draft

2 downloads 0 Views 13MB Size Report
5.1%. Unconsolidated Shore,. 0.2%. Water, 0.1%. Bare Land, 1.1% ...... Upstream of the BNSF Railroad bridge, the river is almost allowed to freely meander and ...
NISQUALLY  RIVER  STEELHEAD  RECOVERY  PLAN   DRAFT—Do  Not  Distribute  Without  Authors’  Consent  

 

D R A F T   P R E P A R E D   B Y :   Nisqually  Steelhead  Recovery  Team   Contact:  Sayre  Hodgson,  Nisqually  Indian  Tribe  

July  2014    

 

Nisqually  Steelhead  Recovery  Team.  2014.  Nisqually  River  Steelhead   Recovery  Plan.  Draft.  July.  Seattle,  WA.  Prepared  for  the  Nisqually  Indian   Tribe,  Olympia,  WA.  

Contents List of Tables ........................................................................................................................................... v List of Figures......................................................................................................................................... vi List of Acronyms and Abbreviations .................................................................................................... viii Page Chapter 1 Introduction ....................................................................................................................1-1 1.1

Recovery Plan Development ............................................................................................ 1-3 1.1.1

Need for Recovery ........................................................................................................... 1-3

1.1.2

Goals and Objectives........................................................................................................ 1-4

1.1.3

Analytical Framework ...................................................................................................... 1-5

1.1.4

Implementation, Adaptive Management, and Monitoring ............................................. 1-6

1.1.5

Next Steps ........................................................................................................................ 1-6

1.1.6

Document Contents ......................................................................................................... 1-7

Chapter 2 Recovery Goals and Objectives ........................................................................................2-1 2.1

Long-Term Watershed Goals ........................................................................................... 2-1 2.1.1

Conservation Goals .......................................................................................................... 2-1

2.1.2

Harvest Goals ................................................................................................................... 2-1

2.2

Short-Term Recovery Goals ............................................................................................. 2-2 2.2.1

Conservation Goals .......................................................................................................... 2-2

2.2.2

Harvest Goals ................................................................................................................... 2-2

2.3

Recovery Strategic Objectives ......................................................................................... 2-3 2.3.1

Habitat Objectives............................................................................................................ 2-3

2.3.2

Fish Management Objectives .......................................................................................... 2-3

2.3.3

Monitoring and Adaptive-Management Objectives ........................................................ 2-4

Chapter 3 Nisqually River Overview ................................................................................................. 3-1 3.1

Nisqually River Watershed............................................................................................... 3-1 3.1.1

Subbasins and Ecoregions................................................................................................ 3-1

3.1.2

Land Use........................................................................................................................... 3-7

3.1.3

Hydroelectric Development ............................................................................................. 3-8

3.2

Nisqually River Estuary .................................................................................................. 3-10

3.3

Nisqually River Mainstem .............................................................................................. 3-12

3.4

Tributary Subbasins ....................................................................................................... 3-13 3.4.1

McAllister Creek ............................................................................................................. 3-13

3.4.2

Muck Creek .................................................................................................................... 3-15

Nisqually River Steelhead Recovery Plan

i

July 2014

ICF 00153.13

Nisqually Steelhead Recovery Team

Contents

3.4.3

Prairie Tributaries .......................................................................................................... 3-15

3.4.4

Ohop Creek .................................................................................................................... 3-16

3.4.5

Lackamas, Toboton, and Powell Creeks......................................................................... 3-17

3.4.6

Mashel River .................................................................................................................. 3-17

3.5

Historical and Current Habitat Conditions ..................................................................... 3-20 3.5.1

Flow Regime................................................................................................................... 3-20

3.5.2

Water Quality................................................................................................................. 3-25

3.5.3

Channel Morphology and Degree of Confinement........................................................ 3-27

3.5.4

Channel and Substrate Characteristics .......................................................................... 3-30

3.5.5

Sediment Budget ........................................................................................................... 3-31

Chapter 4 Nisqually River Steelhead ................................................................................................4-1 4.1

Nisqually River Winter Steelhead Juvenile and Adult Life History .................................. 4-1

4.2

Adult Abundance ............................................................................................................. 4-7 4.2.1

Harvest ........................................................................................................................... 4-11

4.2.2

Annual Run Size ............................................................................................................. 4-13

4.3

Smolt Outmigration Monitoring .................................................................................... 4-13 4.3.1

Smolt Abundance ........................................................................................................... 4-14

4.3.2

Migration Timing............................................................................................................ 4-14

4.3.3

Smolt Age and Size ......................................................................................................... 4-16

4.4

Steelhead Marine Survival and Recruitment ................................................................. 4-17 4.4.1

Marine Survival Estimates ............................................................................................. 4-17

4.4.2

Freshwater Productivity (Smolt Recruits per Spawner) ................................................ 4-22

4.4.3

Estimates Adult per Spawner Recruitment ................................................................... 4-23

4.4.4

Anadromy and Resident Life-History Forms .................................................................. 4-25

4.4.5

Incidence of Iteroparity in Nisqually Winter Steelhead................................................. 4-26

4.5

Nisqually River Hatchery Releases ................................................................................. 4-26 4.5.1

Steelhead Hatchery Programs ....................................................................................... 4-26

4.5.2

Other Hatchery Programs in the Nisqually Watershed ................................................. 4-30

4.6

Nisqually River Steelhead Genetic Analyses .................................................................. 4-32

Chapter 5 Restoration and Protection Needs....................................................................................5-1 5.1

Analytical Methods .......................................................................................................... 5-1

5.2

Analysis of Current and Historical Habitat Potential ....................................................... 5-4

5.3

Factors Affecting Steelhead in the Watershed ................................................................ 5-9

5.4

5.3.1

Comparison of Life Cycle Segment Survival and Abundance........................................... 5-9

5.3.2

Watershed Geographic Restoration and Protection Priorities ...................................... 5-11

5.3.3

Watershed Habitat-Limiting Factor Priorities ................................................................ 5-12 Parameter Uncertainty and Stochastic Variation .......................................................... 5-14

Nisqually River Steelhead Recovery Plan

ii

July 2014

ICF 00153.13

Nisqually Steelhead Recovery Team

Contents

Chapter 6 Habitat Recovery Strategies .............................................................................................6-1 6.1

Analysis of Recovery Plan Habitat Potential .................................................................... 6-6

6.2

Factors Affecting Steelhead in the Watershed ................................................................ 6-9 6.2.1

Watershed Geographic Improvements ........................................................................... 6-9

6.2.2

Watershed Habitat-Limiting Factors Addressed by the Recovery Plan ......................... 6-10

6.3

Conclusions and Guidance ............................................................................................. 6-12

Chapter 7 Nisqually River Steelhead Management ...........................................................................7-1 7.1

Hatchery Options ............................................................................................................. 7-2

7.2

Harvest Management ...................................................................................................... 7-4

7.3

Conclusions ...................................................................................................................... 7-9

Chapter 8 Implementation ..............................................................................................................8-1 8.1

Strategic Objectives for Recovery .................................................................................... 8-1 8.1.1

Habitat Objectives............................................................................................................ 8-2

8.1.2

Fish-Management Objectives .......................................................................................... 8-2

8.1.3

Monitoring and Adaptive-Management Objectives ........................................................ 8-3

8.2

Winter Steelhead Action Plan .......................................................................................... 8-3 8.2.1

Application of Steelhead Common Framework ............................................................... 8-5

8.2.2

Implementation Strategy Framework.............................................................................. 8-6

8.2.3

Priority Recovery Actions for Steelhead Recovery .......................................................... 8-7

8.3

Adaptive Management during Recovery ....................................................................... 8-10 8.3.1

Data Gaps ....................................................................................................................... 8-11

8.3.2

Assessment Needs ......................................................................................................... 8-12

8.3.3

Research, Monitoring, and Evaluation Needs ............................................................... 8-13

8.3.4

Annual Project Review ................................................................................................... 8-14

8.4

Climate Change Considerations ..................................................................................... 8-16 8.4.1

Projected Impacts of Climate Change in the Pacific Northwest .................................... 8-16

8.4.2

Projected Impacts of Climate Change in the Nisqually River Watershed ...................... 8-17

8.4.3

Restoration Actions to Ameliorate Climate Change Effects .......................................... 8-18

Chapter 9 References ......................................................................................................................9-1 Appendix A Reach Structure for Assessment of Winter Steelhead Performance in the Nisqually River ........................................................................................................9-1 Appendix B Nisqually Steelhead Tracking Study................................................................................9-1 Appendix C Nisqually Winter Steelhead Action Plan .........................................................................9-1 Appendix D Open Standards for the Practice of Conservation ........................................................... 9-1

Nisqually River Steelhead Recovery Plan

iii

July 2014

ICF 00153.13

Nisqually Steelhead Recovery Team

Contents

Appendix A

Reach Structure for Assessment of Winter Steelhead Performance in the Nisqually River

Appendix B

Nisqually Steelhead Tracking Study

Appendix C

Nisqually Winter Steelhead Action Plan

Appendix D

Open Standards for the Practice of Conservation

Nisqually River Steelhead Recovery Plan

iv

July 2014

ICF 00153.13

Nisqually Steelhead Recovery Team

Contents

Tables Table 3-1. Table 3-2. Table 3-3. Table 3-4. Table 3-5. Table 4-1. Table 4-2. Table 4-3. Table 4-4. Table 4-5. Table 4-6. Table 4-7. Table 4-8. Table 4-9. Table 4-10. Table 4-11. Table 4-12. Table 4-13. Table 4-14. Table 4-15. Table 4-16. Table 4-17. Table 4-18. Table 4-19. Table 5-1. Table 5-2. Table 6-1. Table 6-2. Table 6-3. Table 7-1. Table 7-2. Table 7-3.

Characteristics of EPA Level IV Ecoregions in the Lower Nisqually Basin............................. 3-5 Amount of Channel Area (hectares) by Channel Type and Estuarine Zone ....................... 3-12 Nisqually Watershed Streams, Reaches, and Springs by Subbasin .................................... 3-14 USGS Stream Gages used to Characterize Streamflow in Nisqually Basin ......................... 3-23 Fine Sediment and Spawning Gravel Sampling Results for Ohop Creek and Mashel River Watersheds (1990–1994) ............................................................................. 3-33 Nisqually River Wild Winter Steelhead Age Composition (freshwater/saltwater years and total age).......................................................................... 4-5 Locations of Aerial and Ground-Based Survey Reaches in the Nisqually Rivera ................... 4-8 Recent Steelhead Survey Effort (2004–2013) on the Nisqually River and Mashel River ..... 4-9 Nisqually River Wild Winter Steelhead Run Reconstruction (1979/1980–2011/2012) ..... 4-12 Trap Operations Dates and Percent Time Fishing during Years of Operation.................... 4-14 Steelhead Smolt Abundance Estimates and Percent Coefficient of Variation for Years of Trap Operation...................................................................................................... 4-14 Dates for Quantiles of Run Timing for Years of Trap Operation ........................................ 4-16 Percent of Steelhead Smolt Age Structure for Years of Trap Operation ............................ 4-16 Steelhead Smolt Fork Lengths in Millimeters for Years of Trap Operation ........................ 4-16 Mean Steelhead Smolt Fork Length in Millimeters and Standard Deviation at Age for Years of Trap Operation ....................................................................................... 4-17 River Smolt-to-Adult Survival Rates for Nisqually River Steelhead (2009–2010) ............ 4-20 Estimated Smolts per Spawner for the Smolt Outmigrant Brood Years Collected to Date .............................................................................................................. 4-22 Estimated Adult Recruits per Spawner for Nisqually River Steelhead ............................. 4-24 Historical Releases of Unknown or Winter Run Hatchery Steelhead to Nisqually River . 4-27 Historical Summer-Run Steelhead Hatchery Releases in the Nisqually River .................. 4-28 Incidence of Hatchery-Origin Steelhead in the Nisqually River Treaty Net Catch ........... 4-29 Hatchery Salmonids Released in the Nisqually Watershed.............................................. 4-31 Hatchery Rainbow Trout Captured at the Nisqually River Smolt Trap ............................. 4-32 Nisqually River Steelhead/Resident Rainbow Trout Genetic Samples ............................. 4-33 EDT Predicted Adult to Adult Productivity, Capacity, Abundance, and Diversity Index (1% Marine Survival)........................................................................................................... 5-4 EDT-Predicted Spawner-to-Smolt Productivity, Capacity, and Abundance ....................... 5-5 Recovery Plan Action Items ................................................................................................ 6-2 EDT Predicted Adult to Adult Productivity, Capacity, Abundance, and Diversity Index (1% Marine Survival).................................................................................. 6-6 EDT-Predicted Spawner to Smolt Productivity, Capacity, and Abundance ........................ 6-7 Assessment of Hatchery Options for Nisqually River Steelhead ........................................ 7-3 Fish Management Thresholds for Two Scenarios Used to Explore Harvest Opportunities for Nisqually River Steelhead ............................................................................................. 7-6 Results for Low and High Conservation Scenario Simulations ........................................... 7-7

Nisqually River Steelhead Recovery Plan

v

July 2014

ICF 00153.13

Nisqually Steelhead Recovery Team

Contents

Figures Figure 1-1. Figure 3-1. Figure 3-2. Figure 3-3. Figure 3-4. Figure 3-5. Figure 3-6. Figure 3-7. Figure 3-8. Figure 3-9. Figure 4-1. Figure 4-2. Figure 4-3. Figure 4-4. Figure 4-5. Figure 4-6. Figure 4-7. Figure 4-8. Figure 4-9. Figure 4-10. Figure 4-11. Figure 4-12. Figure 4-13. Figure 4-14. Figure 4-15. Figure 5-1. Figure 5-2.

Nisqually River Watershed .................................................................................................. 1-2 Anadromous Portion of the Nisqually River Basin (WRIA 11) ............................................. 3-2 EPA Level IV Ecoregions in the Lower Nisqually Basin ........................................................ 3-4 Land Cover Classification for Nisqually River Watershed Subbasins .................................. 3-9 Nisqually Estuary Restoration of Channels (1990 Condition and 2012 Extent) ................ 3-11 Ohop Creek Channel Restoration Completed and Planned .............................................. 3-18 Location of Engineered Log Jams in the Lower Mashel River ........................................... 3-19 Daily Mean Flow for the Upper Nisqually River near National, Lower Nisqually River at La Grande, and Lower Nisqually River near McKenna .................................................. 3-21 Annual Peak Flows for the Upper Nisqually River near National, Lower Nisqually River at La Grande, and Lower Nisqually River near McKenna .................................................. 3-22 Daily Mean Flows in Four Tributary Streams in the Lower Nisqually Basin ...................... 3-24 Nisqually River Winter Steelhead Generalized Life History ................................................ 4-1 Winter Steelhead Spawning Timing in the Nisqually River and Mashel River (2009–2013); data provided by James Losee, WDFW. ....................................................... 4-2 Distribution of Fyke Net Catches of Three Size Classes of Rainbow Trout and Steelhead in Muck Creek (1980) ......................................................................................... 4-3 Temporal Distribution of Size Classes of Juvenile Rainbow Trout and Steelhead (1980) ... 4-4 Nisqually River Wild Winter Steelhead Distribution of Years in Freshwater and Saltwater and Total Age at Return ...................................................................................... 4-6 Age Structure (Freshwater/Saltwater age) of Adult Returning Nisqually River Wild Winter Steelhead ........................................................................................................ 4-7 Steelhead Spawning Escapement to the Nisqually River and Major Tributaries (1980–2013) ........................................................................................................................ 4-7 Steelhead Spawning Distribution ...................................................................................... 4-10 Recent Year Estimated Adult Winter Steelhead from Tributary Surveys (Muck Creek was not surveyed 2004 to 2009) ................................................................. 4-11 Nisqually River Wild Winter Steelhead Run Reconstruction (1979/1980–2012/2013) .... 4-13 Steelhead Smolt Run Timing by Week for Years of Trap Operation ................................. 4-15 Weekly Mean, Minimum, and Maximum Fork Lengths in Millimeters of Steelhead Smolts for Years of Trap Operation.................................................................. 4-18 Length Density Histograms for the Observed Age Classes for Years of Available Age Data ............................................................................................................................ 4-19 Survivorship Curves for Steelhead Smolts in Puget Sound and Hood Canal.................... 4-22 Nisqually River Winter Steelhead Adult Brood Spawner Abundance versus Adult Recruits (dashed line is 1.0 recruit per spawner) .................................................... 4-25 Relationship between Spawner Abundance and Adult Progeny (Recruits) ........................ 5-2 Hypothetical Example of the Multistage Beverton-Holt Function for Capacity in EDT ...... 5-3

Nisqually River Steelhead Recovery Plan

vi

July 2014

ICF 00153.13

Nisqually Steelhead Recovery Team

Figure 5-3. Figure 5-4. Figure 5-5. Figure 5-6. Figure 5-7. Figure 5-8. Figure 6-1. Figure 6-2. Figure 6-3. Figure 7-1. Figure 8-1.

Contents

EDT-Predicted Nisqually Steelhead Spawner-to-Adult S-R Functions for Current and Historical Conditions (1% Marine Survival) ......................................................................... 5-5 EDT-Predicted Nisqually Steelhead Spawner-to-Smolt S-R Functions for Current and Historical Conditions ........................................................................................................... 5-6 Predicted Habitat Utilization (Adult Distribution) of Nisqually Steelhead (1% Marine Survival) ........................................................................................................... 5-6 Pattern of Habitat Degradation in the Nisqually River Watershed by Life Stage ............. 5-13 Pattern of Habitat Degradation in the Nisqually River Watershed by Subbasin .............. 5-14 Current Condition Results with Alternative Marine Survival ............................................ 5-15 EDT-Predicted Nisqually Steelhead Spawner-to-Adult S-R Functions for the Recovery Plan, Current, and Historical Conditions (1% Marine Survival) ........................... 6-6 EDT-Predicted Nisqually Steelhead Spawner-to-Smolt S-R Functions for the Recovery Plan, Current, and Historical Conditions ............................................................. 6-7 Predicted Habitat Utilization (Adult Distribution) of Nisqually Steelhead (1% Marine Survival) ........................................................................................................... 6-8 Results Low and High Conservation Scenarios for Run to River and Catch (top) and Spawning Escapement (bottom) ......................................................................................... 7-8 Process for Reviewing and Updating Information during Annual Project Review ........... 8-15

Nisqually River Steelhead Recovery Plan

vii

July 2014

ICF 00153.13

Nisqually Steelhead Recovery Team

Contents

Acronyms and Abbreviations °C ADM AM APR BNSF cfs Common Framework DIP DP DPS EDT EPA FERC HCB I-5 JDF M&AM NAR NOAA NSRT Open Standards PIT Prairie Tributaries RAD RCO recovery plan RITT RK RM SR TMDL USGS VSP WDFW WDNR WRIA 11

degrees Celsius Admiralty Inlet aerial mapping annual project review Burlington Northern Santa Fe cubic feet per second Puget Sound Chinook Salmon Recovery: A Framework for the Development of Monitoring and Adaptive Management Plans Demographically Independent Population Deception Pass Distinct Population Segment Ecosystem Diagnosis and Treatment U.S. Environmental Protection Agency’s Federal Energy Regulatory Commission Hood Canal Bridge Interstate 5 Strait of Juan de Fuca Monitoring and Adaptive Management Tacoma Narrows National Oceanic and Atmospheric Administration Nisqually Steelhead Recovery Team Open Standards for the Practice of Conservation passive integrated transponder prairie-type tributaries redd accumulation and deterioration Recreation and Conservation Office Nisqually Winter Steelhead Recovery Plan Recovery Implementation Technical Team’s river kilometer river mile State Route Total Maximum Daily Load U.S. Geological Survey viable salmonid population Washington Department of Fish and Wildlife Washington Department of Natural Resources lands Water Resource Inventory Area 11

Nisqually River Steelhead Recovery Plan

viii

July 2014

ICF 00153.13

Nisqually Steelhead Recovery Team

Contents

Nisqually Steelhead Recovery Team Participants The individuals listed below attended one or more of the NSRT workshops and contributed information for this plan. This report was drafted principally by the Nisqually Indian Tribe fisheries staff and their consultants, with contributions by the Washington Department of Fish and Wildlife. The smolt monitoring section in Chapter 4, Nisqually River Steelhead, was prepared by Matt Klungle of the Washington Department of Fish and Wildlife. Name

Agency/Company/Tribe

Calahan, Amy Cutler, Jennifer Ellings, Christopher Hodgson, Sayre Moore, Jed Sampselle, Cathy Smith, Craig Troutt, David Walter, George Hughes, Kirt Klungle, Matt Loosee, James Marshall, Anne Phillips, Larry Leischner, Florian Richardson, John Blair, Greg (Consultant) Luiting, Torrey (Consultant)

Nisqually Indian Tribe Nisqually Indian Tribe Nisqually Indian Tribe Nisqually Indian Tribe Nisqually Indian Tribe Nisqually Indian Tribe Nisqually Indian Tribe Nisqually Indian Tribe Nisqually Indian Tribe Washington Department of Fish and Wildlife Washington Department of Fish and Wildlife Washington Department of Fish and Wildlife Washington Department of Fish and Wildlife Washington Department of Fish and Wildlife Tacoma Power Joint Base Lewis-McChord ICF International ICF International

Nisqually River Steelhead Recovery Plan

ix

July 2014

ICF 00153.13

 

Chapter  1  

Introduction   Salmon  are  important  to  the  economic,  social,  cultural,  and  aesthetic  values  of  the  people  in  the   Nisqually  River  watershed.  Winter  steelhead  (Oncorhynchus  mykiss)  were  at  one  time  abundant  in   the  Nisqually  River;  the  species  was  a  significant  component  of  the  Nisqually  ecosystem  and   provided  an  important  winter  fishery  for  tribal  and  sport  fishers.  Run  size  estimates  dropped   substantially  in  the  early  1990s  and  remain  low.  In  May  2007,  the  Puget  Sound  steelhead  Distinct   Population  Segment  (DPS)  was  listed  as  a  threatened  species  under  the  Endangered  Species  Act.     Since  implementation  of  the  original  Nisqually  Chinook  Recovery  Plan  (Nisqually  Chinook  Recovery   Team  2001),  several  major  habitat  restoration  initiatives  have  resulted  in  habitat  improvements  in   the  Nisqually  River  watershed.  These  have  included  the  restoration  of  tidal  hydrology  to  1,878  acres   (760  hectares)  of  the  Nisqually  River  estuary  (2009),  the  first  phase  of  restoration  of  Ohop  Creek   (2009),  and  several  in-­‐stream  wood  placement  projects  on  the  Mashel  River.  Future  large-­‐scale   restoration  projects  include  the  second  and  third  phases  of  the  Ohop  Creek  restoration  and   continued  habitat  protection  efforts.  However,  despite  this  focus  on  habitat  restoration  and  the   elimination  of  sport  harvest  and  directed  tribal  harvest  the  Nisqually  winter  steelhead  population   remains  at  a  depressed  level.   The  Nisqually  Steelhead  Recovery  Team  (NSRT)  was  formed  to  develop  a  Nisqually  River  Steelhead   Recovery  Plan  (recovery  plan).  The  NSRT  is  composed  of  technical  representatives  of  the  Nisqually   Indian  Tribe  and  the  Washington  Department  of  Fish  and  Wildlife  (WDFW).  The  NSRT  also   collaborated  with  other  watershed  stakeholders  such  as  Pierce  County,  Thurston  County,  Joint  Base   Lewis-­‐McChord,  the  Nisqually  River  Council,  South  Puget  Sound  Salmon  Enhancement  Group,   Tacoma  Power,  and  the  Nisqually  Land  Trust.  Together  with  WDFW,  these  stakeholders  will  have  a   critical  role  during  cooperative  implementation  of  the  strategies,  actions,  and  next  steps   recommended  in  this  recovery  plan.  This  effort  was  funded  by  a  grant  from  the  Washington  State   Recreation  and  Conservation  Office  (RCO)  and  Nisqually  Indian  Tribe.   This  draft  report  is  the  first  step  toward  developing  a  comprehensive  habitat  and  fish  management   plan  for  recovering  Nisqually  winter  steelhead.  Additional  discussions  will  occur  between  the  tribe   and  state  co-­‐managers  in  the  watershed  community  to  refine  goals,  objectives,  and  plan  elements.   The  recovery  plan  includes  a  habitat  action  plan  with  specific  habitat  protection  and  restoration   strategies  and  will  eventually  serve  as  an  inclusive  steelhead  stock  monitoring  and  adaptive   management  plan.  The  recovery  plan  incorporates  the  needs  and  threats  faced  by  winter  steelhead   into  the  existing  salmon  management  framework  for  the  Nisqually  River  watershed  that  is  currently   focused  on  Chinook  salmon  (Oncorhynchus  tshawytscha)  recovery  (Nisqually  Chinook  Recovery   Team  2011).  Figure  1-­‐1  shows  the  complete  Nisqually  River  watershed  and  the  anadromous  portion   available  to  winter  steelhead.      

  Nisqually  River  Steelhead  Recovery  Plan    

1-­‐1  

July  2014   ICF  00153.13  

Figure 1-1 Nisqually River Watershed

Graphics/00153.13 Nisqually Steelhead Recovery Planning (12-13) SS

  Nisqually  Steelhead  Recovery  Team    

1.1

Introduction  

Recovery  Plan  Development  

The  recovery  plan  is  a  broad  and  comprehensive  approach  to  recovering  steelhead  in  the  Nisqually   River  watershed;  it  is  based  on  available  historical  information  on  habitat  conditions  in  the  watershed   and  current  habitat  information.  The  plan  relies  heavily  on  stock  assessment  data  and  steelhead   research  findings  derived  from  the  Nisqually  Indian  Tribe  and  WDFW.  The  plan  includes  an  analysis  of   current  and  historical  population  abundance  data  and  an  assessment  of  freshwater  habitat  potential   for  the  current  and  reconstructed  historical  Nisqually  River  watershed.  From  these  analyses,  the  NSRT   identified  freshwater  habitat  restoration  and  protection  priorities  and  completed  an  analysis  of  the   potential  benefits  of  specific  habitat  actions.  Together  these  represent  a  Nisqually  River  watershed   habitat  plan  that  addresses  the  factors  specifically  identified  as  limiting  winter  steelhead  in  the   Nisqually  River  watershed  and  priority  areas  to  protect  high-­‐quality  habitat  in  the  watershed.     Although  marine  survival  is  an  important  factor  affecting  Nisqually  steelhead  recovery,  an  in-­‐depth   analysis  of  complex,  interrelated,  and  far-­‐reaching  factors  affecting  marine  survival  is  beyond  the   scope  of  this  recovery  plan.  The  NSRT  plans  to  work  closely  with  Salish  Sea  Marine  Survival  Project   team  to  better  understand  factors  affecting  Nisqually  steelhead  in  the  marine  environment  and   implement  their  recommendations  to  address  those  factors  where  possible  (Steelhead  Marine   Survival  Workgroup  2014).  

1.1.1

Need  for  Recovery    

Steelhead  have  one  of  the  most  complex  suites  of  life  history  strategies  of  any  anadromous  Pacific   salmonid  species.  Nisqually  winter  steelhead  usually  spend  1  to  3  years  in  freshwater,  with  the   greatest  proportion  typically  spending  2  years  there.  Consequently,  steelhead  rely  heavily  on   freshwater  habitat  and  are  present  in  streams  year-­‐round.  Nisqually  River  winter  steelhead  share   habitat  with  resident  O.  mykiss  and  likely  interact  as  a  single  population  (Section  4.4.1.6,  Anadromy   and  Resident  Life-­‐History  Forms).  Juvenile  steelhead  also  interact  with  other  salmonids  in  the   watershed,  including  feeding  on  pink  and  chum  salmon  fry  when  abundant.  These  complexities   necessitate  a  recovery  plan  that  has  a  strong  focus  on  understanding  steelhead  freshwater  life   history  and  habitat  use.     Steelhead  are  in  decline  throughout  Puget  Sound.  Recent  abundance  of  Puget  Sound  steelhead  has   been  estimated  at  only  1%  to  4%  of  historical  levels,  with  abundance  estimates  for  the  period  of   1980  to  2004  of  22,000  fish,  compared  to  historical  (1895)  abundance  of  485,000  to  930,000  fish   (Gayeski  et  al.  2011).     Despite  the  generally  less-­‐developed  character  of  the  Nisqually  River  watershed  relative  to  other   Puget  Sound  basins,  annual  winter  steelhead  abundance  in  the  Nisqually  River  watershed  has   declined  substantially  since  the  1980s  and  has  consistently  remained  at  less  than  1,000  fish  since   the  early  1990s  (Chapter  4,  Nisqually  River  Steelhead).  During  the  1980s,  the  number  of  wild   steelhead  returning  to  the  Nisqually  River  was  estimated  to  be  between  approximately  4,000  and   7,000  fish.  This  is  likely  a  low  estimate  because  escapement  numbers  were  based  on  Nisqually  River   mainstem  redd  surveys  and  did  not  account  for  fish  returning  to  spawn  in  numerous  tributaries  in   the  watershed.  Hiss  et  al.  (1982)  provides  partial  records  of  winter  steelhead  escapement  to  Muck   Creek,  reporting  134  females  returning  to  this  stream  to  spawn  in  1980.  The  number  of  steelhead   returning  to  the  Nisqually  River  has  plummeted  to  300  or  less  in  the  last  4  of  10  years.  Again,   spawning  abundance  estimates  are  for  the  mainstem,  and  in  recent  years,  include  the  Mashel  River.   Therefore,  the  total  run  size  to  the  river  is  likely  slightly  larger  to  account  for  fish  spawning  in  other   tributaries.     Nisqually  River  Steelhead  Recovery  Plan    

1-­‐3  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Introduction  

The  Puget  Sound  Steelhead  Technical  Recovery  Team  conducted  a  viability  analysis  of  Puget  Sound   steelhead  populations  (Puget  Sound  Steelhead  Technical  Recovery  Team  2013a).  Their  analysis  of   abundance  and  recruitment  data  for  Nisqually  River  steelhead  found  that  the  population  is  at  “a  very   high  risk  of  quasi-­‐extinction  over  the  next  100  years.”   Wild  fish  management  of  winter  steelhead  has  been  the  primary  management  focus  in  the  Nisqually   River  for  the  last  25  years.  The  fishery  focus  has  historically  been  on  wild  fish  and  ensuring   adequate  escapement  of  wild  fish.  Tribal  and  sport  harvest  on  Nisqually  steelhead  was  eliminated  in   the  early  1990s.  Since  then,  a  few  winter  steelhead  have  been  caught  during  the  tribal  winter  chum   fishery  each  year.     Historically,  there  have  been  hatchery  releases  of  both  winter  and  summer  non-­‐native  steelhead   smolts  in  the  watershed  (Chapter  4,  Nisqually  River  Steelhead).  The  last  hatchery  release  of  winter   steelhead  was  in  1981.  The  program  was  never  large;  the  average  number  of  winter  steelhead   smolts  released  between  1975  and  1981  was  approximately  20,000  fish.  Summer  steelhead  smolts   were  released  up  until  1994,  averaging  about  23,000  smolts  per  year.  Winter  and  summer  steelhead   released  into  the  Nisqually  River  watershed  were  fish  reared  in  hatcheries  outside  of  the  watershed.   Fish  were  transported  from  the  donor  hatcheries  and  released  directly  into  the  Nisqually  River   mainstem.  In  years  with  hatchery  adults  in  the  return  the  contribution  of  hatchery  fish  to  harvest   was  accounted  for  through  scale  analysis  of  fish  in  the  fishery.  Run  size  to  the  river  during  the  period   that  included  hatchery  returns  was  adjusted  to  remove  hatchery  origin  adults.     Land-­‐use  practices  in  the  Nisqually  River  watershed,  including  commercial  timber  harvest  and   development,  have  increased  sediment  loads,  reduced  large  woody  material  input  and  recruitment   potential,  and  altered  precipitation  runoff  patterns.  The  conversion  of  valley  bottomlands  and   wetlands  to  agricultural  and  rural  residential  and  hobby  farms  has  altered  the  habitat  support   functions  provided  by  these  floodplain  habitats.  Prior  to  its  recent  restoration,  the  Nisqually  River   estuary  had  lost  approximately  30%  of  its  historical  intertidal  and  subtidal  habitat  and  54%  of  its   intertidal  emergent  marsh  habitats.  The  Nisqually  River  mainstem  is  constrained  by  revetments  and   levees  in  the  lower  5.2  miles,  remnant  flood  control  dikes  in  areas  near  McKenna  and  maintained   dikes  that  protect  the  Yelm  Diversion  Canal  between  river  mile  (RM)  21.8  and  RM  26.4   (Kerwin  1999).   Two  hydroelectric  projects  have  been  constructed  in  the  watershed  on  the  Nisqually  River   mainstem.  The  Centralia  Diversion  Dam  (operated  by  the  City  of  Centralia  as  part  of  its  Yelm  Hydro   project)  constructed  at  RM  26.2  in  1929  has  affected,  and  continues  to  affect,  adult  and  juvenile  fish   passage.  The  dam  diverts  water  to  a  9-­‐mile  canal  running  parallel  to  the  river  before  returning  to  the   river.  The  La  Grande  Hydroelectric  Project  at  RM  40.8,  operated  by  Tacoma  Power,  was  constructed   in  1910,  and  Alder  Dam  was  added  just  upstream  of  this  dam  in  1944.  This  project  affects  the   hydrologic  regime  of  the  Nisqually  River  mainstem  through  flood  storage  and  flow  regulation.    

1.1.2

Goals  and  Objectives  

The  specific  Nisqually  Indian  Tribe  and  WDFW  (co-­‐managers)  goals  and  objectives  detailed  in   Chapter  2,  Recovery  Goals  and  Objectives,  were  developed  collaboratively  through  a  series  of  NSRT   meetings  held  in  2012  and  early  2013.    

  Nisqually  River  Steelhead  Recovery  Plan    

1-­‐4  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Introduction  

Development  of  the  goals  and  objectives  included  both  short-­‐  and  long-­‐term  escapement  and   harvest  goals,  formulated  to  reflect  several  considerations.   

The  economic,  cultural,  and  social  importance  of  Nisqually  winter  steelhead  to  the  Nisqually   Indian  Tribe.    



The  risk  of  run  extinction  reflected  by  the  2007  listing  of  Puget  Sound  steelhead  as  a  federally   threatened  species  under  the  Endangered  Species  Act.  



