliah prasyarat: Sistem Kendali dan pengolahan sinyal digital (DSP). Perlu disampaikan ulang penguasaan mahasiswa terhadap hal itu akan melancarkan penguasaan materi pada kuliah sistem kendali digital, yang dapat dipandang perluasaan dan kekhususan sistem kendali. Bila dipandang perlu berikan ulang pokok-pokok materi yang sudah diperoleh pada kedua kuliah prasyarat, kemudian dilakukan kuis dan lakukan pembahasan hasil. (sebagai modal awal). Demo dan praktikum menggunakan prosesor. mikrokontroler atau mikrokomputer diperlukan untuk

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 126 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa

Pendahuluan dan Kerangka Umum Sistem Kendali Digital

Perkembangan kendali digital.

Mahasiswa mampu menyebut

Otomasi Industri Dan Sistem kendali Digital. Terapan sistem kendali digital di industri, sistem elektromekanik

1

Kerangka kendali digital dan hubungan dengan kendali analog.

Pendahuluan dan Kerangka Umum Sistem Kendali Digital (lanjutan)

Terminologi sistem data kontinyu, sistem Data diskrit, sistem Data digital.

2

Sistem kendali digital dan komputer digital.

kan perkembangan kendali digital, kaitannya dengan komputer (prosesor) digital dan aplikasinya di industri/ lainnya Mahasiswa dapat menyebutkan /menggambarkan perbedaan, keunggulan, dan lainnya, antara kendali digital dengan analog.

Sumber Materi

[Uraikan rujukan terhadap pustaka (bab, sub-bab)]

Mahasiswa dapat

menyebutkan hubungan antara Sistem kendali digital, sistem digital, sistem data diskrit, sistem waktu diskrit, sistem waktu kontinyu. Mahasiswa dapat menggambar kan sinyal kontinyu, diskrit, analog dan sinyal digital. Mahasiswa dapat menjelaskan terjadinya data diskrit dan data digital dari sinyal analog kontinyu(tercuplik) Mahasiswa dapat menggambar kan model diagram (aliran sinyal) dan diagram simulasi sistem kendali digital, dan mampu menyebutkan peran komponennya

Mahasiswa dapat

menggambar kan model diagram perangkat keras komputer digital (mikro kontroler) dalam kaitannya dengan sistem kendali digital

Sistem Linier (Kon tinyu / Diskrit) dan Proses Pencuplikan Sinyal.

Persamaan Differensial Sistem linier tak berubah waktu

Persamaan Differesi

Mahasiswa dapat menuliskan dan menurunkan persamaan differensial sistem linier dari suatu sistem fisik.. Mahasiswa dapat mencari solusi persamaan differensial Sistem linier. (metoda klasik)

Mahasiswa dapat menurunkan persamaan differensi sistem linier dari persamaan deret. Mahasiswa dapat menurunkan persamaan differensi sistem linier dari persamaan differensial. (sinyal tercuplik) Mahasiswa dapat menghitung solusi persamaan defference sistem linier (metoda klasik)

3

Proses pencuplikan sinyal domain waktu

Mahasiswa dapat menjelaskan

Pencuplik ideal dan Modulasi impuls. (deret fourier dan transformasi fourier)

Mahasiswa dapat

terjadinya proses pencuplikan pada sistem kendali digital. Mahasiswa dapat menggambar kan diagram blok sistem kendali sinyal tercuplik menggambar kan bodeflot sinyal modulasi impuls. Mahasiswa dapat menyebut

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 127 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

kan akibat pencuplikan suatu sinyal pada domain waktu atau domain frekuensi. Mahasiswa dapat menghitung batasan waktu pencuplik Sistem Linier (Kon tinyu / Diskrit) dan Proses Pencuplikan Sinyal. (lanjutan)

Transformasi Laplace sinyal termodulasi impuls Rekontruksi Sinyal diskrit.

4

Komponen pencuplik (elektronika), konversi data digital

Mahasiswa dapat

membedakan transformasi laplace sinyal pembawa dengan sinyal termodulasi, serta sifatnya

Mahasiswa dapat

menyebutkan syarat rekontruksi sinyal. Mahasiswa dapat menuliskan bentuk umum rekontruksi melalui ekspansi derer Taylor. Mahasiswa dapat menggambar kan model rekontruksi sinyal melalui pencuplik dan Hold.

Mahasiswa dapat

menyebutkan komponen konversi sinyal kontinyu ke digital /sebaliknya.

Teknik Transformasi Z Dan Model Sistem Diskrit

Sinyal Diskrit dan transformasi Z.

Sifat-sifat Transformasi Z.

Mahasiswa dapat menuliskan hubungan antara sinyal diskrit dan Transformasi Z. Mahasiswa dapat menuliskan hubungan antara Transformasi Fourier, Laplace dan transf. Z.

Mahasiswa dapat menuliskan sifat-sifat transformasi Z

Mahasiswa dapat menurun

kan sebagian sifat transformasi Z Mahasiswa dapat mengguna kan sifat-sifat Transformasi Z Fungsi Pindah Sistem DalamTransformasi Z.

Mahasiswa dapat menurunkan fungsi pindah sistem dari pers. differensi dan pers.differensial. Mahasiswa dapat menurunkan fungsi pindah sistem dalam transformasi Z dari fungsi pindah transformasi Laplace.

5

Model Sistem Kendali Diskrit.

Mahasiswa dapat

menggambar kan diagram blok sistem kendali diskrit. Mahasiswa dapat menurunkan fungsi pindah dalam bentuk transf. Z, dari diagram blok. Mahasiswa dapat menurunkan fungsi pindah dalam bentuk transformasi Z, sistem hibrida. Modifikasi Transformasi Z

Mahasiswa mampu mengguna kan transformasi z (termodifikasi) untuk menghitung nilai antara sampling

6

Teknik Transformasi Z Dan Model Sistem Diskrit

Mahasiswa dapat AnalisisStabilitas MelaluiTransformasi Z.

menyebutkan hubungan stabilitas sistem dengan akar karakteristik. Mahasiswa dapat menentukan stabilitas sistem dari letak pole

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 128 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

sistem. (akar karakteristik) Mahasiswa dapat menentukan stabilitas sistem dari fungsi pindah transformasi Z. Mahasiswa dapat menghitung letak akar dari sistem model diagram blok. Mahasiswa mampu mengguna kan metoda matrik untuk menguji stabilitas sistem

Analisis Kendali Diskrit

. Unjuk kerja dan karakteristik sistem kendali digital Sistem digital simpal terbuka. Tanggapan waktu sistem, Gangguan pada sistem,

Mahasiswa mampu menyebut kan atribut unjuk kerja sistem kendali digital dan membanding kannya dengan unjuk kerja sistem kendali analog.

Mahasiswa mampu menyebut kan kelemahan sistem terbuka.

Mahasiswa mampu

menjelaskan dengan perhitungan/analisisi sinsitivitas sistem

7

Fungsi Pindah Sistem digital simpal tertutup. Metoda diagram blok, metoda graf aliran sinyal

Analisis Kendali Diskrit (lanjutan)

Mahasiswa dapat menentukan

. Analisis Kesalahan Keadaan Tunak. Keadaan tunak terhadap sinyal tetap DC Tipe sistem

Mahasiswa adapat menyebut

9

Keadaan tunak terhadap sinusoidal Contoh sistem keadaan Tunak

Analisis Kendali Diskrit (lanjutan)

fungsi pindah dalam bentuk E*(S) dan transformasi Z dari sistem hibrida simpal tertutup. Mahasiswa dapat menghitung akar karakteristik sistem kendali hibrida ( analog/digital)

. Stabilitas sistem kendali digital simpal tertutup.

8

Analisis Kendali Diskrit (lanjutan)

Mahasiswa dapat menurunkan

. Analisis Melalui RootLocus.

10

Metoda domain Frekuensi

kestabilan sistem simpal tertutup melalui funfsi pindah Mahasiswa dapat menggambar kan dalam domain waktu sistem stabil dan sistem tidak stabil. Mahasiswa mampu mengguna kan metoda matrik untuk menguji stabilitas sistem kan definisi kesalahan keadaan tunak. Mahasiswa adapat menurunkan persamaan simpangan (kesalahan) keadaan tunak. dari sistem simpal tertutup Mahasiswa dapat menghitung koefisien kesalahan keadaan tunak. Mahasiswa dapat

Mahasiswa dapat

menggambar kan Root locus dari sistem linier waktu diskrit. Mahasiswa dapat meyebutkan hubungan letak akar pd diagram komplek dengan response waktu Mahasiswa dapat menurunkan fungsi pindah bentuk transf. Z, dari sistem hibrida.

Mahasiswa dapat menyebut

kan hubungan transformasi Z dengan bidang W. Mahasiswa dapat menggambar kan locus pada

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 129 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Transformasi Bilinier.

bidang W. Mahasiswa dapat menentukan stabilitas dari diagram bid.W. Mahasiswa dapat menghitung letak akar dari model diagram blok

Mahasiswa dapat menurunkan transformasi bilinier.

Mahasiswa dapat Solusi Numerik Persamaan Differensial.

menggunakan transformasi bilinier untuk menentukan kestabilan sistem.

Mahasiswa dapat

menyebutkan hubungan ketelitian solus pers. differensial dngan waktu sampel Mahasiswa dapat mengguna kan methoda numerik untuk menghitung solusi persyama an differensi .Prinsif Pengukuran dan Konversi Sinyal.

Sistem Konversi Sinyal.

Mahasiswa

Konversi Digital-toAnalog

Mahasiswa

Konversi Analog-toDigital.

Mahasiswa

Pengukuran sinyal dan sensor.

Mahasiswa

Aktuator dan Power Amplifier.

Mahasiswa

11

Interface Input-Output Sinyal

dapat menyebut kan hubungan antara pengukur an sinyal dan konversi sinyal serta prinsif konversi.

dapat menggam barakan letak konverter D/A pada kendalian . Mahasiswa dapat menggam barkan rangkaian dan diagram konverter D/A. dapat menggam barkan letak konverter A/D pada kendalian. Mahasiswa dapat menggam barkan rangkaian dan diagram konverter A/D. dapat menyebut kan prinsif- pengukuran. Mahasiswa dapat menyebut kan jenis sensor untuk pengu kuran besaran-besaran fisis. Mahasiswa dapat menghitung besaran pengkondisi sinyal dapat menyebut kan prinsif aktuator dan (driver). Mahasiswa dapat menyebut kan jenis power amplifier. Mahasiswa dapat menggam barkan power amplifier metoda pengaturan level tegangan.. Mahasiswa dapat menggam barkan power amplifier methoda mengaturan lebar pulsa (PWM)

Mahasiswa

dapat menyebut kan jenis interface I/O. Mahasiswa dapat menggam barkan rangkaian interface dalam sistem kontrol digital 12

Perancangan dan Analisis Kendali

Perancangan Kendalil Digital Melalui Sinyal

Mahasiswa

dapat membuat diagram sistem untuk kendali

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 130 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Digital. (Methoda klasik)

diskrit.

digital melalui diskritisasi. Mahasiswa dapat menghitung nilai konstanta P. I. D. dengan mempertimbangkan kriteria.

