Front Matter

6 downloads 0 Views 395KB Size Report
brand names and product names used in this book are trade names, service marks, trademarks or ..... 4.4.5 Can Power Transfer be Optimized with aTX = aRX? .... 7 Industrial and International Standards on PLC-based Networking ..... During this ambitious project, we involved 31 technical contributors from 27 institutions.
Power Line Communications

Power Line Communications: Theory and Applications for Narrowband and Broadband Communications over Power Lines Edited by Hendrik C. Ferreira, Lutz Lampe, John Newbury and Theo G. Swart © 2010 John Wiley & Sons Ltd. ISBN: 978-0-470-74030-9

Power Line Communications Theory and Applications for Narrowband and Broadband Communications over Power Lines Editors Hendrik C. Ferreira University of Johannesburg, South Africa

Lutz Lampe University of British Columbia, Canada

John Newbury The Open University, UK

Theo G. Swart University of Johannesburg, South Africa

A John Wiley and Sons, Ltd, Publication

This edition first published 2010 c 2010 John Wiley & Sons Ltd  Registered office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com. The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought. Library of Congress Cataloging-in-Publication Data Power line communications : theory and applications for narrowband and broadband communications over power lines / editors, H.C. Ferreira . . . [et al.] p. cm. Includes bibliographical references and index. ISBN 978-0-470-74030-9 (cloth) 1. Electric lines–Carrier transmission. I. Ferreira, H. C. (Hendrik C.) TK5103.15.P695 2010 621.382–dc22 A catalogue record for this book is available from the British Library. ISBN 978-0-470-74030-9 Set in 10/12pt Times by Sunrise Setting Ltd, Torquay, UK. Printed in Singapore by Markono Print Media Pte Ltd.

2009053133

Contents List of Contributors

1

2

xv

Preface

xvii

List of Acronyms

xix

Introduction The Editors

1

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

Channel Characterization P. Amirshahi, F. Cañete, K. Dostert, S. Galli, M. Katayama and M. Kavehrad

7

2.1 2.2

2.3

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Channel Modeling Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 Brief Review of Indoor/Outdoor Topologies . . . . . . . . . . . . . . 2.2.1.1 Low, Medium and High Voltage Mains Topologies . . . . . 2.2.1.2 Residential and Business Indoor Wiring Topologies . . . . 2.2.2 Some Fundamental Definitions and Properties of Band-Limited Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.2.1 Impulse Response Duration . . . . . . . . . . . . . . . . . 2.2.2.2 Average Channel Gain . . . . . . . . . . . . . . . . . . . . 2.2.2.3 Root Mean Square Delay Spread (RMS-DS) . . . . . . . . 2.2.3 Characteristics of the Indoor Channel in the HF and VHF Bands . . . 2.2.4 Characteristics of the Outdoor Channel (LV and MV) . . . . . . . . . 2.2.5 Characteristics of the Low Frequency Channel . . . . . . . . . . . . 2.2.6 Fundamental Approaches: Deterministic and Empirical Models . . . 2.2.6.1 Time Domain-Based Modeling: The Multipath Model . . . 2.2.6.2 Frequency Domain-Based Modeling: Transmission-Line Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.7 Advantages and Disadvantages of Modeling Approaches . . . . . . . 2.2.8 Merging the Deterministic and the Statistical Approaches: Towards a Hybrid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Models for Outdoor Channels: LV Case . . . . . . . . . . . . . . . . . . . . 2.3.1 Access Network Topologies in Europe, Asia and the USA . . . . . . 2.3.2 Some Fundamentals of Transmission Line Theory . . . . . . . . . . 2.3.2.1 Weakly Lossy Lines . . . . . . . . . . . . . . . . . . . . .