The  obligation  of  the  NSRT  member  agencies  and  organizations  as  influential  regional   stakeholders  to  guide  recovery  efforts.  



The  desire  for  a  wild  winter  steelhead  population  that  is  self-­‐sustaining,  capable  of  supporting   both  species  recovery  and  harvest  opportunities,  and  resilient  in  the  face  of  a  changing   landscape  and  climate.  

1.1.3

Analytical  Framework  

In  developing  this  recovery  plan,  the  NSRT  employed  a  science-­‐based  analysis  that  focused  on   gathering  and  synthesizing  the  most  current  habitat  information  available  for  all  subbasins  and   tributary  streams.  The  NSRT  also  compiled  co-­‐manager-­‐derived  stock  assessment  data  and  the  most   current  steelhead  research  findings  to  provide  the  best  possible  and  comprehensive   characterization  of  winter  steelhead  population  characteristics  and  freshwater  habitat  use.     The  recovery  plan  used  the  Ecosystem  Diagnosis  and  Treatment  (EDT)  model  (Mobrand  et  al  1997;   Blair  et  al.  2007)  to  organize  habitat  conditions  and  analyze  the  current  and  historical  production   potential  of  Nisqually  winter  steelhead.  The  EDT  model  results  were  used  to  identify  and  rank   threats  to  population  productivity,  abundance,  and  diversity  based  on  the  relationships  between   environmental  conditions  and  steelhead  life  stage  survival  across  a  range  of  spatial  and  temporal   scales.  The  results  were  also  used  to  evaluate  factors  affecting  current  habitat  potential,  compare   current  to  historical  habitat  potential,  and  compare  benefits  of  possible  actions  to  restore  habitat   potential.  This  analysis  informed  the  compilation  of  data  gaps  and  habitat  protection  and  land-­‐use   strategies  developed  as  part  of  the  recovery  plan.   The  analytical  framework  of  the  recovery  plan  acknowledges  the  consequence  of  data  uncertainty   on  the  assessment  of  threats  to  Nisqually  winter  steelhead  (Section  6.5,  Uncertainty).  This  analysis   focused  on  the  development  of  a  working  hypothesis  to  guide  understanding  of  the  major  habitat   influences  in  predicting  past,  present,  and  future  population  productivity,  abundance,  and  diversity.   These  predictions  were  analyzed  in  terms  of  the  rules  that  translate  environmental  conditions  to   survival.  The  effect  of  variability  and  uncertainty  in  the  knowledge  of  environmental  conditions,  and   the  effect  of  uncertainty  in  fish  spatial  and  temporal  distribution  patterns  need  to  be  recognized   when  reviewing  model  results  presented  in  this  plan.  The  analytical  framework  of  the  recovery  plan   also  included  the  identification  of  data  gaps  (Section  7.4,  Data  Gaps)  drawn  from  analyzing  habitat,   steelhead  population,  and  habitat  use  data  and  considering  research  and  monitoring  needs  (Section   7.5,  Research  and  Monitoring  Needs)  and  the  potential  effects  of  climate  change  on  Nisqually  winter   steelhead  recovery  planning  and  actions  (Section  7.6,  Climate  Change  Considerations).    

  Nisqually  River  Steelhead  Recovery  Plan    

1-­‐5  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

1.1.4

Introduction  

Implementation,  Adaptive  Management,  and   Monitoring  

The  keys  to  achieving  recovery  goals  over  time  are  to  assemble  the  most  recent  and  relevant   information  and  use  this  information  to  report  on  population  status,  patterns  of  fish  use  and   survival,  watershed  habitat  conditions,  and  fish  management  consistent  with  the  established   guidelines.  To  this  end,  steelhead  will  be  included  in  the  ongoing  adaptive  management  framework   established  for  Nisqually  Chinook  recovery  (Nisqually  Chinook  Recovery  Team  2011).  A  central   component  of  the  framework  is  an  annual  project  review  (APR)  in  which  a  four-­‐step  process  is   defined  to  establish  Nisqually  recovery  plan  actions  and  objectives  annually  for  the  upcoming   management  season.     1. Update  key  assumptions.   2. Update  status  and  trends  information.   3. Review  and  apply  the  decision  rules  used  to  set  activities  for  the  upcoming  season.   4. Update  models  to  predict  expected  future  conditions  and  population  response,  and  review  for   consistency  with  goals.     This  recovery  plan  also  incorporates  adaptive  management  and  monitoring  plans  that  are  consistent   with  the  framework  developed  by  the  Puget  Sound  Salmon  Recovery  Implementation  Technical   Team  (RITT)  as  part  of  National  Oceanic  and  Atmospheric  Administration–  (NOAA-­‐)  approved   Chinook  recovery  plans.  The  RITT  has  developed  the  Common  Framework  concept  for  the   development  of  monitoring  and  adaptive  management  plans.  The  Common  Framework  and  its   supporting  database  program  Miradi™  are  expected  to  become  the  standard  conceptual  structure,   format,  and  method  for  reporting  and  tracking  salmon  recovery  in  Puget  Sound.  The  steelhead   recovery  plan  is  expected  to  result  in  products  that  are  both  consistent  with  and  translated  into   Common  Framework  terminology  and  data  management  tools.  

1.1.5

Next  Steps  

A  comprehensive  steelhead  recovery  plan  is  an  ongoing  process.  Not  included  in  this  draft  of  the   recovery  plan  is  an  analysis  of  management  options  for  more  active  intervention  if  run  size   continues  to  decline  or  remains  at  critically  low  levels.  Also  not  included  in  this  draft  of  the  plan,  but   needed,  is  an  analysis  of  recovery  levels  necessary  to  achieve  community  harvest  goals  for  the   population.  Actions,  strategies,  and  priorities  to  improve  steelhead  survival  and  health  during  their   transit  through  the  Puget  Sound  will  also  be  developed  as  data  and  analyses  from  Salish  Sea  Marine   Survival  research  efforts  become  available.  The  draft  recovery  plan  presented  in  this  document  is   based  on  information  presently  available  from  which  the  NSRT  was  able  to  develop  an   understanding  of  the  current  population  potential  relative  to  its  historical  potential  and  likely   factors  that  caused  the  decline.  The  result  is  a  guide  to  early  actions  for  steelhead  recovery.   Throughout  this  document  the  NSRT  identifies  uncertainty  resulting  from  data  gaps,  an  incomplete   analysis  of  existing  data,  or  a  general  lack  of  knowledge  requiring  future  research/analysis  to  guide   recovery  activities.    

  Nisqually  River  Steelhead  Recovery  Plan    

1-­‐6  

July  2014   ICF  00153.13  

Nisqually Steelhead Recovery Team

Introduction

Next steps in the process of steelhead recovery planning also include the following two items.

1. Develop and implement monitoring plans to improve the understanding of steelhead stock health parameters: abundance, productivity, spatial structure, genetic diversity, and life history diversity. 2. Monitor habitat improvement plans and track habitat health using Common Framework data management tools.

1.1.6

Document Contents

In addition to this introductory chapter, the recovery plan is organized as follows. 



 









Chapter 2, Recovery Goals and Objectives, presents the long-term vision and short-term goals for Nisqually steelhead.

Chapter 3, Nisqually River Overview, describes the current status of the environment and historical conditions.

Chapter 4, Nisqually River Steelhead, describes what is known about Nisqually steelhead.

Chapter 5, Restoration and Protection Needs, details the diagnosis and identification of habitat protection and restoration needs and priorities for Nisqually steelhead.

Chapter 6, Habitat Recovery Strategies, presents an analysis of the freshwater habitat recovery strategy.

Chapter 7, Nisqually River Steelhead Management, provides an overview of options for hatchery intervention and scenarios for future fish management.

Chapter 8, Implementation, discusses implementation including monitoring and adaptive management. Chapter 9, References, includes full references cited in this recovery plan.

Nisqually River Steelhead Recovery Plan

1-7

July 2014

ICF 00153.13



 

Chapter  2  

Recovery  Goals  and  Objectives   The  NSRT  identified  broad  long-­‐term  goals  and  more  specific  shorter-­‐term  goals  for  winter   steelhead  in  the  Nisqually  River  watershed.  These  goals  represent  the  Nisqually  River  watershed   community  vision  for  the  watershed  and  the  future  of  its  salmon  and  steelhead  populations.  Long-­‐ term  and  short-­‐term  goals  include  both  conservation  and  harvest  components,  consistent  with  the   NSRT’s  interest  in  restoring  the  winter  steelhead  population  to  a  point  where  a  sustainable  level  of   tribal  and  recreational  harvest  is  again  possible.  To  meet  these  goals  the  NSRT  identified  strategic   objectives  and  priorities  specific  to  habitat,  fish  management,  and  plan  implementation  including   monitoring  and  adaptive  management.  

2.1

Long-­‐Term  Watershed  Goals  

The  successful  recovery  of  Nisqually  winter  steelhead  depends  on  addressing  all  of  the  factors   contributing  to  population  declines  through  a  comprehensive  strategy  that  includes  consideration  of   all  sources  of  mortality  from  both  an  ecosystem  perspective  and  a  harvest  perspective,  protection  of   intact  functional  habitat,  and  restoration  of  degraded  conditions  including  provisions  to  mitigate  the   effects  of  hydropower  facilities  where  possible.     The  following  long-­‐term  goals  for  steelhead  in  the  Nisqually  River  watershed  are  intended  to  be   accomplished  within  a  50-­‐to-­‐100-­‐year  timeframe,  but  they  serve  to  guide  short-­‐term  efforts  as  well.  

2.1.1

Conservation  Goals    

Long-­‐term  conservation  goals  are  intended  to  ensure  the  existence  and  genetic  diversity  of   Nisqually  winter  steelhead,  as  well  as  the  economic,  cultural,  social,  and  aesthetic  benefits  that  the   Nisqually  Tribe  and  all  residents  of  the  watershed  derive  from  a  healthy  Nisqually  River  ecosystem.     The  NSRT  identified  the  following  three  long-­‐term  conservation  goals.     

Ensure  a  thriving  and  harvestable  natural  production  of  winter  steelhead  in  perpetuity  by   providing  high  quality,  functioning  habitat  across  a  range  of  habitats  historically  used  by   Nisqually  steelhead.  



Ensure  the  long-­‐term  protection  of  the  genetically  unique,  locally  adapted  Nisqually  winter   steelhead  population.  



Ensure  that  the  economic,  cultural,  social,  and  aesthetic  benefits  derived  from  the  Nisqually   ecosystem  will  be  sustained  in  perpetuity.  

2.1.2

Harvest  Goals    

Long-­‐term  harvest  goals  are  intended  to  ultimately  ensure  a  harvestable  population  of  Nisqually   winter  steelhead  for  tribal  and  sport  fishers  that  is  consistent  with  and  supported  by  achievement  of   the  long-­‐term  conservation  goals  and  maintenance  of  a  healthy  Nisqually  River  ecosystem.    

  Nisqually  River  Steelhead  Recovery  Plan    

2-­‐1  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Recovery  Goals  and  Objectives  

The  NSRT  identified  the  following  three  long-­‐term  harvest  goals.     

Ensure  sustainable  harvest  of  natural-­‐origin  winter  steelhead.  



Provide  for  a  winter  steelhead–directed  treaty  fishery  of  approximately  2,500  fish  in  the   Nisqually  River  to  achieve  cultural  and  economic  significance  for  the  Nisqually  Indian  Tribe.  



Provide  for  a  full  season  of  winter  steelhead  sport  fishery  in  the  Nisqually  River.  

2.2

Short-­‐Term  Recovery  Goals  

The  following  short-­‐term  goals  for  steelhead  in  the  Nisqually  River  watershed  are  intended  to  be   accomplished  within  a  5-­‐to-­‐10-­‐year  timeframe  to  slow  the  decline  of  the  population,  preserve  its   genetic  identity,  and  improve  habitat  conditions  as  quickly  as  possible  in  the  watershed.  The  goals   are  intended  to  be  consistent  with  the  long-­‐term  conservation  goals  and  ultimately  work  to  create   conditions  under  which  the  long-­‐term  harvest  goals  can  also  be  accomplished.  

2.2.1

Conservation  Goals    

Short-­‐term  conservation  goals  are  intended  to  immediately  support  the  protection  and  recovery  of   Nisqually  winter  steelhead  productivity,  abundance,  spatial  distribution,  and  diversity.     The  NSRT  identified  the  following  four  short-­‐term  conservation  goals.     

Restore  population  productivity,  abundance,  distribution,  and  diversity  to  levels  sufficient  to   ensure  short-­‐term  and  long-­‐term  viability  of  Nisqually  winter  steelhead.  



Protect,  restore,  and  enhance  important  habitat  values  and  functions  important  to  winter   steelhead  throughout  the  Nisqually  River  watershed  and  Puget  Sound.  



Protect  the  existing  genetic  and  life  history  diversity  of  steelhead  (including  sympatric  resident   rainbow  trout)  in  the  watershed,  and  promote  the  ability  of  steelhead  to  adapt  to  changing   habitat  conditions.  



Ensure  that  local  and  regional  hatchery  programs  for  all  salmonids  are  managed  to  reduce   impacts  on  wild  steelhead  (including  genetic,  competition,  predation,  and  disease  risks).  

2.2.2

Harvest  Goals    

Short-­‐term  harvest  goals  are  intended  to  immediately  support  the  recovery  and  preservation  of  the   genetic  diversity  of  Nisqually  winter  steelhead,  while  simultaneously  supporting  Nisqually  tribal   ceremonial  and  subsistence  harvest  of  winter  steelhead.   The  NSRT  identified  the  following  two  short-­‐term  harvest  goals.     

Restore  population  productivity  and  abundance  levels  adequate  to  provide  sufficient  steelhead   to  eliminate  incidental  harvest  conflicts  (these  recovery  threshold  numbers  have  not  yet  been   estimated)  during  the  Nisqually  treaty  winter  chum  fishery.  



Provide  for  a  predictable  Nisqually  tribal  ceremonial  and  subsistence  harvest  (these  recovery   threshold  numbers  have  not  yet  been  estimated).    

  Nisqually  River  Steelhead  Recovery  Plan    

2-­‐2  

July  2014   ICF  00153.13  

Nisqually Steelhead Recovery Team

2.3

Recovery Goals and Objectives

Recovery Strategic Objectives

Recovery objectives are measurable outcomes of strategies and actions necessary to achieve the long-term and short-term recovery goals for winter steelhead. These objectives were carefully evaluated to determine their relationships to overall goals. The NSRT assumes that achieving recovery objectives will be a significant step toward recovery of Nisqually steelhead.

Recovery objectives were divided into habitat objectives, fish management objectives, and monitoring and adaptive-management objectives to reflect the essential components and varying scales across which recovery would need to occur.

2.3.1

Habitat Objectives

Habitat objectives are intended to support both long-and short-term conservation goals. These objectives will be achieved through the implementation of priority freshwater restoration and protection strategies. This includes continuing to promote habitat restoration and protection activities identified for Chinook that also benefit steelhead. Habitat objectives will be defined in detail within the action plan. Habitat objectives are also expected to encompass activities intended to better understand critical data gaps regarding factors affecting marine survival and eventually a plan to improve smolt-to-adult survival of Nisqually steelhead. Specific activities toward these objectives are as follows. 









2.3.2

Identify habitat protection, restoration, and enhancement actions from the fall Nisqually Chinook Recovery Plan that are relevant to the new actions specific to steelhead. Use this new list of overlapping actions to prioritize and implement actions to achieve recovery goals for both species and secure recovery funding. Identify habitat protection, restoration, and enhancement actions unique to steelhead, and develop a method for incorporating habitat restoration actions with a focus on steelhead into the Nisqually-wide salmon recovery portfolio of actions. Identify how findings of marine survival research are relevant to recovery of Nisqually steelhead.

Support the incorporation of marine survival research findings into a Puget Sound-wide steelhead recovery plan, and implement strategies with the greatest likelihood to improve smolt-to-adult survival, including indirect benefits through an ecosystem approach to recovery.

Support the development and implementation of actions to improve marine survival at scales relevant to the Nisqually Demographically Independent Population (DIP) specifically, and the Puget Sound Distinct Population Segment (DPS) as a whole.

Fish Management Objectives

Fish management objectives are intended to support both the long- and short-term harvest goals and ensure fishery-related mortality does not impede recovery. This is best achieved by having clearly defined management plans guiding steelhead harvest levels and resident rainbow population management. Fish management objectives also include the need to ensure short- and long-term population genetic diversity and viability. Nisqually River Steelhead Recovery Plan

2-3

July 2014

ICF 00153.13

  Nisqually  Steelhead  Recovery  Team    

Recovery  Goals  and  Objectives  

Specific  strategies  to  achieve  these  objectives  are  as  follows.   

Develop  and  implement  a  winter  steelhead  management  plan  to  guide  future  sustainable   harvest,  including  escapement  targets,  and  thresholds  for  indirect  and  targeted  harvest.    



Develop  and  implement  a  resident  rainbow  trout  management  plan  to  guide  resident  fish   harvest  and  incidental  mortality  of  juvenile  steelhead  encountered  in  the  fishery.  



Develop  and  implement  a  hatchery  rainbow  trout  stocking  plan  in  lakes  to  reduce    potential   genetic  and  ecological  impacts  on  steelhead  and    resident  rainbow  trout.  



Develop  a  steelhead  hatchery  conservation  plan  and  criteria  as  necessary  to  protect  population   genetic  diversity  and  viability.  

2.3.3

Monitoring  and  Adaptive-­‐Management  Objectives  

Monitoring  and  adaptive-­‐management  objectives  are  intended  to  integrate  steelhead  recovery   efforts  with  other  salmon  recovery  efforts  in  the  watershed,  to  track  the  effectiveness  of  steelhead   recovery  efforts  and  address  data  gaps  identified  in  the  plan.  Specific  strategies  to  achieve  these   objectives  are  as  follows.     1. Develop  a  monitoring  program  that  will  describe  the  population  sufficiently  to  ensure  progress   toward  goals,  or  lack  thereof,  is  detected.  The  program  would  include  such  elements  as:   a.

Estimates  of  adult  steelhead  run  size,  escapement,  and  total  brood  year  adult  recruits.  

b. Estimates  of  juvenile  outmigrants  and  annual  smolt-­‐to-­‐adult  survival  estimates.   c.

Monitoring  habitat  status  and  trends  

2. Incorporate  steelhead  into  the  existing  Nisqually  River  adaptive-­‐management  framework   developed  for  fall  Chinook,  including  the  APR  workshops   3. Incorporate  steelhead  threat  analysis  and  recovery  strategies  into  the  Puget  Sound   Partnership’s  Monitoring  and  Adaptive  Management  (M&AM)  project  data  structure  that  is   based  on  the  RITT’s  Common  Framework.   4. Complete  and  implement  recommendations  of  an  assessment  of  the  resident  and  anadromous   genetic  resource  in  the  Nisqually  River  watershed,  including  O.  mykiss  upstream  of  the  Tacoma   Power  dams.   5. Complete  a  review  of  hatchery  rainbow  trout  stocking  programs  in  the  watershed  (origin,  life   history,  reproductive  cycle,  risk  of  hybridization,  etc.)  and  evaluate  their  potential  impact  on   wild  winter  steelhead.   6. Assess  nanophyetus1  impacts  on  steelhead  survival  upon  marine  entry.   7. Identify  landscape-­‐scale  pressures  that  are  causing  habitat  degradation  and  incorporate   strategies  to  reduce  or  mitigate  these  pressures  into  habitat  actions.    

                                                                                                                          1  Nanophyetus  salmincola  is  a  trematode  common  in  the  Pacific  Northwest  that  uses  salmonids  as  one  of  three  

hosts.  The  Salish  Sea  Survival  Project  has  identified  it  as  a  possible  explanation  of  the  observed  low  marine  survival   of  Puget  Sound  steelhead.     Nisqually  River  Steelhead  Recovery  Plan    

2-­‐4  

July  2014   ICF  00153.13  

 

Chapter  3  

Nisqually  River  Overview   This  chapter  describes  current  and  historical  conditions  in  the  Nisqually  River,  its  delta  and   particular  subbasins  integral  to  steelhead  production.  Specific  habitat  characteristics  important  to   the  EDT  model  are  also  summarized.  In  addition,  factors  that  affect  steelhead  habitat,  such  as  land   use  and  hydromodification  of  the  Nisqually  River,  are  described.  

3.1

Nisqually  River  Watershed  

The  ancestral  home  of  the  Nisqually  Indian  Tribe,  the  Nisqually  River  watershed  (Figure  3-­‐1),  Water   Resource  Inventory  Area  11  (WRIA  11)  was  one  of  the  earliest  areas  settled  by  European-­‐American   immigrants  in  Puget  Sound.  The  watershed  was  prized  for  its  deep-­‐water  access  to  salt  water,  large   tracts  of  pristine  old  growth  forests,  native  prairies,  fertile  river  valleys,  and  numerous  species  of   wildlife  and  abundant  runs  of  salmon  (Kerwin  1999).  The  Hudson’s  Bay  Company  established  Fort   Nisqually  as  a  fur  trading  post  in  1833  near  the  mouth  of  the  Nisqually  River.  Homesteads  and   settlements  began  appearing  in  the  1840s.  The  new  arrivals  initiated  a  series  of  actions  to  modify   the  landscape  to  fit  their  needs,  including  diking  the  estuary  (1904  through  the  late  1920s),   construction  of  the  Yelm  Hydroelectric  Project  (1929),  and  the  La  Grande  Hydroelectric  Project,  now   called  by  Tacoma  Power  the  Nisqually  River  Project  (1910)  (Kerwin  1999).    

3.1.1

Subbasins  and  Ecoregions  

The  Nisqually  River  originates  from  the  Nisqually  Glacier  on  the  southern  slope  of  Mount  Rainier   and  flows  west-­‐northwest  for  approximately  78  miles  until  it  enters  south  Puget  Sound  8  miles   northeast  of  Olympia,  Washington.  The  Nisqually  River  is  fed  by  rainfall,  snowmelt,  and  to  a  lesser   extent  by  glacial  melt.  Its  watershed  encompasses  an  area  of  approximately  761  square  miles.  The   geographic  extent  of  the  Nisqually  River  watershed  follows  the  State  of  Washington’s  WRIA  11   (Figure  3-­‐1).     Two  streams  that  discharge  directly  into  the  Nisqually  estuary  are  typically  considered  part  of  the   Nisqually  River  watershed  for  planning  purposes:  McAllister  Creek,  which  discharges  into  the   western  portion  of  the  estuary  and  Red  Salmon  Creek,  which  discharges  into  the  eastern  portion  of   the  estuary.  The  watershed  contains  332  streams  that  total  a  linear  distance  of  714  miles   (Williams  et  al.  1975).     The  La  Grande  Canyon,  at  RM  42,  divides  the  watershed  into  two  distinct  physiographic  areas.   Downstream  of  the  canyon,  the  watershed  consists  of  low  hills  and  plains  of  glacial  outwash.   Upstream  of  the  canyon,  volcanic  rocks  and  steeper  mountainous  terrain  dominate  the  area.  The   canyon  itself  contains  sheer  cliffs  extending  upward  of  200  feet.  Upper  Nisqually  River  watershed   refers  to  the  portion  of  the  watershed  that  is  upstream  of  La  Grande  Canyon  and  lower  Nisqually   Basin  refers  to  the  portion  of  the  watershed  below  La  Grande  Canyon.      

  Nisqually  River  Steelhead  Recovery  Plan    

3-­‐1  

July  2014   ICF  00153.13  

Graphics/00153.13 Nisqually Steelhead Recovery Planning (12-13) SS

Figure 3-1 Anadromous Portion of the Nisqually River Watershed (WRIA 11)

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Overview  

La  Grande  Dam,  located  at  RM  42.5  on  the  Nisqually  River,  is  the  current  upstream  boundary  of   anadromous  salmonids  in  the  watershed  and  is  also  the  likely  upper  extent  of  the  historical   distribution  of  anadromous  salmonids  in  the  watershed  (Chapter  4,  Nisqually  River  Steelhead).   Consequently,  only  615  of  1,149  possible  linear  kilometers  of  streams  in  the  watershed  have  the   potential  for  anadromous  fish  use.  However,  much  of  this  potential  habitat  comprises  streams  with   insufficient  flow  to  accommodate  steelhead  utilization  or  is  above  natural  migration  barriers.  This   assessment  evaluated  steelhead  potential  across  321  linear  kilometers  of  streams.     In  addition  to  historical  accounts,  the  description  of  pre-­‐European  settlement  conditions  in  the   lower  Nisqually  River  watershed  uses  characteristics  of  the  U.S.  Environmental  Protection  Agency’s   (EPA)  level  IV  ecoregions  described  for  the  area  by  Pater  et  al.  (1998).  Ecoregions  denote  areas  of   general  similarity  in  ecosystems  and  in  the  type,  quality,  and  quantity  of  environmental  resources.   They  are  designed  to  serve  as  a  spatial  framework  for  the  research,  assessment,  management,  and   monitoring  of  ecosystems  and  ecosystem  components  (Pater  et  al.  1998).  Ecological  regions  are   identified  through  analysis  of  the  patterns  and  composition  of  biotic  and  abiotic  phenomena  (e.g.,   geology,  physiography,  vegetation,  climate,  soils)  that  reflect  differences  in  ecosystem  quality  and   integrity.  For  the  Nisqually  River  watershed,  the  description  of  these  ecoregions  is  of  sufficient  detail   to  help  formulate  a  hypothesis  of  the  watershed’s  aquatic  environment.     The  lower  Nisqually  River  watershed  falls  within  three  level  IV  ecoregions  (Figure  3-­‐2).  All  of  the   EDT  analysis  streams  fall  within  the  Southern  Puget  Prairies  level  IV  ecoregion,2  with  the  exception   of  tributaries  of  Ohop  Creek  (Lynch  and  Twenty-­‐Five  Mile  Creeks)  and  the  Mashel  River  watershed.   As  summarized  in  Table  3-­‐1,  the  Southern  Puget  Prairies  ecoregion  comprises  nearly  level  to  rolling   glacial  outwash  plains  and  ground  moraines  (Pater  et  al.  1998).  Well-­‐drained  soils  promote  a  land   cover  mosaic  of  Douglas  fir/western  hemlock  forests,  prairies,  and  oak  woodlands.  The  majority  of   Lynch  and  Twenty-­‐Five  Mile  Creeks  and  the  Mashel  River  flow  through  the  Western  Cascades   Lowlands  and  Valleys  ecoregion.  Streams  in  this  ecoregion  are  medium  gradient,  with  headwaters  in   western  hemlock,  western  red  cedar,  and  Douglas  fir  forests  and  lower  reaches  in  valleys  near   confluences  with  the  Nisqually  River.  The  Nisqually  watershed  falls  within  the  jurisdiction  of  three   counties.  The  entire  watershed  north  of  the  Nisqually  River  is  within  the  jurisdiction  of  Pierce   County  and  forms  its  southern  boundary.  The  upper  watershed  south  of  the  Nisqually  River  is  in   Lewis  County,  and  the  lower  watershed  south  of  the  Nisqually  falls  within  the  jurisdiction  of   Thurston  County.    

                                                                                                                          2  The  level  IV  ecoregions  depicted  in  Figure  3-­‐2  were  compiled  at  a  scale  of  1:250,000  and  are,  therefore,  subject  to  

errors  of  scale.       Nisqually  River  Steelhead  Recovery  Plan    

3-­‐3  

July  2014   ICF  00153.13  

Graphics/00153.13 Nisqually Steelhead Recovery Planning (12-13) SS

Figure 3-2 EPA Level IV Ecoregions in the Lower Nisqually River Watershed

  Nisqually  Steelhead  Recovery  Team    

Table  3-­‐1.  

Nisqually  River  Overview  

Characteristics  of  EPA  Level  IV  Ecoregions  in  the  Lower  Nisqually  Basin    

Level  IV  Ecoregion  

Geology  

Physiography  

2g.  Southern  Puget  Prairies   Description  

Elevation/Local  Relief   (feet)  

Soil  

0–900   200–500  

4b.  Western  Cascades  Montane   Highlands  

Westerly  trending  ridges  and  valleys   Steep,  glaciated,  dissected  mountains  and   ridges  with  high  to  medium  gradient  streams   with  reservoirs  and  medium   and  glacial  rock-­‐basin  lakes.   gradient  rivers  and  streams.  U-­‐ shaped,  glaciated  valleys  in  the  east.   800–4,000   2,800–5,900   400–3,000   2,000–3,100  

Surficial  material  and   bedrock  

Pleistocene  Vashon  Glacial  outwash   Oligocene-­‐Eocene  andesitic,  basaltic,   Oligocene-­‐Miocene  andesitic  and  basaltic   and  till  deposits   and  rhyolitic  lava  flows  and  breccia.   lava  flows  and  breccia.  

Order  (Great  Groups)  

Inceptisols  (Durochrepts,   Xerumbrepts),  Andisols   (Melanoxerands)  

Common  Soil  Series  

Alderwood,  Everett,  Spanaway,   Nisqually.  Deep,  moderately  well   drained  to  somewhat  excessively   well-­‐drained,  gravelly  loam,  gravelly   sandy  loam,  very  gravelly  sandy   loam,  loamy  fine  sand.   Temperature/Moisture   Mesic/   Regimes   Xeric  

  Nisqually  River  Steelhead  Recovery  Plan    

Nearly  level  to  rolling  glacial   outwash  and  till  plains  with  low   gradient  streams  and  lakes  

4a.  Western  Cascades  Lowlands   and  Valleys  

Inceptisols  (Haplumbrepts),  Ultisols   (Haplohumults,  Palehumults),   Andisols  (Haploxerands)  

Inceptisols  (Haplumbrepts),  Andisols   (Hapludands,  Fulvicryands,  Haplocryands)  

Klickitat,  Kinney,  McCully,  Peavine,   Honeygrove,  Orford,  Olympic,   Cinebar.  Very  deep  to  deep,  clay   loam,  silty  clay  loam,  silt  loam,   gravelly  clay  loam,  gravelly  silt  loam,   cobbly  loam.   Mesic/   Udic  

Keel,  Hummington,  Aschoff,  Bull  Run,   Illahee,  Mellowmoon.  Very  deep  to   moderately  deep,  silt  loam,  gravelly  silt   loam,  gravelly  loam,  cobbly  loam.  

3-­‐5  

Frigid,   Cryic/   Udic  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Overview  

 

Level  IV  Ecoregion  

Climate  

2g.  Southern  Puget  Prairies  

4a.  Western  Cascades  Lowlands   and  Valleys  

4b.  Western  Cascades  Montane   Highlands  

60–90  

70–120  

120–180  

80–120  

31/41;   47/78  

26/37;   44/75  

Precipitation  Mean   40–55   annual  (inches)   Frost  Free  Mean  annual   150–210   (days)   Mean  Temperature   34/46;   January  min/max;   52/77   July  min/max,     (°F)   Potential  Natural   Douglas-­‐fir,  prairies;  some  oak   woodland,  western  hemlock,  red   Vegetation   cedar  

Western  hemlock,  western  red  cedar,   Pacific  silver  fir,  western  hemlock,   mountain  hemlock,  Douglas-­‐fir;  some   Douglas-­‐fir.   noble  fir.  Ecoregion  4b  is  higher  in   elevation  than  ecoregion  4a  and  is  snow   influenced.   Land  Use  and  Land  Cover   Douglas-­‐fir/western  hemlock   Douglas-­‐fir/western   Extensive  Pacific  silver  fir/western   forests,  prairies,  oak  woodlands.   hemlock/western  red  cedar/vine   hemlock/Douglas-­‐fir/mountain   Forestry,  hay  farming,  pastureland.   maple/red  alder  forests  are  wide-­‐ hemlock/noble  fir/sub-­‐alpine  fir/grand   Mix  of  military  and  private  land   spread.  Forestry  and  recreation  are   fir/white  fir  forests.  Common  land  uses   important  land  uses  and   include  forestry  and  recreation.  Eco-­‐ ownership   pastureland  occurs  in  lower  valleys.   region  4b  is  an  important  regional  water   source.   Source:  Pater  et  al.  1998  

  Nisqually  River  Steelhead  Recovery  Plan    

3-­‐6  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

3.1.2

Nisqually  River  Overview  

Land  Use  

The  headwaters  of  the  Nisqually  River  are  protected  by  Mount  Rainier  National  Park,  and  its  estuary   resides  in  the  Nisqually  National  Wildlife  Refuge  (Nisqually  River  Task  Force  1987).  Between  the   federally  protected  headwaters  and  estuary,  the  Nisqually  River  watershed  is  a  mixture  of  private   and  public  lands.     The  Nisqually  River  watershed  is  relatively  undeveloped  compared  to  other  south  Puget  Sound   rivers.  The  land  use  percentages  in  the  upper  Nisqually  River  watershed  as  estimated  in  2000   (David  Evans  &  Associates  2000)  were  as  follows.   