Membahas methoda perancangan sistem kontrol digital melalui pendekatan sinyal waktu diskrit dan pendekatan sinyal waktu kontinyu.

Kendali dan Kompensasi Digital

Mahasiswa

Perancangan Kendalil Digital Melalui Sinyal kontinyu. Kendali dan Kompensasi Digital

dapat menggambar kan diagram blok dan rangkaian untuk kompensator P.I.D dngan komponen perangkat keras. Mahasiswa dapat menuliskan Allgoritma kompensator P.I.D. yang diperoleh dari perhitungan. Mahasiswa dapat menghitung kompensasi melalui metoda approksimasi Ziegler-Nichols. Mahasiswa dapat menghitung parameter kompensasi melalui Algoritma Kalman. Mahasiswa dapat menghitung parameter Kompensasi DeadBeat

Mahasiswa

dapat menggambar kan diagram blok sistem kendali pendekatan sinyal kontinyu. Mahasiswa dapat menyebutkan hubungan analisis numerik dengan pendekatan pengolah sinyal digital untuk persamaan Integrator dan differensiator. Mahasiswa dapat menghitung paramater kompensator pada kendali sistem waktu kontinyu

Mahasiswa

dapat menuliskan Algoritma Kendali dengan menterjemahkan persamaan PID dari rancangan kriteria kriteria sistem kontinyu. Mahasiswa dapat menghi tung parameter Kompensasi pendekatan analisis numerik .Implementasi Dan Algoritma Sistem Kendali Digital.

13

Logika Kendalil.

Mahasiswa

Arsitektur Komputer Untuk Kendalil.

Mahasiswa

Realisasi Pengendali Kendali dengan unit delay

Mahasiswa

Membahas metoda perancangan sistem kontrol digital melalui pendekatan sinyal waktu diskrit dan pendekatan sinyal waktu kontinyu.

dapat menuliskan Algoritma komputer dari logika kendali. Mahasiswa dapat menggam bar kan diagram aliran untuk suatu hukum-hukum kendali. dapat menggam barkan arsitektur perangkat keras suatu komputer. Mahasiswa dapat menyebut kan hubungan arsitektur komputer dengan interface I/O sistem kendalil. Mahasiswa dapat menggam barkan rangkaian dengan unit delay untuk merealisasikan hukum-hukum kendali. dapat menyebut kan methoda direk, methoda paralel dan methoda faktorisasi untuk kompensator. Mahasiswa dapat menggambar kan rangkaian dengan unit delay untuk

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 131 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Rancangan Perangkat Lunak Pada Sistem Kendalil

Sistem Operasi Waktunyata Kendali Digital

merealisasikan hukum-hukum kendalil. Mahasiswa dapat menghitung parameter kompensasi dengan menggunakan unit delay.

Mahasiswa

dapat menyebut kan perangkat lunak yang dapat dipakai untuk realisasi kendali. Mahasiswa dapat membuat diagram untuk realisasi kendalil. Mahasiswa dapat menuliskan program komputer untuk realisasi kendali.

Mahasiswa

dapat menghitung waktu program untuk suatu algoritma Kendali diskrit. Mahasiswa dapat mengguna kan pasilitas program yang berhubungan dengan algoritma waktu nyata Model Diskrit VariabelKeadaan.

Membahas methoda analisis sinyal diskrit melalui ungkapan variabel-keadaan, serta mempelajari sifat-sifat matrik keadaan dan matrik transision

14

Representasi VariabelKeadaan Sistem Linier.

Solusi waktu persamaan Variabel-keadaan.

Mahasiswa dapat menurunkan pers variabel-keadaan sistem fisis dari parameter komponen, persamaan differens, dan persamaan deret.

Mahasiswa

dapat menghitung solusi waktu persamaan keadaan dengan methoda transformasi Z. Mahasiswa dapat menghitung matrik transisi sistem diskrit

Diskritisasi Persamaan Variabel-keadaan kontinyu

Mahasiswa

Transformasi Matrik Variabel-keadaan.

Mahasiswa

Kontrolabilitas dan Observabilitas Sistem.

dapat membuat persamaan-variabel keadaan diskit dari persamaan variabelkeadaan kontinyu

dapat menyebutkan metoda transformasi variabel keadaan dan sarat transformasi Mahasiswadapat menggunakan metoda transformasi variabel keadaan sistem diskrit.

Mahasiswa

dapat menggunakan operasi matrik untuk memeriksa kontrolabilitas sistem Mahasiswa dapat mengguna kan operasi matrik untuk memeriksa observabilitas sistem Mehoda Perancangan Kondali Melalui Variabel keadaan.

Kerangka Sistem Terkandali

15

Relokasi Pole Sistem simpal tertutup Membahas methoda perancangan kendali melalui variabel-

Mahasiswa dapat menurunkan matrik variabelkeadaan kanonik Mahasiswa dapat membuat diagram blok bentuk kanonik. Mahasiswa dapat membuat diagram blok sistem umpan balik variabel keadaan.

Mahasiswa

dapat menyebutkan hubungan antara letak pole dengan tanggapan waktu.

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 132 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

keadaan (methoda modern), serta mempelajari penggunaan observer dan aplikasi methoda variabel keaadan pada rancangan regulatorr

Mahasiswa Umpan-balik Variabel keadaan

Kerangka Sistem Teramati

Umpan balik Output dan Disain Observer

dapat menyebut kan hubungan perubahan pole dengan perubahan konstanta .

Mahasiswa

dapat menyebut kan hubungan perubahan pole dengan perubahan konstanta . Mahasiswa dapat menghitung parameter kompensasi umpan balik variabel keadaan. Mahasiswa dapat membuat algoritma komputer untuk kendalil

Mahasiswa

dapat menyebut kan hubungan pengukuran dengan umpan balik v. keadaan Mahasiswa dapat menggambar kan kerangka sistem teramati dan hubungannya dengan kompensator. Mahasiswa dapat menggarbar kan hubungan pengukuran dengan umpan balik v. keadaan

Mahasiswa

Regulator dan observer

dapat menurun kan pers. obserever dengan sinyal kontrol dan output.. Mahasiswa dapat menghitung parameter full-state observer. Mahasiswa dapat menghitung paramater minimal observer. Mahasiswa dapat membuat algoritma dan membuat bahasa komputer sebuah observer

Mahasiswa dapat menurunkan persamaan obserever dengan sinyal kontrol dan output.. Mahasiswa dapat menghitung parameter full-state observer. Mahasiswa dapat menghitung paramater minimal observer. Mahasiswa dapat membuat algoritma dan membuat bahasa komputer sebuah observer

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 133 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4234

Bobot sks: 3

Semester: 8

KK / Unit Penanggung Jawab: Sistem Kendali & Komputer

Sifat: Wajib

Sistem Kendali Multivariabel Nama Matakuliah Multivariable Control System

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

Pendahuluan SKM, Representasi sistem dalam ruang status, Solusi Persamaan Status Tidak berubah terhadap waktu, Keterkendalian, Keteramatan, Penempatan Kutub, Perancangan SKM dengan umpan balik status, Perancangan Pengamat Status, Simulasi SKM, Implementasi SKM dengan umpan balik status dan Pengamat Status. Introduction to Multivariable Control System, State Space Representation of System, Solving The Time-Invariant State Equation, Controllability, Observability, Pole Placement, Design of Multivariable Control System with State Feedback, Observer Design, Multivariable Control System Simulation, Implementation of Multivariable Control System with Observer and State Feedback Perspektif Perancangan dengan Ruang Status, Kelebihan SKM, Representasi Sistem dalam bentuk Kanonik: TerkendaliTeramati-Diagonal-Jordan, Transformasi Model, Solusi Persamaan Status Homogen, Solusi Persamaan Status Non-Homogen, Keterkendalian , Keteramatan, Pemilihan Lokasi Kutub, Perancangan SKM dengan Penempatan Kutub, Penentuan Matrik Penguatan Umpan Balik dengan Matrik Transformasi-Metode Substitusi Langsung-Formula Ackermann, Perancangan Sistem Servo, Perancangan Pengamat Status Penuh, Perancangan Pengamat Status Minimum, Perancangan Kompensator, Perancangan Regulator, Perancangan Sistem Penjejak, Simulasi SKM dengan umpan balik status, Simulasi Pengamat Status Penuh dan Pengamat Status Minimum, Implementasi SKM dengan umpan balik status dan Pengamat Status. A Perspective on State Space Design, Advantages of State Space, State Space Representation of System in Canonical Form: Controllable-Observable-Diagonal-Jordan Form, Transformation of System Model, Solution of Homogeneous State Equation, Solution of Non-Homogeneous State Equation, Controllability, Observability, Selection of Pole Location, Pole Placement Design, Determination of Matrix K Using Transformation Matrix-Direct Substitution-Ackermann’s Formula, Design of Servo System, Design of Full Order Observer, Design of Minimum Order Observer , Compensator Design, Regulator Design, Tracking System Design, Control System with State Feedback Simulation, Simulation of Full Order Observer and Minimum Order Observer, Implementation of Multivariable Control System with Observer and State Feedback Explain A Perspective on State Space Design and Advantages of State Space, Represent a System in Canonical Form: Controllable-Observable-Diagonal-Jordan Form, Compute the transformation of System Model, Compute the Solution of Homogeneous State Equation, Compute the Solution of Non-Homogeneous State Equation, Determine the Controllability of a system, Determine the Observability of a system, Select of Pole Location for good design, Apply the design Method with Pole Placement, Determine of Matrix K Using Transformation Matrix-Direct Substitution-Ackermann’s Formula, Apply the design procedure of Servo System, Apply the design procedure of Full Order Observer, Apply the design procedure of Minimum Order Observer , Apply the design procedure of regulator system, Apply the design procedure of tracking System , Simulate the Multivariable Control System with State Feedback , Simulate the Full Order Observer and Minimum Order Observer, Implement the Multivariable Control System with Observer and State Feedback EL3015 Sistem Kendali Prasyarat

Kegiatan Penunjang

Tugas, Simulasi, dan Praktikum

Pustaka

Katsuhiko Ogata, Modern Control Engineering, Fifth Edition, Prentice Hall 2010 (Pustaka Utama) Gene F. Franklin, J. David Powell, Abbas Emami-Naeini, Feedback Control of Dynamic Systems, 6th Edition, Prentice Hall 2010 (Pustaka Utama) Richard C. Dorf and Robert H.Bishop, Modern Control System, Pearson Prentice Hall 2008 (Pustaka Pendukung) Dingyu Xue, YangQuan Chen, Derek P. Atherton, Linear Feedback Control: Analysis and Design with MATLAB , The Society for Industrial and Applied Mathematics 2007 (Pustaka Pendukung)

Panduan Penilaian

[Termasuk jenis dan bentuk penilaian]

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 134 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg# 1

2

Topik

Introduction to Multivariable Control System

State Space Representation of System

Sub Topik  A Perspective on State

Space Design  Advantages of State Space

 Canonical Controllable Form  Canonical Observable Form  Canonical Diagonal Form  Canonical Jordan Form Transformasi Model:  From a canonical form to another,  From Transfer Function to State space, and vice versa.