7 8 9 9 11 14 15 15 15 16 19 20 23 23 25 27 29 31 31 34 35

CONTENTS

vi

2.3.2.2 Reflections . . . . . . . . . . . . . . . . . . . . . . . The Power Line Channel Model . . . . . . . . . . . . . . . . . 2.3.3.1 Realistic Examples . . . . . . . . . . . . . . . . . . 2.3.3.2 Reference Channel Definition for the Access Domain Models for Outdoor Channels: MV Case . . . . . . . . . . . . . . . . . 2.4.1 Propagation on Overhead MV Transmission Lines . . . . . . . 2.4.1.1 Single Conductor over High-Loss Earth . . . . . . . 2.4.1.2 Analysis of MTLs . . . . . . . . . . . . . . . . . . . 2.4.1.3 Mathematical Derivations . . . . . . . . . . . . . . . 2.4.2 Channel Transfer Function . . . . . . . . . . . . . . . . . . . . 2.4.3 Background Noise in Medium Voltage Lines . . . . . . . . . . Models for Indoor Channels . . . . . . . . . . . . . . . . . . . . . . . 2.5.1 Modeling Principles . . . . . . . . . . . . . . . . . . . . . . . 2.5.2 LTI Channel Model . . . . . . . . . . . . . . . . . . . . . . . . 2.5.2.1 Device Characteristics . . . . . . . . . . . . . . . . . 2.5.2.2 Measurements Results . . . . . . . . . . . . . . . . . 2.5.2.3 Channel Response Modeling . . . . . . . . . . . . . 2.5.3 LPTV Channel Model . . . . . . . . . . . . . . . . . . . . . . 2.5.3.1 Empirical Basis: Tests with Time-Varying Devices . . 2.5.3.2 Theoretical Basis for the Time-Varying Response . . 2.5.3.3 Channel Time-Varying Response Modeling . . . . . . 2.5.3.4 Measurements of Actual Channel Responses . . . . . 2.5.4 Reference Channel Models . . . . . . . . . . . . . . . . . . . . 2.5.4.1 Structural Modeling Approach . . . . . . . . . . . . 2.5.4.2 Set of Reference Channels . . . . . . . . . . . . . . . 2.5.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . Noise and Disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.1 PLC Noise in Time Domain . . . . . . . . . . . . . . . . . . . 2.6.1.1 Continuous Noise . . . . . . . . . . . . . . . . . . . 2.6.1.2 Impulsive Noise . . . . . . . . . . . . . . . . . . . . 2.6.1.3 Narrowband Noise . . . . . . . . . . . . . . . . . . . 2.6.1.4 Overall Noise Waveform . . . . . . . . . . . . . . . 2.6.2 PLC Noise in Frequency Domain . . . . . . . . . . . . . . . . 2.6.3 Mathematical Representations . . . . . . . . . . . . . . . . . . 2.6.3.1 Middleton’s Noise Models . . . . . . . . . . . . . . 2.6.3.2 Frequency Domain Approach . . . . . . . . . . . . . 2.6.3.3 Time Domain Approach for Impulsive Noise . . . . . 2.6.3.4 Cyclostationary Noise Model . . . . . . . . . . . . . 2.6.4 PLC Noise Features for Adaptive Coding, Modulation and Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . Measuring Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.2 Scattering Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.3 Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.4 Measurement Setups . . . . . . . . . . . . . . . . . . . . . . . PLC Channel Emulation Tools . . . . . . . . . . . . . . . . . . . . . . 2.8.1 Power Line Channel Emulation for the HF Range . . . . . . . . 2.3.3

2.4

2.5

2.6

2.7

2.8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37 37 42 46 48 49 49 53 56 59 63 65 66 69 69 69 70 73 73 74 77 78 82 83 83 86 86 86 86 87 88 89 89 90 91 93 93 93

. . . . . . . .

. . . . . . . .

. . . . . . . .

94 97 97 98 99 100 102 103

CONTENTS

vii

2.8.2 Power Line Channel Emulation for the LF Range Reference Channels for Access Domain . . . . . . . . . 2.9.1 Brief Description of the Reference Channels . . 2.9.2 Parameters of the Reference Channels . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.9

3

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

Electromagnetic Compatibility H. Hirsch and M. Koch Introduction . . . . . . . . . . . . . . . . . . . . . . . . . Parameters for EMC Considerations . . . . . . . . . . . . 3.2.1 EMC Relevant Transmission Line Parameters . . . 3.2.2 Coupling Factor . . . . . . . . . . . . . . . . . . 3.2.3 Electric and Magnetic Field . . . . . . . . . . . . 3.3 Electromagnetic Emission . . . . . . . . . . . . . . . . . 3.3.1 Radiated Emissions . . . . . . . . . . . . . . . . . 3.3.2 Conducted Emissions . . . . . . . . . . . . . . . . 3.4 Electromagnetic Susceptibility . . . . . . . . . . . . . . . 3.5 EMC Coordination . . . . . . . . . . . . . . . . . . . . . 3.5.1 Compatibility Level . . . . . . . . . . . . . . . . 3.5.2 Definition of Limits . . . . . . . . . . . . . . . . 3.6 EMC Regulation in Europe . . . . . . . . . . . . . . . . . 3.6.1 Regulation for PLC . . . . . . . . . . . . . . . . . 3.6.2 Market Access . . . . . . . . . . . . . . . . . . . 3.6.3 Regulation in the Case of Interference Complaints 3.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

Coupling P. A. Janse van Rensburg 4.1 4.2 4.3

Introduction . . . . . . . . . . . . . . . . . . Filtering Basics . . . . . . . . . . . . . . . . Transformer-Capacitor Coupler Design . . . 4.3.1 Frequency Specifications . . . . . . . 4.3.2 Impedance Levels/Winding Ratio . . 4.3.3 Maximum Voltage Levels . . . . . . 4.3.4 Maximum Current Levels . . . . . . 4.3.5 Core . . . . . . . . . . . . . . . . . . 4.3.6 Current Density . . . . . . . . . . . . 4.3.7 Skin Effect . . . . . . . . . . . . . . 4.3.8 Number of Strands . . . . . . . . . . 4.3.9 Number of Turns . . . . . . . . . . . 4.3.10 Flux Density . . . . . . . . . . . . . 4.3.11 Leakage Inductance . . . . . . . . . 4.3.12 Enlarging of Leakage Inductance . . 4.3.13 Series Capacitor . . . . . . . . . . . 4.3.14 Magnetizing Inductance . . . . . . . 4.3.15 Check Combined Flux Density Levels

105 108 109 110 120 127

3.1 3.2

4

. . . . .