Agricultural  and  Vacant  Land  

 

 

2%  



Forestry  and  Recreation  

 

 

78%  



National  Park    

 

 

18%  



Urban/Residential/Commercial    

 

2%  

 

Pierce  County  recently  estimated  the  percentage  of  land  use  for  tributary  subbasins  in  its  jurisdiction   (Pierce  County  2012).  The  area  west  of  Eatonville  encompassing  the  Murray  Creek,  Brighton  Creek,   Horn  Creek,  Harts  Lake,  Tanwax  Creek,  Kreger  Creek  and  lower  Ohop  Creek  subbasins  is   approximately  50%  rural-­‐residential,  12%  to  30%  open  space,  and  5%  to  10%  agricultural.  The   portion  of  the  watershed  east  of  Eatonville  that  includes  the  Mashel  River  subbasin  consists  of  25%   rural  residential  and  75%  forested  land  (Pierce  County  2012).  Land  use  within  the  Muck  Creek   subbasin,  the  largest  tributary  by  area  to  the  lower  Nisqually  River,  was  estimated  to  be  32%   residential  and  37%  open  space,  with  25%  of  the  basin  within  Fort  Lewis  (Pierce  County  2005).     Major  public  landholdings  in  the  watershed  include  the  Mount  Baker-­‐Snoqualmie  National  Forest,   Gifford  Pinchot  National  Forest,  Mount  Rainier  National  Park,  Washington  Department  of  Natural   Resources  lands  (WDNR),  and  the  City  of  Tacoma  (Nisqually  River  Project).  Large  timber  holdings   include  real  estate  investment  companies  (Hancock,  West  Fork,  ORM  Timber  Fund,  WACF  TA,  and   TWR  Timberlands),  Weyerhaeuser  Timber  Company,  the  Muckleshoot  Indian  Tribe,  and  Manke   Timber  Company.  Due  to  the  significant  land  ownership  by  natural  resource  agencies  and  timber   companies,  only  a  small  portion  of  the  upper  watershed  has  undergone  urban  or  residential   development  (2%).   Large  sections  of  land  adjacent  to  the  Nisqually  River  in  the  lower  watershed  lie  within  Joint  Base   Lewis-­‐McChord  (JBLM  –  Department  of  Defense)  or  the  Nisqually  Indian  Reservation  and  are   protected  from  typical  development.  As  it  flows  west,  the  Nisqually  River  bisects  Fort  Lewis.  Fort   Lewis  is  north  (Pierce  County)  of  the  river  from  RM  19  to  RM  2.3;  the  military  base  is  south  of  the   river  (Thurston  County)  from  RM  17.6  to  RM  14  and  RM  12.3  to  RM  11.  The  Nisqually  Indian   Reservation  bounds  the  river  in  Thurston  County  from  RM  11  to  RM  5.4.     Additional  conservation  easements  and  outright  purchases  by  the  Nisqually  Land  Trust  have   expanded  protection  of  shoreline  and  floodplain  habitats  on  the  Nisqually  River  mainstem  and   estuary,  Ohop  Creek,  and  lower  Mashel  River.  As  of  2013  and  across  all  entities,  72%  of  the   Nisqually  River  shoreline  below  Alder  Dam  is  in  protected  status  (Nisqually  Indian  Tribe  n.d.).   However,  the  Whitewater,  McKenna,  and  Wilcox  reaches  of  the  Nisqually  River  mainstem  are  only   67%,  21%,  and  49%  protected,  respectively.  In  Ohop  Creek,  downstream  of  the  lake,  39%  of  the   shoreline  is  protected  and  the  lower  7  miles  of  the  Mashel  River  69%  is  protected.  Land  uses  in  the     Nisqually  River  Steelhead  Recovery  Plan    

3-­‐7  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Overview  

Mashel  River  and  upper  Ohop  Creek  are  mostly  managed  for  forest  products.  The  NSRT  is  concerned   that,  in  the  future,  portions  of  these  watersheds  may  convert  to  a  higher  percentage  of  urban  or   rural-­‐residential  use.     Figure  3-­‐3  presents  land  cover  classifications  for  the  Nisqually  River  watershed  subbasins,  as   derived  from  aerial  photo  interpretation  completed  by  the  Nisqually  Indian  Tribe.  The  percent  of   forested  land  cover  varies  across  subbasins  with  the  least  amount  in  the  Muck  Creek  subbasin  and   the  highest  amount  in  the  Mashel  River  subbasin.  The  percent  of  land  cover  in  developed   classifications  (developed  open  space  and  development)  is  the  highest  in  the  Muck  Creek  subbasin   and,  excluding  the  upper  basin,  lowest  in  the  Lackamas,  Toboton,  and  Powell  subbasin).    

3.1.3

Hydroelectric  Development  

Three  hydroelectric  dams  are  located  on  the  mainstem  of  the  Nisqually  River  (Pierce  County  2012).   Alder  Dam  and  La  Grande  Dam,  owned  by  Tacoma  Power,  comprise  the  Nisqually  River  Project  and   are  located  in  the  La  Grande  Canyon  reach  of  the  Nisqually  River.  Alder  Dam,  located  at  RM  44.2,   creates  a  large  storage  reservoir  about  seven  miles  in  length.  Its  powerhouse  is  located  at  the  base  of   the  dam.  La  Grande  Dam  is  located  approximately  two  miles  downstream  of  Alder  Dam.  La  Grande   Dam  impounds  a  small  reservoir  from  which  water  is  diverted  to  the  powerhouse,  located   approximately  1.7  miles  downstream.  The  diverted  water  re-­‐enters  the  Nisqually  River  at  the   powerhouse  near  RM  40.8.  Water  is  also  released  from  the  dam  to  the  LaGrande  Canyon  portion  of   the  Nisqually  River  to  maintain  a  small  (35cfs)  continuous  flow  between  La  Grande  Dam  and  its   powerhouse  (Pierce  County  2012).  During  flood  conditions  or  generation  shutdown,  much  larger   flows  are  discharged  into  LaGrande  Canyon.   In  1997,  the  Federal  Energy  Regulatory  Commission  (FERC)  reissued  the  license  that  governs   operations  of  the  Nisqually  Project  for  40  years  (Pierce  County  2012).  FERC  license  number  1862   includes  conditions  that  ensure  project  operations  enhance  fish  habitat  downstream  of  the  dams.   Enhancements  include  summer  and  fall  minimum-­‐flow  releases  that  provide  higher-­‐than-­‐natural   flows  in  the  Nisqually  River.  The  increased  flow  generates  more  salmonid  rearing  and  spawning   habitat  in  the  mainstem.  Minimum  instream  flow  requirements  throughout  the  year  are  provided   for  the  Nisqually  River  downstream  of  the  La  Grande  Powerhouse  and  in  the  section  of  mainstem   between  La  Grande  Dam  and  its  powerhouse.  FERC  license  1862  also  includes  downramping   restrictions,  or  rates  at  which  discharges  from  the  dams  and  powerhouses  can  be  reduced  (Pierce   County  2012).  These  day-­‐  and  nighttime  ramping  restrictions  are  designed  to  protect  juvenile   salmonids  from  stranding  or  trapping  when  water  levels  drop.     The  Centralia  Diversion  Dam  is  located  16  miles  downstream  of  La  Grande  Dam  (Pierce  County   2012).  The  dam  is  owned  and  operated  by  the  City  of  Centralia  Light  Department  and  is  part  of  the   Yelm  Hydroelectric  Project.  The  Yelm  Hydroelectric  Project  is  a  run-­‐of-­‐the-­‐river  project;  there  is  no   associated  water  impoundment  on  the  mainstem.  The  project  consists  of  a  seven-­‐foot-­‐high  low-­‐head   diversion  dam  at  RM  26.2,  a  9.1-­‐mile  diversion  canal,  and  a  powerhouse  (located  at  RM  12.6).  The   dam  diverts  Nisqually  River  flow  and  the  canal  transports  the  water  to  the  powerhouse;  flow  is   returned  to  the  Nisqually  River  at  the  powerhouse  tailrace  (Pierce  County  2012).   The  Yelm  Hydroelectric  Project  operates  under  FERC  license  10703-­‐001  that  was  issued  in  1997   (Pierce  County  2012);  the  license  has  a  40-­‐year  term.  Its  license  requires  it  to  meet  the  same   minimum  instream  flow  regime  established  in  Tacoma’s  license.  There  are  also  license  requirements   regarding  maintenance  of  a  fish  ladder  at  the  diversion  dam  and  screening  to  prevent  juvenile  fish   from  entering  the  diversion  canal.         Nisqually  River  Steelhead  Recovery  Plan    

3-­‐8  

July  2014   ICF  00153.13  

Nisqually Mainstem Subbasin Landcover Palustrine wetland, 5.1%

Development, 8.0%

McAllister Creek Subbasin Landcover

Unconsolidated Shore, 0.2% Water, 0.1%

Developed Open Space, 2.4%

Bare Land, 0.4% Cultivated/Pasture/ Hay, 0.4%

Estuarine wetland, 0.6%

Palustrine wetland, 10.7%

Unconsolidated Shore, 0.5%

Water, 0.8% Bare Land, 1.1%

Developed Open Space, 3.6%

Cultivated/ Pasture/Hay, 9.1% Grassland, 3.7% Scrub/Shrub, 6.0%

Development, 9.7%

Grassland, 26.9%

Muck Creek Subbasin Landcover Palustrine wetland, 6.6% Developed Open Space, 4.8%

Water, 0.1% Unconsolidated Shore, 0.02%

Bare Land, 0.3%

Cultivated/ Pasture/Hay, 18.6%

Development, 9.7%

Estuarine wetland, 0.7%

Grassland, 9.5%

Forested, 51.9%

Forested, 44.0%

Forested, 54.1% Scrub/Shrub, 3.9%

Prairie Tributaries Subbasin Landcover Developed Open Space, 2.7%

Palustrine wetland, 7.4%

Unconsolidated Shore, 0.2% Snow/Ice

Water, 1.0%

Bare Land, 0.1% Cultivated/Pasture/ Hay, 16.8%

Development, 5.6% Grassland, 6.8%

Scrub/Shrub, 6.4%

Toboton/Powell/Lackamas Subbasin Landcover Unconsolidated Shore, Palustrine wetland, 0.3% 5.6% Developed Open Space, 0.2%

Cultivated/Pasture/Hay, 1.7%

Water, 1.4% Bare Land, 0.2%

Ohop Creek Subbasin Landcover Palustrine wetland, 1.6%

Unconsolidated Shore, 0.01%

Developed Open Space, 0.3%

Grassland, 6.0% Development, 2.9%

Development, 1.5%

Scrub/Shrub, 13.3%

Scrub/Shrub, 20.6%

Graphics/00153.13 Nisqually Steelhead Recovery Planning (12-13) SS

Forested, 62.9%

Mashel River Subbasin Landcover Bare Land, 0.2% Water, 0.02%

Scrub/Shrub, 18.0%

Development, 1.8%

Forested, 74.2%

Cultivated/Pasture/ Hay, 0.5% Grassland, 4.1%

Cultivated/Pasture/ Hay, 5.9% Grassland, 9.5%

Scrub/Shrub, 20.2%

Forested, 46.0%

Unconsolidated Shore, 0.01% Palustrine wetland, 1.0% Developed Open Space, 0.2%

Water, 1.3%

Bare Land, 0.3%

Forested, 57.6%

Legend

Upper Basin Landcover Palustrine wetland, 2.2% Development, 0.8%

Unconsolidated Shore, 0.2% Snow/Ice, 2.9%

Bare Land, 2.1% Cultivated/Pasture/Hay, 0.2%

Water, 1.8%

Grassland, 1.8% Scrub/Shrub, 16.6%

Developed Open Space, 0.1%

Forested, 71.2%

Bare Land

Developed Open Space

Cultivated/Pasture/Hay

Palustrine wetland

Grassland

Snow/Ice

Scrub/Shrub

Unconsolidated Shore

Forested

Water

Development

Figure 3-3 Land Cover Classification for Nisqually River Watershed Subbasins

  Nisqually  Steelhead  Recovery  Team    

3.2

Nisqually  River  Overview  

Nisqually  River  Estuary  

The  historical  Nisqually  River  estuary  contained  a  total  area  of  approximately  15  square  kilometers   (Bortleson  et  al.  1980).  Although  modified  compared  to  historical  conditions,  nonetheless  it  is  easily   the  largest  estuary  in  southern  Puget  Sound,  but  only  a  mid-­‐size  estuary  compared  with  others  in   Puget  Sound.  The  total  size  of  the  estuary  is  constrained  by  steep  bluffs  along  both  sides  of  the  delta   area  and  a  steep  drop  off  at  the  outer  edge  of  the  delta.     The  historical  estuary  included  four  habitat  zones  and  amount  of  channels  by  zone  was  estimated   for  each  zone:  estuarine  emergent  marsh  (147.9  hectares),  emergent/forested  transitional  (9.0   hectares),  forested  riverine/tidal  (13.5  hectares),  and  freshwater  (10.3  hectares).  The  estimated   historical  amount  channel  habitat  by  zone  is  based  on  analysis  by  Nisqually  Indian  Tribe  and  map   provided  in  Bortleson  et  al.  (1980).   Habitat  of  the  Nisqually  River  estuary  has  changed  substantially  compared  to  historical  conditions,   primarily  by  the  dikes  installed  in  the  early  1900s  to  convert  saltmarsh  into  pasture.  The  fill   associated  with  the  Interstate  5  (I-­‐5)  crossing  of  the  estuary  has  also  resulted  in  the  loss  of  historical   estuarine  habitat.     In  November  2009,  5  miles  of  dike  surrounding  portions  of  the  Nisqually  River  estuary  were   removed,  restoring  760  acres  of  historical  tidelands  to  tidal  influence  (Figure  3-­‐4).  Together,  the   Nisqually  National  Wildlife  Refuge  and  its  partners  (Nisqually  Indian  Tribe  and  Ducks  Unlimited)   have  restored  over  35  kilometers  of  historical  tidal  slough  systems.  These  efforts  are  expected  to   substantially  increase  the  ecological  health  of  the  Nisqually  River  estuary  and  the  south  Puget   Sound.   The  Nisqually  Indian  Tribe  and  U.S.  Geological  Survey  (USGS)  are  documenting  the  progress  of  the   restoration  and  have  implemented  an  intensive  study  of  channel  development  in  the  restored   tidelands.  A  preliminary  assessment  has  noted  a  “transition  from  a  diked  freshwater  marsh  with   vegetation-­‐choked  channels  to  more  estuarine  conditions  as  the  relic  plants  decompose  in  the  now   tidally  influenced  restoration”  (Woo  et  al.  2011).  The  long-­‐term  ecological  benefits  of  the  restoration   for  the  estuary  and  adjacent  nearshore  areas  will  require  further  monitoring  and  scientific  studies.     Table  3-­‐2  illustrates  the  changes  in  habitat  type  area  in  the  Nisqually  River  estuary  from  historical   conditions,  to  baseline  (1999)  conditions  prior  to  the  dike  breaching,  and  current  conditions  as  of   2010  following  dike  breaching.        

  Nisqually  River  Steelhead  Recovery  Plan    

 

3-­‐10  

July  2014   ICF  00153.13  

Graphics/00153.13 Nisqually Steelhead Recovery Planning (12-13) SS

Figure 3-4 Nisqually Estuary Restoration of Channels—1990 Condition and 2012 Extent

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Overview  

Table  3-­‐2.   Amount  of  Channel  Area  (hectares)  by  Channel  Type  and  Estuarine  Zone   Zone/Channel  Type  

Historical  

Baseline  ~1999  

Current  2010  

Mainstem  channel  

6.4  

4.2  

4.2  

Distributary  slough  a  

0.0  

0.0  

0.0  

Side  channel  sloughs  b  

0.0  

0.0  

0.0  

Freshwater  blind  channel  c  

3.9  

3.5  

3.5  

Mainstem  channel  

12.5  

8.8  

8.8  

Distributary  slough  a  

0.0  

0.0  

0.0  

Blind  channels  

1.0  

3.0  

3.8  

Mainstem  channel  

8.9  

9.3  

9.3  

Distributary  slough  a  

0.0  

0.0  

0.0  

Blind  channels  

0.1  

0.1  

0.1  

Mainstem  channel  

69.3  

76.8  

76.8  

Distributary  slough  a  

5.9  

4.2  

4.2  

Blind  channels  

72.8  

55.3  

57.7  

Total  Area  all  zones  

180.7  

165.2  

168.3  

Channel  Area  (%  of  historical)  

   

91%  

93%  

Freshwater  

Forested  Riverine/Tidal  

Emergent/Forested  Transitional  

Estuarine  Emergent  Marsh  

a  

Estuary  channels  which  branch  from  mainstem  and  flow  directly  into  bay  or  reconnect  with     mainstem  (Haas  and  Collins  2001).   b   Perennially  flooded  former  paths  of  the  mainstem  river  that  are  predominately  deep-­‐water  habitat     (Haas  and  Collins  2001).   c   Freshwater  tidal  wetlands/blind  channels.  

  Nearshore  marine  habitat  in  the  Pierce  County  side  of  the  Nisqually  River  estuary  was  substantially   affected  by  railroad  construction  beginning  in  1912.  The  railroad  enters  the  delta  and  continues   north  along  the  Puget  Sound  shoreline.  Most  of  the  shoreline  is  armored  to  prevent  erosion  of  the   railroad  bed.  The  armoring  and  the  bed  itself  have  severely  limited  sediment  contribution  to  the   nearshore.  Nearshore  marine  habitat  in  the  Thurston  County  portion  of  the  Nisqually  reach  is  in   better  condition,  with  substantial  areas  remaining  undeveloped.  However,  bulkhead  construction   and  other  armoring  associated  with  home  development  is  permitted  in  this  county,  resulting  in   continued  degradation  of  nearshore  habitat.  

3.3

Nisqually  River  Mainstem  

The  Nisqually  River  mainstem  that  is  accessible  to  steelhead  is  approximately  42.5  miles  long,   extending  from  La  Grande  Dam  to  its  mouth.  Except  for  the  canyon  that  contains  La  Grande  Dam,  the   accessible  reach  of  the  mainstem  flows  through  low  hills  and  prairie  plains  formed  of  glacial   outwash.  Between  La  Grande  Dam  and  the  delta,  the  Nisqually  River  passes  a  diversion  dam   (Centralia  Diversion  Dam  at  RM  26.2)  and  receives  return  flows  from  two  powerhouses  (RMs  40.8     Nisqually  River  Steelhead  Recovery  Plan    

3-­‐12  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Overview  

and  12.7).  Between  the  two  dams,  adjacent  land  is  used  for  timber  production;  immediately   upstream  and  downstream  of  the  diversion  dam,  riparian  areas  become  more  developed  at  the   communities  of  McKenna  and  Whitewater  Estates.  Downstream  of  the  Centralia  Powerhouse  at   RM  12.7,  the  Nisqually  River  flows  through  the  Nisqually  Indian  Reservation,  JBLM,  and  then  the   Nisqually  National  Wildlife  Refuge  before  entering  the  Nisqually  Delta.  Except    for  bank  armoring   and  flood-­‐control  measures  to  ensure  function  of  the  diversion  dam  and  protect  the  community  of   McKenna,  the  river  is  largely  unconfined  and  free  to  migrate  over  its  floodplain  in  sections   accessible  to  steelhead.  The  Nisqually  River  mainstem  was  divided  into  seven  reaches  to   characterize  broad-­‐scale  differences  in  riparian  condition  and  channel  form  (Table  3-­‐3).   Several  tributaries  enter  the  Nisqually  River  downstream  of  La  Grande  Dam.  These  tributaries   supply  over  156  miles  of  potential  steelhead  stream  habitat.  Subbasins  important  to  current  or   historical  steelhead  production  are  described  in  detail  in  Section  3.4,  Tributary  Subbasins,  and   include  McAllister  Creek  (an  independent  tributary  to  the  Nisqually  Delta);  Muck  Creek  (confluence   at  RM  11.0);  Murray  Creek  (RM  19.1);  Horn  Creek  (RM  23.8);  Lackamas,  Toboton,  and  Powell  Creeks   (RM  28.8-­‐31.9);  Ohop  Creek  (RM  37.3);  and  the  Mashel  River  (RM  39.6).    

3.4

Tributary  Subbasins  

The  six  tributary  subbasins  described  below  represent  different  geologic  areas,  hydrology,  and  land   forms  and  have  related  patterns  of  flow,  land  use,  and  in-­‐stream  habitat  (Table  3.3,  Figure  3-­‐1).   McAllister  Creek  represents  low  elevation,  independent,  spring-­‐fed  streams  that  drain  directly  into   the  Nisqually  Estuary.  Muck  Creek  is  a  “prairie-­‐type”  stream  and  the  largest  lower  river  tributary.   The  prairie-­‐type  tributaries  (Prairie  Tributaries)  drain  gravelly  soils  with  little  relief  and  some   reaches  consequently  experience  low  or  no  summer  flow.  The  relatively  flat  lands  of  the  Prairie   Tributaries  are  typically  used  for  agriculture.  The  Mashel  River  and  Ohop  Creek  are  large  upper   river  tributaries  that  drain  low  mountain  areas  that  produce  timber.  Channel  gradients  in  these  low   mountains  are  steep  and  summer  flow  is  maintained  by  snowmelt.    

3.4.1

McAllister  Creek  

McAllister  Creek  flows  directly  into  south  Puget  Sound  at  the  Nisqually  River  estuary.  The  subbasin   is  approximately  11  square  miles  and  elevation  is  low.  McAllister  Springs,  one  of  three  large  springs   that  feeds  the  creek,  is  only  6.7  feet  above  sea  level.  Its  tributaries  originate  from  hillside  springs  as   high  as  180  feet  in  elevation  and  traverse  through  moderately  timbered  slopes  immediately  above   the  valley  floor  (Kerwin  1999).  Upon  entering  the  valley,  it  flows  through  agricultural  land  and   enters  the  western  edge  of  the  Nisqually  River  estuary.  The  largest  spring  in  the  headwaters  of   McAllister  Creek  has  been  used  by  the  City  of  Olympia  to  provide  municipal  drinking  water  to   Olympia  and  neighboring  communities.  The  City  of  Olympia  is  closing  that  facility  and  developing  a   wellfield  upstream  of  the  springs  to  provide  municipal  water.  The  closure  of  the  McAllister  Springs   facility  is  expected  to  improve  flow  in  McAllister  Creek  (City  of  Olympia  2013).  The  McAllister  Creek   stream  channel  is  heavily  armored  and  altered  in  the  vicinity  of  I-­‐5  (RM  2.6)  and  localized  armoring   occurs  where  county  and  state  roads  cross  the  creek.  Dikes  exist  in  several  local  areas  to  afford   property  protection.  These  serve  to  limit  lateral  channel  migration  and  off-­‐channel  rearing   opportunities.  Given  its  origins  in  low-­‐elevation  springs  and  a  low-­‐gradient  channel,  the  entire   length  of  the  mainstem  (approximately  6  miles)  and  valley  tributaries  is  subject  to  tidal  influence   (Kerwin  1999).     Nisqually  River  Steelhead  Recovery  Plan    

3-­‐13  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Overview  

Table  3-­‐3.   Nisqually  Watershed  Streams,  Reaches,  and  Springs  by  Subbasin   Nisqually  Subbasin  

Nisqually  River  Mainstem  

McAllister  Creek  

Muck  Creek  

Prairie  Tributaries  

Lackamas,  Toboton,  Powell   Creeks  

Ohop  Creek  

Mashel  River  

  Nisqually  River  Steelhead  Recovery  Plan    

Streams/Reaches/Springs   Lower  Reach   Reservation  Reach   Whitewater  Reach   McKenna  Reach   Wilcox  Reach   Middle  Reach   Upper  Reach   McAllister  Creek   Little  McAllister  Creek   Muck  Creek   Exeter  Spring   Preacher  Creek   Halverson  Creek   Lacamas  Creek   Nixon  Spring   Johnson  Creek   North  Fork  Muck  Creek   South  Fork  Muck  Creek   Thompson  Creek   Yelm  Creek   Murray  Creek   McKenna  Creek   Brighton  Creek   Horn  Creek   Harts  Creek   Tanwax  Creek   Kreger  Creek   Lackamas  Creek   Toboton  Creek   Powell  Creek   Ohop  Creek   Lynch  Creek   Tributary  0094   25  Mile  Creek   Mashel  River   Little  Mashel  River   Beaver  Creek   Busywild  Creek  

3-­‐14  

County   County  line   County  line   County  line   County  line   County  line   County  line   County  line     Thurston  County     Thurston  County   Pierce  County   Pierce  County   Pierce  County   Pierce  County   Pierce  County   Pierce  County   Pierce  County   Pierce  County   Pierce  County   Thurston  County   Thurston  County   Pierce  County   Thurston  County   Pierce  County   Pierce  County   Pierce  County   Pierce  County   Pierce  County   Thurston  County   Thurston  County   Thurston  County   Pierce  County   Pierce  County   Pierce  County   Pierce  County   Pierce  County   Pierce  County   Pierce  County   Pierce  County  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

3.4.2

Nisqually  River  Overview  

Muck  Creek  

Located  in  southwest  Pierce  County,  the  Muck  Creek  subbasin  is  the  largest  tributary  system  by  area   in  the  Nisqually  River  watershed,  with  a  total  drainage  of  93  square  miles  (Pierce  County  2005).  The   subbasin  includes  Muck  Creek  and  three  large  tributaries,  Lacamas  Creek,  the  North  Fork  of  Muck   Creek,  and  the  South  Fork  of  Muck  Creek  (also  known  as  South  Creek).  Muck  Creek  elevations  range   from  140  to  960  feet.  The  topography  of  the  subbasin  is  generally  flat  to  moderately  rolling  hill   terrain.  A  steeper  gradient  channel  drains  the  canyon  formed  by  the  lower  stretch  of  the  mainstem   where  it  enters  the  Nisqually  River.  The  creek  flows  across  broad  natural  prairies  with  native   grasses  and  oaks  and  contains  riparian  habitat  of  second-­‐growth  coniferous  and  hardwood  forests   (Pierce  County  2005).   Muck  Creek  and  its  tributaries  together  comprise  over  43  miles  of  potential  steelhead  stream   habitat.  Muck  Creek  originates  from  a  series  of  springs  and  seeps  in  the  eastern  portion  of  the  basin,   the  largest  of  which  is  Patterson  Springs.  Muck  Creek  is  characterized  by  intermittent  flow.   Groundwater  discharge  to  the  creek  is  generally  greatest  in  the  lower  sections.  Loss  of  streamflow   due  to  seepage  is  common  in  midsections  of  Muck  Creek.  The  stream  gradient  is  generally  flat   downstream  of  the  forks,  excepting  a  few  moderate  reaches  as  it  cuts  through  a  canyon  in  its  lower   reaches.  The  creek  flows  through  several  marshes  in  the  flat  prairie  areas.  The  lower  14  miles  of   Muck  Creek  (with  the  exception  of  a  1.1-­‐mile  stretch  in  the  vicinity  of  the  City  of  Roy)  flows  through   JBLM.  Within  JBLM’s  boundaries,  the  creek  travels  through  training  areas  and  along  the  edge  of  the   artillery  impact  area.  Many  creek  segments  within  Fort  Lewis  have  natural  functioning  riparian   habitats,  but  others  need  riparian  enhancement  or  restoration  (Pierce  County  2005).  

3.4.3

Prairie  Tributaries  

This  subbasin  comprises  multiple  streams  (Table  3.3)  and  a  variety  of  land  use  types.  Brighton   Creek  and  Horn  Creek  are  right-­‐bank  tributaries  within  McKenna  reach  of  the  Nisqually  River  at  RM   23.6  and  25.8,  respectively  (Pierce  County  2012).  These  streams  are  low  elevation,  ranging  from  320   feet  at  the  mouth  of  Brighton  Creek  to  720  feet  at  the  headwaters  of  Horn  Creek.  Both  streams  have   a  varied  land  use,  including  mixed-­‐use  agriculture,  rural  residential,  and  timber  production.  The   Harts  Creek  drainage,  a  tributary  of  Horn  Creek,  incorporates  Wilcox  Farms,  a  large,  industrial   agricultural  operation  (Pierce  County  2012).   The  Brighton  Creek  drainage  is  a  6.5-­‐square-­‐mile  area  southeast  of  Murray  Creek  (Pierce  County   2012).  The  drainage  is  largely  rural,  but  does  have  some  areas  of  low-­‐density  residential   development  along  State  Route  (SR)  702,  Kinsman  Road,  and  Allen  Road.  The  upper  portion  of  the   drainage  is  relatively  flat  with  poorly  drained,  Type  D  soils  (Pierce  County  2012).     Horn  Creek  drains  approximately  11  square  miles  (Pierce  County  2012).  The  headwaters  are  in  the   relatively  flat  areas  around  the  intersection  of  SR  702  and  SR  7,  which  has  some  low-­‐density   residential  development.  As  water  drains  west,  the  stream  becomes  more  defined  at  Kinsman  Road.   The  stream  continues  through  a  gentle  sloping  valley  with  wide  floodplains  containing  wetlands.   This  valley  has  some  scattered,  low-­‐density  residential  areas  with  a  number  of  small  farms  with   livestock.  As  it  approaches  the  Nisqually  River,  the  gradient  of  Horn  Creek  increases  and  the  channel   is  more  confined.  The  mouth  of  Horn  Creek  is  approximately  2,000  feet  downstream  from  the   Centralia  Diversion  Dam  (Pierce  County  2012).  

  Nisqually  River  Steelhead  Recovery  Plan    

3-­‐15  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Overview  

Horn  and  Brighton  Creeks  have  rather  extensive  wetlands  near  their  mouths,  some  of  which  provide   good  off-­‐channel  habitat  for  over-­‐wintering  juvenile  salmonids  (Pierce  County  2012).  Upstream  of   the  wetlands,  the  creeks  split  the  canyon  walls  of  the  Nisqually  valley,  where  channel  gradients  are   fairly  steep  (less  than  8%  gradient).  Horn  Creek  has  a  waterfall  at  RM  1.0  that  is  a  serious  barrier  to   fish  passage,  and  emanated  from  a  dam  that  was  built  in  the  creek  for  an  old  mill  operation.   Upstream  of  the  high  gradient  sections,  low  gradient  channels  alternate  with  a  pool-­‐riffle  channel   morphology  type  and  some  wetlands.  Both  creeks  are  perennial,  with  mean  winter  month  flow   between  5  to  10  cubic  feet  per  second  (cfs)  and  mean  summer  month  flow  between  3  and  5  cfs.  The   creeks  are  fed  by  several  wetlands  and  by  springs  in  the  headwater  areas.  Harts  Creek  is  fed  by   Harts  Lake  (109  acres)  (Pierce  County  2012).   Murray  Creek  is  a  right-­‐bank  tributary  in  the  diversion  reach  of  the  Nisqually  River  and  empties  into   the  river  at  RM  19.1.  The  drainage  covers  approximately  16  square  miles  between  the  cities  of  Roy   and  McKenna  (Pierce  County  2012).  The  elevation  range  in  the  drainage  is  small,  ranging  from  240   to  440  feet.  Land  use  is  a  mixture  of  low-­‐density  residential,  agricultural,  and  open  space  lands  with   one  large  industrial  gravel  mine  operated  by  Miles  Sand  and  Gravel.  Murray  Creek  drains  from   prairies  defined  by  their  unique  vegetation  (not  dominated  by  coniferous  trees,  unlike  most  areas  in   western  Washington)  and  by  their  very  porous  soils.  Creeks  flowing  over  these  porous,  glacial   outwash  soils  are  highly  connected  to  groundwater  and  therefore  often  have  long  intermittent   stream  reaches  (Pierce  County  2012).   Murray  Creek  is  a  low-­‐gradient  creek  throughout  its  course  (Pierce  County  2012).  The  hydrology  of   Murray  Creek  typifies  prairie  streams.  In  general,  prairie  streams  (such  as  Murray  and  Muck  creeks)   are  less  dynamic  than  typical  western  Washington  creek  channels.  Lateral  channel  movement   happens  extremely  slowly,  and  any  manipulations  of  the  channel  are  slow  to  naturally  recover.   Streamflow  is  highly  reflective  of  groundwater  interchange  and  recharge.  Only  the  lower  mile  of  the   creek  near  the  mouth  has  perennial  flow,  due  to  the  presence  of  springs  in  that  area.  Most  upstream   drainages,  except  where  channels  were  created  in  otherwise  stagnant  wetlands,  go  dry  by  summer,   and  do  not  start  flowing  until  late  fall  or  early  winter  after  significant  groundwater  recharge  has   occurred  (Pierce  County  2012).  

3.4.4

Ohop  Creek  

Ohop  Creek  is  the  third-­‐largest  tributary  to  the  Nisqually  River  with  a  total  drainage  area  of   40  square  miles  (Pierce  County  2012).  Elevations  vary  from  480  to  3,720  feet  in  the  Ohop  subbasin.   It  is  an  area  of  historical  agricultural  use  that  is  being  converted  to  rural  residential  use.  There  is   dense  residential  and  recreational  development  surrounding  Ohop  Lake  and  the  lower  portion  of   Lynch  Creek.  Mountainous  areas  above  anadromous  fish  use  in  its  two  major  tributaries,  Lynch  and   Twenty-­‐Five  Mile  Creeks,  are  mostly  used  for  timber  production.   Historically,  the  Ohop  Creek  watershed  included  an  additional  area  north  of  the  current  watershed   boundary.  However,  in  1889,  the  upper  portion  of  Ohop  Creek  was  diverted  north  into  the  Puyallup   Basin,  which  reportedly  reduced  the  flow  in  Ohop  Creek  by  about  30%  (Watershed  Professionals   Network  2002).  Consequently,  at  its  confluence  with  Twenty-­‐Five  Mile  Creek  (approximately   4  miles  north  of  Eatonville),  Ohop  Creek  is  the  smaller  of  the  two  streams.   Ohop  Creek  has  fairly  stable  flows  that  are  hydrologically  moderated  by  Ohop  Lake  and  by  the   extensive  wetlands  in  the  Twenty-­‐Five  Mile  and  Lynch  Creek  subbasins  (Pierce  County  2012).  At  the   mouth  of  the  creek,  the  average  winter  flow  is  about  150  cfs,  and  summer  flow  averages   approximately  20  cfs.  The  mouth  of  Ohop  Creek  is  located  within  the  channel  migration  zone  of  the     Nisqually  River  Steelhead  Recovery  Plan    

3-­‐16  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Overview  

Nisqually  River,  and  its  morphology  is  determined  by  mainstem  river  processes.  Gravel  deposits  are   present  and  the  stream  alternates  between  pool  and  riffle  habitat  types.  A  large  portion  of  the  lower   channel  between  RM  0.2  and  RM  4.5  was  severely  incised,  disconnected  from  its  floodplain,  and   dominated  by  sandy  substrate  and  very  long  glides.  Riffles  were  only  present  at  artificial   constrictions  such  as  bridges.  Restoration  of  lower  Ohop  Creek  has  been  priority  for  fall  Chinook   recovery.  Phase  1  and  2  were  completed  by  2011;  Phase  3  has  been  funded  and  is  planned  for  2014   and  2015  (Figure  3-­‐5).  Phase  4  is  upstream  of  the  completed  project  and  is  still  in  the  planning   stages.  The  channel  above  Ohop  Lake  (RM  9  and  RM10)  is  likely  influenced  by  the  backwater  effect   of  the  lake  as  the  bed  is  also  dominated  by  sandy  substrate  with  long  glides  and  few  pools  or  riffles.   It  is  moderately  incised  but  still  has  some  connection  to  its  floodplain  (Pierce  County  2012).   Although  Ohop  Lake  is  a  natural  lake,  its  actual  elevation  is  determined  by  a  log  stop  gate  with  an   elevation  set  by  judicial  order  (Walter  1986).  