3

State Space Representation of System

4

Solving The Time-Invariant State Equation

 Solution of Homogeneous State Equation  Solution of NonHomogeneous State Equation

5

Controllability

 Controllability Concept  Controllability Matrix

6

Observability

7

Pole Placement

8

Pole Placement

9

Observer Design

10

Compensator Design

11

Multivariable Control System Simulation

12

Multivariable Control System Simulation

13

Implementation of Multivariable Control System with Observer and State Feedback

 Observability Concept  Observability Matrix  Selection of Pole Location  Pole Placement Design  Determination of Matrix K

Using Transformation Matrix-Direct SubstitutionAckermann’s Formula  Design of Servo System  Regulator Design  Tracking System Design  Design of Full Order Observer  Design of Minimum Order Observer Design Gain State Feedback with observer  Control System with gain state feedback simulation  Observer simulation  Analysis the simulation result  Reporting  Hardware and software

Capaian Belajar Mahasiswa

Sumber Materi

Explain A Perspective on State Space Design and Advantages of State Space

Franklin, Ogata

Represent a System in Canonical Form: Controllable-Observable-DiagonalJordan Form

Franklin, Ogata

 Transform System Model from a canonical form to another  Transform model from transfer function to state space  Transform model from state space to transfer function

Franklin, Ogata

 Compute the solution of Homogeneous State Equation  Compute the solution of NonHomogeneous State Equation  Explain controllability Concept  Compute Controllability Matrix  Determine system

controllability  Explain Observability Concept  Compute Observability Matrix  Determine system Observability  Explain how to select of Pole Location  Apply Pole Placement Design Procedure  Determine the Matrix K Using Transformation Matrix-Direct Substitution-Ackermann’s Formula  Apply design procedure of Servo System  Design a regulator system  Design a tracking System  Apply design procedure of Full Order Observer  Apply design procedure of Minimum Order Observer Apply design procedure of Gain State Feedback with observer

Ogata

Ogata

Ogata

Franklin

Ogata

Ogata Ogata

 Simulate a Control System with gain state feedback  Simulate an observer

Ogata

 Analyze the simulation result  Make a simulation report

Ogata

 Prepare the hardware and

software for implementation

for implementation  Model validation

 Compare model and plant to

14

Implementation of Multivariable Control System with Observer and State Feedback

 Control System with gain state feedback implementation  State observer implementation

 Implement a control System with gain state feedback  Implement a state observer

15

Implementation of Multivariable Control System with Observer and State Feedback

 System Integration  Implementation result Analysis  Reporting

 Integrate hardware and software  Analyse the implementation result  Make the implementation report

Ogata

validate the model

Ogata

Ogata

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 135 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Sarjana Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4127

Bobot sks: 3

Semester: 7

Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Pilihan

Arsitektur dan Komputasi Parallel Nama Matakuliah

Parallel Computing and Architecture [Uraian ringkas silabus matakuliah dalam Bahasa Indonesia (maksimum 30 kata)]

Silabus Ringkas [Uraian ringkas silabus matakuliah dalam Bahasa Inggris (maksimum 30 kata)] [Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)]

Silabus Lengkap

Luaran (Outcomes)

This is an introductory course for undergraduate students on the broad subject of parallel computing. It begins with an overview of the field focusing on the convergence of many diverse architectural approaches around the communication architecture. Increasingly, parallel processing is being seen as the only costeffective method for the fast solution of computationally large and data-intensive problems. The emergence of inexpensive parallel computers such as commodity desktop multiprocessors and clusters of workstations or PCs has made such parallel methods generally applicable, as have software standards for portable parallel programming. This sets the stage for substantial growth in parallel software. Message Passing Interface (MPI), POSIX threads and OpenMP have been selected as programming models and the evolving application mix of parallel computing is reflected in various examples throughout the course. 1. Master basic concepts of parallel computing. 2. Master parallel algorithm design and analysis. 3. Be familiar with performance evaluation for parallel programs. 4. Be familiar with problem solving on parallel computers. 5. Be exposed to several advanced parallel computers, such as, GPU, Cray T94, SGI Origin 2000, and cluster of PCs. EL2008 Problem Solving with C Prasyarat

Matakuliah Terkait [Kode dan Nama Matakuliah]

[Prasyarat, bersamaan, terlarang]

Kegiatan Penunjang

[Praktikum, kerja lapangan, dsb.]

Pustaka

A. Grama, V. Kumar, A. Gupta, An Introduction to Parallel Computing, Design and Analysis of Algorithms, 2nd edition, Addison Wesley, 2003 (Pustaka utama) [1] P. S. Pacheco, Parallel Programming with MPI, Morgan Kaufmann, 1997 (Pustaka utama) [2] B. Chapman, G. Jost, Ruud van der Pas, Using OpenMP, MIT Press, 2007 (Pustaka utama) [3] M. J. Quinn, Parallel Computing in C and OpenMPI , McGraw-Hill, 2004 (Pustaka pendukung) W. Gropp, E. Lusk, A. Skjellum, Using MPI, MIT Press, 1999 (Pustaka pendukung) [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung])

Panduan Penilaian

[Termasuk jenis dan bentuk penilaian]

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 136 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg# 1

Topik

Sub Topik

Introduction

Why and what is parallel/distributed computing? History, Power, Parallel vs. Distributed, Fault tolerance, Concurrency, non-determinism, locality Crosscutting and Broader topics: power, locality; cluster, grid, cloud, p2p, web services • Taxonomy • Data versus control parallelism:SIMD/Vector, Pipelines, MIMD, Multicore, Heterogeneous • Shared versus distributed memory:SMP (buses), NUMA (Shared Memory), Message passing (no shared memory): Topologies Memory hierarchy, caches, and Power Issues

2

Parallel Architectures

3

Parallel Architectures

4

Algorithm Parallel and distributed models and complexity Algorithm Parallel and distributed models and complexity

5

Algorithm Parallel and distributed models and complexity Algorithmic

6

Algorithmic Problems

7

Algorithmic Problems

8

Midterm Algorithmic Problems Parallel Programming paradigms

9 10

11

Parallel programming notations

12

Parallel programming notations

13

Parallel programming

Capaian Belajar Mahasiswa

Sumber Materi

[1] Chapter 1

[Uraikan capaian spesifik topik dengan merujuk kepada capaian matakuliah]

[1] Chapter 2

[1] Chapter 2

Cost of computation and Scalability: Asymptotics, time, cost, work Cost of computation and Scalability: Cost optimality, speedup, efficiency, space, power Notions from scheduling: Dependencies, task graphs, work, makespan • Divide and conquer, Recursion • Series-parallel composition • Communication: broadcast, multicast, reduction, parallel prefix, scatter/gather • Synchronization: atomic operations, mutual exclusion, barrier synchronization; race condition Specialized computations: Representative sample from among matrix product, transposition, convolution, and linear systems

[1] Chapter 2 [1] Chapter 3

Sorting, selection • By the target machine model: Shared memory, Distributed Memory, Client-Server, Hybrid • By the control statements: Task/thread spawning, SPMD, Data parallel, Parallel loop Shared memory notations: language extensions, compiler directives/pragma, libraries Shared memory notations: language extensions, compiler directives/pragma, libraries MPI and CUDA

[1] Chapter 11 [1] Chapter 6,7

[1] Chapter 3

[1] Chapter 3 [1] Chapter 3

[1] Chapter 4

[1] Chapter 9

[1] Chapter 6,7 [2] Chapter2 [1] Chapter 6,7 [3] Chapter 3 [2] and [3]

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 137 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

notations Semantics and correctness issues

14

Semantics and correctness issues

15

Performance issues

16

Final Exam

Synchronization: shared memory programs with critical regions, producerconsumer; mechanism for concurrency (monitors, semaphores, etc.) Concurrency defects: deadlock (detection, prevention), race conditions (definition), determinacy/indeterminacy in parallel programs • Computation: static and dynamic scheduling, mapping and impact of load balancing on performance • Data: Distribution, Layout, and Locality, False sharing, Data transfer • Performance metrics: speedup, efficiency, work, cost; Amdahl's law; scalability

[1] Chapter 5

[1] Chapter 5

[1] Chapter 5

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 138 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Sarjana Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4235

Bobot sks: 3

Semester: 8

Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Pilihan

Arsitektur Sistem Komputer II Nama Matakuliah Computer System Architecture II [Uraian ringkas silabus matakuliah dalam Bahasa Indonesia (maksimum 30 kata)] Silabus Ringkas [Uraian ringkas silabus matakuliah dalam Bahasa Inggris (maksimum 30 kata)] [Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)]

Silabus Lengkap

Luaran (Outcomes) Matakuliah Terkait

Computer architects have been striving to improve performance ever since the first stored program computer was designed half a century ago. Superscalar execution is one of the techniques in this avenue and most modern microprocessors employ superscalar issue and other instruction-level parallelism techniques to enhance their performance. In the simplest words, superscalar processors are processors that can issue more than one instruction per cycle. This course examines the tradeoffs and design considerations in the design of superscalar or instruction level parallel (ILP) microprocessors. The course will also explore other current architectural approaches to improve performance This course is intended to introduce concepts of modern processors design. The course will also stress on processor design and implementation using VHDL. EL3011 Computer System Architecture Prasyarat [Kode dan Nama Matakuliah] [Prasyarat, bersamaan, terlarang]

Kegiatan Penunjang

[Praktikum, kerja lapangan, dsb.]