127 128 128 130 131 133 134 135 138 139 139 140 141 141 142 143 144 144 147

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

147 150 154 155 156 156 156 156 156 157 157 157 157 157 158 158 158 159

CONTENTS

viii 4.3.16 Reducing Magnetizing Inductance . . . . . . . . . . . . . . 4.3.17 Evaluation and Discussion . . . . . . . . . . . . . . . . . . 4.4 Impedance Adaptation Concepts . . . . . . . . . . . . . . . . . . . 4.4.1 Is it Worthwhile Attempting Impedance Matching? . . . . . 4.4.2 Of What Order Should Practical Winding Ratios be? . . . . 4.4.3 Is there a Good, Versatile Receiver Winding Ratio? . . . . . 4.4.4 Is there a Good, Versatile Transmitter Winding Ratio? . . . 4.4.5 Can Power Transfer be Optimized with aTX = aRX ? . . . . 4.4.6 Can aTX and aRX be Optimized Independently? . . . . . . . 4.4.7 How should these Findings be Interpreted and Implemented? 4.5 Experimental Verification . . . . . . . . . . . . . . . . . . . . . . . 4.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 4.5.3 Emulated Transmitter and Receiver . . . . . . . . . . . . . 4.5.4 Laboratory Verification of Simulation Results . . . . . . . . 4.5.5 Classifying Power Outlets for Impedance Adaptation . . . . 4.5.6 Dual Impedance-Adapting Coupler . . . . . . . . . . . . . 4.6 Further Possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

159 159 162 166 166 167 168 169 169 171 172 172 175 178 179 182 185 191 192

Digital Transmission Techniques M. Ardakani, G. Colavolpe, K. Dostert, H. C. Ferreira, D. Fertonani, T. G. Swart, A. M. Tonello, D. Umehara and A. J. H. Vinck

195

5.1 5.2

195 196 196 206 209 216 224 225 227 231 235 237 239 239 239 240 247 251 255

5.3

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modulation and Coding for Narrowband PLC Systems . . . . . . . . . . . . 5.2.1 Signal Disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.2 Capacity and Repeater Structures . . . . . . . . . . . . . . . . . . . 5.2.3 Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.4 Frequency Shift Keying . . . . . . . . . . . . . . . . . . . . . . . . 5.2.5 Combined Coding and Modulation . . . . . . . . . . . . . . . . . . . 5.2.5.1 Convolutional Codes . . . . . . . . . . . . . . . . . . . . 5.2.5.2 Distance-Preserving Mappings . . . . . . . . . . . . . . . 5.2.5.3 DPM Constructions and Algorithms . . . . . . . . . . . . 5.2.5.4 Permutation Trellis Codes . . . . . . . . . . . . . . . . . . 5.2.5.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 5.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modulation and Coding for Broadband PLC Systems . . . . . . . . . . . . . 5.3.1 Spread Spectrum Modulation . . . . . . . . . . . . . . . . . . . . . 5.3.1.1 Direct Sequencing Spread Spectrum (DSSS) . . . . . . . . 5.3.1.2 Frequency Hopping (FH) . . . . . . . . . . . . . . . . . . 5.3.1.3 Chirp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.1.4 Impulse Modulation . . . . . . . . . . . . . . . . . . . . . 5.3.1.5 Evaluation of Benefits and Drawbacks SS Technologies for PLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.1.6 Practical Applications of SS Technologies in PLC Systems 5.3.2 Multicarrier Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.2.1 Multicarrier Modulation as a Filter Bank . . . . . . . . . .

256 257 258 258

CONTENTS 5.3.2.2 DFT Filter Bank Modulation Solutions . . 5.3.2.3 DCT Filter Bank Modulation Solutions . . 5.3.2.4 Other MC Schemes . . . . . . . . . . . . 5.3.2.5 Coexistence and Notching . . . . . . . . . 5.3.2.6 Bit Loading . . . . . . . . . . . . . . . . 5.3.3 Impulse Noise Mitigation . . . . . . . . . . . . . . 5.3.3.1 Channel Model . . . . . . . . . . . . . . 5.3.3.2 Maximum a Posteriori Symbol Detection . 5.3.3.3 Ultimate Performance Limits . . . . . . . 5.3.3.4 Practical Communication Schemes . . . . 5.3.4 LDPC Codes . . . . . . . . . . . . . . . . . . . . . 5.3.4.1 LDPC Coding . . . . . . . . . . . . . . . 5.3.4.2 Signaling . . . . . . . . . . . . . . . . . . 5.3.4.3 LDPC Coding for Non-Uniform Channels 5.3.4.4 System Design for Power Line Channels . 5.3.4.5 Code Design Results . . . . . . . . . . . . 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ix . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

Protocols for PLC Systems G. Bumiller, H. Hrasnica, L. Lampe, M. Lobashov and T. Stockhammer 6.1 6.2