3.4.5

Lackamas,  Toboton,  and  Powell  Creeks  

Lackamas  and  Toboton  Creeks,  which  drain  small  basins  in  Thurston  County,  are  short  drainages   with  similar  characteristics.  The  creeks  drain  broad,  flat  prairies  of  the  Bald  Hills  area,  which  was   once  heavily  forested.  Their  channels  are  low-­‐gradient,  spring-­‐fed  channels  with  low  or  intermittent   summer  flows.  Powell  Creek  is  similar  but  drains  an  area  of  higher  elevation  (up  to  2,035  feet).  This   area  of  the  Bald  Hills  is  largely  in  current  forest  management  and  was  once  heavily  forested.  Powell   Creek  has  year-­‐round  flow.  The  three  watersheds  are  associated  with  wetlands  and/or  lakes  and   contain  numerous  beaver  dams  or  cascades  that  may  limit  fish  access.  The  cumulative  basin  area  for   the  three  stream  systems  is  27.8  square  miles.  Basin  elevations  range  from  340  to  2,035  feet  (Walter   1986;  Kerwin  1999).  

3.4.6

Mashel  River  

The  Mashel  River  is  the  second-­‐largest  tributary  to  the  Nisqually  River  by  area;  the  entire  drainage   covers  over  84  square  miles  (Pierce  County  2012)  and  is  the  largest  lower  watershed  tributary  by   flow.  The  topography  of  the  basin  is  more  varied  than  other  basins;  basin  elevations  range  from  460  to   4845  feet.  From  its  headwaters  near  the  foothills  of  Mount  Rainier,  the  Mashel  River  flows  west   toward  the  town  of  Eatonville.  The  river  passes  south  of  Eatonville  and  then  flows  southwest  to  the   confluence  with  the  Nisqually  River  at  RM  39.6  (Pierce  County  2012).  The  upper  Mashel  River   subbasin  covers  approximately  34  square  miles  and  is  all  mountainous,  forested  terrain  (Pierce   County  2012).  A  majority  of  the  terrain  is  new  growth  forest;  the  land  was  intensely  harvested  by   commercial  foresters  throughout  the  1950s  and  1960s.  Harvesting  operations  may  have  contributed   to  mass  wasting  that  has  occurred  along  the  slopes  and  banks  of  the  upper  river  (Pierce  County  2012).   The  middle  Mashel  River  is  a  20-­‐square-­‐mile  area  beginning  at  Boxcar  Canyon  approximately  1  mile   east  of  the  town  of  Eatonville  and  ending  upstream  near  the  confluence  with  Busy  Wild  Creek.  Like   the  upper  basin,  the  middle  Mashel  River  is  mostly  forested  except  for  rural  development  near   Eatonville  (Pierce  County  2012).  The  lower  Mashel  River  is  6.2  square  miles,  extending  from  Box  Car   Canyon  to  its  confluence  with  the  Nisqually  River.  The  northwestern  portion  has  some  development   in  and  around  the  town  of  Eatonville.  Eatonville  draws  its  drinking  water  from  the  Mashel  River,  and   secondary-­‐treated  wastewater  is  discharged  to  the  river  downstream  from  the  town  (Pierce  County   2012).  The  lower  Mashel  River  was  identified  as  a  priority  area  in  the  Nisqually  Chinook  Recovery   Plan  for  improving  habitat  complexity.  Several  in-­‐stream  engineered  log  jam  projects  have  been   completed  in  the  section  of  the  river  adjacent  to  the  City  of  Eatonville  (Figure  3-­‐6).     Nisqually  River  Steelhead  Recovery  Plan    

3-­‐17  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

3.5

Nisqually  River  Overview  

Historical  and  Current  Habitat  Conditions  

The  following  sections  provide  an  overview  of  the  Nisqually  River  watershed  for  relevant   environmental  attributes  used  to  characterize  the  current  condition  and  to  reconstruct  the  historical   condition  of  the  watershed.    

3.5.1

Flow  Regime  

Poff  et  al.  (1997)  described  flow  regime  as  the  “master  variable,”  affecting  many  characteristics  of   rivers  and  streams.  Flow  regimes  vary  considerably  across  the  watershed.  The  hydrologic  condition   in  the  upper  Nisqually  River  mainstem  is  dominated  by  precipitation,  snowmelt,  and  glacial  runoff   from  Mount  Rainier  and  the  Nisqually  and  other  glaciers.  Under  certain  weather  conditions  (the  so-­‐ called  Pineapple  Express),  the  upper  Nisqually  receives  abundant  warm  winter  rains  that  result  in   rain  on  snow  flood  events.  This  is  the  primary  cause  of  major  flooding  in  the  Nisqually  watershed   (Walter  n.d.).     The  Mashel  subbasin,  parts  of  the  Ohop  subbasin  and,  to  a  lesser  extent,  Powell  Creek  are  in  the   rain-­‐on-­‐snow  zone  for  Western  Washington  and  include  a  slight  snowmelt  influence.  Many  of  the   lowland  tributaries  originate  from  highly  porous  soils  within  the  Southern  Puget  Prairies  ecoregion.   These  Prairie  Tributaries  are  strongly  influenced  by  groundwater  and  respond  slowly  to  fall  and   winter  rains.  The  extreme  pattern  is  McAllister  Creek,  with  most  flow  originating  from  headwater   springs.  Another  extreme  pattern  for  the  Prairie  Tributaries  is  Muck  Creek  with  no  summer  flow  at   the  gage  in  many  years.   Mainstem  and  tributary  streamflow  patterns  described  in  the  next  sections  are  from  a  set  of  gaging   stations  operated  at  times  within  the  Nisqually  watershed  (Table  3-­‐4).  

3.5.1.1

Nisqually  River  Mainstem  

Historically,  the  Nisqually  River  mainstem  typified  glacial-­‐type  hydrology  for  Puget  Sound  streams.   During  the  summer  and  early  fall,  flows  were  augmented  by  glacial  melt.  The  lowest  daily  flow  may   have  occurred  in  September  through  October  when  glacial  melt  stopped  and  fall  rains  had  not  yet   started.  Spring  snowmelt  from  the  upper  basin  and  Mount  Rainier  (measured  upstream  of  Alder   Dam  and  Lake  near  National)  resulted  in  a  spring  period  of  increasing  flows,  which  peaked  in  May   and  June  (Figure  3-­‐7).     Fine  sediment  (rock  flour)  in  glacial  melt  caused  the  Nisqually  River  to  run  milky  green  during  the   summer  and  early  fall  months.  Summer  flash-­‐flooding  events  can  occur  in  the  upper  basin  as  a  result   of  Jokulhlaups.  A  Jokulhlaups  is  a  flash  flood  caused  by  the  release  of  glacial  meltwater  stored   behind  an  ice  dam  that  suddenly  collapses.  In  the  Nisqually  River,  these  flood  events  occur   infrequently  (typically  every  3  to  10  years).  Each  event  results  in  large  deposits  of  sediment  and   debris  in  the  mainstem.  Before  the  Nisqually  Hydroelectric  Project,  these  flood  events  would  have   affected  the  entire  river  to  a  greater  extent  than  they  do  today,  adding  significantly  to  the  amount  of   fine  sediment  throughout  the  mainstem.     Since  construction  of  the  Alder  reservoir  in  1944,  glacial  flour  is  not  as  evident  in  the  lower  river   because  the  reservoir  stores  the  majority  of  the  fine  sediment.  Consequently,  water  clarity  in  the   lower  river  is  much  higher  during  the  summer  months  than  it  was  historically.  Some  glacial  flour   settles  out  in  the  reservoir;  the  portion  that  remains  suspended  works  through  the  reservoir,  enters     Nisqually  River  Steelhead  Recovery  Plan    

3-­‐20  

July  2014   ICF  00153.13  

Figure 3-5 Ohop Creek Restoration

Graphics/00153.13 Nisqually Steelhead Recovery Planning (12-13) SS

Figure 3-6 Mashel Logjams

Graphics/00153.13 Nisqually Steelhead Recovery Planning (12-13) SS

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Overview  

the  lower  river  by  September,  and  is  present  throughout  the  fall  and  winter.  Therefore,  the  reservoir   alters  water  clarity  in  the  lower  river,  improving  it  from  late  winter  until  September  and  lowering  it   in  the  fall  and  early  winter.  

 

Figure  3-­‐7.   Daily  Mean  Flow  for  the  Upper  Nisqually  River  near  National,  Lower  Nisqually  River  at   La  Grande,  and  Lower  Nisqually  River  near  McKenna  

   

Historical  flows  in  the  lower  river  showed  a  similar  pattern  of  snowmelt  for  the  upper  river   (Figure  3-­‐7  –  National  Gage).  Flows  are  higher  in  the  lower  river  from  tributary  contributions.  The   historical  pattern  for  the  lower  river  had  a  more  pronounced  spring  snowmelt  than  currently  seen   in  the  lower  river.  However,  flow  in  the  lower  river  is  strongly  influenced  by  runoff  from  upper   basin  tributaries  downstream  of  the  upper  gage  and  tributaries  in  the  lower  basin.  The  patterns  of   historical  peak  and  monthly  average  flows  are  similar  to  current  patterns  with  the  highest  flows   occurring  from  November  through  February  from  rain-­‐on-­‐snow  events  and  rainfall.     Currently,  daily  mean  flow  at  La  Grande  and  McKenna  are  similar  during  the  fall  and  winter,  with   flows  at  McKenna  tending  to  be  slightly  higher.  Beginning  late  April,  the  pattern  changes  and  daily   mean  flow  at  McKenna  is  less  than  flow  at  La  Grande  because  a  higher  percentage  of  flow  is  diverted   into  the  Centralia  Diversion  Canal  upstream  of  the  gage.  Summer  flows  (August  1  through   September  30)  below  the  La  Grande  Powerhouse  are  managed  for  a  minimum  flow  of  575  cfs   (measured  at  the  Centralia  Diversion  Dam)  (Federal  Energy  Regulatory  Commission  1994).  

  Nisqually  River  Steelhead  Recovery  Plan    

3-­‐21  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Overview  

Figure  3-­‐8  shows  annual  peak  flow  in  the  mainstem  for  the  three  gages.  Solid  lines  in  the  figure   show  the  trend  over  the  period  of  record  shared  by  all  gages  (1948  to  2012),  excluding  the  very   large  flow  event  in  1996.  The  1996  peak  flow  was  twice  the  next  highest  event  at  McKenna  and  1.5   times  the  next  highest  event  at  La  Grande.  The  1996  flow  at  National  was  not  the  highest  peak  on   record,  since  the  2007  peak  flow  was  slightly  higher.  Reasons  for  why  the  2007  peak  was  not   observed  in  the  lower  river  were  not  explored,  but  this  is  likely  due  to  flood  control  in  the  reservoir   and  precipitation  patterns  across  the  basin.     The  Nisqually  Hydroelectric  Project  appears  to  have  an  effect  on  peak  flows  in  the  lower  river,  as   can  be  seen  from  the  data  presented  in  Figure  3-­‐8.  Annual  peak  flow  in  the  upper  basin  have   increased  in  recent  years,  while  peak  flow  measured  at  the  lower  basin  gages  has  declined,   presumably  due  to  partial  storage  of  peak  flow  originating  from  the  upper  basin.  

Figure  3-­‐8.   Annual  Peak  Flows  for  the  Upper  Nisqually  River  near  National,  Lower  Nisqually  River   at  La  Grande,  and  Lower  Nisqually  River  near  McKenna  

   

3.5.1.2

Tributaries  

The  primary  source  of  water  in  the  tributary  streams  in  the  lower  Nisqually  Basin  is  rainfall;   snowmelt  is  a  significant  contributor  in  only  the  upper  portions  of  the  Mashel  River,  Ohop  Creek,   and  to  a  lesser  extent  the  Powell  Creek  watershed.  Aquifer  (spring)  flows  are  a  significant   contributor  to  the  lower  portions  of  most  tributary  streams  (i.e.,  where  streams  downcut  through   deposits  to  reach  the  level  of  the  Nisqually  River),  and  are  the  main  source  of  streamflows  in     Nisqually  River  Steelhead  Recovery  Plan    

3-­‐22  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Overview  

McAllister  Creek,  where  springs  comprise  approximately  40%  of  the  discharge  at  the  mouth  (AGI   Technologies  1999).  The  four  USGS  gaging  stations  used  to  characterize  streamflows  in  the  tributary   streams  of  the  lower  Nisqually  Basin  are  given  in  Table  3-­‐4.  

Table  3-­‐4.   USGS  Stream  Gages  used  to  Characterize  Streamflow  in  Nisqually  Basin     Drainage   Areaa   Upstream   Stream   Gage  

Location   (stream,  river   mile)  

Years  of   Data  

USGS  #  

Gage  Name  

12082500  

Nisqually  River   near  National  

133  

Nisqually  River   RM  57.8  

1943–2012  

12086500  

Nisqually  River  at   La  Grande  

292  

Nisqually  River   RM  40.4  

1907–2012  

12089500  

Nisqually  River   near  McKenna  

517  

Nisqually  River   RM  21.8  

1948–2012  

12081500  

McAllister   Unknown   Springs  near   Olympia   Mashel  River  near   80.7   La  Grande   Ohop  Creek  near   34.5   Eatonville  

McAllister  Creek   RM  5.5  

1951–1958   1961–1964  

Mashel  River   RM  3.2   Ohop  Creek     RM  6.2  

Muck  Creek  at   Roy  

Muck  Creek     RM  6.4  

1941–1957   1992–2013   1927–1932   1941–1971   1993–2013   1956–1971  

12087000   12088000  

12090200  

a  

86.8  

Represents   Nisqually  River   upstream  of   hydro  projects   Nisqually  River   immediately   downstream  of   hydro  projects   Nisqually  River   Centralia   Diversion  reach   McAllister  Creek   and  other  spring-­‐ fed  tributaries   Mashel  River  and   its  tributaries   Ohop  Creek  

Muck  Creek  and   other  Prairie   Tributaries    

Measured  in  square  miles.  

  The  flow  pattern  in  the  Mashel  River  subbasins  is  noticeably  variable,  closely  following  rainfall  and   rain-­‐on-­‐snow  events.  The  overall  historical  seasonal  flow  patterns  were  probably  similar  to  those   observed  today  (Figure  3-­‐7).  However,  commercial  timber  harvest  and  the  associated  road  network   would  suggest  a  more  variable  and  higher  fall  and  winter  peak  flows  compared  to  historical  flows.   Highest  average  daily  flows  occur  during  November  through  February.  Beginning  in  April,  the   hydrograph  descends  into  the  summer  baseflow  period,  which  extends  into  October.  Flows  in  this   catchment  respond  quickly  to  fall  rains  due  to  the  relatively  limited  groundwater  storage  in  the   subbasin.   A  second  flow  pattern  observed  is  for  the  Prairie  Tributaries  (e.g.,  Muck,  Murray,  Horn,  Yelm,  and   Lackamas,  Toboton,  and  Powell  Creeks),  as  typified  by  Muck  Creek  (Figure  3-­‐9).  The  Prairie   Tributaries  are  located  within  the  Southern  Puget  Prairies  ecoregion,  which  is  characterized  by  well-­‐ drained  soils.  Therefore,  streams  are  strongly  influenced  by  groundwater.  Streamflow  is  slow  to   respond  to  fall  rains  and  do  not  increase  until  November  or  December  when  groundwater  levels   recharge.  Flows  during  the  winter  are  stable,  with  moderate  peaks  from  rainfall  and  a  prolonged     Nisqually  River  Steelhead  Recovery  Plan    

3-­‐23  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Overview  

descending  limb.  Despite  decreasing  precipitation,  spring  flows  remain  high  from  groundwater   discharge.  Note  that  McAllister  Creek  is  a  special  example  of  this  type  of  flow  pattern.  Little  month-­‐ to-­‐month  variation  in  discharge  occurs  due  to  a  very  high  and  continuous  contribution  of   groundwater  to  streamflow.    

Figure  3-­‐9.   Daily  Mean  Flows  in  Four  Tributary  Streams  in  the  Lower  Nisqually  Basin  

 

  The  Mashel  River  has  the  highest  overall  flows  of  any  of  the  Nisqually  tributaries  below  the  La   Grande  Dam  (Pierce  County  2012).  The  river’s  winter  flow  is  also  “flashy,”  responding  rapidly  to   precipitation.  The  Mashel  River’s  mean  daily  discharge  in  the  winter  months  ranges  between  300   and  450  cfs;  its  daily  mean  flow  in  the  summer  months  averages  between  20  and  50  cfs.  Peak  flows   occur  during  the  fall  and  winter  with  a  mean  annual  peak  flow  of  3,316  cfs  (annual  peak  flow   ranging  from  772  cfs  in  WY  2001  to  7,980  cfs  in  WY  1947).  Late  summer  minimum  7-­‐day  average   flows  range  from  approximately  7  to  40  cfs  from  1940  to  1957  and  5  to  15  cfs  from  1990  to  present,   which  shows  a  decrease  in  summer  low  flow  in  the  subbasin  compared  to  the  earlier  period.  

In  comparison,  the  Muck  Creek  gage  shows  much  less  month-­‐to-­‐month  variation  in  streamflow.   Discharge  rises  slowly  in  the  fall  months,  due  to  recharge  of  depleted  groundwater  levels  and  are  at   their  highest  in  February  (Figure  3-­‐8).  Baseflows  are  significantly  lower  at  the  Muck  Creek  gage  than   the  other  three  tributary  gages.  Muck  Creek  flows  over  two  soil  associations:  Kapowsin  and   Spanaway  (Pierce  County  2005).  The  Spanaway  association  formed  in  glacial  outwash  and  is  highly   permeable.  And  about  half  of  the  Muck  Creek  stream  system  flows  across  these  deposits,  resulting  in   Muck  Creek  losing  large  amounts  of  flow  to  groundwater.  Significant  portions  of  Muck  Creek  are  dry     Nisqually  River  Steelhead  Recovery  Plan    

3-­‐24  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Overview  

during  summer  and  fall  low  flow  periods,  and  some  dry  sections  may  not  have  flowing  water  until   mid-­‐December  or  later  (Sinclair  2001;  Pierce  County  2005).  This  pattern  of  sections  going  dry   during  the  summer  and  fall  is  not  new  and  historical  accounts  report  sections  of  the  stream  were   dry  during  low  flow  periods  (Pierce  County  2005).  However,  anecdotal  information  suggests  that  in   recent  years  more  of  Muck  Creek  is  dry  and  stream  recharge  in  the  fall  and  early  winter  is  taking   much  longer.  The  section  of  Muck  Creek  upstream  of  Johnson  Creek  may  only  flow  for  brief  periods   (days)  during  the  winter,  effectively  blocking  adult  fish  access  to  the  upper  watershed.  USGS   operated  a  stream  gage  at  Roy  from  1956  to  1971.  During  that  period,  there  were  5  years  of   continuous  flow  during  the  summer  and  fall.  The  number  of  days  with  no  flow  recorded  at  the  gage   averaged  47  days  for  the  other  years.  More  recent  continuous  monitoring  data  for  Muck  Creek  are   not  available,  and  long-­‐term  flow  monitoring  in  Muck  Creek  is  not  available.  Sinclair  (2001)   concluded  that  seasonal  intermittent  flow  is  a  common  condition  for  portions  of  Muck  Creek   because  of  natural  processes  and  geology.  However,  past  channel  modifications  may  have   exacerbated  this  condition.  More  importantly,  Sinclair  concluded  the  following  regarding  future   hydrology  in  Muck  Creek:     The  perennial  reaches  of  Muck,  South,  and  Lacamas  creeks  are  maintained  predominately  by   groundwater  discharge  during  the  summer  and  fall.  Development  within  the  watershed  has  the   potential  to  impact  streamflows  by  altering  natural  groundwater  recharge  and  discharge  patterns.   Continued  monitoring  of  area  streamflows,  groundwater  levels,  and  spring  discharges  is   recommended  to  provide  a  basis  for  judging  the  effectiveness  of  future  instream  habitat  restoration   efforts  and  the  effects  of  future  land  use  changes.  

Historical  flows  in  Ohop  Creek  were  larger  than  currently  observed.  In  the  1800s,  a  quarter  of  the   Ohop  Creek  catchment  was  rerouted  into  the  Puyallup  River  system  to  reduce  flooding  along  the   creek  (Pierce  County  2012).  The  stream  gage  in  Ohop  Creek  is  downstream  of  Ohop  Lake,  which   buffers  variability  and  magnitude  of  peaks  flow  in  the  lower  creek.  Ohop  Creek  mean  daily  discharge   in  the  winter  ranges  between  100  and  150  cfs;  its  daily  mean  flow  in  the  summer  months  averages   between  10  and  20  cfs.  Peak  flows  typically  occur  during  the  fall  and  winter  with  a  mean  annual   peak  flow  of  762  cfs  (annual  peak  flow  ranging  from  253  cfs  in  WY  2001  to  2,620  cfs  in  WY  1996).   Late  summer,  minimum  7-­‐day,  average  flows  range  from  approximately  3  to  15  cfs,  averaging  6  cfs.   Flows  are  higher  (and  cooler)  at  the  lowest  Ohop  reach  because  it  receives  significant  spring  flow   downstream  of  the  streamflow  gage.    

3.5.2

Water  Quality  

Water  quality  is  generally  good  across  the  basin.  Glacial  snowmelt  and  groundwater  from  lower   basin  tributaries  likely  contribute  to  relatively  cool  summer  temperatures  in  the  mainstem.   Groundwater  contributions  to  tributaries  keep  many  of  these  cool  during  the  summer,  few  streams   exceed  15  degrees  Celsius  (°C).  Specific  water  quality  concerns  are  discussed  in  the  following   sections.  

3.5.2.1

Nisqually  River  Mainstem  

The  Nisqually  River  above  the  Alder-­‐La  Grande  Hydroelectric  Project  (RM  44.2)  is  designated  by   Washington  State  as  char  spawning  and  rearing  waters  (formerly  rated  as  Class  AA  waters)  due  to   its  ability  to  provide  habitat  for  cold-­‐water-­‐dependent  species.  Downstream  of  RM  44.2,  the   Nisqually  River  is  designated  as  core  summer  salmonid  habitat  (formerly  Class  A  waters)  based  on   water  quality  supportive  of  summer  rearing  by  salmonids,  among  other  beneficial  uses.  Most  of  the   major  tributaries  to  the  Nisqually  River  in  the  lower  basin  are  designated  as  core  summer  salmonid     Nisqually  River  Steelhead  Recovery  Plan    

3-­‐25  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Overview  

habitat.  The  Mashel  River  is  classified  as  char  spawning  and  rearing  waters.  A  water  quality  study   conducted  by  the  Nisqually  Indian  Tribe  (Whiley  and  Walter  2000)  reports  that  water  quality  in  the   river  typically  meets  the  Class  AA  and  Class  A  standards.  More  recently,  the  Clean  Water  Act  Section   303(d)  water  quality  assessment  for  state  waters  completed  in  2012  by  the  Washington  State   Department  of  Ecology  similarly  found  the  Nisqually  River  mainstem  complied  with  state  water   quality  standards.  Elevated  water  temperatures  were  detected  in  the  Centralia  Diversion  bypass   reach  of  the  mainstem  although  they  did  not  chronically  exceed  the  Washington  State  water  quality   standards.  The  study  recommends  further  monitoring  of  temperature  in  areas  of  concern  as  well  as   expanded  research  on  nutrient  concentrations  and  their  relationship  to  land  use  activities  (Pierce   County  2012).   Data  from  the  Nisqually  Indian  Tribe  as  reported  in  Pierce  County  (2012)  reports  a  mean  summer   temperature  of  14.0  °C  and  mean  winter  temperature  of  6.2°C  at  RM  39.7  (La  Grande  area);  a  mean   summer  temperature  of  15.3°C  and  a  mean  winter  temperature  of  6.0°C  at  RM  21.8  (McKenna  area);   and  a  mean  summer  temperature  of  15.8°C  and  a  mean  winter  temperature  of  6.8°C  at  RM  3.7   (refuge  area).  The  Nisqually  Indian  Tribe  data  (1991  through  1999)  show  water  temperatures   increase  as  the  river  flows  downstream  and  drops  in  elevation.  The  state  water  temperature   standard  for  this  stretch  of  the  Nisqually  River  is  16°C,  measured  as  the  7-­‐day  average  of  the  daily   maximum  temperature  (7-­‐DADmax).  The  peak  temperature  (18.2°C)  at  the  lowest  station  (RM  3.7)   during  the  1990s  exceeded  this  value  by  14%  (Nisqually  Chinook  Recovery  Team  2001).    

3.5.2.2

Tributaries  

Whiley  and  Walter  (2000)  summarized  water  temperature  conditions  for  the  tributary  streams  in   the  lower  Nisqually  River  watershed,  including  the  Mashel  River,  Ohop  Creek,  Tanwax  Creek,   Toboton  Creek,  Yelm  Creek,  Murray  Creek,  and  Muck  Creek.  They  found  that  water  temperatures   were  determined  primarily  by  geological  setting.  The  Prairie  Tributaries  that  have  groundwater   discharge  as  their  primary  source  of  flow  (Toboton,  Yelm,  and  Muck  Creek)  have  summertime  (July   through  September)  water  temperatures  of  approximately  12°  C  with  little  daily  variation.     Tanwax  and  Ohop  Creeks  were  found  to  have  high  water  temperatures.  Maximum  recorded   temperature  in  Tanwax  and  Ohop  Creeks  exceed  20  °C  in  several  recent  years  (Nisqually  Indian   Tribe  unpublished  data).  High  water  temperatures  in  Tanwax  Creek  are  likely  attributed  to  low   discharge  levels,  high  travel  times,  and  little  groundwater  contribution  to  flow.  High  water   temperatures  in  Ohop  Creek  are  the  result  of  the  heating  of  Ohop  Lake,  which  provides   approximately  50%  of  the  flow  to  the  lower  reach  of  the  creek.  Maximum  temperatures  in  Ohop   Creek  immediately  downstream  of  the  lake  exceed  25°C  in  most  years.  High  water  temperatures  in   Ohop  Creek  may  also  be  contributing  to  low  dissolved  oxygen  concentrations.     Ohop  Creek  is  listed  on  the  Clean  Water  Act  Section  303(d)  list  for  Washington  State  for  dissolved   oxygen  values  that  failed  to  exceed  the  water  quality  standard  for  core  summer  salmonid  habitat.     The  Mashel  River  had  water  temperatures  higher  than  the  state  water  quality  standard.  High  water   temperatures  were  attributed  to  increased  exposure  to  solar  radiation  due  to  the  clearing  of   riparian  areas  and  low  summer  base  flows  due  to  local  geology  and  channel  form  (Whiley  and   Walter  2000).  Spring  water  temperatures  during  steelhead  spawning  are  cool  with  maximum   temperatures  in  May  not  exceeding  15  °C  in  most  years.  Temperatures  increase  rapidly  from  mid  to   late  June  and  by  late  June  temperatures  exceeding  15  °C  are  common.  

  Nisqually  River  Steelhead  Recovery  Plan    

3-­‐26  

July  2014   ICF  00153.13  

Nisqually Steelhead Recovery Team

Nisqually River Overview

The Mashel River is listed on the state’s 2012 303(d) list as failing to comply with the state standard for temperature. Although not listed for temperature, Ohop and Muck Creeks have historically had high fecal coliform bacteria levels and fecal loadings from these systems have been regulated by the Nisqually Watershed Fecal Coliform Total Maximum Daily Load (TMDL) since 2005. McAllister Creek is also part of this TMDL.

3.5.3

Channel Morphology and Degree of Confinement

To aid the description of channel morphology and confinement, the Nisqually River mainstem was divided into reaches, based on a qualitative review of in-stream and adjacent landscape features. Channel morphology in each reach is described in Section 3.5.3.1, Nisqually River Mainstem. Every attempt was made to identify upper and lower reach boundaries based on observable stream features (such as a bridge crossing, stream confluence, major change in channel confinement, or gradient). Reach lengths were calculated by the Nisqually Indian Tribe from the most recent National Hydrologic Data stream layer for the Nisqually River watershed. However, river mile reference points were not updated for the latest stream layer to retain these common reference points in the fish assessment datasets. Possible differences in reach length between the current and historical conditions were ignored in the analysis. Summary of reach length, maximum and minimum width, gradient, and confinement classifications are reported in Table A-1 of Appendix A, Reach Structure for Assessment of Winter Steelhead Performance in the Nisqually River.

Channel width is described for low flow (August through September) and high flow (December through February) periods. Channel widths were based on data collected to support watershed analyses, site investigations, and personal observations by the members of the NSRT.

3.5.3.1

Nisqually River Mainstem

Protection and restoration of the Nisqually River estuary and mainstem has been a priority in the watershed for many years. This effort has been successful with the protection and restoration of the estuary downstream of I-5, the commitments by large land managers to protect shoreline habitats, and the acquisition of key properties elsewhere. Together, 70% of the mainstem and 100% of the estuary downstream of I-5 is in protected status (Nisqually Indian Tribe unpublished data). Channel morphology and confinement is described separately for the seven mainstem reaches and the estuary.

Estuary (River Mouth to Interstate 5)

The Nisqually Estuary is made up of two parts, the delta downstream of I-5 and the upper estuary upstream of I-5. Historically, the delta and upper estuary were joined by distributary channels and freshwater marshes. Much of the assessment work and restoration focus has been in the delta to improve rearing habitat for salmonids. Prior to restoration projects implemented for Chinook recovery, only near the mouth was the river able to freely meander over the delta fan (Pierce County 2012). The estuary from the mouth to I-5 was confined by various bank hardening, flood-control dikes, the I-5 bridge, and highway fill. The flood-control dikes were part of an extensive system used for the reclamation of land for agriculture. The dikes on the right bank are now owned by the Nisqually Indian Tribe and many have been removed as part of the Nisqually Delta Restoration. Dikes remain on the left bank that are part of the Wildlife Refuge.

Nisqually River Steelhead Recovery Plan

3-27

July 2014

ICF 00153.13

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Overview  

The  channel  increases  in  width  substantially  in  the  downstream  portion  of  this  reach,  due  to  tidal   effects  (Pierce  County  2012).  A  limited  number  of  side  and  distributary  channels  increase  stream   length  and  network  complexity.  Much  of  the  sediment  and  woody  debris  that  reaches  this  tidally   influenced  reach  is  deposited  here.  Substrate  is  dominated  by  small  gravel  near  the  upstream  end  of   the  reach  and  decreases  in  size  to  fine  silts  at  the  mouth  and  mudflats.  Most  woody  debris  settles   between  the  lower  half  of  the  reach  and  the  mudflats,  and  does  not  influence  channel  development   substantially  (Pierce  County  2012).    

Lower  Reach  (Interstate  5  to  BNSF  Railroad  Grade)     Between  the  I-­‐5  bridge  and  the  Burlington  Northern  Santa  Fe  (BNSF)  Railroad  bridge,  the  river   meanders  through  an  open  valley  though  the  channel  is  constrained  along  much  of  its  right  bank  by   bluffs  (Pierce  County  2012).  The  tide  still  has  some  influence  on  the  river  in  this  reach,  and  the   gradient  is  low  (approximately  0.1%),  although  saltwater  does  not  extend  much  upstream  of  I-­‐5.   The  Thurston  County  side  (left  bank)  of  the  river  is  constrained  by  riprap  armoring  to  protect   properties,  bridge  crossings,  and  the  BNSF  railroad  bed.  Except  for  collections  along  the  right  bank,   large  woody  material  is  fairly  absent  in  this  reach  due  to  the  bank  hardening  and  riparian  forest   removal.  These  factors  prevent  any  wood  recruitment  and  retention  of  wood  from  upstream  sources   (Pierce  County  2012).  Historically,  this  portion  of  the  river  was  likely  a  complex  network  of   distributary  channels,  floodplain  ponds,  and  seasonal  wetlands,  with  all  of  these  channels  feeding   into  the  estuary  at  multiple  locations.  The  amount  of  shoreline  in  protected  status  for  this  reach  is   46%.  

Reservation  Reaches  (BNSF  Railroad  Grade  to  Centralia  Powerhouse)     Upstream  of  the  BNSF  Railroad  bridge,  the  river  is  almost  allowed  to  freely  meander  and  occupy  the   entire  valley  (Pierce  County  2012).  This  reach  of  the  river  is  one  of  the  last  best  examples  of  a  free   flowing  unaltered  lowland  Puget  Sound  river  (Collins  et  al.  2003)  and  92%  of  the  shoreline  is  in   protected  status.  The  valley  is  consistently  between  0.6  and  0.8  mile  wide  and  its  floodplain  includes   many  side-­‐channels,  backwater  sloughs,  oxbows,  and  riverine  wetlands.  The  river  is  allowed  to   meander  during  large  floods.  This  migration  of  the  channel  has  helped  maintain  valuable  side   channels  and  off-­‐channel  wetland  habitats.  The  river  bed  is  gravel  dominated  and  spawning  areas   are  plentiful  throughout  this  reach.  Pool  riffle  is  the  most  common  channel  type  in  this  low  gradient   reach  (between  0.1%  and  0.3%).  Large  woody  material  is  common  and  primarily  found  in  log  jams.   In  fact,  large  woody  material  and  log  jams  are  so  numerous  that  wood  abundance  may  mimic   historical  conditions.  The  frequent  jams  highly  influence  the  location  and  shape  of  the  river  channel   (Collins  et  al.  2003;  Pierce  County  2012).    

Whitewater  Reaches  (Centralia  Powerhouse  to  Highway  507)     Most  of  this  reach  is  confined  in  a  canyon,  with  the  valley  width  only  double  or  less  than  double  the   width  of  the  channel  (Pierce  County  2012).  High  bluffs  define  the  active  channel  in  many  areas.  The   gradient  is  higher  (between  0.4%  and  0.6%)  than  anywhere  else  along  the  Nisqually  River  mainstem   downstream  of  the  Mashel  River.  Therefore,  the  riverbed  is  coarser  than  most  mainstem  reaches,   comprised  of  boulders  and  less  of  the  smaller  material  that  is  suitable  for  spawning  salmonids.  Most   substantial  spawning  areas  are  in  the  lower  part  of  this  section  of  the  river.  In  the  past,  large  wood   jams  were  found  in  this  reach,  but  currently  large  woody  material  is  less  common  and  only  present   in  smaller  accumulations.  This  has  resulted  in  a  significant  decrease  in  habitat  diversity  in  the  reach.   The  lack  of  wood  accumulation  in  this  mostly  undeveloped  area  may  be  a  function  of  poor     Nisqually  River  Steelhead  Recovery  Plan    

3-­‐28  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Overview  

recruitment  from  more  heavily  developed  reaches  upstream.  Other  factors  that  may  contribute  are  a   combination  of  long  lag  time  after  past  disturbance  and  riparian  vegetation  composition  (Pierce   County  2012).  The  amount  of  shoreline  in  protected  status  for  this  reach  is  67%.  