Pustaka

John L. Hennessy and David A. Patterson , Computer Organization and Design: The Software Hardware Interface, Morgan Kaufmann Publishers, Fourth Edition, 2009. [P&H] John Paul Shen and Mikko H. Lipasti, Modern Processor Design: Fundamental of Superscalar Processor, McGraw Hill, 2005. [MPD] [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung])

Panduan Penilaian

[Termasuk jenis dan bentuk penilaian]

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 139 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg# 1 2 3 4 5 6 7 8

Topik

Sub Topik

Capaian Belajar Mahasiswa

Sumber Materi

Introduction

Review of MIPS

[Uraikan capaian spesifik topik dengan merujuk kepada capaian matakuliah]

[P&H] Ch2

Review

Review of Single Cycle and Pipeline VHDL MIPS Pipeline VHDL Cache Implementations Pipeline and its limitations Modern Memory and I/O to support Modern pipeline Concepts

[P&H] Ch4

Instruction Flows, Branch predictions, Tomasulo Alg, OoO Register and memory data flow Intel Pentium P6 and PowerPC 620

[MPD] Ch5

MIPS Implementation Cache Modern Pipeline Memory and I/O SuperScalar Midterm SuperScalar

9

10 11 12 13 14 15 16

SuperScalar Examples Multi Threads Multiprocessor Multicore & GPU Power Aware Architecture Final Exam

SMP and Cache and Coherence GPU architecture

[MPD] Ch2 [MPD] Ch3 [MPD] Ch4

[MPD] Ch5 [MPD] Ch6 [MPD] Ch11 [MPD] Ch11 [MPD] Ch11

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 140 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informaatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4120

Bobot sks: 3

Semester: 7

KK / Unit Penanggung Jawab: Teknik Komputer

Sifat: Wajib

Jaringan Komputer Nama Matakuliah Computer Network

Silabus Ringkas

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

OSI 7 and TCP/IP layer models, Circuit and Packet Switching, Medium Access Control, Error Control Techniques (ARQ), Routing and Dijkstra's Algorithm, flow/congestion control, IEEE 802.11 (WLAN), Bluetooth, Wireless Sensor Network (WSN). OSI 7 and TCP/IP layer models, Circuit and Packet Switching, Medium Access Control, Error Control Techniques (ARQ), Routing and Dijkstra's Algorithm, flow/congestion control, IEEE 802.11 (WLAN), Bluetooth, Wireless Sensor Network (WSN). Basics of the TCP/IP layer model, as well as the OSI 7 layer model, Tasks of physical, datalink layers, Tasks of network layer, Tasks of transport and application layers, Circuit switching, Packet switching, MAC mechanisms (Aloha, Slotted Aloha, TDMA, FDMA), Random access and scheduled MAC mechanisms, Error control techniques in telecommunication networks, ARQ techniques, Link state and distance vector routing, Dijkstra’s shortest path algorithm, Flow/congestion control, IEEE 802.11a, 802.11b and 802.11g: Architecture, MAC Sublayer, Physical Layer, WLAN Security Features, Bluetooth Architecture, Bluetooth Layers: Radio layer, Baseband layer, L2CAP, Other upper layers, Sensor technology and WSN applications review, Wireless technology for distributed sensor networks including protocol and layers, Clustering techniques in WSN, Routing in WSN. Basics of the TCP/IP layer model, as well as the OSI 7 layer model, Tasks of physical, datalink layers, Tasks of network layer, Tasks of transport and application layers, Circuit switching, Packet switching, MAC mechanisms (Aloha, Slotted Aloha, TDMA, FDMA), Random access and scheduled MAC mechanisms, Error control techniques in telecommunication networks, ARQ techniques, Link state and distance vector routing, Dijkstra’s shortest path algorithm, Flow/congestion control, IEEE 802.11a, 802.11b and 802.11g: Architecture, MAC Sublayer, Physical Layer, WLAN Security Features, Bluetooth Architecture, Bluetooth Layers: Radio layer, Baseband layer, L2CAP, Other upper layers, Sensor technology and WSN applications review, Wireless technology for distributed sensor networks including protocol and layers, Clustering techniques in WSN, Routing in WSN. Understand the basics of the TCP/IP layer model, as well as the OSI 7 layer model, Explain tasks of every layer in TCP/IP model, Understand the difference between circuit and packet switching, Be able to analyze different MAC mechanisms (Aloha, Slotted Aloha, TDMA, FDMA) and understand their pros and cons, Learn the differences between random access and scheduled MAC mechanisms, Understand how error control is implemented in telecommunication networks, Mathematically model various error control schemes, Understand the difference between link state and distance vector routing, Learn to carry out Dijkstra’s shortest path algorithm in a given network, Tell how IEEE 802.11a networks function, and how they differ from 802.11b networks, List the advantages and disadvantages of an IEEE 802.11g network, Compare low-speed and high-speed WLANs, Explain basic and enhanced WLAN security features, Understand the bluetooth architecture for several applications, Explain the tasks of every bluetooth layer, Learn WSN network design, Learn appropriate data dissemination protocols and model links cost, Learn suitable medium access protocols and radio hardware EL3016 Sistem Komunikasi Prasyarat

Kegiatan Penunjang

Tugas dan Simulasi

Pustaka

Tanenbaum and Wetherall, Computer Networks, 5th ed., Prentice Hall, 2010 (pustaka utama) Peterson and Davie, Computer Networks, 5th ed., Morgan Kaufmann, 2011 (pustaka utama) Forouzan, Data Communication and Networking, 5th ed., McGraw-Hill Science/Engineering/Math, 2012 (pustaka alternatif) Garcia and Widjaja, Communication Networks, 2nd ed., McGraw-Hill Science/Engineering/Math, 2003 (pustaka alternatif) Karl and Williq, Protocols and Architectures for Wireless Sensor Networks, 1st ed., Wiley, 2007 Faludi, Building Wireless Sensor Networks: with ZigBee, XBee, Arduino, and Processing, 1st ed., O'Reilly Media, 2010

Panduan Penilaian

[Termasuk jenis dan bentuk penilaian]

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 141 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa

1

OSI 7 and TCP/IP layer models

 Basics of the TCP/IP layer model, as well as the OSI 7 layer model  Tasks of physical, datalink layers

 Understand the basics of the TCP/IP layer model, as well as the OSI 7 layer model  Explain tasks of physical, datalink layers

2

OSI 7 and TCP/IP layer models

Tasks of network layer

Explain tasks of network layer

3

OSI 7 and TCP/IP layer models

Tasks of transport and application layers

Explain tasks of transport and application layers

4

Circuit and Packet Switching

 Circuit switching  Packet switching

Understand the difference between circuit and packet switching

5

Medium Access Control

MAC mechanisms (Aloha, Slotted Aloha, TDMA, FDMA)

Be able to analyze different MAC mechanisms (Aloha, Slotted Aloha, TDMA, FDMA) and understand their pros and cons

6

Medium Access Control

Random access and scheduled MAC mechanisms

Learn the differences between random access and scheduled MAC mechanisms

7

Error Control Techniques (ARQ)

 Error control techniques in telecommunication networks  ARQ techniques

 Understand how error control is implemented in telecommunication networks  Mathematically model various error control schemes

8

Routing and Dijkstra's Algorithm, flow/congestion control

 Link state and distance vector routing  Dijkstra’s shortest path algorithm

 Understand the difference between link state and distance vector routing  Learn to carry out Dijkstra’s shortest path algorithm in a given network

9

Routing and Dijkstra's Algorithm, flow/congestion control

Flow/congestion control

Understand the flow/congestion control

10

IEEE 802.11 (WLAN)

IEEE 802.11a, 802.11b and 802.11g: Architecture

11

IEEE 802.11 (WLAN)

 IEEE 802.11a, 802.11b and 802.11g: MAC Sublayer, Physical Layer

 Tell how IEEE 802.11a networks function, and how they differ from 802.11b networks  List the advantages and disadvantages of an IEEE 802.11g network  Compare low-speed and high-speed WLANs  Tell how IEEE 802.11a networks function, and how they differ from 802.11b networks

Sumber Materi  Tanenbaum and Wetherall, Computer Networks  Peterson and Davie, Computer Networks  Forouzan, Data Communication and Networking  Garcia and Widjaja, Communication Networks  Tanenbaum and Wetherall, Computer Networks  Peterson and Davie, Computer Networks  Forouzan, Data Communication and Networking  Garcia and Widjaja, Communication Networks  Tanenbaum and Wetherall, Computer Networks  Peterson and Davie, Computer Networks  Forouzan, Data Communication and Networking  Garcia and Widjaja, Communication Networks  Tanenbaum and Wetherall, Computer Networks  Peterson and Davie, Computer Networks  Forouzan, Data Communication and Networking  Garcia and Widjaja, Communication Networks  Tanenbaum and Wetherall, Computer Networks  Peterson and Davie, Computer Networks  Forouzan, Data Communication and Networking  Garcia and Widjaja, Communication Networks  Tanenbaum and Wetherall, Computer Networks  Peterson and Davie, Computer Networks  Forouzan, Data Communication and Networking  Garcia and Widjaja, Communication Networks  Tanenbaum and Wetherall, Computer Networks  Peterson and Davie, Computer Networks  Forouzan, Data Communication and Networking  Garcia and Widjaja, Communication Networks  Tanenbaum and Wetherall, Computer Networks  Peterson and Davie, Computer Networks  Forouzan, Data Communication and Networking  Garcia and Widjaja, Communication Networks  Tanenbaum and Wetherall, Computer Networks  Peterson and Davie, Computer Networks  Forouzan, Data Communication and Networking  Garcia and Widjaja, Communication Networks  Tanenbaum and Wetherall, Computer Networks  Peterson and Davie, Computer Networks  Forouzan, Data Communication and Networking  Garcia and Widjaja, Communication Networks  Tanenbaum and Wetherall, Computer Networks  Peterson and Davie, Computer

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 142 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

 WLAN Security Features

 List the advantages and disadvantages of an IEEE 802.11g network  Compare low-speed and high-speed WLANs  Explain basic and enhanced WLAN security features

Bluetooth

 Bluetooth Architecture  Bluetooth Layers: Radio layer, Baseband layer, L2CAP, Other upper layers