6.3

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Broadband PLC Media Access Control Layer . . . . . . . . . . . . . 6.2.1 Components of the MAC Layer . . . . . . . . . . . . . . . . 6.2.2 Multiple Access Schemes . . . . . . . . . . . . . . . . . . . 6.2.2.1 Time Division Multiple Access (TDMA) . . . . . . 6.2.2.2 Frequency Division Multiple Access (FDMA) . . . 6.2.2.3 Code Division Multiple Access (CDMA) . . . . . . 6.2.3 MAC Protocols . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.3.1 Contention Protocols . . . . . . . . . . . . . . . . 6.2.3.2 Arbitration Protocols . . . . . . . . . . . . . . . . 6.2.3.3 Hybrid MAC Protocols . . . . . . . . . . . . . . . 6.2.4 MAC Implementations for Broadband PLC . . . . . . . . . . 6.2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . Protocols for PLC Supporting Energy Management Systems . . . . . 6.3.1 What is Needed from a PLC Network . . . . . . . . . . . . . 6.3.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . 6.3.3 Media Access Control . . . . . . . . . . . . . . . . . . . . . 6.3.3.1 Hybrid Media Access Control Protocol . . . . . . . 6.3.3.2 Pipelined TDMA . . . . . . . . . . . . . . . . . . 6.3.3.3 Single-Frequency Network-Based Flooding Concept 6.3.3.4 Comparison of Flooding and Routing . . . . . . . . 6.3.3.5 Aloha in SFN-based PLC Networks . . . . . . . . . 6.3.4 Network Layer . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.5 Transport Layer . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.5.1 Functionality of the Transport Layer . . . . . . . . 6.3.5.2 Transport Layer Communication Services . . . . .

260 269 270 271 272 275 275 277 279 283 294 294 297 298 299 301 302 303 311

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

311 312 312 313 313 314 314 315 317 318 319 319 320 320 321 322 325 325 326 327 329 333 336 337 338 339

CONTENTS

x

6.3.5.3 Transport Layer Routing . . . . . . . . . . . . . . . . . . 6.3.6 Common Convergence Layer . . . . . . . . . . . . . . . . . . . . . 6.3.7 Service-Specific Convergence Layer . . . . . . . . . . . . . . . . . . 6.3.8 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 Internet Protocol Television Over PLC . . . . . . . . . . . . . . . . . . . . . 6.4.1 Physical Layer Modeling . . . . . . . . . . . . . . . . . . . . . . . . 6.4.1.1 Modeling of Impulsive Noise . . . . . . . . . . . . . . . . 6.4.1.2 Physical Channel Model Including Physical Layer FEC . . 6.4.2 Video Distribution over PLC . . . . . . . . . . . . . . . . . . . . . . 6.4.3 Application Layer FEC Based on Raptor Codes . . . . . . . . . . . . 6.4.3.1 Raptor Codes . . . . . . . . . . . . . . . . . . . . . . . . 6.4.3.2 Fountain Codes . . . . . . . . . . . . . . . . . . . . . . . 6.4.3.3 Luby Transform (LT) Codes . . . . . . . . . . . . . . . . . 6.4.3.4 Nonsystematic Raptor Codes . . . . . . . . . . . . . . . . 6.4.3.5 The Systematic Standardized Raptor Code . . . . . . . . . 6.4.3.6 Application of FEC Streaming Framework to PLC . . . . . 6.4.4 Selected Results for IPTV Services with Application Layer FEC over PLC channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Industrial and International Standards on PLC-based Networking Technologies S. Galli, M. Koch, H. A. Latchman, S. Lee and V. Oksman 7.1 7.2

7.3

7.4

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PLC Standardization by Industrial Alliances . . . . . . . . . . . . . . . 7.2.1 Early Low Data Rate Specifications . . . . . . . . . . . . . . . 7.2.1.1 The X-10 PLC Command and Control System . . . . 7.2.1.2 The CE-Bus PLC Specification . . . . . . . . . . . . 7.2.1.3 LonWorks PLC Specification . . . . . . . . . . . . . 7.2.2 High-Speed PLC Industry Specifications . . . . . . . . . . . . 7.2.2.1 HomePlug Specifications . . . . . . . . . . . . . . . 7.2.2.2 DS2/United Power Line Alliance (UPA) Specification 7.2.2.3 Panasonic HD-PLC Specification . . . . . . . . . . . 7.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . International Standards on PLC-Networking Technology . . . . . . . . 7.3.1 The IEEE 1901 Standard . . . . . . . . . . . . . . . . . . . . . 7.3.1.1 Technical Features of the Baseline Draft . . . . . . . 7.3.2 The ITU-T G.9960 Standard . . . . . . . . . . . . . . . . . . . 7.3.2.1 Overview of G.9960 Network Architecture . . . . . . 7.3.2.2 Overview of the Physical Layer . . . . . . . . . . . . 7.3.2.3 Overview of the Data Link Layer . . . . . . . . . . . ETSI and CENELEC Standards . . . . . . . . . . . . . . . . . . . . . 7.4.1 ETSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.1.1 ETSI TC PLT . . . . . . . . . . . . . . . . . . . . . 7.4.1.2 ETSI TC ERM . . . . . . . . . . . . . . . . . . . . . 7.4.2 ETSI-CENELEC Joint Working Group . . . . . . . . . . . . .