McKenna  Reaches  (Highway  507  to  Centralia  Diversion  Dam)     The  broad  valley  in  this  section  of  the  river  historically  facilitated  extensive  channel  migration   (Pierce  County  2012)  and  likely  included  a  much  higher  composition  of  side  channels  than  presently   seen  in  the  reach.  In  the  lower  half  of  this  reach  where  the  valley  is  over  2,000  feet  wide  on  average,   several  remnant  historical  channels  are  still  visible.  Currently,  however,  the  channel  is  confined  on   the  left  bank  due  to  armoring,  which  limits  migration.  These  modifications  consist  of  bank   protection  and  flood  control  dikes  that  have  been  installed  by  various  private  landowners.  The   amount  of  shoreline  in  protected  status  for  this  reach  is  only  21%.     The  historical  pool-­‐riffle  morphology  is  still  present  in  some  areas,  but  the  channel  lacks  gravel  bars   in  this  low  gradient  channel  (between  0.1%  and  0.2%).  In-­‐channel  boulders  are  common  and  create   the  channel  roughness;  large  woody  material  is  relatively  absent  in  this  reach.  Bank  development   and  riparian  forest  removal  along  the  left  bank  prevents  large  woody  material  recruitment  from   these  areas  and  retention  of  large  woody  material  from  upstream  sources.  The  Centralia  Diversion   Dam  may  also  prevent  wood  from  entering  this  reach  (Pierce  County  2012).    

Wilcox  Reaches  (Centralia  Diversion  Dam  to  Tanwax  Creek)     The  channel  in  these  reaches  still  exhibits  pool-­‐riffle  morphology  throughout  its  length,  although   some  channel  constrictions  limit  channel  migration  (Pierce  County  2012).  The  amount  of  shoreline   in  protected  status  for  this  reach  is  49%.  The  valley  in  this  section  of  the  river  is  broad,  but  similar  to   the  McKenna  Reach.  The  channel  has  been  confined  on  both  sides  of  the  river  by  riprap  bank   protection  and  flood  control  dikes.  These  modifications  are  not  only  intended  to  control  flooding  of   private  lands,  but  also  prevent  the  river  from  bypassing  the  Centralia  Diversion  Dam.  The   modifications  effectively  keep  much  of  the  channel  in  the  lower  half  of  these  reaches  confined  to   only  a  portion  of  the  valley.  Side  channels,  sloughs,  connected  oxbows,  remnant  channels  and   spawning  areas  are  present  but  processes  that  create  and  maintain  such  habitat  have  been   compromised  by  the  bank  and  channel  modifications.  The  gradient  in  this  reach  is  between  0.1  and   0.2%.  Large  woody  material  is  moderately  abundant  in  this  reach,  plays  an  active  role  in  channel   maintenance,  and  provides  essential  roughness  to  the  channel.  Large  woody  material  recruitment  is   somewhat  limited  where  the  channel  is  confined  in  the  lower  half  of  the  reach  (Pierce  County  2012).  

Middle  Reaches  (Tanwax  Creek  to  Ohop  Creek)     The  river  freely  meanders  through  the  entire  width  of  the  valley  in  this  section  of  the  river.  There   are  few  artificial  restrictions  to  channel  migration  (Pierce  County  2012).  The  amount  of  shoreline  in   protected  status  for  this  reach  is  93%.  The  alluvial  valley  (valley  formed  by  and  consistent  of   extensive  cobble,  gravel,  sand  and  silt  deposits  transported  by  the  river)  is  similar  in  width  to  the   valley  in  the  Wilcox  reaches  (i.e.,  between  0.25  and  0.75  mile)  but  it  is  allowed  to  create  and   maintain  more  oxbows  and  side  channels  than  the  downstream  reaches.  The  stream  mainly  exhibits   pool-­‐riffle  morphology  with  extensive  gravel  bars  and  plentiful  spawning  habitat.  The  gradient  in   this  reach  is  between  0.2%  and  0.3%.  The  channel  is  responsive  to  large  woody  material,  especially   in  larger  wood  jams,  although  wood  is  fairly  scarce  in  most  of  these  reaches.  Wood  is  more  common   near  the  downstream  end  of  this  section,  where  it  plays  a  larger  role  in  channel  and  habitat     Nisqually  River  Steelhead  Recovery  Plan    

3-­‐29  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Overview  

maintenance.  The  reason  for  the  lack  of  wood  in  the  mostly  undeveloped  upper  part  of  the  reach  is   probably  a  combination  of  slow  recovery  after  past  disturbances  (such  as  wood  clearings,  the  large   “Ohop  slide”  in  1990,  and  streamside  logging),  a  naturally  low  wood  recruitment  rate,  and  the  lack  of   recruitment  from  upstream  of  the  Alder/La  Grande  Dam  complex.  The  complex  is  located  3  miles   upstream  and  prevents  any  downstream  passage  of  wood,  which  also  might  affect  the  retention  of   wood  originating  from  below  the  dams  (Pierce  County  2012).    

Upper  Reaches  (Ohop  Creek  to  La  Grande  Powerhouse)   Between  the  La  Grande  Powerhouse  (RM  40.8)  and  the  confluence  with  Ohop  Creek  (RM  37.8)  the   Nisqually  River  flows  through  a  valley  confined  by  steep  canyon  walls  (Pierce  County  2012).  The   one  exception  is  near  the  mouth  of  the  Mashel  River  where  the  valley  opens  up  and  side  channels,   wood  formed  pools  and  gravel  bars  occur.  The  amount  of  shoreline  in  protected  status  for  this  reach   is  87%.  Throughout  most  of  this  reach,  pools  are  formed  by  the  channel  bedform  and  canyon  walls   and  wood  does  not  play  a  significant  role  in  pool  formation.  The  gradient  is  1.5%,  which  promotes   the  transport  of  most  material  that  enters  the  reach  from  upstream.  Hence  the  substrate  in  this   reach  is  larger  than  in  the  rest  of  the  system.  Gravel  bars  are  very  rare  and  spawning  areas  are   limited  to  the  channel  margins  and  some  pool  tail-­‐outs.  In-­‐stream  large  woody  material  is  fairly   absent  in  this  reach.  Limited  wood  retention  is  most  likely  a  natural  occurrence  because  the  steep   canyon  and  stream  confinement  promote  material  transport  (Pierce  County  2012).  

3.5.3.2

Tributaries  

Tributary  channel  morphology  and  confinement  is  strongly  affected  by  watershed  processes  and   land  use  that  differs  widely  across  the  watershed.  The  Prairie  Tributaries  in  the  Nisqually  River   watershed  are  much  less  dynamic  than  other  streams.  They  are  low  gradient  over  much  of  their   length  and  flows  are  slow  to  respond  to  rainfall.  In  addition,  many  of  these  streams  flow  across  a   landscape  with  vegetation  not  dominated  by  larger  coniferous  trees.  The  Mashel  River  is  the  other   extreme.  Flow,  sediment,  and  instream  wood  are  important  components  affecting  in-­‐channel   habitat.  The  riparian  forest  is  dominated  by  conifers  and  flow  responds  quickly  to  rainfall.  Land  use   has  affected  all  three  of  these  components  to  varying  degree  in  the  Mashel  subbasin  resulting  in   changes  to  sediment,  pool-­‐riffle  composition,  and  channel  stability.    

3.5.4 3.5.4.1

Channel  and  Substrate  Characteristics   Nisqually  River  Mainstem  

The  Nisqually  River  mainstem  wetted  channel  width  was  based  on  aerial  photos,  topographic  maps,   and  direct  field  measurement.  Historical  summer  low  flows  in  the  Nisqually  River  were  presumed  to   be  less  than  those  of  current  times,  due  to  the  minimum  flow  regulations  that  are  in  place  today   (Walter  pers.  comm.).  We  assumed  that  the  historical  minimum  wetted  channel  width  was  70%  of   current  conditions  for  reaches  not  modified  by  levees  or  flow  diversions.  We  assumed  no  difference   between  current  and  historical  minimum  channel  width  for  reaches  affected  by  the  Yelm  Project   Diversion;  managed  minimum  flows  are  less  in  these  reaches  than  nondiversion  reaches  (Federal   Energy  Regulatory  Commission  1994).  For  modified  mainstem  channels  (lower  Nisqually,  McKenna,   and  Wilcox  reaches),  we  assumed  a  greater  maximum  channel  width  in  the  historical  reconstruction   than  in  current  conditions.  For  other  reaches,  assumptions  for  historical  maximum  channel  width   were  unchanged  between  historical  and  current  conditions.       Nisqually  River  Steelhead  Recovery  Plan    

3-­‐30  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

3.5.4.2

Nisqually  River  Overview  

Tributaries  

The  historical  proportion  of  the  various  habitat  types  (e.g.,  primary  pools,  small  cobble/gravel   riffles,  large  cobble  riffles)  was  estimated  by  reach  using  confinement  and  gradient  information  to   guide  the  reconstruction  (Montgomery  and  Buffington  1993).  Historical  conditions  were  inferred   from  current  observations  based  on  anthropogenic  changes  to  channel  confinement,  wood,  and   sediment  supplies.     Reaches  in  the  Mashel  River  watershed  currently  experience  greater  sediment  supply  and  lower   recruitment  of  wood  than  they  did  historically,  due  to  forest  management  activities.  For  the  same   reason,  it  was  assumed  that  pools  were  more  frequent  historically  than  they  are  currently,  and  small   cobble/gravel  riffles  made  up  a  higher  percentage  of  the  riffle  habitat.  Channel  gradients  in  the   middle  and  upper  reaches  of  the  Mashel  River  are  greater  than  those  in  downstream  reaches;   consequently,  wood  and  sediment  supply  in  those  higher  reaches  have  less  influence  on  habitat  than   they  do  in  downstream  reaches.  It  was  hypothesized  that  historical  conditions  in  these  higher-­‐ gradient  reaches  were  similar  to  conditions  observed  today.  One  exception  is  that  these  higher-­‐ gradient  reaches  were  believed  to  contain  a  slightly  greater  percentage  of  small  cobble/gravel  riffles   (upstream  of  large  woody  material  accumulations)  historically  than  they  do  currently  (Nisqually   Chinook  Recovery  Team  2001)   Reaches  in  the  Ohop  Creek  watershed  are  divided  into  three  categories:  1)  moderate  gradient   tributaries  in  forested  areas  (Lynch  and  Twenty-­‐Five  Mile  Creeks),  2)  Ohop  Lake,  and  3)  low   gradient  reaches  (Ohop  Creek  below  Ohop  Lake).  The  tributaries  were  surmised  to  have  historically   contained  more  wood  and  less  sediment  than  today.  It  was  concluded  that  pools  made  up  a  larger   percentage  of  habitat  area  and  that  riffles  were  made  of  small  and  large  cobble  substrate.  Conditions   in  Ohop  Lake  are  hypothesized  to  have  been  similar  historically  to  what  they  are  under  current   conditions.  Habitats  in  Ohop  Creek  downstream  of  Ohop  Lake  are  hypothesized  to  have  been   predominately  pools  and  small  cobble  riffles.   The  Prairie  Tributaries  are  low  gradient  and  are  believed  to  have  had  a  large  percentage  of  beaver   ponds  and  complex  off-­‐channel  habitats  historically.  The  substrate  was  presumed  to  be  mostly  small   cobble/gravel,  which  is  similar  to  current  conditions.  Habitat  stability  is  supported  by  the  fact  that   these  streams  were,  and  some  still  are,  used  extensively  by  spawning  chum  salmon.  It  was   hypothesized  that  the  percent  primary  pools  (excluding  beaver  ponds  and  backwater  pools)  was   historically  40%  to  50%  of  the  total  wetted  channel.  Peterson  et  al.  (1992)  reported  a  range  of  39%   to  67%  pools  in  unmanaged  streams  (a  review  of  various  studies  in  forested  streams).  From  this,  a   target  condition  of  50%  pools  in  streams  is  suggested  with  less  than  3%  gradient.  This  target  was   slightly  higher  than,  although  generally  consistent  with,  data  presented  in  May  et  al.  (1997)  for   Puget  Sound  Lowland  streams.  Absent  of  information  to  suggest  otherwise,  the  Prairie  Tributaries   were  assumed  to  historically  contain  40%  to  50%  pools.  In  several  streams,  beaver  ponds  may  have   been  a  substantial  stream  feature  (10%  to  20%).  

3.5.5

Sediment  Budget  

The  lower  Nisqually  River  delivers  on  average  about  100,000  metric  tons  per  year  of  suspended   sediment  to  Puget  Sound  (Nelson  1974;  Curran  et  al.  2014  in  review).  Since  1945,  flow  to  the  lower   river  has  been  controlled  by  regulation  from  the  Alder/La  Grande  Dam  complex,  which  effectively   traps  approximately  90%  of  the  fluvial  sediment  generated  upstream.  Most  of  this  sediment  is  from   Mount  Rainier,  the  principal  sediment  source  in  the  Nisqually  River  basin  (Czuba  et  al.  2012a).  If  not     Nisqually  River  Steelhead  Recovery  Plan    

3-­‐31  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Overview  

for  the  reservoir  trapping  sediment,  some  42,000,000  m3  of  fluvial  sediment  that  make  up  the  river   delta  in  Alder  Lake  (Czuba  et  al.  2012b)  would  otherwise  serve  a  variety  of  downstream  hydrologic   and  biologic  functions  with  both  benefits  and  threats  as  described  in  Czuba  et  al.  (2011).  In  2011,   sediment  monitoring  by  the  USGS  in  the  lower  Nisqually  River  near  Yelm  found  that  103,  000  metric   tons  of  suspended  sediment,  about  50%  sand  and  50%  silt  and  clay,  were  delivered  to  Puget  Sound   and  that  almost  40  %  of  this  load  occurred  during  a  single  winter  storm  event  (Curran  et  al.  2014  in   review).     The  hydrologic  record  at  USGS  streamflow  gaging  stations  above  and  below  the  Alder/La  Grande   Dam  complex  show  flood  storage  can  affect  peak-­‐flow  hydrology  (Section  3.5.1,  Flow  Regime).  In  the   2011  water  year  (October  through  September),  regulation  of  winter  storm  peaks  by  the  Alder/La   Grande  Dam  complex  was  minimal,  but  other  seasonal  peaks,  such  as  from  a  spring  freshet,  were   absent  (Curran  et  al.  2014  in  review).  Although  reach-­‐scale  studies  documenting  channel   morphology  on  the  lower  Nisqually  River  are  limited,  studies  on  other  large,  regulated  rivers  in   western  Washington  (Warrick  et  al.  2011)  indicate  that,  with  respect  to  sediment,  the  lower   Nisqually  River  is  likely  supply-­‐limited,  and  during  high  flows,  new  sediment  is  recruited   predominantly  from  lateral  bank  erosion  and  channel  migration  processes.  

3.5.5.1

Nisqually  River  Mainstem  

As  described  previously,  much  of  the  sediment  delivered  to  the  mainstem  is  now  trapped  upstream  of   the  Alder/La  Grande  Dam,  suggesting  that  levels  of  fine  sediment  in  the  historical  Nisqually  River   mainstem  were  higher  than  those  currently  observed.  The  amount  of  fine  sediment  (i.e.,  sediment  less   than  0.85  millimeter)  in  riffle  and  glide  substrate  may  have  been  much  higher  in  the  Nisqually  River   mainstem  compared  with  the  current  condition.  However,  the  influence  of  wood  and  an  intact   floodplain  may  suggest  that  the  effects  of  historic  levels  of  fine  sediment  were  not  a  great,  based   strictly  on  an  analysis  of  sediment  delivery  to  the  mainstem.  Our  analysis  of  historic  habitat  potential   for  steelhead  in  the  Nisqually  River  mainstem  was  sensitive  to  assumptions  of  fine  sediment  because   sediment  is  assumed  to  affect  both  egg  incubation  survival  and  substrate  interstitial  habitat  for   overwinter  juvenile  steelhead.  For  the  purposes  of  the  steelhead  analysis,  historic  sediment  levels  in   mainstem  riffles  and  glides  were  assumed  to  be  no  higher  than  current  levels.   Water  turbidity  for  the  historical  reconstruction  was  considered  important  only  for  the  mainstem   reaches  of  the  Nisqually.  Glacial  melt  during  the  summer  contributed  to  moderate  levels  of  turbidity.   Historically,  the  Nisqually  River  was  likely  much  clearer  during  the  winter  months  than  it  is  during   winters  today  because  of  the  storage  and  release  of  suspended  fine  sediment  material  from  Alder   Lake  during  and  following  winter  storms.    

3.5.5.2

Tributaries  

As  with  many  of  the  attributes  used  to  describe  habitat  conditions  in  the  watershed,  fine  sediment   (i.e.,  sediment  less  than  0.85  millimeter  in  riffle  and  glide  substrate)  assumptions  for  the  historical   Nisqually  River  watershed  were  based  on  extrapolation  of  empirical  data  and  qualitative   observations  from  the  current  condition.  To  reconstruct  the  historical  condition,  the  following   questions  were  asked:  What  are  the  sources  of  sediment  observed  today,  and  has  the  supply  of   sediment  increased  or  decreased  in  the  stream.     Empirical  fine  sediment  data  are  available  for  the  Mashel  River  and  Ohop  Creek  watersheds   (Table  3-­‐5).  These  data  reveal  that  percent  fines  are  variable  in  these  watersheds.       Nisqually  River  Steelhead  Recovery  Plan    

3-­‐32  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Overview  

Table  3-­‐5.   Fine  Sediment  and  Spawning  Gravel  Sampling  Results  for  Ohop  Creek  and  Mashel   River  Watersheds  (1990–1994)   Stream  and  River  Mile  

Number  of   Sample  Year   Samples   Mean  %  Fines  

CV  (%)  

5.35  

30   10   22   21  

15  

17.8

1993   1993   1994  

3   21   18  

32.6b   16.6a  

3.30   4.52   3.42  

1993   1994   1990  

16   18   7  

18.5a   18.3a   14.8  

8.17   6.06   5.42  

44   33   37  

1991   1993  

20   18  

11.7   14.9a  

3.79   5.82  

32   39  

1994   1991   1993  

18   12   5  

11.5   13.3   11.9  

2.81   4.40   3.44  

24   33   29  

Mashel  RM  7.4–7.5  

1993   1994   1994  

18   8   9  

19.0a   15.4a   13.8  

9.14   3.74   3.53  

48   24   26  

Beaver  RM  0.6–0.9   Mashel  RM  14.5–15.2  

1993   1993  

18   18  

26.4b   18.8a  

7.19   6.64  

27   35  

Ohop RM 0.0–0.2 Ohop  RM  3.3   Ohop RM 5.0–5.2 25-­‐mile  RM  0.2–0.3   Mashel  RM  0.2–0.8  

Mashel  RM  2.0–3.0   Mashel  RM  6.2–6.9  

1993  

a

Standard   Deviation  

20.9b  

a  Sample  significantly  (alpha  <  or  =  0.05)  higher  than  12%  fine  sediments  (one-­‐sample  t-­‐test).   b

Sample significantly higher than 17% fine sediments.

  Levels  of  fine  sediment  in  the  Mashel  River  tend  to  be  consistent  with  observations  from  managed   forest  streams  of  the  Pacific  Northwest,  British  Columbia,  and  Alaska  (summarized  in  Peterson  et  al.   1992).  Potential  sources  of  sediment  are  roads,  slope  failures,  and  stream  bank  erosion.  Levels  of   fine  sediment  in  salmon  spawning  areas  of  unmanaged,  pristine  streams  in  these  regions  have  been   reported  to  generally  range  between  6%  and  11%.  It  was  concluded  that  historical  levels  of  fine   sediment  tended  to  exceed  this  range  slightly  in  the  Mashel  River.  The  operating  assumption  was   that,  historically,  fine  sediment  levels  were  slightly  less  than  14%.   Percent  fines  from  Ohop  Creek  below  the  lake  are  high  (Table  3-­‐5),  which  is  consistent  with  known   agricultural  activities  and  channel  modifications  in  the  reach.  Furthermore,  Ohop  Creek  is  naturally   rich  in  fine  sediment,  as  the  Ohop  valley  is  a  glacial  outwash  channel.  The  channel  also  was  likely   subject  to  “hydraulic  damming”  by  the  paleo-­‐Nisqually  River.  It  was  concluded  that  Ohop  Creek   historically  had  approximately  18%  fine  sediment,  and  historic  levels  of  fine  sediment  in  the  Ohop   tributaries  were  less  than  14%  for  the  same  reasons  identified  above  for  the  Mashel  River.  

  Nisqually  River  Steelhead  Recovery  Plan    

3-­‐33  

July  2014   ICF  00153.13  



 

Chapter  4  

Nisqually  River  Steelhead   This  chapter  presents  biological  data  specific  to  Nisqually  winter  steelhead.  The  NSRT  used  this   information  to  help  inform  its  understanding  of  winter  steelhead  life  history  diversity,  tributary  and   mainstem  habitat  use  in  the  Nisqually  River,  and  current  and  historical  status  of  the  population.     During  the  1980s  it  was  estimated  that  between  4,000  and  6,000  steelhead  returned  to  the  river   annually.  Monitoring  at  that  time  mostly  focused  on  catch  and  estimates  of  escapement  for  the   mainstem  Nisqually  River.  There  were  other  activities  that  collected  data  on  juvenile  life  history  and   habitat  use  in  the  mainstem  and  Muck  Creek.  However,  these  studies  were  mostly  focused  on  other   species  or  were  related  to  juvenile  salmonid  habitat  use  and  effects  of  hydroelectric  operations   affecting  flow.  Recently,  there  have  been  several  new  monitoring  efforts  that  are  providing   information  on  smolt  life  history  and  abundance  (outmigrant  trap  at  RK  20.6  (RM  12.8)  since  2009),   information  on  marine  migration  and  mortality  of  steelhead  smolts  originating  from  the  Nisqually   Basin  (an  acoustic  tagging  study),  information  on  adult  use  in  the  Nisqually  River  (annual  mapping   of  steelhead  redds  in  the  mainstem  and  Mashel  River),  and  finally  expanded  survey  effort  that   includes  several  major  tributaries  in  the  adult  escapement  estimate.    

4.1

Nisqually  River  Winter  Steelhead  Juvenile  and   Adult  Life  History  

Figure  4-­‐1  presents  a  broad  overview  of  adult  and  juvenile  life  history  for  Nisqually  steelhead.  Adult   winter  steelhead  enter  the  Nisqually  River  between  early  December  and  early  May.  Once  adults   enter  fresh  water  they  are  assumed  to  move  quickly  upstream  to  holding  areas  near  suitable   spawning  habitat.  Prespawn  holding  in  deep  pools  can  be  as  long  as  two  months  before  spawning   from  mid-­‐April  to  early  June.  

Figure  4-­‐1.   Life  Stage Adults

Nisqually  River  Winter  Steelhead  Generalized  Life  History  

Jan E M L

Feb E M L

Mar E M L

May E M L

Jun E M L

Jul E M L

Aug E M L

Sep E M L

Oct E M L

Nov E M L

Dec E M L

Adults  Arriving Prespawn  Holding FW Adult  Migration Spawning Post-­‐Spawn  Kelts

Incubation  &   Fry   Emergence Juvenile   Rearing Smolt  Out-­‐ Migration

  Nisqually  River  Steelhead  Recovery  Plan    

Apr E M L

Arriving

Egg  Incubation Emergence

Age  0  Juveniles  (summer  active  rearing  and  winter  inactive) Age  1  Juveniles  (summer  active  rearing  and  winter  inactive) Smolts  (1,  2  and  3  age)

4-­‐1  

 

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Steelhead  

Figure  4-­‐2  presents  spawn  timing  from  observations  of  new  redds  for  2009  to  2013  for  the   Nisqually  River  and  Mashel  River.  Spawn  timing  is  based  on  regularly  surveyed  index  reaches  in   each  location.  Spawn  timing  tends  to  be  similar  in  both  locations  –  earliest  spawning  occurring  late   March,  median  timing  between  late  April  to  early  May,  and  the  latest  observation  of  new  redds  the   first  week  of  June.    

Figure  4-­‐2.   Winter  Steelhead  Spawning  Timing  in  the  Nisqually  River  and  Mashel  River  (2009– 2013);  data  provided  by  James  Losee,  WDFW.  

  Scott  (1981)  reported  emergent-­‐sized  rainbow/steelhead  (  1.0)  by  subbasin  is  shown  in  Figure  5-­‐6.  The  same   life  history  trajectories  were  applied  to  both  scenarios.  The  number  of  trajectories  by  subbasin  is   entirely  a  function  of  the  linear  length  of  habitat  assumed  to  be  available  to  steelhead.  Migration   barriers  and  habitat  quality  are  the  primary  factors  that  affect  diversity.  The  values  shown  in  the  pie   chart  labels  are  the  percentages  for  the  life  histories  that  are  viable  by  subbasin.  The  size  of  the  pie   slice  by  subbasin  is  the  contribution  of  that  subbasin  to  total  life  history  diversity  of  the  population.   Historically,  Muck  Creek  and  the  Prairie  Tributary  subbasins  had  a  much  greater  proportion  of  total   potential  pathways  for  the  population  (i.e.,  a  more  diverse  spatial  distribution  of  fish  use).  Loss  of   life  history  diversity  has  been  greatest  in  those  subbasins,  followed  by  the  Mashel  River.  However,   as  seen  in  Figure  5-­‐5,  pathways  originating  from  Much  Creek  and  the  Prairie  Tributaries  did  not   historically  have  a  high  capacity  and  thus  were  not  a  large  portion  of  the  population’s  abundance.   The  Nisqually  River  mainstem  represents  nearly  half  the  viable  life  history  pathways  in  the   population.  Finally,  across  all  subbasins,  the  life  history  diversity  index  is  94%  for  the  historic   condition  and  34%  for  the  current  condition.  

Figure  5-­‐6.   Life  History  Diversity  Indices  by  Subbasin  

    The  analysis  roughly  compared  model  predictions  to  observed  values  (Figure  5-­‐7)  and  concluded   results  were  reasonable  and  consistent  with  the  available  empirical  data  for  the  population  for  the   recent  period.  However,  further  monitoring  and  evaluation  of  the  population  is  a  high  priority  to   improve  understanding  of  the  dynamics  of  the  population.  

  Nisqually  River  Steelhead  Recovery  Plan    

5-­‐7  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Restoration  and  Protection  Needs  

Figure  5-­‐7.   EDT-­‐Predicted  Nisqually  Steelhead  Spawner-­‐to-­‐Adult  and  Spawner-­‐to-­‐Smolt  with   Empirical  Data  

  The  following  summarizes  the  conclusions  regarding  numeric  performance.   

Current  average  abundance  is  62%  of  historical  level  with  an  assumed  1%  marine  survival  in   both  scenarios  and  nearly  all  current  production  occurs  in  the  Nisqually  River  mainstem  and   Mashel  River  (based  on  analysis  at  subpopulation  level).    



Current  and  historical  productivities  are  low  assuming  a  1%  marine  survival,  reflecting   freshwater  and  marine  life  history  tradeoffs  with  steelhead.  



Further  degradation  of  freshwater  habitat  in  the  Nisqually  River  mainstem  and  Mashel  River   would  have  a  serious  consequence  on  population  viability  when  marine  survival  is  low.  

  Nisqually  River  Steelhead  Recovery  Plan    

5-­‐8  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Restoration  and  Protection  Needs  



Freshwater  productivity  (smolts  per  spawner)  is  high  for  the  population.  



Smolt  capacity  is  high  and  density-­‐dependent  factors  are  relatively  weak  at  predicted  current   spawner  abundances  (135  smolts  per  spawner  at  425  spawners  and  130  smolts  per  spawner  at   688  spawners  for  current  and  historical,  respectively).  

5.3

Factors  Affecting  Steelhead  in  the  Watershed  

The  EDT  model  was  used  to  help  diagnose  habitat-­‐limiting  factors  for  steelhead  performance  and  to   identify  restoration  priorities.  The  diagnosis  was  made  in  three  parts:  1)  a  comparison  of  life-­‐cycle-­‐ segment-­‐specific  survivals,  2)  a  splice  analysis  to  evaluate  maximum  restoration  potential  for  a   subbasin,  and  3)  an  analysis  of  limiting  factors  using  the  standard  outputs  produced  by  the  EDT   model.  This  last  item  is  a  consumer-­‐report  style  format  to  identify  highest-­‐priority  habitat  factors.    

5.3.1

Comparison  of  Life  Cycle  Segment  Survival  and   Abundance  

EDT-­‐predicted  survival  and  abundance  were  examined  at  three  points  in  the  freshwater  life  history:   1)  spawners  to  end  of  first  summer  fry,  2)  summer  fry  to  age  1  smolts,  and  3)  end  winter  age  1  parr   to  age  2  smolts.  These  results  were  used  to  better  understand  the  effects  of  density-­‐independent  and   density-­‐dependent  constraints  on  segment  survival.  Density-­‐independent  factors  would  affect  the   slope  of  the  curve  and,  consequently,  survival  across  the  entire  range  of  abundances,  whereas,   density-­‐dependent  factors  (i.e.,  habitat  quantity)  would  have  a  much  stronger  effect  at  higher   abundances.  The  analysis  shows  two  hypothetical  freshwater  life  histories.  The  first  is  from   spawning  to  age  1  smolt,  whereas,  the  second  life  history  is  from  spawning  to  age  2  smolt.  Results   presented  in  the  previous  sections  for  the  population  are  based  on  a  composition  of  age  1  and  2   smolts  developed  from  the  long-­‐term  catch  monitoring  dataset.     The  top  graph  in  Figure  5-­‐8  shows  the  spawner-­‐recruit  function  for  the  segment  from  spawning  to   the  end  of  the  first  summer.  A  spawning  abundance  of  1,000  adults  is  represented  by  the  dashed   vertical  lines  for  both  scenarios  to  compare  across  the  freshwater  life  cycle.  The  horizontal  line   shows  the  resulting  number  of  fry  alive  at  the  end  of  the  summer.  At  1,000  spawners,  both  scenarios   show  a  weak  density-­‐dependent  effect  as  predicted  abundance  is  slightly  less  than  half  of  capacity.   Capacity  is  predicted  to  be  much  stronger  at  spawner  abundances  over  2,000  fish.  The  middle  graph   shows  predicted  abundance  of  age  1  smolts  for  the  two  scenarios.  The  vertical  lines  are  abundance   from  the  top  graph  and  horizontal  lines  are  predicted  age  1  smolts.  The  model  is  predicting  a  high   overwinter  capacity  to  age  1  smolts.  The  primary  drivers  affecting  abundance  of  age  1  smolts  are   number  of  fry  at  the  end  of  the  summer  and  density-­‐independent  factors  affecting  over  winter   survival.  The  bottom  graph  is  predicted  abundance  of  age  2  smolts.  The  vertical  lines  are  the   predicted  abundance  of  yearling  parr  entering  the  summer.  There  is  a  much  stronger  capacity  effect   on  survival  to  age  2  smolt.     These  results  are  a  glimpse  into  freshwater  dynamics  and  the  watershed’s  potential  and,  therefore,   should  be  taken  lightly.  However,  it  appears  that  the  effect  of  freshwater  age  on  smolt  potential  is   large  and  should  be  closely  monitored.  Smolt  age  composition  estimated  by  WDFW  at  the   outmigrant  trap  suggests  a  variable  freshwater-­‐age  structure.  These  results  suggest  that  strategies   to  increase  capacity  in  habitats  used  by  juvenile  steelhead  in  their  second  summer  in  freshwater   should  be  investigated.       Nisqually  River  Steelhead  Recovery  Plan    

5-­‐9  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Restoration  and  Protection  Needs  

Figure  5-­‐8.   EDT-­‐Predicted  Life  Cycle  Segment  Productivity  and  Capacity  

 

  Nisqually  River  Steelhead  Recovery  Plan    

5-­‐10  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

5.3.2

Restoration  and  Protection  Needs  

Watershed  Geographic  Restoration  and  Protection   Priorities  

Model  results  showed  a  small  decline  from  historical  to  current  conditions  in  productivity  and   abundance  across  all  population  components.  However,  some  components  declined  more  than   others.  Two  questions  must  be  asked  before  suggesting  freshwater  restoration  would  result  in  a   small  benefit  for  Nisqually  steelhead:  What  restorative  changes  to  the  current  environment  would   benefit  steelhead  and  where  would  these  changes  be  most  beneficial?  The  second  question,   answered  in  some  of  the  previous  sections,  is  which  habitats  should  be  protected  to  avoid  decline  in   production  potential?  Priority  rankings  for  restoration  and  protection  of  steelhead  are  presented  in   this  section.     The  splice  analysis  technique  in  EDT  is  used  to  assess  the  relative  importance  of  each  stream   segment  to  restoration  and  protection.  For  the  restoration  splice  analysis,  a  sequence  of  scenarios   was  created  by  successively  replacing  each  current-­‐condition  stream  reach  with  its  historical-­‐ condition  counterpart.  Using  this  technique,  an  estimate  was  obtained  of  the  relative  benefit  to   overall  population  performance  achieved  by  restoring  each  stream  reach  to  historical  conditions.   Similarly,  for  the  protection  splice  analysis,  a  sequence  of  scenarios  was  created  by  successively   replacing  each  current  condition  stream  reach  with  a  hypothetical  degraded  reach  condition.  From   the  protection  splice,  an  estimate  was  obtained  of  the  relative  contributions  to  loss  in  overall   population  performance  made  by  each  reach  as  it  is  degraded  from  current  conditions.     The  splice  analysis  can  be  done  on  several  scales.  Figure  5-­‐9  presents  the  restoration  and  protection   priorities  at  the  subbasin  scale  described  in  Chapter  3,  Nisqually  River  Overview.  Not  surprisingly,   the  Nisqually  River  mainstem  and  Mashel  River  stand  out  as  high  priorities  for  protection.  These   geographic  areas  rank  high  because  of  the  strong  dependence  of  the  population  on  these  habitat   types.  The  degree  of  degradation  assumed  in  the  splice  analysis  is  hypothetical  and  beyond  what   members  of  the  NSRT  consider  a  likely  future  scenario  for  the  watershed  absent  protection   measures  identified  in  the  recovery  plan.  However,  any  degradation  could  have  serious   consequences  to  the  population.    