 Understand the bluetooth architecture for several applications  Explain the tasks of every bluetooth layer

13

Wireless Sensor Network (WSN)

 Sensor technology and WSN applications review  Wireless technology for distributed sensor networks including protocol and layers

 Learn WSN network design  Learn appropriate data dissemination protocols and model links cost  Learn suitable medium access protocols and radio hardware

14

Wireless Sensor Network (WSN)

Clustering techniques in WSN

 Learn WSN network design  Learn appropriate data dissemination protocols and model links cost  Learn suitable medium access protocols and radio hardware

15

Wireless Sensor Network (WSN)

Routing in WSN

 Learn WSN network design  Learn appropriate data dissemination protocols and model links cost  Learn suitable medium access protocols and radio hardware

12

Networks  Forouzan, Data Communication and Networking  Garcia and Widjaja, Communication Networks  Tanenbaum and Wetherall, Computer Networks  Peterson and Davie, Computer Networks  Forouzan, Data Communication and Networking  Garcia and Widjaja, Communication Networks  Karl and Williq, Protocols and Architectures for Wireless Sensor Networks  Faludi, Building Wireless Sensor Networks: with ZigBee, XBee, Arduino, and Processing  Karl and Williq, Protocols and Architectures for Wireless Sensor Networks  Faludi, Building Wireless Sensor Networks: with ZigBee, XBee, Arduino, and Processing  Karl and Williq, Protocols and Architectures for Wireless Sensor Networks  Faludi, Building Wireless Sensor Networks: with ZigBee, XBee, Arduino, and Processing

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 143 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Sarjana Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4128

Bobot sks: 3

Semester: 7

Unit Penanggung Jawab: Program S1 Teknik Elektro

Sifat: Pilihan

Perancangan Sistem Operasi Nama Matakuliah Operating System Design [Uraian ringkas silabus matakuliah dalam Bahasa Indonesia (maksimum 30 kata)] Silabus Ringkas

[Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)]

Silabus Lengkap

Luaran (Outcomes) Matakuliah Terkait

This course is is a programming-intensive OS class. The core experience is writing a small Unix-inspired OS kernel, in C with some x86 assembly language, which runs on a PC hardware. The core topics will stress on design principles which covers abstractions, processes and resources at computer systems. This course will also covers thread, processes, scheduling synchronization, memory allocation, virtual memory, system file, and inter-process communication. We will use MINIX (MINIX 3) which is a streamlined, simplified new edition remains the only operating systems text to first explain relevant principles, then demonstrate their applications using a Unix-like operating system as a detailed example. It has been especially designed for high reliability, for use in embedded systems, and for ease of teaching. Students can design and implement various parts of an Operating System. EL2008 Pemecahan masalah dengan C

Prasyarat

Kegiatan Penunjang

Pustaka

Panduan Penilaian

Andrew S. Tanenbaum, Operating Systems Design & Implementation, 3rd Ed, Prentice-Hall Inc.,2006. James L. Peterson & Abraham Silbershatz, Operating System Concepts, Addison Wesley, 2004. Andrew S. Tanenbaum, Modern Operating Systems, 2nd Ed, Prentice-Hall Inc.,2001. MINIX manual, www.minix3.org Homework 20% Exam 70% Quiz 10%

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 144 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg# 1 2

3

4 5

6 7 8 9 10

11 12

13 14 15

Topik

Sub Topik

Capaian Belajar Mahasiswa

Sumber Materi

Introduction; OS History; OS Concepts System Calls; OS structure Processes, Threads models, usage and implementation Interprocess Communication, IPC problems Scheduling Overview of Processes & Implementation of Processes in MINIX3 The System Task in MINIX 3, The Clock Task in MINIX 3 I/O Hardware and Software, Deadlocks MidTerm exam I/O in MINIX 3 Ram Disks, Disks, Terminals Virtual Memory, Page replacement Algorithm, Design issue of Paging Systems Segmentation, The MINIX 3 Process Manager Files, Directories, File System Implementation File System Security, Implementation File System in MINIX 3 Example of File Systems Security

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 145 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Sarjana Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4236

Bobot sks: 3

Semester: 8

Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Pilihan

Perangkat Lunak Jaringan Nama Matakuliah Network Software Engineering [Uraian ringkas silabus matakuliah dalam Bahasa Indonesia (maksimum 30 kata)] Silabus Ringkas

[Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)] Silabus Lengkap

Luaran (Outcomes) Matakuliah Terkait

Introduction of the concept of programming a computer network architecture and the introduction of the concept of application programming using sockets. This course is a course introducing the concept of programming a computer network architecture and also the introduction of the concept of application programming using sockets. In these subjects will be studied in detail the implementation of TCP / IP protocol. Students will gain experience from making a network application. Students at the end of the class will have the ability to create a network application programs. Students can design and implement applications to the network. EL4120 Computer Networks

Prasyarat

Kegiatan Penunjang Pustaka

Panduan Penilaian

W. Richard Stevens, "Unix Network Programming", Prentice Hall, 1990 W. Richard Stevens and Gary R. Wright, "TCP/IP Illustrated Volume 2: The implementation", Addison Wesley, 1995 Homework 20% Exam 50% Quiz 10% Project 20%

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 146 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Topik

Sub Topik

Capaian Belajar Mahasiswa

Sumber Materi

Introduction and ISO layering architecture Review of TCP/IP Unix Programming Model Interprocess Communications Sockets Sockets Transport Layer interface MidTerm exam Library Routines (Berkeley Sockets) Routing, TCP and UDP Sockets Client Server Programming Network Security Game Programming Example Game Programming Example Game Programming Example

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 147 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL2043

Bobot sks: 3

Semester: 3 or 4

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Layanan

Elektronika Industri Nama Matakuliah

Industrial Electronics [Uraian ringkas silabus matakuliah dalam Bahasa Indonesia (maksimum 30 kata)]

Silabus Ringkas

Students learn wide topics of industrial electronics, from analog of AC and DC passive and active components and related circuits to digital electronics of basic digital circuits and microprocessor, from fundamental concepts to their applications in instrumentation systems and amplifiers using op-amp and transistors. It also covers magnetic Circuits using transformers, and electric drives based on DC Machines and Generators.

[Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)] Silabus Lengkap

Luaran (Outcomes)

Introduction to industrial electronics; Fundamental Concepts; Resistive Circuits; Ideal Op-Amp; Inductance and Capacitance; Transient analysis of 1st and 2nd Order Circuits; Sinusoidal Steady State Analysis; AC Power and 3-Phase Circuits; Logic Circuits & Microprocessor; Isntrumentation Systems; Diode, Bipolar and Filed Effect Transistors; Magnetic Circuits and Transformers; DC Machines and Generators

Analyse analog circuits consists of AC and DC passive and active components Understand basic digital circuits and microprocessor Understand fundamental concepts and their applications in instrumentation systems and amplifiers using op-amp and transistors Analyse magnetic Circuits using transformers Understand the principle of DC Machines and Generators and their uses in industrial electric drives

Matakuliah Terkait

FI1201 Fisika IIA [Kode dan Nama Matakuliah]

Prasyarat [Prasyarat, bersamaan, terlarang]

Kegiatan Penunjang Pustaka

Panduan Penilaian

Electrical Engineering: Principles and Applications, 5/E, Allan R. Hambley, Prentice Hall, 2011 [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung]) [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung]) UTS 30% UAS 30% PR 20% Kuis 20%

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 148 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa 

    1

Fundamental Concepts

[Uraikan sub-topik bahasan]      

  2

Resistive Circuits

       

3

Ideal Op-Amp

 

  



4

Inductance and Capacitance

 

   5

Transient analysis of 1st and 2nd Order Circuits

 

Recognize interrelationships between electrical engineering and other fields of science and engineering. List the major subfields of electrical engineering. List several important reasons for studying electrical engineering. Define current, voltage, and power, including their units. Calculate power and energy and determine whether energy is supplied or absorbed by a circuit element. State and apply Kirchhoff’s current and voltage laws. Recognize series and parallel connections. Identify and describe the characteristics of voltage and current sources. State and apply Ohm’s law. Solve for currents, voltages, and powers in simple circuits. Solve circuits (i.e., find currents and voltages of interest) by combining resistances in series and parallel. Apply the voltage-division and current-division principles. Solve circuits by the node-voltage technique. Solve circuits by the mesh-current technique. Find Thévenin and Norton equivalents and apply source transformations. Apply the superposition principle. Draw the circuit diagram and state the principles of operation for the Wheatstone bridge. List the characteristics of ideal op amps. Identify negative feedback in opamp circuits. Use the summing-point constraint to analyze ideal op-amp circuits that have negative feedback. Select op-amp circuit configurations suitable for various applications. Use op amps to design useful circuits. Identify practical op-amp limitations and recognize potential inaccuracies in instrumentation applications. Work with instrumentation amplifiers. Applyintegrators, differentiators, and activefilters. Find the current (voltage) for a capacitance or inductance given the voltage (current) as a function of time. Compute the capacitances of parallel-plate capacitors. Compute the energies stored in capacitances or inductances. Describe typical physical construction of capacitors and inductors and identify parasitic effects. Find the voltages across mutually coupled inductances in terms of the currents. Solve first-order RC or RL circuits. Understand the concepts of transient response and steady-state response. Relate the transient response of first-order circuits to the time constant. Solve RLC circuits in dc steady-

Sumber Materi

[Uraikan rujukan terhadap pustaka (bab, sub-bab)]

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 149 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

     6

Sinusoidal Steady State Analysis

    

7 8

AC Power and 3-Phase Circuits Midterm Exam     

9

Logic Circuits      

10

Microprocessors

    

11

Instrumentation System

 

  12

Diode

   

13

state conditions. Solve second-order circuits. Relate the step response of a second-order system to its natural frequency and damping ratio Identify the frequency, angular frequency, peak value, rms value, and phase of a sinusoidal signal. Determine the rms value of any periodic current or voltage. Solve steady-state ac circuits, using phasors and complex impedances. Compute power for steady-state ac circuits. Find Thévenin and Norton equivalent circuits. Determine load impedances for maximum power transfer. Discuss the advantages of threephase power distribution. Solve balanced three-phase circuits.