340 341 343 343 343 344 344 345 346 348 348 349 350 351 354 355 356 359 359

363 . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .

363 364 364 364 364 365 365 365 376 380 382 383 384 384 391 392 395 397 399 400 401 404 405

CONTENTS

xi

7.4.3 CENELEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 7.5 International EMC Product Standardization . . . . . . . . . . . . . . . . . . 408 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 8

Systems and Implementations I. Berganza Valmala, G. Bumiller, H. A. Latchman, M. V. Ribeiro, A. Sendin Escalona, E. R. Wade and L. W. Yonge 8.1 8.2

8.3

8.4

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PLC Smart Grid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.1 The Smart Grid Concept . . . . . . . . . . . . . . . . . . . . . . . 8.2.1.1 Objectives of Smart Grids . . . . . . . . . . . . . . . . . 8.2.1.2 The Need for Smart Grids . . . . . . . . . . . . . . . . . 8.2.1.3 The Network Today and the Network Tomorrow . . . . . 8.2.1.4 What will be Smart in the Grid . . . . . . . . . . . . . . 8.2.2 Electrical Network Implications on Smart Grids . . . . . . . . . . . 8.2.2.1 Quantities Associated with Electricity Infrastructures . . 8.2.2.2 Locations for Telecommunication Networks and Devices 8.2.2.3 Limitations of Electricity Related Premises . . . . . . . . 8.2.3 Telecommunication Networks for Smart Grids . . . . . . . . . . . 8.2.3.1 Backbone and Access Networks . . . . . . . . . . . . . 8.2.3.2 Switching and Routing . . . . . . . . . . . . . . . . . . 8.2.3.3 Characteristics of the Service . . . . . . . . . . . . . . . 8.2.3.4 Private versus Public Networks . . . . . . . . . . . . . . 8.2.4 PLC Systems for Smart Grids . . . . . . . . . . . . . . . . . . . . 8.2.4.1 PoweRline Intelligent Metering Evolution (PRIME) . . . 8.2.4.2 HomePlug Command and Control and RUN-M . . . . . 8.2.4.3 MAXIM’s Automatic Meter Management (AMM) Development . . . . . . . . . . . . . . . . . . . . . . . . 8.2.4.4 DLC-2000 PLC Infrastructure . . . . . . . . . . . . . . . 8.2.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . PLC Broadband Access Systems . . . . . . . . . . . . . . . . . . . . . . . 8.3.1 Grid Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.1.1 Medium Voltage . . . . . . . . . . . . . . . . . . . . . . 8.3.1.2 Low Voltage . . . . . . . . . . . . . . . . . . . . . . . . 8.3.2 PLC Network Architecture . . . . . . . . . . . . . . . . . . . . . . 8.3.3 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.4 Network Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.5 Network Deployment . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.6 Network Maintenance . . . . . . . . . . . . . . . . . . . . . . . . 8.3.7 Interconnection of PLC Access Systems . . . . . . . . . . . . . . . 8.3.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . Multimedia PLC Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4.1 QoS Requirements for Multimedia Traffic . . . . . . . . . . . . . . 8.4.2 Multimedia In-Home Networking . . . . . . . . . . . . . . . . . . 8.4.2.1 Multimedia Traffic Characteristics . . . . . . . . . . . . 8.4.2.2 QoS Parameters . . . . . . . . . . . . . . . . . . . . . . 8.4.3 A PLC Solution for Multimedia Traffic . . . . . . . . . . . . . . .

413

. . . . . . . . . . . . . . . . . . .

413 414 414 414 415 415 416 418 418 419 421 422 422 423 423 424 425 426 429

. . . . . . . . . . . . . . . . . . . .