Figure  5-­‐9.   Relative  Importance  of  Subbasins  for  Restoration  and  Protection     (Degradation  Scenario)  

  Conversely,  the  Mashel  River  ranked  highest  for  restoration  followed  by  the  Nisqually  River   mainstem  when  considering  abundance  and  productivity.  Muck  Creek  and  the  Prairie  Tributaries   ranked  high  in  priority  for  their  importance  to  life  history  diversity  of  Nisqually  winter  steelhead.   Restoration  of  these  areas  can  contribute  to  overall  population  productivity  and  abundance,  but  are   more  important  to  population  diversity.  

  Nisqually  River  Steelhead  Recovery  Plan    

5-­‐11  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Restoration  and  Protection  Needs  

The  analysis  by  subbasin  area  included  multiple  reaches  and  fish-­‐passage  barriers.  Fish-­‐passage   barriers  warrant  an  analysis  of  restoration  benefit  by  tributary  stream  (Figure  5-­‐10).  Fish  barriers   in  upper  Muck  Creek  including  the  flow  barrier  upstream  of  Johnson  Creek,  ranked  highest  for   diversity  and  abundance.  The  benefits  of  removing  fish-­‐passage  barriers  were  mostly  to  population   diversity.    

Figure  5-­‐10.  

Relative  Importance  of  Fish-­‐Passage  Barriers  for  Restoration  

 

5.3.3

Watershed  Habitat-­‐Limiting  Factor  Priorities  

The  EDT  model  links  environmental  attributes  to  survival  factors  via  the  habitat-­‐life  stage  survival   relationships  to  compute  a  survival  landscape  (i.e.,  a  pattern  of  relative  survival  by  reach,  month,   and  life  stage  for  steelhead).  Based  on  the  general  life  history  of  steelhead,  performance  parameters   are  then  computed  for  the  Nisqually  steelhead  population.  Thus  the  different  habitat  scenarios  (e.g.,   current  and  historical)  expressed  in  terms  of  environmental  attributes  are  linked  to  population   performance  potential.  The  diagnosis  described  here  identifies  the  changes  in  survival  factors  from   the  historical  to  the  current  scenario  that  account  for  most  of  the  loss  in  performance.     Each  stream  reach  in  the  Nisqually  River  was  analyzed,  using  the  EDT  model,  to  assess  how  specific   survival  factors  have  contributed  to  the  loss  of  steelhead  performance  from  historical  to  current   status.  The  results  of  these  analyses  are  summarized  in  Figure  5-­‐11  by  life  stage  across  all  reaches.  

  Nisqually  River  Steelhead  Recovery  Plan    

5-­‐12  

July  2014   ICF  00153.13  

Nisqually Steelhead Recovery Team

Restoration and Protection Needs

Figure 5-11. Pattern of Habitat Degradation in the Nisqually River Watershed by Life Stage

Mar-Jul

-10.7%

7

Fry colonization

May-Jul

-11.6%

6

0-age active rearing

May-Oct

-24.1%

1

0,1-age inactive

Oct-Mar

-15.9%

3

1-age migrant

Mar-Jun

Temperature

Sediment load

Predation

Pathogens

Oxygen

Obstructions

Harassment/poaching

Habitat diversity

Food

Flow

Competition (other sp)

Key habitat quantity

Mar-Jun

Withdrawals

Spawning Egg incubation

Competition (w/ hatch)

Productivity change (%)

Chemicals

Relevant months

Channel stability

Life stage

Life Stage Rank

Change in attribute impact on survival

Loss

Gain

-1.0% 14

-1.1% 12

1-age active rearing

Mar-Oct

2+-age active rearing

Mar-Oct

-11.9%

-3.0% 10

5

2+-age migrant

Mar-Jun

-1.1% 13

2+-age transient rearing

Jan-Dec

-0.3% 15

Prespawning migrant

Nov-Apr

-1.6% 11

Prespawning holding

Dec-May

-3.6%

9

KEY

None Small Moderate High Extreme

As shown in Figure 5-11, typically only a few habitat attributes are involved in a given life stage, and these vary by life stage. Conclusions from Figure 5-11 are as follows. 





Restoration actions to address sediment load and temperature have potential to improve incubation survival.

Restoration actions to restore summer base flow and reduce winter peak flow and flow flashiness to normative conditions would result in broad benefits across multiple juvenile life stages.

Restoration actions that restore channel complexity would address habitat diversity and likely other related factors, such as channel stability, sediment, and possibly temperature.

Figure 5-12 shows the pattern of habitat loss in the major subbasin of the Nisqually identified in Chapter 3, Nisqually River Overview. Habitat diversity ranks high across all subbasins. Sediment load is only a factor in the tributaries. Obstructions to fish passage rank high in Muck Creek; the Prairie Tributaries; and Lackamas, Toboton, and Powell Creeks. Obstructions show up in the Nisqually River mainstem, representing the working hypothesis that the Centralia Diversion Dam is affecting survival of summer fry through impingement and entrainment into the diversion canal. Steelhead fry are thought to be especially vulnerable because emergence occurs during the months with declining flow and greater percent diversion.

Nisqually River Steelhead Recovery Plan

5-13

July 2014

ICF 00153.13

Nisqually Steelhead Recovery Team

Restoration and Protection Needs

Figure 5-12. Pattern of Habitat Degradation in the Nisqually River Watershed by Subbasin

The results of Figure 5-12 show that Muck Creek; the Prairie Tributaries; and Mashel River have the most opportunities to improve steelhead survival affecting overall population performance.

5.4

Parameter Uncertainty and Stochastic Variation

EDT is typically applied as a deterministic model, setting aside parameter uncertainty (variable inputs) in the predictions and ignoring stochastic variation affecting observed population productivity and abundance. Both are important to consider for developing the recovery plan. However, they have different consequences on how model results are interpreted.

Parameter uncertainty represents limitations in the knowledge of environmental conditions affecting steelhead and inputs that describe the relationships between the environment and steelhead survival. Parameter uncertainty affects the planning process by suggesting alternative spawner-recruit functions for the population. Choosing the wrong function could lead to setting inappropriate restoration priorities. Specifically, parameter uncertainty would suggest a family of functions for the population—each curve a plausible representation of the underlying deterministic spawner-recruit function. An example of parameter uncertainty is the family of curves generated for the range of marine survival rates shown in Figure 5-13. The necessary information is lacking to describe and model factors affecting marine survival or monitoring data to estimate marine survival across the time series of data for the population. The best we can work from at this stage is the limited information collected recently from the smolt monitoring program and escapement estimates. These studies suggest a very low average marine survival (less than 1%). Data from other watersheds in Puget Sound and Nisqually River returns from the 1980s would suggest the potential for much higher marine survival. Together, it can be concluded that marine survival is a major factor affecting steelhead abundance in the watershed.

Nisqually River Steelhead Recovery Plan

5-14

July 2014

ICF 00153.13

Nisqually Steelhead Recovery Team

Restoration and Protection Needs

Figure 5-13. Current Condition Results with Alternative Marine Survival

At this stage in recovery planning, the NSRT concluded the best path forward is to put forth the working hypothesis based on the available data. The NSRT concluded addressing parameter uncertainty in a systematic fashion will be a key component of the recovery plan. Data uncertainty is addressed further in Chapter 8, Implementation.

Data presented in Chapter 4, Nisqually River Steelhead, highlights variable spawner-recruit rates for the population. The wide range in recruitment observed in the time series is because of a variety of sources such as observation error, variation in spawner abundance, year-to-year environmental variation, and finally, random variation in survival. More specifically, the range in estimated smolt and adult recruits at a given spawner abundance is a result of random interannual variation in environmental conditions. Another source of random variation in population productivity and abundance is what is sometimes referred to as demographic stochasticity, which represents unknown variation in survival among individuals of the population (Kendall 1998). Both sources of random variation are important when considering long-term sustainability of the population, especially at low abundance. EDT, as it is used for the Nisqually River Watershed, is not well suited to evaluate the effects of interannual stochastic variation on population performance. EDT is intended to represent long-term average outcomes. Stochastic variation is less important in models, like EDT, that are constructed to evaluate long-term average outcomes. Model parameters tend toward the mean and parameter uncertainty becomes more important. As the recovery plan is implemented, the NSRT intends to address effects of stochastic variation on annual juvenile and adult abundances by reviewing past-year performance (status and trends), and assessing future expectations through forecasting and population simulation models. This analysis and future modeling are intended to support the fish-management objectives of the recovery plan, as introduced in Chapter 7, Nisqually River Steelhead Management, and identified in Chapter 8, Implementation. Chapter 7, Nisqually River Steelhead Management, includes a preliminary assessment of the effects of stochastic variation in survival on run size and fish management options. Mean survival conditions used in the simulations are based on the analysis in this chapter and Chapter 6, Habitat Recovery Strategies.

Nisqually River Steelhead Recovery Plan

5-15

July 2014

ICF 00153.13

Nisqually Steelhead Recovery Team

Restoration and Protection Needs

Chapter 4, Nisqually River Steelhead, also presents S-R data for Nisqually winter steelhead for the last 28 years. The data clearly show a significant shift in recruitment over the period. Prior to about brood year 1990, average return to the Nisqually River was over 4,800 fish. Since then, return to the river has been less than 1,000 fish in nearly every year. The NSRT discussed the option of modeling habitat conditions in the 1980s to better understand freshwater conditions during this period in hopes of gaining some insight to conditions in the watershed at that time. However, the consensus of the NSRT was that freshwater habitat conditions in the 1980s were likely not better than current conditions. The working hypothesis is this shift in recruitment was because of a shift in marine survival that occurred around 1990. The NSRT was not able to determine the cause of this shift in survival and intends to work closely with the Salish Sea Marine Survival Project in the future.

Nisqually River Steelhead Recovery Plan

5-16

July 2014

ICF 00153.13

 

Chapter  6  

Habitat  Recovery  Strategies   The  action  plan,  which  is  the  centerpiece  of  the  recovery  plan,  was  designed  to  meet  the  short-­‐  and   long-­‐term  goals  and  objectives  described  in  Chapter  2,  Recovery  Goals  and  Objectives.  It  was   developed  through  discussions  among  the  NSRT,  a  review  and  inclusion  of  actions  identified  in  the   Nisqually  Chinook  Recovery  Plan  that  were  appropriate  to  steelhead,  and  a  review  of  actions   identified  in  other  planning  activities  in  the  watershed  (Nisqually  River  Land  Trust,  Nisqually  River   Council,  Pierce  and  Thurston  Counties,  and  the  Department  of  Defense  Joint  Base  Lewis-­‐McChord).   The  list  includes  general  strategies  that  will  need  additional  refinement  before  implementing  and   some  specific  actions  that  are  ready  to  be  implemented  or  are  in  progress  (Table  6-­‐1).     The  action  plan  is  divided  into  five  broad  objectives.     1. Protect  and  secure  habitats  that  support  the  existing  core  population.   2. Restore  high-­‐priority,  degraded  habitat  to  improve  population  productivity,  abundance,  and   diversity.  This  objective  is  addressed  in  two  ways:  first,  restore  watershed  processes  by   addressing  sediment  supply,  flow,  and  organic  matter  inputs.  Second,  implement   habitat-­‐enhancement  actions  necessary  to  address  specific  issues  in  locations  that  are  impaired   to  the  extent  that  watershed  process  restoration  is  not  reasonable.     3. Provide  broad-­‐scale  protection  and  restoration  by  addressing  regulatory  barriers,  securing   policy  support,  and  educating  the  community  on  how  it  can  contribute  to  recovery.     4. Develop  assessment  plans  to  guide  the  development  of  restoration  actions.   5. Implement  a  research,  monitoring,  and  evaluation  plan  to  improve  the  understanding  of   steelhead  habitat  requirements  and  limiting  factors  in  freshwater  and  marine  areas,  to  monitor   progress,  and  to  evaluate  effectiveness  and  refine  strategies  and  objectives.     The  last  two  categories  are  to  support  the  adaptive-­‐management  process  in  the  Nisqually  watershed   and  are  discussed  in  more  detail  in  Chapter  8,  Implementation.  Protection  strategies  are  not  modeled   explicitly  in  this  analysis.  In  other  words,  no  attempt  was  made  to  set  a  hypothetical  future-­‐ degraded  condition  to  evaluate  the  consequence  if  these  strategies  are  not  successful.  Instead,  the   reader  is  directed  to  Chapter  5,  Restoration  and  Protection  Needs,  which  describes  habitat  potential   to  support  steelhead  and  core  habitat  areas  for  the  population.  However,  several  of  the  protection   actions  listed  in  Table  6-­‐1  also  include  an  element  of  restoration  that  was  modeled  and  outcomes   are  reported  in  the  next  sections.   The  action  plan  is  detailed  in  Appendix  C,  Nisqually  Winter  Steelhead  Action  Plan.  The  analysis  of  the   action  plan,  presented  in  the  next  sections,  assumes  these  objectives  are  met.  

  Nisqually  River  Steelhead  Recovery  Plan    

6-­‐1  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Habitat  Recovery  Strategies  

Table  6-­‐1.  Recovery  Plan  Action  Items   Action   Number  

Name  

Description  

Objectives  

Action  1.1.1  

Nisqually  River   Mainstem  Protection  

Identify  high  priority  habitats  and  acquire  property  or   development  rights  along  the  Nisqually  River  mainstem.  Identify   and  protect  additional  shoreline  and  floodplain  in  some  key  areas   of  the  mainstem.  Percent  of  shoreline  in  protected  status  reported   by  mainstem  reach  is  generally  high;  70%  is  protected  across  all   reaches.  However  protection  is  not  as  high  in  portions  of   Whitewater,  McKenna  and  Wilcox  reaches.  

Ensure  long-­‐term  protection  of  high   quality  habitats  in  mainstem.   Combine  protection  with  restoration   opportunities  where  possible  to   enhance  benefits.  

Action  1.1.2  

Nisqually  Tributary   Protection  

Identify  high  priority  habitats  and  acquire  property  or   development  rights  along  tributary  streams.  Protection  of  tributary   habitat  is  spotty  and  not  well  documented.  Portions  of  lower  Ohop   Creek  and  lower  Mashel  River  are  in  protected  status  as  these  areas   were  identified  for  Chinook  recovery.  

Ensure  long-­‐term  protection  of  high   quality  habitats  in  tributaries.   Combine  with  restoration   opportunities  where  possible  to   enhance  benefits.  

Action  1.1.3  

Nisqually  Wetland   Protection  

Acquire  and  protect  (either  through  direct  purchase  or  purchase  of   development  rights)  wetlands  that  have  a  significant  influence  on   stream  conditions.  This  action  is  intended  to  expand  protection  of   key  wetlands  by  increasing  the  buffer  around  wetlands.  Identify   wetlands  that  are  significant  to  stream  hydrology  and  water   quality.    

Protect  and  enhance  hydrology  and   water  quality  in  tributary  streams.  

Action  1.1.4  

McAllister  Headwaters   Coordinate  with  City  of  Olympia  Public  Works  Department  to   Protection/Restoration   develop  a  succession  plan  to  protect  and  restore  the  headwater   springs  and  wetlands  of  McAllister  Creek.  

Protect  and  enhance  hydrology  and   water  quality  in  McAllister  Creek.  

Action  1.2.1  

Nisqually-­‐Mashel  State   Park  Management  Plan  

Develop  park  infrastructure  (trails,   campsites,  and  buildings)  outside  of   floodplain  or  in  ways  compatible   with  natural  area.   Develop  actions  to  restore  degraded   riparian  and  floodplain  habitats   Develop  restoration  actions  to   improve  egg  incubation  and  juvenile   rearing  habitats.  

  Nisqually  River  Steelhead  Recovery  Plan    

Work  with  planners  working  on  the  Nisqually-­‐Mashel  State  Park   Management  plan  to  ensure  protection  and  to  find  opportunities   for  restoration  of  riparian,  in-­‐channel,  and  floodplain  condition.  

6-­‐2  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Action   Number  

Name  

Description  

Objectives  

Action  2.1.1  

Shoreline  Stewardship   Workshops  

Conduct  shoreline  stewardship  workshops  –  inform  residents  on   native  planting  techniques,  riparian  invasive  plant  management,   sources  of  native  plants,  natural  lawn  care,  technical  and  financial   resources  available.  

Restoration  of  riparian  native  plant   communities,  improve  composition   and  quantity  wood  recruitment  to   streams,  provide  for  stream  shading,   and  reduce  sediment  transport  to   streams.  

Action  2.1.2  

Riparian  Management   for  Improved  Growth    

Improve  degraded  riparian  areas  through  management  and  passive   restoration  such  as  manage  small  stands  of  suitable  species  to   promote  survival  and  growth),  develop  strategies  for  stand   improvement  at  sites  with  marginal  recruitment  potential,   continue  underplanting  of  shade-­‐tolerant  conifers,  or  conversion  of   unsuitable  sites  (e.g.,  hardwood-­‐dominated  sites)  to  more  suitable   stands.  

Restoration  of  riparian  native  plant   communities,  improve  composition   and  quantity  wood  recruitment  to   streams,  provide  for  stream  shading,   and  reduce  sediment  transport  to   streams.  

Action  2.1.3  

Invasive  Plant  Control  

Implement  a  watershed-­‐wide  riparian  invasive  plant  control   program  through  the  Nisqually  River  Cooperative  Weed   Management  Area  working  group.  Complete  Regular  riparian  and   aquatic  invasive  plant  surveys,  early  action  invasive  plant  control,   regular  maintenance  weed  control  and  replanting  following  control   of  larger  infestations.  

Restoration  of  riparian  native  plant   communities,  improve  composition   and  quantity  wood  recruitment  to   streams,  provide  for  stream  shading,   and  reduce  sediment  transport  to   streams.  

Action  2.1.4  

Joint  Base  Lewis-­‐ McChord  Mock  City   Riparian  Restoration  

Revegetate  former  Mock  City  site  on  Joint  Base  Lewis-­‐ McChord/Whitewater  reach.  

Restoration  of  riparian  native  plant   communities,  improve  composition   and  quantity  wood  recruitment  to   streams,  provide  for  stream  shading,   and  reduce  sediment  transport  to   streams.  

Action  2.1.5  

Community  Forest   Initiative  

Develop  Nisqually/Mashel  Community  Forestry  initiative  to   address  riparian  buffers,  road  networks,  and  upland  timber   harvest.    

Protect  high-­‐quality  habitats   through  conservation  set  asides,   passive  restoration  instream  habitat   resulting  from  past  and  current   forest  management-­‐related   activities.  Manage  road  network  and   timber  harvest  to  reduce    sediment  sources  and  delivery.      

  Nisqually  River  Steelhead  Recovery  Plan    

Habitat  Recovery  Strategies  

6-­‐3  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Action   Number  

Name  

Description  

Objectives  

Action  2.1.6  

Voluntary  Forest  Road   Remediation  and   Abandonment  

Encourage  and  implement  voluntary  restoration  opportunities  for   sedimentation  problems  from  existing  roads  identified  in  the   Mashel  Watershed  Analysis  (Washington  Department  of  Natural   Resources,  1996)  and  the  Ohop/Tanwax/  Powell  Watershed   Analysis.  

Restore  hydrology  by  disconnecting   road  network  and  drainage  system   from  stream  network.   Reduce  sediment  sources  and   delivery  from  roads.  

Action  2.1.7  

Nisqually  Farm  Plans  

Develop  and  implement  farm  plans  to  address  loss  or  degradation   of  aquatic  habitats.  Includes  conservation  district  approved  farm   plans  (commercial  and  hobby  farms)  along  the  Nisqually  River,   Mashel  River,  Ohop  Creek,  and  McAllister  Creek.  The  intent  is  to   eventually  have  plans  implemented  for  95%  of  farms  in  these   areas.  

Reduce  sediment  input  from   agriculture  lands.   Reduce  inputs  pesticides  to  streams   Promote  riparian  revegetation.   Promote  the  reestablishment  of   natural  channel  form.  

Action  2.1.8  

Floodplain  Restoration  

Restore  lost  off-­‐channel  habitat  (floodplain  channels  and  ponds)   and  enhance  existing  habitats  along  Nisqually  River  mainstem.   Specific  projects  based  on  recommendations  of  the  South  Puget   Sound  Salmon  Enhancement  Group  off-­‐channel  habitat  assessment   (Ellings  2004).  

Establish  or  promote  the   development  and  engagement  of   floodplain  channels.  

Action  2.1.9  

Channel  Migration   Zone  Restoration  

Restore  active  channel  river  meander  belt  and  natural  channel   configuration  along  the  Nisqually  River  mainstem.  Conduct   geomorphic  assessment  to  evaluate  channel  dynamics  and   recommendations,  remove  bank  hardening,  and  apply  strategies  to   promote  new  side  channels  and  reestablish  connections  with   existing  side  channels.  

Establish  or  promote  the   development  and  engagement  of   side  channel  habitats  and   unconstrained  channel  migration.  

Action  2.2.1  

Fish  Passage  Barrier   Removal  

Replace  fish  passage  barriers  in  the  anadromous  portion  of  the   watershed  with  structures  that  pass  juvenile  and  adult  fish  and  in-­‐ stream  sediment  and  wood.  

Prioritize  and  address  remaining   barriers  to  fish  passage  in   watershed.  Update  inventory  to   identify  any  additional  barriers.  

Action  2.3.1  

Upper  Mainstem   Instream  Wood   Enhancement  

Work  with  Tacoma  Power  to  find  ways  to  transport  logs  from   above  the  Alder/La  Grande  Dams  to  the  mainstem  to  supplement   large  woody  material  recruitment  to  mainstem  reaches   immediately  downstream  of  the  dams.    

Increase  the  quantity  pools  and  pool   complexity,  promote  riverine   processes.  

Action  2.3.2  

Nisqually  Mainstem  In-­‐ stream  Wood   Enhancement  

Placement  of  in-­‐stream  large  wood  (either  individual  pieces  or   aggregations)  in  the  mainstem  Nisqually  River  and  side  channels.   Coordinate  these  projects  with  floodplain  acquisition.  

Increase  the  quantity  pools  and  pool   complexity,  promote  riverine   processes.  

  Nisqually  River  Steelhead  Recovery  Plan    

Habitat  Recovery  Strategies  

6-­‐4  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Action   Number  

Name  

Description  

Objectives  

Action  2.3.4  

Fish  Carcass  Placement  

Continue  program  to  distribute  hatchery  salmon  carcasses  as  food   source,  with  an  emphasis  on  headwater  tributaries  and  upper   mainstem  reaches.  

Increase  the  contribution  of  marine   derived  nutrients  stream   productivity.  

Action  2.4.1  

Ohop  Creek  Phase  III   Restoration  

Implement  final  phases  of  Lower  Ohop  Creek  Restoration  Plan.  The   total  project  will  re-­‐elevate  the  4.4  miles  of  severely  channelized   creek  back  into  its  original  floodplain  recreating  a  6  mile  long   stream  with  its  original  meander  pattern  and  restoring  its   hydrologic  connection  to  the  adjacent  floodplain  and  wetland   areas.  Off-­‐channel  habitat  will  be  created  and  the  riparian  areas   will  be  planted  with  native  vegetation.  The  project  will  also   revegetate  400  acres  of  the  surrounding  valley  floor,  which  is   dominated  by  wetlands.  

Restoration  channel  form,  riparian   and  habitat  complexity.  

Action  2.4.2  

Mashel  River   Restoration  

Continue  and  expand  Mashel  River  Restoration  Plan.  

Increase  the  quantity  pools  and  pool   complexity,  promote  riverine   processes.  

Action  2.4.3  

Lower  Nisqually  Reach   Restoration  Plan  

Advance  and  implement  the  lower  Nisqually  Reach  (Nisqually  2a)   Restoration  Plan.  Plan  is  intended  to  address  degraded  habitat  in   the  lower  Nisqually  River  mainstem  upstream  of  I-­‐5.  This  action   may  be  combined  with  actions  to  remove  fill  associated  with  I-­‐5   and  other  roads  within  and  upstream  of  the  reach,  and  placing   roads  on  piers.    

Establish  or  promote  the   development  and  engagement  of   floodplain  channels  by  removing   bank  hardening,  increasing  amount   of  in-­‐stream  wood,  pools,  and  off-­‐ channel  habitat.  Address  loss  of  high   flow  refuge  areas,  reduction  of  or   refuge  from  higher  scour  events,  and   loss  of  streamside  vegetation.  

Action  2.4.4  

Muck  Creek   Restoration  Plan  

Develop  and  implement  a  Muck  Creek  Restoration  plan,  including   adequate  flow  for  fish  passage  above  Johnson  Creek.  This  would  be   a  comprehensive  restoration  plan  to  remove  or  reduce  impacts  of   invasive  reed  canary  grass,  restoration  of  Muck  Creek  wetlands   (e.g.,  Chambers  Lake),  stream  hydrology,  and  in-­‐stream  habitat   complexity.  

Improve  hydrology  to  allow  fish   passage  into  upper  watershed  and   reduce  impacts  during  low  flow   periods.   Increase  the  quantity  pools  and  pool   complexity.  

Action  2.4.5  

Eatonville  Stormwater   Comprehensive  Plan  

Implement  2014  Eatonville  Stormwater  Comprehensive   Management  Plan  projects.  Monitor  results  on  Lynch  Creek  and   Mashel  River  flows.  

Protect  and  restore  peak  and  low   flow  in  Lynch  Creek  and  Mashel   River.  

  Nisqually  River  Steelhead  Recovery  Plan    

Habitat  Recovery  Strategies  

6-­‐5  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

6.1

Habitat  Recovery  Strategies  

Analysis  of  Recovery  Plan  Habitat  Potential  

Figure  6-­‐1  and  Table  6-­‐2  summarize  the  results  for  spawner-­‐to-­‐adult  recruits  from  modeling  the   recovery  plan’s  predicted  habitat  conditions.  These  results  assumed  a  smolt  to  adult  marine  survival   of  1%  to  approximate  recent  year  rates  (Chapter  4,  Nisqually  River  Steelhead).    

Figure  6-­‐1.   EDT-­‐Predicted  Nisqually  Steelhead  Spawner-­‐to-­‐Adult  S-­‐R  Functions  for  the  Recovery   Plan,  Current,  and  Historical  Conditions  (1%  Marine  Survival)  

  Model  results  predict  the  recovery  plan  provides  the  greatest  benefit  to  improving  population  life   history  and  spatial  diversity  increasing  diversity  from  34%  to  56%.  Productivity  (adult  recruits  per   spawner)  improved  slightly  over  the  current  condition  and  abundance  improved  by  about  17%.  The   recovery  plan  increased  population  abundance  to  about  72%  of  historical  abundance  or  30%  of  the   difference  between  current  and  historical  abundance.    

Table  6-­‐2.   EDT  Predicted  Adult  to  Adult  Productivity,  Capacity,  Abundance,  and  Diversity  Index   (1%  Marine  Survival)   Habitat  Scenario  

Adult  Productivity  

Adult  Capacity  

Adult  Abundance   Diversity  Index  

Current  

2.85  

654  

424  

34%  

Recovery  Plan   Historical  

2.94   3.50  

781   964  

515   688  

56%   94%  

  Nisqually  River  Steelhead  Recovery  Plan    

6-­‐6  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Habitat  Recovery  Strategies  

Figure  6-­‐2  and  Table  6-­‐3  summarize  results  for  adult-­‐to-­‐smolt  recruits  from  recovery  plan   compared  to  the  current  and  historical  habitat  conditions.  The  vertical  and  horizontal  dashed  lines   show  the  number  of  spawners  (x-­‐axis)  based  on  the  1%  marine  survival  and  predicted  smolt   abundance  (y-­‐axis).  Productivity  with  recovery  plan  habitat  conditions  increased  from  347  smolts   per  spawner  to  351  smolts  per  spawner.  Model  results  predict  a  recovery  plan  smolt  abundance  of   65,319  fish  or  an  increase  of  14%  over  the  current  condition.  The  recovery  plan  increases  smolt   abundance  to  about  73%  of  the  historical  potential  or  24%  of  the  difference  between  the  current   and  historical  potential.  Smolt  capacity  (maximum  smolt  potential)  is  predicted  to  be  104,076   smolts  for  the  recovery  plan  versus  94,410  and  131,733  for  the  current  and  historical  conditions,   respectively.    

Figure  6-­‐2.   EDT-­‐Predicted  Nisqually  Steelhead  Spawner-­‐to-­‐Smolt  S-­‐R  Functions  for  the  Recovery   Plan,  Current,  and  Historical  Conditions  

 

Table  6-­‐3.   EDT-­‐Predicted  Spawner  to  Smolt  Productivity,  Capacity,  and  Abundance     Habitat  Scenario  

Smolt  Productivity  

Smolt  Capacity  

Smolt  Abundance  

Current   Recovery  Plan  

347   351  

94,410   106,945  

57,536   67,174  

Historical  

411  

131,710  

89,861  

Results  for  freshwater  productivity  and  capacity  with  recovery  plan  habitat  condition  suggest  a   slight  rise  in  freshwater  potential  following  successful  complementation  of  the  plan  components.   There  was  a  slight  shift  in  habitat  potential  in  the  watershed,  with  more  of  the  habitat  potential  in   the  Prairie  Tributaries  (Figure  6-­‐3).  These  results  are  consistent  for  the  diversity  index,  there  was  a   slightly  greater  spatial  distribution  of  the  population  with  the  recovery  plan.  The  primary  habitats   available  to  steelhead  remain  the  Nisqually  River  mainstem  and  Mashel  River.  

  Nisqually  River  Steelhead  Recovery  Plan    

6-­‐7  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Habitat  Recovery  Strategies  

Figure  6-­‐3.   Predicted  Habitat  Utilization  (Adult  Distribution)  of  Nisqually  Steelhead  (1%  Marine   Survival)  

  A  presentation  of  viable  pathways  (productivity  >  1.0)  by  subbasin  is  shown  in  Figure  6-­‐4.  The  effect   of  removing  migration  barriers  is  a  primary  factor  for  the  doubling  of  life  history  diversity  in  the   Prairie  Tributaries  and  Muck  Creek  between  scenarios  (Prairie  Tributaries  21%  versus  48%  and   Muck  Creek  15%  versus  36%  for  the  current  and  recovery  plan,  respectively).  The  improvement  in   life  history  diversity  in  the  Mashel  River  was  entirely  due  to  improved  habitat  quality  (improved   condition  for  factors  egg  incubation  and  juvenile  survival).  Also,  we  see  with  the  recovery  plan  a   more  diverse  distribution  of  viable  pathways  compared  with  the  current  condition.  The  Nisqually   River  mainstem  does  not  represent  as  much  of  the  viable  pathways,  as  seen  in  the  current  condition.   The  Mashel  River,  Prairie  Tributaries,  and  Muck  Creek  are  bigger  portions  of  the  pie.  

Figure  6-­‐4.   Life  History  Diversity  Indices  by  Subbasin  

    Across  the  range  of  marine  survival  assumptions  the  recovery  plan  predicted  an  increase  in  adult   abundance  ranging  from  75  fish  to  nearly  1,600  fish  (Figure  6-­‐5).  However,  percentage-­‐wise,  the   increase  did  not  vary;  abundance  increased  by  17%  across  all  marine  survival  assumptions.    

  Nisqually  River  Steelhead  Recovery  Plan    

6-­‐8  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Habitat  Recovery  Strategies  

Figure  6-­‐5.   EDT-­‐Predicted  Nisqually  Steelhead  Spawner-­‐to-­‐Adult  for  the  Recovery  Plan  (dashed   lines)  and  Current  Conditions  (solid  lines)  across  the  Modeled  Range  of  Marine  Survivals  

  The  following  conclusions  concern  numeric  performance.   

Abundance  is  predicted  to  increase  by  17%  over  the  current  condition  with  an  assumed  1%   marine  survival.  



Productivity  and  abundance  remain  critically  low  under  the  recovery  plan  with  a  low  1%  marine   survival.  



The  recovery  plan  addresses  some  but  not  all  of  the  loss  in  freshwater  life  history  and  spatial   diversity,  there  remains  many  miles  of  small  streams  that  are  unable  to  support  steelhead  to  the   same  extent  as  the  historical  habitat  condition.  

6.2

Factors  Affecting  Steelhead  in  the  Watershed  

Predicted  improvements  in  habitat  potential  were  evaluated  in  two  ways:  1)  by  modeling  effects  of   the  recovery  plan  by  geographic  areas  and  2)  by  comparing  differences  in  habitat-­‐survival  factors   between  the  current  condition  and  recovery  plan  scenario.  The  first  item  is  similar  to  the  analysis   completed  in  Chapter  5,  Restoration  and  Protection  Needs,  for  subbasins,  but  instead  of  replacing  the   current  condition  in  a  geographic  area  with  the  historical  condition,  the  analysis  is  based  on  the   potential  improvement  in  population  performance  using  recovery  plan  habitat  assumptions.  The   second  analysis  is  a  consumer-­‐report  style  format  that  identifies  improvements  in  habitat  factors   with  the  recovery  plan.    

6.2.1

Watershed  Geographic  Improvements  

Model  results  showed  an  effect  on  abundance  between  5%  and  10%  by  subbasin,  excepting   McAllister  Creek.  The  largest  response  was  in  the  Mashel  River  with  a  10%  increase  over  the  current   condition.  Improving  habitat  condition  in  the  core  population  areas  (Nisqually  River  and  Mashel     Nisqually  River  Steelhead  Recovery  Plan    

6-­‐9  

July  2014   ICF  00153.13  

Nisqually Steelhead Recovery Team

Habitat Recovery Strategies

River) benefits population productivity. The largest improvement in life-history diversity was in Muck Creek followed by the Prairie Tributaries (Figure 6-6). This improvement was largely due to restoring fish passage in these streams.

Figure 6-6. Relative Improvement in Habitat Potential of Subbasins with the Recovery Plan

6.2.2

Watershed Habitat-Limiting Factors Addressed by the Recovery Plan

This section identifies the changes in survival factors from the current condition to the recovery plan scenario that account for most of the improvement in performance measures. The results of these analyses are summarized in Figure 6-7 by life stage across all reaches.

Figure 6-7. Pattern of Habitat Improvements in the Nisqually Watershed by Life Stage

Nisqually River Steelhead Recovery Plan

6-10

July 2014

ICF 00153.13

Nisqually Steelhead Recovery Team

Habitat Recovery Strategies

Conclusions from Figure 6-7 are as follows.  





Benefits to habitat diversity were small to moderate across multiple life stages.

Reduced sediment load effects were small, improving egg incubation and 0, 1 age inactive (overwintering) life stages.