Bipolar and Filed Effect Transistors 

State the advantages of digital technology over analog technology. Understand the terminology of digital circuits. Convert numbers between decimal, binary, and other forms. Use the Gray code for position and angular sensors. Understand the binary arithmetic operations used in computers and other digital systems. Interconnect logic gates of various types to implement a given logic function. Use Karnaugh maps to minimize the number of gates needed to implement a logic function. Understand how gates are connected together to form flipflops and registers. Identify and describe the functional blocks of a microcomputer. Select the type of memory needed for a given application. Understand how microcomputers ormicrocontrollers can be applied in your field of specialization. Identify the internal registers and their functions for the 68HC11 microcomputer. List some of the instructions and addressing modes of the 68HC11. Write simple programs, using the 68HC11 instruction set. Describe the operation of the elements of a computer-based instrumentation system. Identify the types of errors that may be encountered in instrumentation systems. Avoid common pitfalls such as ground loops, noise coupling, and loading when using sensors. Determine specifications for the elements of computer- based instrumentation systems such as dataacquisition boards. Understand diode operation and select diodes for various applications. Use the graphical load-line technique to analyze nonlinear circuits. Analyze and design simple voltageregulator circuits. Use the ideal-diode model and piecewise-linear models to solve circuits. Understand various rectifier Understand bipolar junction transistor and MOSFET operation in amplifier circuits. Use the load-line technique to

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 150 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

        

 

 14

Magnetic Circuits and Transformers

  

    

15

DC Machines and Generators

 

analyze simple amplifiers and understand the causes of nonlinear distortion. Use large-signal equivalent circuits to analyze BJT circuits. Analyze bias circuits. Use small-signal equivalent circuits to analyze BJT and FET amplifiers. Select an amplifier configuration appropriate for a given application. Compute the performance parameters of several FET/BJT amplifier configurations. Understand the basic operation of CMOS logic gates Understand magnetic fields and their interactions with moving charges. Use the right-hand rule to determine the direction of the magnetic field around a currentcarrying wire or coil. Calculate forces on moving charges and currentcarrying wires due to magnetic fields. Calculate the voltage induced in a coil by a changingmagnetic flux or in a conductor cutting through a magnetic field. Use Lenz’s law to determine the polarities of induced voltages. Apply magnetic-circuit concepts to determine the magnetic fields in practical devices. Determine the inductance and mutual inductance of coils, given their physical parameters. Understand hysteresis, saturation, core loss, and eddy currents in cores composed of magnetic materials such as iron. Understand ideal transformers and solve circuits that include transformers. Use the equivalent circuits of real transformers to determine their regulations and power efficiencies. Select the proper motor type for various applications. State how torque varies with speed for various motors. Use the equivalent circuit for ac & dc motors to compute electrical and mechanical quantities. Use motor nameplate data. Understand the operation and characteristics of shunt-connected dc motors, series-connected dc motors, and universal motors, three-phase induction motors, three-phase synchronous machines, various types of single-phase ac motors, stepper motors, and brushless dc motors.

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 151 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4094

Bobot sks: 9

Semester: 7/8

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Pilihan

Magang di Industri Nama Matakuliah

Silabus Ringkas

Internships Untuk kesiapan mahasiswa terhadap kebutuhan dunia nyata, mahasiswa dapat terlibat langsung di industri terkait rekayasa selama masa satu semester. Selama kegiatan ini, mahasiswa dapat juga melakasankan kerja praktek (EL4092) dan EL4090 Tugas Akhir I (Capstone Design) sebagai bagian dari penugasannya di industri sebagai tenaga magang. Setiap mahasiswa harus memiliki seorang pembimbing di tempat magangnya

[Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)] Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

Kegiatan Penunjang Pustaka

Panduan Penilaian Catatan Tambahan

Untuk kesiapan mahasiswa terhadap kebutuhan dunia nyata, mahasiswa dapat terlibat langsung di industri terkait rekayasa selama masa satu semester. Selama kegiatan ini, mahasiswa dapat juga melakasankan kerja praktek (EL4092) dan EL4090 Tugas Akhir I (Capstone Design) sebagai bagian dari penugasannya di industri sebagai tenaga magang. Setiap mahasiswa harus memiliki seorang pembimbing di tempat magangnya Mahasiswa mengapresiasi keragaman masalah dan kendala di bidang rekayasa nyata Mahasiswa belajar beradaptasi dengan keragaman budaya dan organisasi di industri nyata Mahasiswa belajar beradaptasi dalam atmosfir multidisiplin dengan target terjadwal Sudah lulus minimal 104 sks Prasyarat EL4090 Tugas Akhir I (Capstone Design) Bersamaan EL4092 Kerja Praktek Bersamaan Lihat Catatan tambahan Prasyarat Kerja di Industri, Penugasan di Industri Rujukan Pilihan dari Industri Tempat Magang Rujukan Buku pilihan Pembimbing di Industri [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung]) Written report 60% Logbook 20% Seminar 20% Agar masa studi mahasiswa tidak lebih dari 9 semester, peserta harus sudah lulus semua matakuliah Semester-1 s/d Semester 6, yaitu minimal 104 sks

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 152 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa

Sumber Materi

[Uraikan capaian spesifik topik dengan merujuk kepada capaian matakuliah]

Materi Industri 1

1

Kegiatan Magang 1

Sub Topik 1.1

2

Kegiatan Magang 1

Sub Topik 1.2

Materi Industri 1

3

Kegiatan Magang 1

Sub Topik 1.3

Materi Industri 1

4

Kegiatan Magang 1

Sub Topik 1.4

Materi Industri 1

5

Kegiatan Magang 1

Sub Topik 1.5

Materi Industri 1

6

Kegiatan Magang 2

Sub Topik 2.1

Materi Industri 2

7

Kegiatan Magang 2

Sub Topik 2.2

Materi Industri 2

8

Kegiatan Magang 2

Sub Topik 2.3

Materi Industri 2

9

Kegiatan Magang 2

Sub Topik 2.4

Materi Industri 2

10

Kegiatan Magang 2

Sub Topik 2.5

Materi Industri 2

11

Kegiatan Magang 3

Sub Topik 3.1

Materi Industri 3

12

Kegiatan Magang 3

Sub Topik 3.2

Materi Industri 3

13

Kegiatan Magang 3

Sub Topik 3.3

Materi Industri 3

14

Kegiatan Magang 3

Sub Topik 3.4

Materi Industri 3

15

Kegiatan Magang 3

Sub Topik 3.5

Materi Industri 3

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 153 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL3213

Bobot sks: 1

Semester: 6

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Layanan/Pilihan

Praktikum Sistem Instrumentasi Nama Matakuliah

Silabus Ringkas

Silabus Lengkap

Instrumentation Systems Lab Karakterisasi dan pengggunaan beberapa sensor dan transduser optik, sensor dan transduser thermal, sensor dan transduser mekanik, sensor dan transduser akustik

Karakteristik sensor dan transduser optik, sensor dan transduser thermal, sensor dan transduser mekanik, sensor dan transduser akustik. Pengukuran intensitas cahaya dan pengaruh sudut datang dan panjang gelombang dengan LDR, Photocell, Photodiode, photo transistor. Pengukuran temperatur menggunakan PTC, NTC, bimetal dan IC. Pengukuran jarak menggunakan resistansi variabel, kapasitansi variabel, dan LVDT. Pengukuran jarak menggunakan sensor ultrasonik dan pengaruh daya pencar dan frekuensi terhadap pengukuran jarak. [Uraian lengkap silabus matakuliah dalam Bahasa Inggris (maksimum 100 kata)]

Luaran (Outcomes) Matakuliah Terkait

EL3013 Sistem Instrumentasi

Prasyarat

Kegiatan Penunjang

[Praktikum, kerja lapangan, dsb.]

Pustaka

Lab Manuals [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung]) [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung])

Panduan Penilaian

Lab reports 100%

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 154 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

1

Transduser Optik

2

Transduser Termal

3

4

Transduser Mekanik

Transduser Akustik

Sub Topik  Karakterisasi LDR, photocell, photodiode, phototransistor  Pengukuran intensitas cahaya  Pengaruh sudut datang  Pengaruh panjang gelombang  Karakterisasi PTC  Karakterisasi NTC  Karakterisasi bimetal  Karakterisasi IC Temp sensor  Karakterisasi resistor variabel  Karakterisasi kapsitor variabel  Karakterisasi induktor variabel  Karakterisasi LVDT  Karakterisasi daerah frekuensi sensor ultrasonik  Pengaruh perubahan jarak terhadap hasil pengukuran

Capaian Belajar Mahasiswa

Sumber Materi

 Menjelaskan cara kerja tiap jenis sensor optik yang tersedia  Mengetahui pengaruh sudut datang terhadap hasil pengukuran  Mengetahui pengaruh frekuensi gelombang cahaya terhadap hasil pengukuran

Lab Manual 1

 Menjelaskan cara kerja sensor termal  Mengidentifikasi kelebihan dan kekurangan sensor termal tsb  Mengetahui contoh aplikasi sensor termal

Lab Manual 2

 Menjelaskan cara kerja tiap jenis sensor mekanik yd tersedia  Mengidentifikasi kelebihan dan kekurangan sensor mekanik tsb  Mengetahui contoh aplikasi sensor mekanik tsb

Lab Manual 3

 Menjelaskan cara kerja sensor ultrasonik  Mengidentifikasi daerah kerja frekuensi sensor ultrasonik  Mengetahui pengaruh perubahan jarak terhadap hasil pengukuran

Lab Manual 4

5 6 7 8 9 10 11 12 13 14 15

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 155 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP)

Kode Mata kuliah: EL2244

Bobot SKS: 3

Semester: 4

KK / Unit Penanggungjawab: Prodi S1 Teknik Elektro

Sifat: Wajib Prodi STI (Layanan dari Prodi Teknik Elektro)

Sistem dan Arsitektur Komputer Nama Matakuliah Computer System & Architecture Kuliah ini membahas tentang sistem computer, mencakup perangkat keras, perangkat lunak, data dan prosedur, komunikasi dan manfaat bagi masyarakat penggunanya, sistem komputer enterprise Silabus Ringkas Student will gain a comprehensive knowledge about computer systems, its hardware components, software, data and procedures, communications, also the societies, enterprise computer system, cloud computing Membahas sistem computer digital modern dan timbal balik yang muncul ketika perangkat keras dan perangkat lunak saling berinteraksi. Topik meliputi: abstraksi computer, organisasi perangkat keras, instruction set architecture, representasi dan operasi data, sistem operasi, sistem pengolah (CPU), sistem memori, sistem input-output, analisis kinerja, serta pengantar arsitektur masa depan, sistem komputer enterprise Silabus Lengkap

Luaran (Outcomes)

This course will give an in-depth understanding of the inner-workings of modern digital computer systems and tradeoffs present at the hardware-software interface. Topics include: computer abstraction, hardware organization, instruction set architecture, data representation and operation, software/operating system, CPU, systems, memory systems, input-output systems, performance analysis, and introduction of advance architecture enterprise computer system, cloud computing . 1.