429 430 431 432 432 432 433 434 436 439 441 442 442 443 443 443 444 444 446 447

CONTENTS

xii 8.4.4

8.5

8.6

Optimizing PLC for Multimedia . . . . . . . . . . . . . . . . . 8.4.4.1 Overall Design Considerations for Multimedia PLC . 8.4.4.2 Multimedia PLC Design Choices . . . . . . . . . . . 8.4.5 PLC PHY Design for Multimedia . . . . . . . . . . . . . . . . 8.4.5.1 Multimedia PLC Features of the HomePlug AV Transceiver . . . . . . . . . . . . . . . . . . . . . . . 8.4.5.2 Frame Control (FC) . . . . . . . . . . . . . . . . . . 8.4.6 A Multimedia Friendly MAC . . . . . . . . . . . . . . . . . . 8.4.6.1 Network Architecture . . . . . . . . . . . . . . . . . 8.4.6.2 Network Modes of Operation . . . . . . . . . . . . . 8.4.6.3 MAC/PHY Cross-Layer Design for Multimedia . . . 8.4.7 Channel Access Control . . . . . . . . . . . . . . . . . . . . . 8.4.7.1 Beacon Period Structure in Uncoordinated Mode . . . 8.4.7.2 Beacon Period Structure in Coordinated Mode . . . . 8.4.7.3 Neighbor Network Coordination . . . . . . . . . . . 8.4.8 Channel Adaptation . . . . . . . . . . . . . . . . . . . . . . . 8.4.9 Convergence Layer . . . . . . . . . . . . . . . . . . . . . . . . 8.4.10 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 8.4.10.1 MAC Framing Performance . . . . . . . . . . . . . . 8.4.10.2 Overall MAC Efficiency . . . . . . . . . . . . . . . . 8.4.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC-PLC Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5.1 Wearable Devices . . . . . . . . . . . . . . . . . . . . . . . . . 8.5.1.1 PLC for Wearables . . . . . . . . . . . . . . . . . . . 8.5.1.2 Technical Challenges . . . . . . . . . . . . . . . . . 8.5.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5.2.1 Using the DC Line for PLC . . . . . . . . . . . . . . 8.5.2.2 Electromagnetism in Conductive Fabrics . . . . . . . 8.5.2.3 DC Characterization . . . . . . . . . . . . . . . . . . 8.5.2.4 AC Characterization . . . . . . . . . . . . . . . . . . 8.5.3 Hardware Fabrication . . . . . . . . . . . . . . . . . . . . . . . 8.5.3.1 Sensor Nodes . . . . . . . . . . . . . . . . . . . . . 8.5.3.2 Central Controller . . . . . . . . . . . . . . . . . . . 8.5.3.3 Garment Construction . . . . . . . . . . . . . . . . . 8.5.4 Validation of the Design . . . . . . . . . . . . . . . . . . . . . 8.5.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.5.6 Further Discussion . . . . . . . . . . . . . . . . . . . . . . . . PLC in Emerging Countries . . . . . . . . . . . . . . . . . . . . . . . . 8.6.1 A Telecommunication Infrastructure Based on the Electric Grid 8.6.1.1 Utility’s Perspectives . . . . . . . . . . . . . . . . . 8.6.1.2 Electric Energy and Telecommunication Regulator’s Perspectives . . . . . . . . . . . . . . . . . . . . . . 8.6.1.3 Government’s Perspective . . . . . . . . . . . . . . . 8.6.1.4 Some Technical Hindrances . . . . . . . . . . . . . . 8.6.2 Telecommunication Needs and Demands . . . . . . . . . . . . 8.6.3 PLC in Latin America . . . . . . . . . . . . . . . . . . . . . . 8.6.4 PLC in Africa . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . .

. . . .

. . . .

447 447 448 448

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

448 449 449 449 450 450 451 451 451 452 452 452 453 453 453 454 454 455 456 458 459 460 462 464 467 471 471 472 472 473 475 476 476 477 478

. . . . . .

. . . . . .

. . . . . .

479 480 481 482 483 484

CONTENTS 8.6.5 8.6.6 8.6.7 References . 9

Conclusions The Editors

Index

xiii PLC in Asia . . . . . A Case Study: Brazil Final Remarks . . . . . . . . . . . . . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

485 485 487 487 497

501

List of Contributors Pouyan Amirshahi Shared Spectrum Section 2.4

Halid Hrasnica Eurescom GmbH Sections 6.2 and 6.3

Masoud Ardakani University of Alberta Section 5.3.4

Piet A. Janse van Rensburg Walter Sisulu University Chapter 4

Inigo Berganza Valmala Iberdrola Sections 8.2 and 8.3

Masaaki Katayama Nagoya University Section 2.6

Gerd Bumiller iAd GmbH Sections 6.3 and 8.2

Mohsen Kavehrad The Pennsylvania State University Section 2.4

Francisco J. Cañete Universidad de Málaga Section 2.5 Giulio Colavolpe University of Parma Section 5.3.3 Klaus Dostert University of Karlsruhe Sections 2.2.5, 2.3, 2.7, 2.8, 2.9 and 5.3.1

Michael Koch Devolo AG Chapter 3, Sections 7.4 and 7.5 Lutz Lampe University of British Columbia Editor, Section 6.3 Haniph A. Latchman University of Florida Sections 7.2 and 8.4

Hendrik C. Ferreira University of Johannesburg Editor, Section 5.2.5

Sunguk Lee University of Florida Section 7.2

Dario Fertonani Scuola Superiore Sant’Anna Section 5.3.3

Maxim Lobashov Vienna University of Technology Section 6.3

Stefano Galli Panasonic Section 2.2 (except 2.2.5), Section 7.3 Holger Hirsch University of Duisburg-Essen Chapter 3

John Newbury The Open University Editor Vladimir Oksman Infineon Technologies Section 7.3

Moisés V. Ribeiro Federal University of Juiz de Fora Section 8.6 Alberto Sendin Escalona Iberdrola Sections 8.2 and 8.3 Thomas Stockhammer Nomor Research GmbH Section 6.4 Theo G. Swart University of Johannesburg Editor, Section 5.2.5 Andrea M. Tonello University of Udine Section 5.3.2 Daisuke Umehara Kyoto University Section 5.3.3 A. J. Han Vinck University of Duisberg-Essen Section 5.2 (except 5.2.5) Eric R. Wade University of Southern California Section 8.5 Lawrence W. Yonge III Intellon Corporation Section 8.4