Eliminating fish-passage barriers benefited migrant juvenile life stages and adult upstream passage. The quantity of key habitat increased across all life stages, with the 0, 1 age inactive (overwinter) showing the greatest benefit.

As shown in Figure 6-7, typically only a few habitat factors were improved by life stage and generally the effect was small. Figure 6-8 shows the pattern of habitat improvement in the major subbasin of the Nisqually River identified in Chapter 3, Nisqually River Overview. The pattern of response varies considerably by subbasin and closely matches assumptions specific to recovery actions identified in the plan. •









Sediment and temperature improvement were limited to the Mashel River and Ohop Creek. Habitat diversity effects were in most subbasins, except McAllister Creek.

Reduced sediment load effects were small with a slight improvement in Ohop and Mashel subbasins. These improvements would affect egg incubation and 0, 1 age inactive (overwintering) life stages. Eliminating fish-passage barriers benefited migrant life stages in Muck Creek, the Prairie Tributaries and Toboton/Powell/Lackamas subbasins. Obstructions in Muck Creek were removed of culvert barriers and better flow reducing obstructions to migration in the mainstem Muck Creek. The hypothesized effect of the Centralia Diversion Dam on juvenile survival was not modified in the recovery plan; hence, no effect was seen for the Nisqually River mainstem. For the Nisqually River mainstem, although the only factor affected by the recovery plan was habitat diversity, the relative gain of this improvement was large for the population. The quantity of key habitat increased across all life stages, with Muck Creek showing the greatest benefit as a result of flow restoration.

Nisqually River Steelhead Recovery Plan

6-11

July 2014

ICF 00153.13

Nisqually Steelhead Recovery Team

Habitat Recovery Strategies

Figure 6-8. Pattern of Habitat Improvement in the Nisqually Watershed by Subbasin

6.3

Conclusions and Guidance

These results will be used to help refine strategies and actions in future iterations of the action plan and to set expectations once the recovery plan is implemented. Overall, these results show a smallto-moderate improvement in habitat potential with the recovery plan as modeled in this iteration. Model results are consistent with expected benefits of fish passage. However, some results, in particular for the Mashel River, suggest the recovery plan is not realizing all of the habitat potential of the subbasin. Chapter 5, Restoration and Protection Needs, reports a potential improvement in steelhead abundance of about 20% if habitat is restored to the historical condition (Figure 5-9), whereas improvement with recovery plan assumptions was less than 10% (Figure 6-6). The NSRT will be conducting an additional review of assumptions and will possibly consider additional strategies to realize more of this potential.

Results are affected by the same parameter uncertainty (variable inputs) described in Chapter 5, Restoration and Protection Needs. Analysis of the recovery plan includes additional uncertainty regarding effectiveness of actions. Action effectiveness applied in the analysis is a combination of judgments as to the effectiveness of an action on environmental attributes affecting steelhead, and the intensity of an action. Intensity relates to the strength of the action as applied to a particular location. Many of the actions modeled are assumed to occur over a large portion of the watershed, and thus, intensity at a particular location is low. Better results may be possible and need to be explored by assuming that actions are focused on a particular location. Finally, another component affecting model outcomes is the time horizon for predicting benefits of restoration actions (e.g., full benefit of riparian restoration occurs over long time scales). This analysis assumed enough time for full effectiveness of an action. Riparian restoration and resulting benefits will take many years to realize. Nisqually River Steelhead Recovery Plan

6-12

July 2014

ICF 00153.13

 

Chapter  7  

Nisqually  River  Steelhead  Management   Based  on  the  results  presented  in  Chapters  4  –  6  and  the  goals  in  Chapter  2,  a  recovery  strategy  was   developed  for  Nisqually  River  steelhead.  This  strategy  emphasizes  the  following  objectives:   1. Protect  important  habitat  values  and  functions  in  the  Nisqually  River  mainstem  and  Mashel   River  to  ensure  the  long-­‐term  high  productivity  and  capacity  of  the  freshwater  environment.   2. Restore  habitat  values  and  functions  in  the  Mashel  River  to  achieve  productivity,  capacity,  and   life  history  diversity  goals  for  this  population  component  and  improve  the  overall  long-­‐term   sustainability  of  the  population  through  greater  spatial  diversity.   3. Restore  habitat  values  and  functions  in  Muck  Creek  and  Prairie  Tributaries  to  improve  life   history  diversity  of  the  population.     However,  a  major  conclusion  from  this  analysis  is  steelhead  recovery  cannot  occur  without  a   significant  improvement  in  marine  survival.  The  current  estimate  of  smolt  to  adult  return  rate  of   0.5%  return  rate  is  cause  for  concern  for  the  long-­‐term  sustainability  of  the  population.  We   concluded  that  low  marine  survival,  resulting  in  adult  abundance  back  to  the  river  of  less  than  500   adults  and  observed  freshwater  variability  in  spawner  to  adult  productivity  are  significant  risks  to   the  anadromous  portion  of  the  population.  This  conclusion  is  consistent  with  the  Puget  Sound   Steelhead  Technical  Recovery  Team  conclusions  for  the  population  (Puget  Sound  Steelhead   Technical  Recovery  Team  2013a).  The  genetic  preservation  of  the  population  may  not  be  as  much  at   risk  because  of  the  presence  of  wild  resident  rainbow  trout  in  the  watershed,  suggesting  a  much   larger  effective  population.  However,  we  were  concerned  about  the  lack  of  information  for  this   portion  of  the  population  and  more  significantly  the  potential  to  lose  the  anadromous  portion  of  the   population.     The  NSRT  concluded  that  a  steelhead  conservation  hatchery  intervention  plan  should  be  considered   to  prepare  for  the  worse-­‐case  scenario  that  adult  steelhead  abundance  continues  to  decline.  As  well,   we  describe  a  steelhead  management  plan  that  considers  future  harvest  opportunities  as  steelhead   abundance  recovers.  Harvest  goals  are  an  important  component  of  the  recovery  plan  and  this   chapter  considers  strategies  to  support  that  goal.   This  chapter  is  organized  into  three  sections.  The  first,  Section  7.1  Hatchery  Options,  discusses   considerations  to  preserve  steelhead  in  the  basin  by  implementing  a  small  conservation  hatchery   program  and  other  possible  hatchery  options.  The  second,  Section  7.2  Harvest  Management   describes  potential  strategies  and  thresholds  for  achieving  harvest  goals  with  improvements  in   population  abundance.  Finally,  Section  7.3,  Conclusions,  discusses  long-­‐term  fish  management   strategies  to  achieve  harvest  goals  without  jeopardizing  recovery.     The  material  presented  in  this  chapter  is  a  preliminary  assessment  of  strategies  and  associated   benefits  and  risks.  Development  of  a  comprehensive  fish  management  component  to  the  recovery   plan  and  implementation  is  an  important  element  of  the  Nisqually  Action  plan  described  in   Chapter  8  Implementation.  

  Nisqually  River  Steelhead  Recovery  Plan    

7-­‐1  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

7.1

Nisqually  River  Steelhead  Management  

Hatchery  Options  

Hatcheries  can  be  an  important  tool  to  preserve  the  genetic  integrity  of  a  population  and  avoid  the   extinction  of  localized  populations  of  salmonids  –  i.e.,  Nisqually  River  steelhead.  Conservation   hatcheries  bring  a  portion  of  the  population  into  the  hatchery  and  rear  fish  to  juvenile  or  adult  stage   before  releasing  back  into  the  environment  or,  in  a  severe  case,  holding  fish  to  spawning  in  the   hatchery  (captive  brood).  The  objectives  are  to  preserve  the  genetic  integrity  of  the  population,   increase  natural  spawning  abundance,  and  minimize  ecological  interactions  with  wild  counterparts.   Hatchery  intervention  was  shown  to  be  a  viable  strategy  to  protect  genetic  integrity  and  benefit  the   wild  steelhead  population  in  Hamma  Hamma  River  in  Hood  Canal  (Van  Doornik  et  al.  2010;   Berejikian  et  al.  2008).     Hatcheries,  in  conjunction  habitat  restoration,  can  also  be  an  effective  tool  to  achieve  short  and  long-­‐ term  harvest  goals  for  the  Nisqually  River.  However,  returning  hatchery  fish  would  create  multiple   management  issues  and  the  mixing  of  hatchery  spawners  with  the  wild  population  would  likely   impact  long-­‐term  fitness  of  the  population  as  is  hypothesized  for  Nisqually  Chinook  (Nisqually   Chinook  Recovery  Team  2011).     Hatchery  options  for  Nisqually  steelhead  is  predicated  by  three  principles  (Mobrand  et  al.  2005,   2014):     1. well  defined  goals,     2. scientific  defensibility,  and     3. informed  decision  making.   These  principles  are  central  to  our  evaluation  of  hatchery  options  for  the  Nisqually  River.   Hatcheries  are  most  effective  to  circumvent  life  stages  with  low  survival.  Conventional  salmon  and   steelhead  hatcheries  collect  adult  broodstock  either  from  hatchery  returns  (segregated  type   program)  or  a  combination  or  hatchery  returns  and  natural-­‐origin  adults  (integrated  program)   and  typically  rear  offspring  in  the  hatchery  to  the  beginning  of  ocean  phase  of  the  life  cycle  (smolt   life  stage  for  steelhead).  This  circumvents  low  survival  in  the  freshwater  portion  of  the  life  cycle   due  to  habitat  quality  and  capacity  constraints  and  assumes  post-­‐release  marine  survival  is  high   enough  to  return  adults  to  the  river  at  a  rate  that  has  a  net  benefit  to  the  population.  However,   Nisqually  River  steelhead  may  be  a  unique  case  in  that  the  freshwater  phase  appears  to  be   generally  very  productive  and  the  survival  bottleneck  is  in  the  marine  environment.  This  suggests   a  conventional  hatchery  approach  with  a  smolt  release  would  not  be  successful  if  marine  survival   continues  to  be  the  primary  bottleneck.  Furthermore,  post-­‐release  survival  of  hatchery  fish  is   typically  lower  than  wild  fish,  which  further  compounds  the  impact  of  marine  survival  and  success   of  a  hatchery  program.     The  NSRT  was  also  concerned  that  variable  freshwater  survival  could  be  a  contributing  factor  to   population  extinction.  The  highly  variable  freshwater  productivity  reported  in  Chapter  4,  Nisqually   River  Steelhead  could  be  cause  for  concern  (however,  recall  freshwater  productivity  has  only  been   measured  for  three  complete  brood  years  –  see  Table  4-­‐12).  A  small  conservation  hatchery  program   would  help  protect  the  population  from  variable  freshwater  survival,  again  assuming  marine   survival  is  sufficient  to  return  adults  back  to  the  river  or,  if  not,  a  captive  brood  program  that  held   fish  to  maturity.  

  Nisqually  River  Steelhead  Recovery  Plan    

7-­‐2  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Steelhead  Management  

The  NSRT  made  a  preliminary  assessment  of  three  scenarios  for  hatchery  propagation  as  they  relate   to  conservation  and  harvest  goals  for  the  population.  A  segregated  type  program  was  considered  to   achieve  harvest  goals.  A  captive  brood  or  rearing  to  adult  stage  conservation  program  was   considered  to  achieve  conservation  goals.  An  integrated  program  based  on  smolt  release  might   contribute  towards  conservation  and  harvest  goals.  There  are  risks  and  benefits  with  all  types  of   hatchery  programs  that  need  to  be  evaluated  (Mobrand  et  al.  2005,  2014).  The  NSRT  made  a   qualitative  assessment  of  possible  outcomes  for  three  options  for  hatchery  propagation:  1)  a  captive   brood  conservation  program,  2)  a  segregated  harvest  program,  and  3)  an  integrated  program  that   could  contribute  to  conservation  and  harvest  goals  (Table  7-­‐1).  We  evaluated  risks  based  on  a   concern  for  potential  unintended  negative  consequences  from  excessive  hatchery  adults  spawning   with  wild  steelhead,  prolonged  hatchery  influence  on  the  population,  and  the  removal  of  wild   steelhead  for  hatchery  broodstock.    

Table  7-­‐1.  Assessment  of  Hatchery  Options  for  Nisqually  River  Steelhead    

Captive  Brood  

Segregated  

Integrated  

Purpose:  

Conservation  

Harvest  

Conservation/Harvest  

Approach:  

Eggs  or  juveniles   collected  from  nature;   hatchery  rearing  to   adult,  release  adults   back  to  river  with   option  to  release   juveniles  propagated   from  captive  brood   back  to  river   Return  to  nature  to   spawn  with  wild   population  

Develop  a  distinct   hatchery  broodstock   based  on  hatchery   returns;  release  at   smolt  stage  

Initiate  program  using   adults  from  wild   population  and  over   time  spawn  portion   with  returning  hatchery   adults;  release  at  smolt   stage  

Harvest  or  collect   nearly  all  hatchery   return  to  avoid   introgression  with  wild   population  pHOS   (percent  hatchery   spawners)  <  5.0%3  

Harvest  or  collect   hatchery  return  to   achieve  a  PNI   (proportionate  natural   influence)  greater  than   0.67  

Collect  eggs,  juveniles,   or  adults  from  wild   population  in  a  manner   that  ensures   representation  of  the   wild  population  gene   pool  with  low   demographic  risk  to   population.  

Harvest  or  collection  of   returning  adults  such   that  very  few  fish   escape  or  stray  to   spawn  in  nature  

Harvest  or  collection  of   returning  adults  such   that  few  spawn  in   nature,  collection  of   wild  adults  for   integrated  broodstock,   culture  and  release   strategies  to  achieve   high  post-­‐release   survival  

Disposition  of  Adult   Return:  

Program  Challenges:  

                                                                                                                          3  The  HSRG  recently  evaluated  the  5%  pHOS  criteria  for  segregated  programs  and  noted  this  criteria  may  results  in  

unacceptable  impacts  to  wild  population  fitness  and  even  lower  pHOS  criteria  might  be  established  (HSRG  2014).     Nisqually  River  Steelhead  Recovery  Plan    

7-­‐3  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Steelhead  Management  

 

Captive  Brood  

Segregated  

Integrated  

Purpose:   Program  Risks:  

Conservation   Long  hatchery   residence  and   domestication  pressure,   fish  culture  challenges   with  captive  brood  and   rearing  fish  to  adult   stage  

Harvest   Loss  of  fitness  of  wild   population  with   excessive  introgression   of  segregated  hatchery   adults,  low  marine   survival  

Program  Benefits:  

Preserve  genetic   integrity  of  population   and  demographic  boost   to  wild  population  

Contribute  to  harvest   goals  

Conservation/Harvest   Loss  of  fitness  of  wild   population  from  not   meeting  high  PNI   objective,  demographic   risks  to  population  with   removal  of  wild   steelhead  for   broodstock,  low  marine   survival   Contribute  to  harvest   goals  and  provide   demographic  boost  to   wild  population  

  The  costs,  facility  requirements  and  culture  challenges  of  a  captive  brood  or  rearing  from  egg  to   adult  type  program  suggest  this  option  should  only  be  considered  if  there  is  imminent  threat  of   extinction  of  steelhead  in  the  Nisqually  River.  Such  a  program  would  need  to  be  based  on  tightly   controlled  conservation  protocols  to  protect  genetic  integrity  of  fish  collected  and  held  in  captivity,   and  any  production  to  support  harvest  goals  would  need  to  be  set  aside.  The  strategy  that  would   likely  be  most  successful  would  be  collecting  eggs  from  natural  redds  and  rearing  fish  to  adult   before  releasing  back  the  river  (Berejikian  et  al  2008,  Van  Doornik  2010).     More  conventional  strategies  using  domesticated  hatchery  broodstock  (segregated  program)  or  a   Nisqually  River  integrated  program  would  need  to  overcome  low  marine  survival  and  broodstock   management  challenges  (escapement  composition  and  wild  broodstock  collection).  Both  of  these   strategies  have  significant  risks  to  the  genetic  integrity  of  the  population  by  reducing  genetic   variability  or  effective  population  size  (Ryman  and  Laikre  1991).  Selection  in  the  hatchery  would   potentially  affect  fitness  of  the  wild  population  with  excessive  and  prolonged  introgression  of   hatchery  adults  in  the  spawning  escapement  (Ford  2002;  HSRG  2009).  The  current  low  abundance   of  wild  adults  increases  these  risks.  The  HSRG  (2009)  found  in  their  review  of  hatchery  programs  in   the  Columbia  Basin  that  hatcheries  were  more  successful  at  meeting  harvest  goals  and  better  able  to   coexist  with  conservation  goals  when  wild  populations  were  productive  and  abundant.  Thus,  an   integrated  program  may  be  a  future  option  to  support  harvest  goals  after  increases  in  productivity   and  abundance  following  successful  results  from  strategies  to  improve  marine  survival  and   protection/restoration  of  freshwater  habitat.  However,  harvest  would  likely  need  to  be  selective  on   marked  hatchery  adults  to  fully  realize  harvest  benefits  and  not  jeopardize  conservation  goals.  

7.2

Harvest  Management  

There  has  not  been  a  directed  tribal  fishery  on  steelhead  since  winter  of  1993/94.  During  the  1980s   annual  tribal  steelhead  harvest  averaged  1,868  fish.  During  the  same  period  another  1,734  fish  were   harvested  annually  by  non-­‐tribal  fishers.  Total  average  number  of  fish  harvest  annually  was  3,600   steelhead.  This  harvest  was  on  an  average  annual  return  to  the  river  of  5,815  steelhead.  The  goal  for   the  population  is  to  restore  wild  population  abundance  back  to  the  levels  observed  in  the  1980s.    

  Nisqually  River  Steelhead  Recovery  Plan    

7-­‐4  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Steelhead  Management  

The  Nisqually  Tribe  has  a  short-­‐term  goal  to  provide  a  ceremonial  and  subsistence  (C&S)  harvest   (exact  number  of  fish  undetermined)  and  a  long-­‐term  goal  of  an  annual  average  harvest  of  2,500   fish.  The  development  of  a  comprehensive  harvest  management  component  to  the  recovery  plan   and  implementation  is  an  action  described  in  Chapter  8  Implementation.  This  component  of  the  plan   would  take  into  account  conservation  goals,  run  forecasting,  and  trends  in  steelhead  abundance.     Future  steelhead  management  will  need  to  consider  status  of  population  abundance,  progress   towards  rebuilding  goals,  and  management  decisions  for  implementing  conservation  and  harvest   strategies.  There  are  many  possible  decision  rules  and  future  conditions  that  need  to  be  explored  in   detail.  Decisions  will  need  to  be  made  with  respect  population  abundance  and  trends.  One  option  for   future  management  is  to  use  a  tiered  population  status  approach  as  outlined  below:   

Status  0  –  extreme  conservation  priority,  run  size  below  critical  threshold  causing  significant   concern  for  the  long-­‐term  viability  of  steelhead  in  watershed  



Status  1  –  conservation  priority,  harvest  is  incidental  during  winter  chum  fishery  and  by   management  agreement  not  to  exceed  10%  of  run  (current  fishery  management  is  less  than  5%)  



Status  2  –  conservation  remains  a  priority  but  run  size  is  sufficient  to  allow  a  directed  C&S   fishery.  Annual  harvest  sufficient  to  meet  C&S  goal  has  not  been  determined,  for  purpose  of  this   analysis  assumed  to  range  between  200  and  500  fish.  



Status  3  –  directed  commercial  harvest  at  a  level  that  does  not  impede  recovery  and  long-­‐term   sustainability  of  population.  Nisqually  Indian  Tribe  identified  a  2,500  fish  annual  harvest  as  a   goal  for  a  combined  C&S  and  commercial  fishery.  

We  developed  two  sets  of  decision  rules  for  these  status  levels  to  evaluate  effects  on  population   abundance  and  trends.  The  first  set  of  rules  assumes  a  higher  abundance  threshold  for   implementation  of  a  conservation  hatchery  and  lower  thresholds  for  beginning  a  tribal  C&S  or   commercial  fishery.  The  second  set  of  rules  assumes  a  lower  abundance  threshold  for   implementation  of  a  conservation  hatchery  and  higher  thresholds  for  beginning  a  tribal  C&S  or   commercial  fishery.  These  two  sets  of  rules  approximate  scenarios  with  a  low  and  high  conservation   emphasis  for  fish  management,  respectively.  Adult  abundance  thresholds  for  the  two  scenarios  are   shown  in  Table  7-­‐2.  Rules  were  developed  for  when  to  move  to  a  higher  status  levels  and  when  to   shift  down  a  status  level  for  conservation.  An  upward  shift  can  occur  based  on  the  5  year  running   geometric  mean  abundance.  In  order  to  be  more  responsive  to  declines  in  population  abundance,  we   decided  that  two  consecutive  years  of  abundance  at  a  lower  status  will  move  the  population  into   that  lower  status,  regardless  of  the  5  year  running  geometric  mean.  Shifting  to  Status  Level  0  and   implementing  a  conservation  hatchery  may  require  a  different,  more  conservative  rule  before  taking   that  step.     We  emphasize  that  run  size  thresholds  and  harvest  rates  for  the  low  and  high  conservation   scenarios  in  Table  7-­‐2  were  developed  to  explore  possible  management  strategies  with  changing   run  size.  Other  decision  rules  and  scenarios  would  need  be  developed  and  evaluated  as  the  fish   management  plan  is  developed  and  recovery  plan  is  implemented.  

 

Status  1  is  the  current  condition  and  Status  0  represents  a  condition  of  high  extinction  risk.  Status  2   and  3  are  expected  outcomes  of  a  successful  Nisqually  watershed  recovery  plan  and  Puget  Sound-­‐ wide  steelhead  recovery  plan  to  improve  marine  survival.      

  Nisqually  River  Steelhead  Recovery  Plan    

7-­‐5  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Steelhead  Management  

Table  7-­‐2.  Fish  Management  Thresholds  for  Two  Scenarios  Used  to  Explore  Harvest  Opportunities   for  Nisqually  River  Steelhead   Run  Size   Population  Status   Status  0  –  Run  size   below  critical  level   Status  1  –  Low  run   size   Status  2  –  Building   run   Status  3  –   Abundant  stable   run  

Low   Conservation  

High   Conservation  

3,000  

Management  Strategy   Implement  conservation  hatchery  to   preserve  population  genetic  integrity   No  directed  harvest  on  steelhead,  harvest   rate  of  5%  during  winter  chum  fishery   C&S  tribal  fish,  200  –  500  annual  catch   (10%  harvest  rate)   Directed  tribal  commercial  and  C&S   fishery  with  annual  goal  of  2,500  fish   harvest  (45%  harvest  rate)  

  The  conservation  scenarios  were  explored  using  a  simple  three  stage,  age  structured,  population   simulation  model  with  a  100-­‐year  simulation  period.  Model  results  were  evaluated  for  effect  on  run   size,  harvest,  and  escapement.  The  three  stages  used  in  the  simulation  are:  1)  spawner  to  smolt,  2)   smolt  to  adult  back  to  river,  and  3)  adult  in-­‐river  migration  back  to  spawning.  Assumptions  are   entered  for  the  Beverton-­‐Holt  productivity  and  capacity  parameters  for  spawner  to  smolt  and  adult   in-­‐river  migration.  Smolt  to  adult  marine  survival  was  entered  as  a  single  density-­‐independent   survival  rate.  Random  stochastic  variation  in  spawner  to  smolt  and  smolt  to  adult  survival  was   simulated  with  independent  random  variables  and  a  log-­‐normal  distribution.  Cyclic  variations  in   marine  survival  to  mimic  periods  of  low  and  high  marine  survival  were  not  included  in  the   simulation.  It  is  unclear  how  the  Pacific  Decadal  Oscillation  (PDO)  and  the  El  Nino-­‐Southern   Oscillation  (ENSO)  might  affect  Nisqually  steelhead  marine  survival.  These  patterns  of  Pacific   climate  variability  affect  ocean  food  webs  related  to  the  marine  survival  of  salmon  (Mantua  et  al.   1997;  Mantua  and  Mote  2001)  and  may  affect  run  size  forecasting  and  steelhead  management  in  the   Nisqually  River.  Finally,  results  for  the  two  conservation  scenarios  evaluated  assumed  the  same   pattern  of  random  variation  for  freshwater  and  marine  survival.   The  simulations  started  with  current  condition  assumptions  (see  Chapter  5)  for  freshwater   recruitment,  a  1%  marine  survival,  and  assumed  a  steady  progression  (25  years)  towards  improved   freshwater  productivity  and  capacity  predictions  reported  in  Chapter  6  (Recovery  Strategies)  and  a   5%  marine  survival.  We  did  not  evaluate  a  scenario  representing  declining  freshwater  or  marine   survival  and  hatchery  intervention.  We  first  need  to  detail  hatchery  methods,  in-­‐hatchery  survival,   and  post-­‐release  survival  before  we  can  evaluate  a  meaningful  intervention  scenario.     Results  for  the  Low  and  High  Conservation  scenarios  are  presented  in  Table  7-­‐3  and  Figure  7-­‐1.  The   effect  of  different  thresholds  assumed  for  the  two  scenarios  were  evaluated  for  run  size,  catch,  and   escapement.  Both  scenarios  have  the  same  random  variation  in  freshwater  and  marine  survival.  The   only  differences  between  these  scenarios  are  the  thresholds  for  transitions  between  status  levels.     The  assumption  of  improving  freshwater  and  marine  survival  is  obvious  in  Figure  7-­‐1  as  run   increased  steadily  to  year  25.  This  may  represent  an  optimistic  prediction  of  future  conditions  and   has  a  significant  effect  on  model  projections.  There  was  a  quicker  shift  to  Status  3  (commercial   fishery)  with  Low  Conservation  rules  compared  to  the  High  Conservation  simulation,  consistent   with  the  lower  threshold  (>3,000  run  versus  4,500  run,  respectively).  The  run  was  in  Status  3  81%     Nisqually  River  Steelhead  Recovery  Plan    

7-­‐6  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Steelhead  Management  

of  the  time  with  Low  Conservation  rules  versus  52%  of  the  time  with  High  Conservation  rules   (Table  7-­‐3).  The  High  Conservation  rules  forced  the  run  back  to  Status  2  at  several  points  during  the   100  year  simulation  as  evidenced  by  catch  (Figure  7-­‐1).  Mean  catch  for  Status  3  ranged  from  1,197   to  3,195  steelhead  with  a  mean  catch  of  2,153  steelhead.  The  more  conservative  rules  resulted  in   higher  catch  in  Status  3,  range  1,715  to  3,377  and  mean  catch  of  2,342  steelhead.  However,  overall   catch  across  years  was  less  with  the  more  conservative  rules  because  the  run  was  in  Status  3  less   often.    

Table  7-­‐3.  Results  for  Low  and  High  Conservation  Scenario  Simulations   Management  Phase  

Status  0  

Status  1  

Status  2  

Status  3  

#  Years  

0  

8  

12  

81  

Run  to  River   Mean  

 

704  

2,318  

4,784  

Minimum   Maximum  

   

559   992  

1,228   3,660  

2,660   7,099  

Mean   Minimum  

   

35   28  

232   123  

2,153   1,197  

Maximum  

 

50  

366  

3,195  

Spawning  Escapement  a   Mean  

 

514  

1,579  

2,041  

Minimum   Maximum  

   

395   729  

851   2,453  

1,159   2,947  

#  Years  

0  

13  

36  

52  

Run  to  River  

 

 

 

 

Mean   Minimum   Maximum  

     

1,063   559   2,013  

4,088   1,918   5,818  

5,203   3,810   7,505  

Catch  

 

 

 

 

Mean  

 

53  

409  

2,342  

Minimum   Maximum  

   

28   101  

192   582  

1,715   3,377  

Spawning  Escapement  a  

 

 

 

 

Mean   Minimum   Maximum  

     

771   395   1,431  

2,763   1,325   3,833  

2,210   1,651   3,099  

Low  Conservation  Scenario  

Catch  

High  Conservation  Scenario  

a  Spawning  escapement  =  Run  to  River  minus  Harvest  minus  migration/prespawn  natural  mortality  

 

  Nisqually  River  Steelhead  Recovery  Plan    

7-­‐7  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Steelhead  Management  

Figure  7-­‐1.  Results  Low  and  High  Conservation  Scenarios  for  Run  to  River  and  Catch  (top)  and   Spawning  Escapement  (bottom)  

 

   

  Nisqually  River  Steelhead  Recovery  Plan    

7-­‐8  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Nisqually  River  Steelhead  Management  

The  Low  Conservation  rules  resulted  in  lower  mean  spawning  escapement  across  all  status  levels   (Table  7-­‐3).  The  range  in  spawning  escapement  when  the  population  was  in  Status  3  was  less  with   the  more  conservative  rules  (1,448  versus  1,788).  This  was  because  of  the  more  conservative  rules   moved  the  population  to  Status  2  more  often.  There  was  a  greater  range  in  spawning  escapement   when  the  population  was  in  Status  2  with  the  more  conservative  rules.  This  was  a  response  to   scaling  back  harvest  to  protect  escapement  when  the  previous  2  years  were  below  the  Status  3   threshold.  Population  productivity  was  high  with  marine  survival  averaging  5%,  such  that  the   population  recovered  quickly  from  low  escapements  in  both  scenarios.  The  diverse  freshwater  and   marine  age  structure  of  the  population  also  helped  to  stabilize  population  abundance  as  freshwater   and  marine  survival  varied.     Although  these  fishery  scenarios  are  very  speculative  and  should  only  be  used  to  explore  two   hypothetical  management  regimes,  results  from  these  simulations  are  encouraging  and  suggest  an   approach  to  steelhead  management  in  response  to  changing  productivity  and  abundance.  

7.3

Conclusions  

The  NSRT  concluded  the  preferred  option  for  the  short-­‐term  is  to  focus  planning  and  resources   towards  understanding  and  improving  marine  survival  and  protection  and  restoration  of  freshwater   habitat.  More  evaluation  is  needed  to  develop  a  robust  fish  management  plan  for  Nisqually   steelhead.  Material  presented  in  this  chapter  is  a  preliminary  assessment  of  challenges  and   risks/benefits  of  some  hatchery  options.  Chapter  8  Implementation  discusses  in  more  detail   components  of  the  recovery  plan  intended  to  improve  upon  this  analysis  and  develop  a  fish   management  component  to  the  recovery  plan.      

  Nisqually  River  Steelhead  Recovery  Plan    

7-­‐9  

July  2014   ICF  00153.13  



Chapter 8

Implementation The successful recovery of Nisqually winter steelhead depends on addressing all of the factors contributing to population declines through a comprehensive strategy that considers all sources of mortality, protection of intact functional habitat, and restoration of degraded conditions. The NSRT will implement the recovery plan by focusing on a recovery strategy that emphasizes protection and process-based habitat restoration as the highest priorities and uses the information developed herein to focus efforts on the habitat attributes and ecological concerns, life-history stages, and geographic locations with the greatest potential for benefiting Nisqually winter steelhead. Implementation of the recovery plan will focus on the following items.  







The goals and objectives developed by the NSRT (Chapter 2, Recovery Goals and Objectives).

The principal threats to winter steelhead productivity, abundance, and life-history diversity (Chapter 5, Restoration and Protection Needs).

The consequent suite of process-based habitat protection and recovery strategies (Chapter 6, Habitat Recovery Strategies) and the prioritization of those habitat protection and recovery strategies.

Strategies for ensuring population stability in the face of low abundance and consequent extinction risk and strategies for providing harvest, while supporting abundance consistent with population recovery (Chapter 7, Fish Management).

Implementation of an adaptive-management framework to address data gaps, manage uncertainty, and incorporate new information, while simultaneously proceeding with recovery implementation.

Analysis of adult and juvenile abundance and recruitment presented in Chapter 4, Nisqually River Steelhead, strongly indicates marine survival is a significant factor in the decline of Nisqually River steelhead. Although most of this plan is focused on freshwater habitat conditions, restoration and protection priorities, and monitoring in the Nisqually watershed, the NSRT has a strong interest in findings and recommendations from the research plan developed by the Steelhead Marine Survival Workgroup (Steelhead Marine Survival Workgroup 2014).

8.1

Strategic Objectives for Recovery

Implementation of the recovery plan focuses on achieving the strategic recovery objectives articulated in Chapter 2, Recovery Goals and Objectives, which in turn help achieve the long- and short-term conservation and harvest goals for winter steelhead. Implementation of the recovery plan focuses on three main categories of recovery objectives that reflect the essential components and overlapping scales at which recovery needs to occur.   

Habitat objectives

Fish-management objectives

Monitoring and adaptive-management objectives

Nisqually River Steelhead Recovery Plan

8-1

July 2014

ICF 00153.13

  Nisqually  Steelhead  Recovery  Team    

8.1.1

Implementation  

Habitat  Objectives  

Habitat  objectives  are  intended  to  support  both  the  long-­‐  and  short-­‐term  conservation  goals.  These   objectives  will  be  achieved  through  an  improved  understanding  of  marine  survival  issues  and   implementing  priority  freshwater  restoration  and  protection  strategies.  Such  activities  include   continuing  to  promote  the  habitat  restoration  and  protection  activities  identified  for  Chinook   salmon  that  also  benefit  steelhead,  in  addition  to  activities  intended  to  better  understand  critical   data  gaps  regarding  factors  affecting  marine  survival  and  to  improve  smolt-­‐to-­‐adult  survival  of   Nisqually  steelhead.     Implementation  of  the  recovery  plan  focuses  on  the  following  specific  activities:   

Identify  habitat  protection,  restoration,  and  enhancement  actions  from  the  fall  Nisqually   Chinook  Recovery  Plan  that  are  also  relevant  to  steelhead.  Use  this  new  list  of  overlapping   actions  to  prioritize  and  implement  actions  to  achieve  recovery  goals  for  both  species  and   secure  recovery  funding.    



Identify  habitat  protection,  restoration,  and  enhancement  actions  unique  to  steelhead,  and   develop  a  method  for  incorporating  habitat  restoration  actions  with  a  focus  on  steelhead  into   the  Nisqually-­‐wide  salmon  recovery  portfolio  of  actions.  



Identify  how  findings  of  regional  marine  survival  research  are  relevant  to  the  recovery  of   Nisqually  steelhead.  



Support  the  incorporation  of  findings  of  marine  survival  research  into  a  Puget  Sound-­‐wide   steelhead  recovery  plan.  Implement  strategies  with  the  greatest  likelihood  to  improve  smolt-­‐to-­‐ adult  survival,  including  indirect  benefits  through  an  ecosystem  approach  to  recovery.    