Identify the abstraction of computer system

2.

Identify some contributors to computer architecture and organization and relate their achievements to the knowledge area

3.

Understanding that information is bits in context

4.

Understanding how compilation systems work

5.

Articulate differences between computer organization and computer architecture.

6.

Identify some of the components of a computer.

7.

Identify structure and function of computer

8.

Understanding that the operating system manages the hardware

9.

Describe how IT engineer uses or benefits from computer architecture and system

10. Understand enterprise computer system, 11. Understand cloud computing system IF1210 Dasar Pemrograman

Prasyarat

EL2142 Sistem Digital & Mikroprosesor

Prasyarat

Matakuliah Terkait Kegiatan Penunjang

Praktikum 1. Randal E. Bryant and David R. Hallaron, Computer System A Programmer’s Perspective, 2nd Edition, Prentice Hall, 2010 [CSAPP]

Pustaka

2. John L. Hennesy and David A. Patterson, Computer Organization and Design: The Software Hardware Interface, 4th Edition, Morgan Kaufmann Publisher, 2009 [COaD] 3. William Stallings, Computer Organization and Architecture: Designing for Perfornance, 8th Edition, Prentice Hall, 2010 [COaA]

Panduan Penilaian

[Termasuk jenis dan bentuk penilaian]

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 156 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Catatan Tambahan

Update: 3 Maret 2013, Dr. Kusprasapta; Update: 8 April 2013, Dr. Arry Akhmad Arman; Update: 6 Sept 2013 Arief S-Rohman

Satuan Acara Perkuliahan Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa

Sumber Materi

Understanding the abstraction of computer system Computer Abstraction Data and Information Compilation System Hardware Organization 1

Introduction

Architecture and Organization Structure and Function Operating System Personal and Career

Understanding that information is bits in context Understanding how compilation systems work Articulate differences between computer organization and computer architecture. Identify some of the components of a computer.

CSAPP Ch 1, COaA Ch 1

Identify structure and function of computer Understanding that the operating system manages the hardware Describe how IT engineer uses or benefits from computer architecture and system Identify some contributors to computer architecture and organization and relate their achievements to the knowledge area.

2

Computer Evolution and Performance

History of computers Performance Analysis

Understand the factors that contribute to computer performance.

COaD Ch 1, COaA Ch 2

Understand the limitations of performance metrics. Select the most appropriate performance metric when evaluating a computer.

Top level view of computer 3

Computer Components and Interconnection

Von Neumann machine Instruction cycle

4

Floating Point

5

Processor Intel’s Instruction Set Architecture

Explain how a computer fetches from memory and executes an instruction.

Datapath and Control

Articulate the strengths and weakness of the von Neumann architecture.

Binary representation and operation

Appreciate how numerical values are represented in digital computers.

Big endian and little endian machine Data Representation, Integer Representation and Operations,

Explain the organization of a von Neumann machine and its machine and its major functional units.

Unsigned and Signed Numbers. Range, Arithmetic Operations IEEE754, Representation, Range, Precision, Rounding, and Arithmetic operations Data Formats, Accesing Information, ALU Ops, Control

COaD Ch 4, COaA Ch 3

Understand the limitations of computer arithmetic and the effects of errors on calculations.

CSAPP Ch 2

Appreciate how numerical values are represented in digital computers.

CSAPP Ch2

CSAPP Ch2

Understand the limitations of computer arithmetic and the effects of errors on calculations. Explain the relationship between the representation of machine level operation at the binary level and their representation by a symbolic assembler.

CSAPP Ch3

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 157 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Sub Topik

Capaian Belajar Mahasiswa

Sumber Materi

Write small programs and fragments of assembly language code to demonstrate an understanding of machine level operations. Implement some fundamental high-level programming constructs at the machinelanguage level. Explain the relationship between the representation of machine level operation at the binary level and their representation by a symbolic assembler.

6

Processor Intel’s Instruction Set Architecture

Control and Procedure

Write small programs and fragments of assembly language code to demonstrate an understanding of machine level operations.

CSAPP Ch3

Implement some fundamental high-level programming constructs at the machinelanguage level. Explain the relationship between the representation of machine level operation at the binary level and their representation by a symbolic assembler.

7

Processor Intel’s Instruction Set Architecture

Array allocations, Structures, and unions

Write small programs and fragments of assembly language code to demonstrate an understanding of machine level operations.

CSAPP Ch3

Implement some fundamental high-level programming constructs at the machinelanguage level. 8

Midterm Identify the main types of memory technology. Explain the effect of memory latency and bandwith on performance.

9

Memory Hierarchy

Memory Technology, Cache, Virtual memory

Explain the use of memory hierarchy to reduce the effective memory latency. Describe the principles of memory management.

COaD Ch5, CSAPP Ch6 COaD Ch6, CSAPP Ch10

Explain the use of memory hierarchy to reduce the effective memory latency. Describe the principles of memory management. Design an interface to memory. Explain how to use interrupts to implement I/O control and data transfers. Write small interrupt service routines and I/O drivers using assembly language. 10

I/O Subsystem

Peripherals and Storage

Identify various types of buses in a computer system.

COaD Ch6

Describe data access from a magnetic disk drive. Analyze and implement interfaces. Compute the various parameters of performance for standard I/O

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 158 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Capaian Belajar Mahasiswa

Sub Topik

Sumber Materi

types. Explain the basic nature human computer interaction devices. Describe data access from magnetic and optical disk drives. Understand how to interface and use peripheral chips. Write sufficient EPROM-based system software to create a basic stand-alone system Specify and design simple computer interfaces. 11

Understanding that the operating system manages the hardware

Operating System

COaD Ch

Discuss how various architectural enhancements affect system performance Explain the differences between different paradigms and their usefulness and applicability.

12

Discuss how to apply parallel processing approaches to design scalar and superscalar processors

Introduction to Superscalar, Parallel and Distributed System

COaD Ch7

Understand how client server model works in a decentralized fashion. Understand how agents work and how they solve simple tasks.

Understand the concept of DCDRC

13

Enterprises Computer System and Architecture

Data Center, Disaster Recovery Center, Large Scale Storage System, Data Replication DCDRC

Understand the storage technology Understand the impotance of storage system in modern Enterprise Computer System

Berbabagai sumber

Know the tipical configuration of Enterprise Computer System

Know SOA Data Center Design and Standard. SOA.

14

Know Data Center Standard

Berbabagai sumber

Know how to design Data Center

15

Cloud Computing System

Cloud Computing Services, Architecture, Performance. Case Study: Global Cloud Computing provider.

Understand the Concept of Cloud Computing Understand CC Services Understand the performances issues of CC

Berbabagai sumber

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 159 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Sarjana Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Contoh Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL2142

Bobot sks: 4

Semester: 2

Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Layanan

Sistem Digital dan Mikroprosesor Nama Matakuliah Digital System dan Microprocessor [Uraian ringkas silabus matakuliah dalam Bahasa Indonesia (maksimum 30 kata)] Silabus Ringkas

Fundamentals of digital logic and microprocessor system. Covers combinational and sequential logic circuits, programmable logic devices. Microprocessor system covers hardware, software, peripheral, interfacing and communication [Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)]

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait Kegiatan Penunjang

Pustaka

Panduan Penilaian

The following topics will be covered: 12. Digital systems: digital computers and digital systems; binary, octal and hexadecimal number systems; complements; signed binary numbers; decimal and binary codes; introduction to binary logic 13. Boolean algebra: basic definitions, theorems and properties of Boolean algebra; Boolean functions;standard forms of Boolean functions; logic operations 14. Simplification of Boolean functions: Karnaugh map method; don’t care condition; NAND and NOR 15. Combinational circuits: analysis and design procedures; adders, subtractors, multilevel NAND/NOR circuits and code conversion; transistor switches and practical design considerations 16. MSI and PLD devices: magnitude comparators, decoders, encoders, multiplexers, read-only memory (ROM), Programmable Logic Array (PLA), and Programmable Array Logic (PAL) 17. Analysis of synchronous sequential circuits: flip-flops; analysis of clocked sequential circuits; statereduction and assignment 18. Design of sequential circuits: flip-flop excita tion tables, design procedures, counter designs 19. Registers, counters and memory devices: shift registers, ripple counters, synchronous counters, timing sequences, and Random Access Memory (RAM) 20. Microprocessor system architecture: von Neumann, and Harvard machine. 21. Microprocessor system hardware: bus, bus timing, stack, interrupt, address decoder, peripheral and interfacing, serial communication 22. Microprocessor system software: flow chart, super loop and foreground background architecture, software to use timer, ADC, PWM, serial communicaton, Digital I/O (LED, 7 segment, LED matrix, switch, keypad), Analog I/O (sensors) 23. Microprocessor design methodology 7. Be able to represent and manipulate numbers in the binary two's complement number system, and convert numbers between different positional number systems. Be able to do negation and addition in the two’s complement number system, and detect overflow. 8. Carry out transformations of Boolean algebra expressions, using the theorems of Boolean algebra and Karnaugh maps. The student can find the minimal sum-of-products (SOP) and product-of-sums (POS) expressions, and create a corresponding circuit from AND, OR, NAND, and NOR gates. 9. The student will be able to analyze the functional and electrical behavior of digital CMOS circuits, including noise margins, allowable fan-in/out, and power dissipation. Given an NMOS or CMOS circuit diagram, the student can determine its logic function, using switch models for the transistors. The student can map simple functions onto programmable logic devices manually. 10. The student can analyze and design digital systems of moderate complexity using contemporary technology methods, including programmable logic devices and CAD tools. The student can use standard combinational and sequential digital building blocks including adders, multiplexers, decoders, encoders, and registers. 11. The student can analyze and design microprocessor system, the student realize how to use stack, interrupt, address decoder, peripheral, interface and serial communication. 12. The student can design and implement software for microprocessor, using super loop and foreground and background architecture 13. The student will be able to write proper lab reports, communicating their objectives, approach, observations, and conclusions Pengantar Analisis Rangkaian Prasyarat Praktikum S. Brown and Z. Vranesic: Fundamentals of Digital Logic and VHDL Design, 3rd Edition McGraw-Hill, 2009 J.T. Ronald, S.W. Neal, G.L. Moss, Digital Systems Principles and Applications 10th edition, Pearson, 2007 D. Gadre, Programming and Customizing the AVR Microcontroller, Mc Graw Hill, 2001 [Termasuk jenis dan bentuk penilaian]

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 160 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg#

Topik

Introduction

Sub Topik

Capaian Belajar Mahasiswa

5.