Preface With this book we took on the challenge to cover most of the technical field of Power Line Communications (PLC) with wide-ranging contributions on selected topics. The scope of this book is thus uniquely wide, not only for a book on PLC, but also to our knowledge for any book in the general field of Telecommunications. The inspiration for this wide coverage came from a survey of the many papers contributed to the International Symposium on Power Line Communications from 1997. The reader will thus find information widely dispersed in the literature, including research publications, standards documentation and even trade literature. We have attempted a coverage of both techniques and information on which there is currently consensus, as well as a limited selection of promising ones still under investigation. The goal of this book is thus to inform newcomers to the exciting field of PLC, to inspire further research and perhaps to contribute to future consensus. This book may also pave the way for future books focusing more deeply on perhaps just one individual subfield of the various subfields covered here. During this ambitious project, we involved 31 technical contributors from 27 institutions and 11 countries. Coordination was a huge task. The editors would like to express their sincere thanks to all our contributors. As stated, this book was inspired by the International Symposium on Power Line Communications, which since 2006 has been an IEEE conference sponsored by the IEEE Communications Society. Much material included in our book evolved from the proceedings of this conference (refer to http://www.isplc.org/docsearch). The editors would thus like to dedicate this book to Professor A. J. Han Vinck from the University of Duisburg-Essen, Germany, for his contributions to PLC. The organization of the first International Symposium on Power Line Communications in 1997 at the University of Essen was one of his many leadership initiatives during his career.

PREFACE

xviii

Han Vinck (right) receives the 2006 IEEE International Symposium on Power Line Communications Achievement Award. Lutz Lampe (left) presents the plaque at the 2006 IEEE International Symposium on Information Theory in Seattle, WA, USA.

List of Acronyms 1D

One-dimensional

2D

Two-dimensional

3D

Three-dimensional

AC

Alternating current

ACF

Autocorrelation function

ADSL

Asymmetric digital subscriber line

ADTDM

Advanced dynamic time division multiplexing

AES

Advanced encryption scheme

AFE

Analog front end

AGC

Automatic gain control

AL-FEC

Application layer forward error correction

AM

Amplitude modulation

AMM

Automatic meter management

AMN

Artificial mains network

AP

Access point

ARQ

Automatic repeat request

AVLN

AV logical network

AWGN

Additive white Gaussian noise

BBC

Broadband bad case

BER

Bit-error rate

BGC

Broadband good case

BH

Burst header

LIST OF ACRONYMS

xx BICM

Bit-interleaved coded modulation

BPC

Bits per carrier

BPL

Broadband over power lines

BPRS

Binary pseudo-random sequence

BPSK

Binary phase shift keying

BSS

Basic service set

C-CDF

Complementary cumulative distribution function

CCF

Cross-correlation function

CCL

Common convergence layer

CCo

Central coordinator

CDF

Cumulative distribution function

CDMA

Code division multiple access

CENELEC

Comité Européen de Normalisation Electrotechnique

CEPCA

Consumer Electronics Powerline Communication Alliance

CEPT

European Conference of Postal and Telecommunications Administrations

CF

Conductive fabrics

CFP

Contention free period

CISPR

Comité International Spécial des Perturbations Radioélectriques

CL

Convergence layer / Compatibility level

CM

Connection manager

CP

Cyclic prefix

CPCS

Common part convergence sublayer

CPE

Customer premise equipment

CPS

Consolidated power-signal

CRC

Cyclic redundancy code

CRP

Collision resolution protocol

CS

Critically sampled

CSI

Channel-state information

LIST OF ACRONYMS

xxi

CSMA

Carrier sense multiple access

CSMA/CA

Carrier sense multiple access with collision avoidance

CTS

Clear to send

C/DWDM

Coarse/dense wavelength division multiplexing

DC

Direct current

DCM

Distance-conserving mapping

DCT

Discrete cosine transform

DCT-OFDM

Discrete cosine transform orthogonal frequency division multiplexing

DDS

Direct digital synthesis

DFT

Discrete Fourier transform

DIM

Distance-increasing mapping

DLMS/COSEM

Device language message specification/companion specification for energy metering

DMT

Discrete multitone

DPM

Distance-preserving mapping

DRM

Distance-reducing mapping

DSSS

Direct sequencing spread spectrum

DUT

Device under test

DWMT

Discrete wavelet multitone

EMC

Electromagnetic compatibility

EMI

Electromagnetic interference

EN

European norm

ERC SE

European Radiocommunications Committee Spectrum Engineering

ES

ETSI specification

ESI

Encoding symbol ID

ETSI

European Telecommunications Standards Institute

EUT

Equipment under test

EXIT

Extrinsic information transfer

FB

Filter bank

LIST OF ACRONYMS

xxii FBA

Forward-backward algorithm

FC

Frame control

FDMA

Frequency division multiple access

FEC

Forward error correction

FFT

Fast Fourier transform

FH

Frequency hopping

FH-CDMA

Frequency-hopping code division multiple access

FIR

Finite impulse response

FMT

Filtered multitone

FPGA

Field-programmable gate array

FSK

Frequency shift keying

FTTx

Fiber to the x

GI

Guard interval

GPRS

General packet radio service

GPS

Global positioning system

HD-PLC

High definition power line communication

HDTV

High definition television

HE

Head end

HF

High frequency

HPPA

Homeplug powerline alliance

HV

High voltage

ICI

Inter-carrier interference

IDFT

Inverse discrete Fourier transform

IFFT

Inverse fast Fourier transform

IFT

Inverse Fourier transform

IH

In-home

INL

Interfering network list

IP

Internet protocol

IPTV

Internet protocol television

LIST OF ACRONYMS ISDN

Integrated services digital network

ISN

Impedance stabilization network

ISO/OSI

International Standardization Organization/Open Systems Interconnection

ISP

Inter-system protocol

ISI

Inter-symbol interference

JWG

Joint working group

LA

Latin America

LAN

Local area network

LCL

Longitudinal conversion loss

LDPC

Low-density parity-check

LF

Low frequency

LID

Link identifier

LLC

Logical link control

LLR

Log-likelihood ratio

LPTV

Linear periodically time-varying

LT

Luby transform

LTI

Linear time invariant

LTV

Linear time varying

LV

Low voltage

LVDN

Low voltage distribution network

LVDS

Low voltage differential signaling

MAC

Media access control

MAP

Maximum-a-posteriori

MC

Multicarrier

MCSS

Multicarrier spread-spectrum

MFBO

MAC frame boundary offset

MMSE

Minimum-mean-square-error

MoCA

Multimedia over Coax Alliance

xxiii

LIST OF ACRONYMS

xxiv MPDU

MAC protocol data unit

MSDU

MAC service data units

MTBA

Mean time between artifacts

MTL

Multi-conductor transmission line

MV

Medium voltage

NCo

Neighbor central coordinator

NCS

Non-critically sampled

NEK

Network encryption key

NL

Network layer

NLS

Non-linear system

NORM

NACK-oriented reliable multicast

NTU

Network termination unit

OFDM

Orthogonal frequency division multiplexing

OOK

On-off keying

OPERA

Open PLC European Research Alliance

O-QAM-OFDM

Offset quadrature amplitude modulation orthogonal frequency division multiplexing

PAM

Pulse amplitude modulation

PB

PHY block

PBB

PHY block body

PBH

PHY block header

PBCS

PHY block check sequence

PBER

PHY block error rate

PC

Personal computer

PCB

Printed circuit board

PCS

Physical carrier sense

PCo

Proxy coordinator

PCO

Pre-code only

PDF

Probability density function

LIST OF ACRONYMS PDH

Plesiochronous digital hierarchy

PDU

Protocol data unit

PER

Packet error rate

PGA

Programmable gain amplifier

PHY

Physical or Physical layer

PLC

Power line communications

PLT

Power line telecommunications

PPDU

PHY protocol data unit

PR

Perfect reconstruction

PSD

Power spectral density

PSK

Phase shift keying

PVC

Polyvinyl chloride

QAM

Quadrature amplitude modulation

QoS

Quality of service

QPSK

Quaternary phase shift keying

R&TTE

Radio and telecommunications terminal equipment

RADAR

Radio aircraft detection and ranging

RAM

Random access memory

REMPLI

Real-time Energy Management via Powerlines and Internet

RF

Radio frequency

RMS-DS

Root mean square delay spread

ROBO

Robust modulation

RRC

Root-raised cosine

RS

Reed–Solomon

RTP

Real-time transport protocol

RTS

Request to send

RUN-M

RENESAS ubiquitous network layer for metering

SACK

Selective acknowledgment

SALA

Slotted Aloha with local acknowledgments

xxv

LIST OF ACRONYMS

xxvi SAP

Service access point

SAR

Segmentation and reassembly

SCADA

Supervisory control and data acquisition

SCP

Shared contention period

SD

Standard definition

SDH

Synchronous digital hierarchy

SDU

Service data unit

SFN

Single frequency network

S-FSK

Spread-frequency shift keying

SISO

Soft-input soft-output

SNR

Signal-to-noise ratio

SOF

Start of frame

SOT

Start of transmission

S/P

Serial-to-parallel

SP

Service provider

SPA

Sum-product algorithm

SSCL

Service specific convergence layer

SSCS

Service specific convergence sublayer

SST

Spread spectrum techniques

STF

Special task force

TA

Token announce

TC

Technical committee

TCC

Turbo convolutional coding

TCL

Transverse conversion loss

TCP

Transmission control protocol

TCTL

Transverse conversion transfer loss

TDM

Time division multiplexing

TDMA

Time division multiple access

TEM

Transversal electromagnetic

LIST OF ACRONYMS T-ISN

T-shaped impedance stabilization network

TH-CDMA

Time-hopping code division multiple access

TL

Transmission line / Transport layer

TLT

Transmission-line transformer

TMI

Tone map identifier

TS

Technical specification

TXOP

Transmission opportunity

UDP

User datagram protocol

UPA

Universal power line association

UWB

Ultra wide band

VCS

Virtual carrier sense

VDSL

Very high speed digital subscriber line

VHF

Very high frequency

VoIP

Voice over Internet protocol

WNG

White noise generator

xxvii