6. 1

7. 8.

Boolean Algebra + Logic Circuit

6.

7. 8. 9.

10.

Boolean Algebra + Logic Circuit

6.

7. 8. 2

9.

10.

Implementation Technology

4. 5.

6.

Implementation Technology

4. 5.

3

Identify some contributors to digital logic and microprocessor system, and relate their achievements to the knowledge area. Explain why Boolen logic is important to this subject. Articulate why gates are the fundamental elements of a digital system. Describe how electrical engineering uses or benefits from digital logic and microprocessor system. Derive and manipulate switching functions that form the basis of digital circuits. Apply digital system design principles and techniques. Model and simulate a digital system using schematic diagrams. Model and simulate a digital system using a hardware description language, such as VHDL or Verilog. Understand timing issues in digital systems and know how to study these via digital circuit simulation. Derive and manipulate switching functions that form the basis of digital circuits. Apply digital system design principles and techniques. Model and simulate a digital system using schematic diagrams. Model and simulate a digital system using a hardware description language, such as VHDL or Verilog. Understand timing issues in digital systems and know how to study these via digital circuit simulation. Realize switching functions with networks of logic gates. Explain and apply fundamental characteristics of relevant electronic technologies, such as propagation delay, fan-in, fan-out, and power dissipation and noise margin. Utilize programmable devices such as FPGAs and PLDs to implement digital system designs. Realize switching functions with networks of logic gates. Explain and apply fundamental characteristics of relevant electronic technologies, such as propagation delay, fan-in, fan-out, and power dissipation and noise margin.

Sumber Materi

(S. Brown and Z. Vranesic) Chapter 1 (Ronald, Neal, Moss) Chapter 1

(S. Brown and Z. Vranesic) Chapter 2

(S. Brown and Z. Vranesic) Chapter 2

(S. Brown and Z. Vranesic) Chapter 3

(S. Brown and Z. Vranesic) Chapter 3

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 161 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

6.

Optimized Implementation of Logic Functions - KMAP

3.

4. Optimized Implementation of Logic Functions - KMAP

3.

4

4. Number Representation & Arithmetic Circuit Combinational Circuit Building Blocks

2. 3.

4.

5

Combinational Circuit Building Blocks

3.

4.

Sequential Circuit Elements

7. 8. 9. 10.

6

11.

12.

Sequential Circuit Elements

10. 11. 12. 13. 14.

15.

Utilize programmable devices such as FPGAs and PLDs to implement digital system designs. Derive and manipulate switching functions that form the basis of digital circuits. Reduce switching functions to simplify circuits used to realize them. Derive and manipulate switching functions that form the basis of digital circuits. Reduce switching functions to simplify circuits used to realize them. Work with binary number systems and arithmetic. Analyze and explain uses of small- and medium-scale logic functions as building blocks. Analyze and design combinational logic networks in a hierarchical, modular approach, using standard and custom logic functions. Analyze and explain uses of small- and medium-scale logic functions as building blocks. Analyze and design combinational logic networks in a hierarchical, modular approach, using standard and custom logic functions. Contrast the difference between a memory element and a register. Indicate some uses for sequential logic. Design and describe the operation of basic memory elements. Analyze circuits containing basic memory elements. Apply the concepts of basic timing issues, including clocking, timing constrains, and propagation delays during the design process. Analyze and design functional building blocks and timing concepts of digital systems. Contrast the difference between a memory element and a register. Indicate some uses for sequential logic. Design and describe the operation of basic memory elements. Analyze circuits containing basic memory elements. Apply the concepts of basic timing issues, including clocking, timing constrains, and propagation delays during the design process. Analyze and design functional building blocks and timing concepts of digital systems.

(S. Brown and Z. Vranesic) Chapter 4

(S. Brown and Z. Vranesic) Chapter 4

(S. Brown and Z. Vranesic) Chapter 5

(S. Brown and Z. Vranesic) Chapter 6

(S. Brown and Z. Vranesic) Chapter 6

(S. Brown and Z. Vranesic) Chapter 7

(S. Brown and Z. Vranesic) Chapter 7

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 162 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Synchronous State Machine

1. 2.

7

3. Synchronous State Machine

4. 5. 6.

8

Midterm Exam (Digital System) Microprocessor System Architecture

1.

3. Stack and Interupt

1.

9

2. Address Decoder

1. 2.

10

3. Software Architecture

1. 2.

11

3. Peripheral

4. 5.

12

6. 7. 6.

Serial Communication 13

7. Digital I/O

6.

14

Interfacing

Microprocessor System Toolchain and Design

Analog I/O

6.

1.

15

2. Final Exam (Microprocessor System)

(S. Brown and Z. Vranesic) Chapter 8

(S. Brown and Z. Vranesic) Chapter 8

(S. Brown and Z. Vranesic) Chapter 1-8 2.

Interfacing

Analyze the behaviour of synchronous machines. Design synchronous sequential machines. Reduce the number of states to simplify circuits used to realize them. Analyze the behaviour of synchronous machines. Design synchronous sequential machines. Reduce the number of states to simplify circuits used to realize them. Describe microprocessor system Describe bus and its timing concept Realize von Neumann vs Harvard machine Realize role of stack on interrupt Analyze relation between interrupt and stack Create memory map Design address decoder using digital logic circuit Count and describe memory timing access Design and describe super loop architecture Design and describe foreground background (interrupt) architecture Design and analyze program flow chart Describe internal peripheral of microcontroller Design and analyze software to use timer, ADC, PWM Design and analyze software and hardware for ADC Design PWM application Describe serial communication Design serial communication software Design hardware and software to access LED, switch, 7 segment display, LED matrix, keypad matrix Design hardware and software to access analog device, e.g. temperature sensor and light sensor Design, implementation software, debugging and analyze Simple microprocessor system design

(Ronald, Neal, Moss)

(Ronald, Neal, Moss)

(Ronald, Neal, Moss)

(Ronald, Neal, Moss)

(Ronald, Neal, Moss)

(Ronald, Neal, Moss)

(Ronald, Neal, Moss)

(Ronald, Neal, Moss)

(Ronald, Neal, Moss)

(Ronald, Neal, Moss)

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 163 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

KURIKULUM ITB 2013-2018 – PROGRAM SARJANA Program Studi Teknik Elektro Sekolah Teknik Elektro dan Informatika Silabus dan Satuan Acara Pengajaran (SAP) Kode Matakuliah: EL4019

Bobot sks: 3

Semester: 8

KK / Unit Penanggung Jawab: Prodi S1 Teknik Elektro

Sifat: Layanan/Pilihan

Sistem Penggerak Elektrik Nama Matakuliah

Silabus Ringkas

Eelectrical Drive Systems

Elements of electric drive systems, introduction to solid states devices, introduction to solid state switching circuits, joint speedtorque charactesristics of electric motors and mechanical load, speed-torque characteristics of dc and ac electric motors, speed control of dc motors, speed control of induction motors, braking of dc motors, braking of induction motors, dynamic of electric drive systems [Uraian lengkap silabus matakuliah dalam Bahasa Indonesia (maksimum 100 kata)]

Silabus Lengkap

Luaran (Outcomes)

Matakuliah Terkait

Students learn the basics of electric drive systems that consists of solid-state switching circuits and ac or dc electric motors , joint speed-torque charactesristics of electric motors and mechanical load, speed-torque characteristics of dc and ac electric motors, speed control of dc motors, speed control of induction motors, braking of dc motors, braking of induction motors, dynamic of electric drive systems Medapat model elektrik dan memahami karakterisitik umur beberapa jenis motor DC, motor AC, dan motor sinkron Menghitung daya dan rugi daya serta efisiensi motor AC Memahami cara kerja konverter ac/dc, dc/dc, dan dc/ac Memahami cara pengendalian kecepatan motor DC dan motor AC Memahami titik kerja sistem penggerak elektrik Memahami karakteristik dinamik sistem penggerak elektrik EL2005 Elektronika Prasyarat

Kegiatan Penunjang

[Praktikum, kerja lapangan, dsb.]

Pustaka

Lab Manuals M. El-Sharkawi, Fundamentals of Electric Drives, Brooks/Cole Publishing Co., 2000 [Penulis, Judul, Edisi, Penerbit, Tahun terbit] ([Pustaka utama/alternatif/pendukung])

Panduan Penilaian

Lab preparation and conduct (42%), Lab Reports (42%), Lab Note Book (15%), Review Exams (11%)

Catatan Tambahan

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 164 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.

Mg# 1

2

3 4

5

6

7

8

9

10 11

Topik Electrical drive systems components; BJT sbg switch Solid state devices; karakteristik SCR, AC/DC conversion for resistif & inductive loads Free wheeling diode; DC/DC DC/AC converters; Bi-didirectional elect drive systems, 4-quadrant drives; DC motor DC motors & Induction motors (starting & max torques, equivl. Circuits) Quiz1 Converters; Synch. Motors (power flow, var speed control); Dcmotor control w/ thyristor Synchronous motors (solid state cntrl, 1-phase half and full wave drives); IM speed control (adding resistance, rotor injected voltage) Quiz2 DC Speed motor control; AC speed motor controls (voltage & V/f control) V/f IM motor control; current source invereter IM motor control; Dynamic & regenerative brakings UTS IM Speed control; DC motor braking counter current braking DC motors; Quiz Chapter 9

12

Induction motor brakings

13

Induction motor brakings Dynamic of Electric Drives (DC & AC motors)

14 15

Sub Topik

Capaian Belajar Mahasiswa

Sumber Materi

[Uraikan sub-topik bahasan]

[Uraikan capaian spesifik topik dengan merujuk kepada capaian matakuliah]

[Uraikan rujukan terhadap pustaka (bab, sub-bab)]

Quiz3; Review materi kuliah

Bidang Akademik dan Kemahasiswaan ITB Kur2013-Teknik Elektro Halaman 165 dari 165 Template Dokumen ini adalah milik Direktorat Pendidikan - ITB Dokumen ini adalah milik Program Studi Teknik Elektro - ITB. Dilarang untuk me-reproduksi dokumen ini tanpa diketahui oleh Dirdik-ITB dan EL-ITB.