Support  the  development  and  implementation  of  actions  to  improve  marine  survival  at  scales   relevant  to  the  Nisqually  Demographically  Independent  Population  (DIP)  specifically,  and  the   Puget  Sound  Distinct  Population  Segment  (DPS)  as  a  whole.  

8.1.2

Fish-­‐Management  Objectives  

Fish-­‐management  objectives  are  intended  to  support  both  the  long-­‐  and  short-­‐term  harvest  goals   and  ensure  fishery-­‐related  mortality  does  not  impede  recovery.  Fish-­‐management  objectives  also   include  the  need  to  ensure  short-­‐  and  long-­‐term  population  genetic  diversity  and  viability.   Implementation  of  the  recovery  plan  will  work  to  achieve  clearly  defined  management  plans  guiding   steelhead  harvest  levels  and  resident  rainbow  population  management.     Implementation  of  the  recovery  plan  focuses  on  the  following  specific  activities:   

Develop  and  implement  a  winter  steelhead  management  plan  to  guide  future  sustainable   harvest,  including  escapement  targets,  and  thresholds  for  indirect  and  targeted  harvest.    



Develop  and  implement  a  resident  rainbow  trout  management  plan  to  guide  resident  fish   harvest  and  incidental  mortality  of  juvenile  steelhead  encountered  in  the  fishery.  



Develop  and  implement  a  hatchery  rainbow  trout  stocking  plan  in  lakes  to  reduce  potential   genetic  and  ecological  impacts  on  steelhead  and  resident  rainbow  trout.  



Develop  a  steelhead  hatchery  conservation  plan  and  criteria  necessary  to  protect  population   genetic  diversity  and  viability.  

  Nisqually  River  Steelhead  Recovery  Plan    

8-­‐2  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

8.1.3

Implementation  

Monitoring  and  Adaptive-­‐Management  Objectives  

Monitoring  and  adaptive-­‐management  objectives  are  intended  to  integrate  steelhead  recovery   efforts  with  other  salmonid  recovery  efforts  in  the  watershed,  to  track  the  effectiveness  of  steelhead   recovery  efforts,  and  to  address  the  data  gaps  identified  in  the  recovery  plan.     Implementation  of  the  recovery  plan  focuses  on  the  following  specific  activities:   1. Develop  a  monitoring  program  that  will  describe  the  population  sufficiently  to  ensure  progress   toward  goals,  or  lack  thereof,  if  detected.  The  program  will  include  such  elements  as:   a.

Estimates  of  adult  steelhead  run  size,  escapement,  and  total  brood  year  adult  recruits.  

b. Estimates  of  juvenile  outmigrants  and  annual  smolt-­‐to-­‐adult  survival  estimates.   c.

Monitoring  habitat  status  and  trends.  

2. Incorporate  winter  steelhead  into  the  existing  Nisqually  River  adaptive-­‐management  framework   developed  for  fall  Chinook,  including  APR  workshops.   3. Incorporate  winter  steelhead  threat  analysis  and  recovery  strategies  into  the  Puget  Sound   Partnership’s  M&AM  project  data  structure  that  is  based  on  the  Puget  Sound  Recovery   Implementation  Technical  Team’s  (PSRITT)  Common  Framework.   4. Complete  and  implement  recommendations  of  an  assessment  of  the  resident  and  anadromous   genetic  resource  in  the  Nisqually  River  watershed,  including  O.  mykiss  upstream  of  the  dams.   5. Complete  a  hatchery  rainbow  trout  stocking  program  review  and  evaluation  of  their  potential   impact  on  wild  winter  steelhead.   6. Assess  nanophyetus  impacts  on  steelhead  survival  upon  marine  entry.   7. Identify  landscape-­‐scale  pressures  that  are  causing  habitat  degradation  and  include  strategies  to   reduce  or  mitigate  these  pressures  in  the  implementation  of  habitat  actions.  

8.2

Winter  Steelhead  Action  Plan    

The  winter  steelhead  action  plan  has  been  developed  to  address  the  key  threats  to  winter  steelhead   recovery  in  the  Nisqually  watershed,  and  to  implement  the  components  identified  herein  to  meet  the   habitat,  fish  management,  and  monitoring  and  adaptive-­‐management  objectives  identified  by  the  NSRT.     A  key  conclusion  by  the  NSRT  is  that  core  freshwater  areas  supporting  Nisqually  wild  steelhead  are   highly  functional  and  need  to  remain  that  way  if  steelhead  are  to  persist  in  the  watershed.  That  is   not  to  say  habitat  condition  is  good  in  all  of  these  core  areas.  The  NSRT  was  concerned  that   historical  floodplain  encroachment  has  altered  the  mainstem  Nisqually  River  in  portion  of  the   Whitewater,  Wilcox,  and  McKenna  reaches.  The  NSRT  did  not  find  evidence  to  suggest  additional   encroachment  has  occurred  since  the  Nisqually  Chinook  Recovery  Plan  was  developed,  the  concern   was  the  amount  of  protected  shoreline  in  these  reaches  is  low  and  future  development  in  the   watershed  may  put  key  areas  at  risk.   The  Mashel  watershed  is  the  second  largest  supporter  of  steelhead  in  the  watershed  and  the  NSRT   was  concerned  of  several  threats  to  habitat  in  this  watershed.  The  NSRT  saw  an  opportunity  to  work   with  stakeholders  to  ensure  the  Nisqually-­‐Mashel  State  Park  Management  Plan  is  developed  in  a     Nisqually  River  Steelhead  Recovery  Plan    

8-­‐3  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Implementation  

way  to  protect  high  quality  habitat  and  promote  restoration.  Much  of  the  Mashel  watershed  is  in   commercial  forest  lands.  The  NSRT  recognized  the  importance  to  keep  these  areas  for  timber   harvest,  but  was  concerned  that  as  new  stands  of  timber  reach  marketable  size  that  future  harvest   may  reverse  some  of  the  recovery  that  has  occurred  in  the  watershed  following  the  last  period  of   intensive  harvest.  The  NSRT  saw  an  opportunity  to  work  with  stakeholders  developing  a  community   forest  initiative  for  the  upper  Mashel  River  watershed.  This  initiative  would  include  protection   (identify  areas  in  the  watershed  to  manage  for  conservation),  restoration  (repair  damage  from  past   timber  practices),  and  sustainable  low-­‐impact  timber  harvest.     The  Prairie  Tributaries  generally  originate  from  rural  and  more  urban  areas  of  the  watershed.  Our   analysis  suggests  these  streams  individually  are  not  large  producers  of  steelhead.  However,  these   streams  can  help  support  a  more  diverse  population  than  at  present.  Portions  of  many  of  these   streams  have  been  ditched  and  riparian  vegetation  removed  over  many  years.  These  streams  are  at   risk  of  additional  loss  of  flow  from  change  in  land  cover  and  groundwater  extraction.  Long-­‐term  it  may   be  difficult  to  restore  many  of  these  streams.  The  NSRT  concluded  more  work  is  needed  to  better   understand  their  potential  and  to  identify  some  priority  streams  for  protection  and  restoration.     The  NSRT  knew  less  about  Lackamas,  Toboton,  and  Powell  Creeks  than  most  other  streams  in  the   basin.  These  streams  may  have  more  potential  to  support  steelhead  recovery  than  other  tributaries  in   the  watershed  because  of  their  more  rural  location,  which  suggests  a  higher  likelihood  for  restoration.   Alternatively,  increased  development  in  these  drainages  would  put  these  streams  at  risk.     The  long-­‐term  outlook  for  Muck  Creek  suggests  a  worsening  of  low  flow  issues  in  the  basin  if  land   use  patterns  continue  to  move  toward  a  more  developed  urban  landscape.  At  present  there  is  some   information  suggesting  low  flow  conditions  have  worsened  in  the  last  10  to  20  years.  The  lack  of   long-­‐term  monitoring  in  this  basin  is  a  hindrance  to  better  understanding  land  use  and  climate   impacts  on  flow.  The  positives  are  that  Joint  Base  Lewis-­‐McChord  will  be  developing  an  ESA  species   management  plan  that  will  include  actions  to  protect  and  support  recovery  of  steelhead  in  Muck   Creek.  Historical  channel  alterations,  invasive  reed-­‐canary  grass,  and  low  flow  are  significant   challenges  to  improving  habitat  in  Muck  Creek  upstream  of  the  Canyon  reaches.   Harvest  threats  to  Nisqually  steelhead  are  low.  Terminal-­‐area-­‐directed  fisheries  on  steelhead  have   been  eliminated.  Low  numbers  of  steelhead  have,  in  the  past,  curtailed  fisheries  on  other  species   resulting  in  lost  harvest  opportunities.  The  NSRT  discussed  the  potential  impact  of  the  resident   native  trout  sport  fishery  (sport  fishing  for  rainbow  trout  and  cutthroat  trout  allowed  in   anadromous  waters);  the  concern  was  the  incidental  harvest  of  juvenile  steelhead  at  this  popular   fishery.  The  fishery  for  hatchery  rainbow  trout  is  isolated  to  two  lakes  in  the  watershed.  The  NSRT   concluded  that  a  review  was  warranted  to  ensure  the  trout  plants  and  fisheries  were  not  impeding   recovery  and  develop  a  management  plan  to  maintain  the  native  trout  and  hatchery  trout  fisheries.   There  are  two  hydroelectric  developments  located  on  the  Nisqually  River:  the  Nisqually  Project  and   the  Yelm  Project.  The  Nisqually  Project  is  upstream  of  the  presumed  historical  winter  steelhead   range  (although  summer  steelhead  may  have  been  present,  the  NSRT  chose  to  not  evaluate  that   potential).  Effects  of  the  Nisqually  Project  are  the  retention  of  coarse  and  fine  sediment  and  wood   upstream  of  the  dams.  The  reservoirs  are  operated  to  reduce  flooding  in  the  lower  basin.  The  NSRT   did  not  have  information  to  ascertain  the  potential  impact  of  reduced  peak  flows  along  with   retention  of  sediment  and  wood  on  mainstem  habitat  downstream  of  the  project.  The  Yelm  Project   includes  a  flow  diversion  structure,  a  bypass  canal  leading  to  the  powerhouse,  and  a  bypass  reach  on   the  mainstem  Nisqually  River.  The  NSRT  was  concerned  that  at  the  dam  steelhead  juveniles  may  be     Nisqually  River  Steelhead  Recovery  Plan    

8-­‐4  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Implementation  

entrained  in  the  flow  diversion  structure  and  enter  the  canal  or  may  be  subject  to  greater  predation   in  the  fish  bypass  structure  at  the  dam.  Concern  was  also  expressed  that  reduced  flows  in  the  bypass   reach  may  have  an  impact  on  egg  incubation  or  juvenile  survival  at  certain  times  of  the  year.    

8.2.1

Application  of  Steelhead  Common  Framework  

The  Puget  Sound  Chinook  Salmon  Recovery:  A  Framework  for  the  Development  of  Monitoring  and   Adaptive  Management  Plans  (Common  Framework)  was  developed  by  the  Puget  Sound  Recovery   Implementation  Technical  Team  in  2013  to  provide  a  formal  monitoring  and  adaptive-­‐management   framework  for  assessing  Puget  Sound  Chinook  salmon  recovery.  The  Common  Framework  is   intended  to  help  salmon  recovery  managers  formalize  their  local-­‐scale  monitoring  and  adaptive-­‐ management  plans  using  a  common  approach.     The  Common  Framework  was  developed  using  concepts  taken  from  the  Open  Standards  for  the   Practice  of  Conservation  (Open  Standards)  (Conservation  Measures  Partnership  2013).  Open   Standards  is  a  scalable,  adaptable  system  that  is  widely  used  to  design,  manage,  and  monitor   conservation  projects  using  several  interrelated  categories  of  information  or  “elements.”   

Ecosystem  components:  Species,  habitats,  or  ecological  processes  that  are  chosen  to  represent   and  encompass  the  full  suite  of  biodiversity  in  the  project  area  for  place-­‐based  conservation.  



Key  ecological  attributes:  Patterns  of  biological  structure  and  composition,  ecological   processes,  environmental  regimes,  and  other  environmental  constraints  necessary  for  an   ecosystem  component  to  persist.  



Pressures:  Factors  or  actions  that  deliver  direct  stresses  to  ecosystem  components.  



Stresses:  Altered  or  degraded  key  ecological  attributes.  



Strategies:  A  group  of  actions  with  a  common  focus  designed  to  achieve  specific  objectives  and   goals.  Strategies  are  focused  on  reducing  pressures  and  stresses.  

These  elements  function  as  building  blocks  of  conceptual  models  that  describe  the  relationships   between  strategies,  pressures  on  ecosystem  components,  and  recovery  goals  and  objectives  to   determine  what  restoration  or  conservation  actions  are  likely  to  be  most  effective.  Open  Standards   (and  therefore,  the  Common  Framework)  uses  the  companion  software  program  Miradi™  to  create   graphical  depictions  of  these  conceptual  models.   The  Common  Framework  was  initially  developed  to  support  Chinook  salmon  recovery,  but  Chinook   and  steelhead  and  their  habitat  share  many  of  the  same  ecosystem  components,  key  ecological   attributes,  pressures,  and  stresses.  The  adaptation  of  the  Common  Framework  for  steelhead   involves  identifying  the  differences  between  the  life  histories  of  Chinook  and  steelhead  and  their   differing  use  of  certain  habitat  types.  A  steelhead  adaptation  of  the  Common  Framework  was   developed  through  collaboration  between  the  Hood  Canal  Steelhead  Recovery  Panning  effort  and   the  Nisqually  Steelhead  Recovery  Plan  development  effort.   Adaptation  of  the  Common  Framework  for  steelhead  consisted  of  two  main  steps.   1. Dividing  or  consolidating  ecosystem  components  to  more  accurately  and  efficiently  describe   steelhead  habitat  needs.     2. Revising  the  life  stages  and  their  respective  key  ecological  attributes  to  reflect  steelhead’s  longer   freshwater  residence  and  more  diverse  suite  of  life  histories.     Nisqually  River  Steelhead  Recovery  Plan    

8-­‐5  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Implementation  

The  salmon  and  salmon  habitat  information  entered  into  the  Common  Framework  yields  several   types  of  data  products.  Conceptual  models  describe  the  relationships  between  pressures,  stresses,   the  components’  key  ecological  attributes,  and  the  components  themselves.  Results  chains  are   constructed  using  the  relationships  developed  for  conceptual  models  and  they  show  how  broad   strategies  and  their  constituent  actions  are  intended  to  reduce  pressures,  and  consequently,   improve  the  health  of  one  or  more  components.  The  conceptual  model’s  indicators  of  the  pressures’   impacts  and  a  key  ecological  attribute’s  health  allow  conceptual  models  to  display  and  track  a   component’s  general  health  and  a  pressure’s  degree  of  impact  over  time.   The  various  Common  Framework  data  products  will  be  useful  in  implementing  the  recovery  plan’s   adaptive-­‐management  framework  and  the  Nisqually  Indian  Tribe’s  Department  of  Natural   Resources’  APR  process.  The  Common  Framework  and  Open  Standards  are  also  planned  to  become   critical  elements  of  the  Lead  Entity  for  Salmon  Recovery  3-­‐Year  Work  Plan  review  and  project   selection  and  funding  decision-­‐making  process.   The  Common  Framework  is  currently  being  applied  to  Nisqually  Chinook  recovery  as  part  of  the  Puget   Sound  Partnership’s  M&AM  project  structure.  Most  of  the  work  underway  for  the  M&AM  Project   applies  to  steelhead.  A  portfolio  of  elements  (i.e.,  a  conceptual  model  minus  the  relationships)  is  being   finalized  by  the  Nisqually  Indian  Tribe  and  Hood  Canal  Steelhead  Recovery  Planning  project  staff.  Once   the  portfolio  of  elements  is  finalized,  connections  between  pressures  and  stresses  and  the  steelhead   components  according  to  the  findings  of  the  Nisqually  steelhead  EDT  analysis  conducted  will  be   developed,  as  part  of  this  recovery  plan.  Once  the  connections  are  made  the  recovery  actions  outlined   in  this  plan  can  be  grouped  into  strategies  and  used  to  develop  results  chains  that  lay  out  the   overarching  steps  necessary  to  implement  the  recovery  plan’s  recommendations.  Finally,  indicators   will  be  developed  for  pressure  impacts  and  key  ecological  attribute  health.   Please  see  Appendix  D,  Open  Standards  for  the  Practice  of  Conservation,  for  the  most  current  version   of  the  Common  Framework  and  Nisqually  steelhead  data  products  that  are  currently  available.  

8.2.2

Implementation  Strategy  Framework  

The  overarching  hierarchical  framework  used  in  this  recovery  plan  for  organizing  recommended   projects  and  actions  emphasizes  protection  and  process-­‐based  restoration  as  the  highest  priority,   followed  by  habitat  enhancement  including  instream  wood  and  engineered  channels,  as  necessary,   to  achieve  recovery  objectives.  This  process-­‐based  hierarchical  framework  follows  that  originally   presented  by  Roni  et  al.  (2002)  and  is  based  on  three  elements:  1)  using  the  principles  of  watershed   processes,  2)  protecting  and  maintaining  functional  habitat  to  slow  or  stop  further  degradation,  and   3)  using  current  knowledge  of  the  effectiveness  of  specific  restoration  techniques.     Once  the  details  of  board  actions  identified  in  the  recovery  plan  are  more  fully  developed,  the  NSRT   will  evaluate  these  specific  projects  using  a  prioritization  process  that  asks  the  following  questions:   1)  is  the  project  well  matched  with  geographic  area  priorities  for  protection  or  restoration,  2)  does   the  project  address  priority  watershed  processes  and  features,  3)  is  the  project  consistent  with   overall  sequencing  and  matched  with  other  projects,  and  4)  how  much  community  support  is  there   for  this  project  or  will  the  project  lead  to  greater  community  support?   The  framework  is  consistent  with  the  approach  to  prioritization  outlined  in  Beechie  et  al.  (2008).   This  combines  a  simple  scoring  system  that  incorporates  a  variety  of  common  evaluation  criteria   with  the  multiparameter  evaluation  of  the  Nisqually  winter  steelhead  population  in  EDT  (Chapter  5,   Restoration  and  Protection  Needs).  This  approach  integrates  the  criteria  that  are  typically  considered     Nisqually  River  Steelhead  Recovery  Plan    

8-­‐6  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Implementation  

when  evaluating  the  relative  merits  of  possible  restoration  projects  and  actions  with  the  relative   degree  of  potential  benefit  to  the  particular  winter  steelhead  life-­‐history  stages  using  the  mainstem   and  various  tributary  habitats  in  the  Nisqually  watershed.     This  type  of  scoring  system  allows  projects  to  be  compared  based  on  total  score  and/or  component   scores  (e.g.,  geographic  priority,  project  type,  or  community  support).  The  NSRT  uses  this  system  to   provide  1)  transparency  because  the  criteria  and  scores  used  to  rank  the  projects  are  clearly   presented,  and  2)  flexibility  because  the  criteria  can  be  modified  to  address  changes  in  restoration   goals,  species  needs  or  population  status,  socioeconomic  conditions,  or  societal  priorities.     The  disadvantages  of  this  type  of  scoring  system  are  that  there  is  subjectivity  and  professional   judgment  in  choosing  the  criteria,  developing  equivalency  across  multiple  criteria,  determining  if   any  criteria  should  be  weighted  and  by  how  much,  and  assigning  component  scores  to  projects  and   actions.  To  counter  these  disadvantages,  the  NSRT  intends  to  vet  the  EDT  effects  analysis  (including   uncertainty)  and  the  criteria,  scores,  and  project  ranks  to  ensure  the  scores  are  logical  and  reflect  a   general  consensus  among  the  team.     A  key  component  to  success  and  the  project  prioritization  process  will  be  assessments  across  a   variety  of  scales.  The  NSRT  will  use  these  assessments  to  identify  landscape-­‐scale  pressures  and   appropriate  restoration  strategies  to  best  achieve  habitat  objectives  identified  from  the  EDT   analysis.  The  NSRT  anticipates  that  these  assessments  will  provide  information  on  how  well  a   particular  project  addresses  priority  watershed  processes  and  features  and  project  sequencing.   Assessments  and  how  they  will  be  used  are  described  in  more  detail  in  Section  7.3.2.    

8.2.3

Priority  Recovery  Actions  for  Steelhead  Recovery  

Based  on  the  EDT  results  presented  in  Chapter  5,  Restoration  and  Protection  Needs,  and  Chapter  6,   Habitat  Recovery  Strategies,  the  NSRT  developed  a  series  of  priority  actions  for  the  recovery  of   Nisqually  winter  steelhead.  Once  the  NSRT  has  completed  a  review  and  updated  prioritization   criteria  such  as  those  described  above,  the  next  step  in  implementing  the  recovery  plan  is  to   prioritize  candidate  actions  within  each  category  and  across  all  categories  in  a  prioritization  matrix.   Appendix  C,  Tables  C-­‐1  through  C-­‐9  present  the  protection,  restoration,  societal  (i.e.,  regulatory   barriers,  policy  support,  and  community  behavior),  assessment,  and  monitoring/evaluation   components  that  will  be  implemented  under  the  action  plan.  The  nature  and  objectives  of  these   actions  are  presented  below,  organized  based  on  the  framework  of  protection,  process-­‐based   restoration,  and  habitat  enhancement.  Appendix  C  also  presents  the  specific  objectives  and   geographic  areas  identified  for  each  of  these  recovery  implementation  components.    

Protection  Priorities  for  Acquisition   Appendix  C,  Table  C-­‐1  outlines  priorities  identified  for  property  acquisition  to  ensure  long-­‐term   protection  of  high-­‐quality  habitats  in  the  mainstem  and  tributaries  and  to  protect  and  enhance   hydrology  and  water  quality  for  the  benefit  of  winter  steelhead.   The  following  priorities  for  protection  through  property  acquisition  will  be  pursued  under  the   recovery  plan:   1. Currently  unprotected  riparian  and  floodplain  along  the  mainstem  of  the  river.   2. Currently  unprotected,  high-­‐priority  tributary  riparian  and  floodplain  (e.g.,  Mashel  River)  and   unprotected  areas  of  tributaries  to  support  existing  protection  acquisitions  (e.g.,  lower  Ohop  Creek).     Nisqually  River  Steelhead  Recovery  Plan    

8-­‐7  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Implementation  

3. Wetlands  that  have  a  significant  influence  on  stream  conditions  important  to  steelhead  that  are   at  risk  of  development.   4. Headwater  springs  and  wetlands  of  McAllister  Creek.  

Protection  Priorities  to  Maintain  and  Enhance  Existing  Commitments   Appendix  C,  Table  C-­‐2  outlines  the  priorities  identified  to  maintain  and  enhance  existing   commitments  to  habitat  protection.  Maintaining  and  enhancing  these  commitments  will  protect   opportunities  for  restoration  of  riparian,  instream,  and  floodplain  conditions;  promote  awareness  of   the  paramount  importance  of  protection  of  functioning  habitat;  and  facilitate  the  potential  for   increased  protection  of  steelhead  habitat  in  the  mainstem  and  tributaries.  Protection  priorities  were   identified  based  on  the  identification  of  core  steelhead  population  areas  and  areas  that  currently   exhibit  features  and  resources  indicative  of  functional  riverine  processes,  including  extensive  acres   of  riparian  forest  and  floodplain  engagement.   The  following  existing  commitments  will  be  maintained  and  enhanced  under  the  recovery  plan.   1. Nisqually-­‐Mashel  State  Park   2. U.S.  Department  of  Defense/Joint  Base  Lewis-­‐McCord   3. Tacoma  Public  Utilities  and  City  of  Centralia   4. County  and  city  government  protections  of  publically  owned  shorelines   5. Nisqually  Indian  Tribe  permanent  protections  on  reservation  lands  along  the  mainstem  of  the   river  

Restoration  Priorities  to  Restore  Watershed  Processes  and  Restore  Fish  Passage   Appendix  C,  Tables  C-­‐3  and  C-­‐4  outline  priorities  identified  for  restoration  of  watershed  processes,   including  removal  of  barriers  to  fish  passage,  sediment  transport,  and  transport  of  large  woody   material  to  ensure  long-­‐term  restoration  of  riverine  functions.  These  priorities  center  on  restoring   native  riparian  plant  communities,  improved  composition  and  quantity  of  large  woody  material   recruitment  to  streams,  improved  stream  shading,  reduced  sediment  delivery  to  streams,  and   increased  development  and  engagement  of  side  channel  habitats  and  floodplain  channels.     The  following  watershed  restoration  priority  actions  will  be  pursued  under  the  recovery  plan.   1. Shoreline  stewardship  workshops  for  local  residents  to  promote  healthy  floodplain  and  riparian   habitats.   2. Improve  degraded  riparian  areas  along  the  mainstem  in  the  Lower  Reach,  Whitewater,  and   McKenna  reaches.   3. Implement  a  watershed-­‐wide  riparian  invasive  plant  control  program  through  the  Nisqually   River  Cooperative  Weed  Management  Area  working  group.   4. Revegetate  the  former  Mock  City  site  on  Joint  Base  Lewis-­‐McCord  along  the  Whitewater  reach.   5. Develop  Nisqually/Mashel  Community  Forestry  initiative  to  address  riparian  buffers,  road   networks,  and  upland  timber  harvest,  especially  in  areas  with  potential  downstream  impacts   (such  as  altered  sediment  and  flow).  

  Nisqually  River  Steelhead  Recovery  Plan    

8-­‐8  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Implementation  

6. Encourage  and  implement  voluntary  restoration  opportunities  to  address  sedimentation   problems  from  existing  roads  as  identified  in  the  Mashel  Watershed  Analysis  (Washington   Department  of  Natural  Resources  1996)  and  the  Ohop/Tanwax/Powell  Watershed  Analysis   (Nisqually  Indian  Tribe  1998).   7. Develop  and  implement  farm  plans  to  address  loss  or  degradation  of  aquatic  habitats.   8. Restore  lost  off-­‐channel  habitat  (e.g.,  floodplain  channels  and  ponds)  and  enhance  existing   habitats  along  Nisqually  mainstem.   9. Restore  active  channel  river  meanders  belt  and  natural  channel  configuration.   10. Prioritize  and  replace  fish-­‐passage  barriers  in  the  anadromous  portion  of  the  watershed  with   structures  that  pass  juvenile  and  adult  fish  and  instream  wood.  

Restoration  Priorities  for  Habitat  Enhancement   Appendix  C,  Table  C-­‐5  outlines  restoration  priorities  identified  to  support  habitat  enhancement  to   increase  the  quantity  of  pools  and  pool  complexity  and  to  increase  the  contribution  of  marine-­‐ derived  nutrients  to  stream  productivity.   The  following  restoration  priorities  for  habitat  enhancement  will  be  pursued  under  the  recovery  plan.   1. Transport  logs  from  above  the  Alder/La  Grande  dams  downstream  to  the  Nisqually  mainstem  to   supplement  large  wood  material  recruitment  to  mainstem  reaches.   2. Placement  of  instream  large  wood  (either  individual  pieces  or  aggregations)  in  the  mainstem   Nisqually  River  and  side  channels.   3. Placement  of  instream  wood  (either  individual  pieces  or  aggregations)  in  the  tributaries.   4. Continue  program  to  distribute  hatchery  carcasses  as  nutrient  source  in  headwater  tributaries   and  upper  mainstem  reaches.  

Priorities  for  Development  and  Implementation  of  Area  Restoration  Plans   Appendix  C,  Table  C-­‐6  outlines  priorities  for  development  and  implementation  of  area  restoration   plans  to  restore  channel  form,  streamflow,  riparian  condition,  and  channel  complexity.   The  following  priorities  for  development  and  implementation  of  area  restoration  plans  will  be   pursued  under  the  recovery  plan.   1. Implement  the  final  phases  of  Lower  Ohop  Creek  Restoration  Plan  to  re-­‐elevate  4.4  miles  of   severely  channelized  creek  back  into  its  original  floodplain  with  its  original  meander  pattern   and  to  revegetate  400  acres  of  surrounding  floodplain  and  wetlands.   2. Continue  and  expand  Mashel  River  Restoration  Plan.   3. Advance  and  implement  the  Nisqually  Lower  Reach  (Nisqually  2a)  Restoration  Plan  to  address   degraded  habitat  in  the  lower  mainstem  upstream  of  I-­‐5.   4. Develop  and  implement  a  Muck  Creek  Restoration  plan  to  remove  or  reduce  impacts  of  reed   canary  grass,  restore  hydrology  in  Muck  Creek,  and  to  restore  Muck  Creek  wetlands.   5. Implement  2014  Eatonville  Stormwater  Comprehensive  Management  Plan  project  and  monitor   the  results  on  Lynch  Creek  and  Mashel  River  peak  flows  and  low  flows.     Nisqually  River  Steelhead  Recovery  Plan    

8-­‐9  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Implementation  

Priorities  to  Address  Regulatory  Barriers,  Policy  Support,  and  Community  Behavior     Appendix  C,  Table  C-­‐7  outlines  priorities  identified  to  address  regulations,  policies,  and  practices   that  impede  or  adversely  affect  steelhead  recovery  in  the  watershed.  These  priorities  will  focus  on   communicating  and  coordinating  objectives  and  activities,  ensuring  activities  are  consistent  with   steelhead  recovery  goals,  protecting  tributary,  floodplain,  and  wetland  habitats,  and  fostering   community  stewardship  and  a  sense  of  community  responsibility  for  steelhead  recovery  and   environmental  protection  of  the  Nisqually  River  watershed.   The  following  priorities  to  address  regulations,  policies,  and  practices  that  impede  or  adversely   affect  steelhead  recovery  will  be  pursued  under  the  recovery  plan.   1. Identify  and  address  local  government  (i.e.,  Pierce  County,  Thurston  County,  Eatonville,  Roy,  and   Yelm)  regulations,  policies,  and  practices  to  protect  and  restore  ecological  functions  in  stream   corridor  and  upland  areas.   2. Maintain  long-­‐term  forest  zone  designation  for  all  current  commercial  forest  lands.   3. Provide  incentives  to  small  forest  landowners  in  and  above  the  anadromous  zone  to  maintain   land  in  timber  use  and  the  sustainable  harvest  rotation  on  timber  lands  timber.   4. Develop  a  basin-­‐wide  management  policy  on  beaver-­‐dam  removal;  develop  a  policy  that  weighs   fish-­‐passage  benefits  of  removal  versus  loss  of  key  rearing  and  wetland  habitat  associated  with   removal  of  beaver  dams.   5. Encourage  community  support  for  shoreline  habitat  protection  and  restoration  by  private   landowners  on  their  properties.   6. Encourage  land  use  practices  that  are  “friendly”  to  stream  habitats  by  private  landowners  in  the   watershed.   7. Foster  a  Nisqually  River  watershed  community  that  is  sustainable  and  supportive  of  salmon  and   steelhead  recovery.   8. Support  implementation  of  and  updates  to  the  Nisqually  River  Council's  Nisqually  Watershed   Stewardship  plan.   9. Support  funding  of  Puget  Sound  Marine  Survival  Research  Plan  and  encourage  regional   collaboration,  policy  and  technical  coordination,  and  information  sharing  to  benefit  steelhead   recovery  efforts.  

8.3

Adaptive  Management  during  Recovery  

Successful  recovery  of  Nisqually  winter  steelhead  requires  that  the  knowledge  and  data  gathered—as   the  various  recovery  plan  priority  actions  are  implemented—be  incorporated  back  into  the  recovery   process  to  refine  restoration,  protection,  and  harvest  actions  and  priorities.  This  process  is  commonly   termed  adaptive  management  and  involves  conducting  assessments  to  close  key  data  gaps,  cycling  the   knowledge  thus  gained  back  into  actions  and  priorities  in  the  watershed  and  using  monitoring  and   evaluation  to  steer  implementation  of  the  recovery  plan  toward  the  most  successful  actions.   Our  understanding  of  ecosystems  and  their  response  to  interventions  is  inevitably  incomplete,  and   our  ability  to  measure  progress  toward  goals,  in  an  accurate  and  timely  fashion,  is  limited.  Adaptive   management  provides  the  means  to  proceed  with  implementation  of  recovery  plans  and  actions,     Nisqually  River  Steelhead  Recovery  Plan    

8-­‐10  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Implementation  

while  managing  and  containing  risks  due  to  uncertainties  and  data  gaps.  Adaptive  management   provides  the  flexibility  necessary  to  address  uncertainty  and  risk  by  using  well-­‐designed  monitoring   and  evaluation  programs  to  inform  the  replacement  of  unsuccessful  strategies  and  unobtainable   goals  and  objectives  with  those  consistent  with  data,  experience,  and  project  performance.  By   carefully  constructing  and  documenting  the  initial  working  hypotheses,  the  NSRT  will  work  to   continually  check  the  hypotheses  against  new  data  and  to  distinguish  stochastic  variation  and   interannual  environmental  fluctuations  from  underlying  actual  changes  in  population  metrics.   Climate  change  will  likely  complicate  this  interpretation,  but  the  continuous  process  of  adaptive   management  provides  a  mechanism  to  continually  reassess  and  adjust  the  recovery  plan  as   warranted  to  maintain  progress  toward  Nisqually  winter  steelhead  recovery.    

8.3.1

Data  Gaps  

At  multiple  steps  through  the  process  to  develop  this  recovery  plan  the  NSRT  found  incomplete   information  or  no  information  to  base  their  decisions.  These  gaps  in  our  knowledge  were  identified   and  most  were  listed  in  the  action  plan  under  the  Assessment  section  and  the  Research,  Monitoring   and  Evaluation  section  of  the  plan  (Appendix  C,  Tables  C-­‐8  and  C-­‐9).  These  assessments  and  RM&E   priorities  are  listed  in  the  following  sections.   Data  gaps  are  organized  into  four  categories  and  the  following  highlights  some  of  the  more   significant  gaps  under  each  category.  

8.3.1.1

Habitat    

Habitat  data  collected  for  the  Nisqually  Chinook  Recovery  Plan  has  focused  on  key  Chinook  habitats   (e.g.,  Nisqually  River  estuary).  Our  review  of  available  information  for  tributaries  and  some  portions   of  the  mainstem  discovered  gaps  that  a  more  comprehensive  monitoring  program  should  address.   Monitoring  data  from  Muck  Creek  is  lacking,  and  long-­‐term  monitoring  of  flow  in  Muck  Creek  has   not  occurred.  There  were  habitat  surveys  and  inventories  conducted  for  Joint  Base  Lewis-­‐McChord   (May  2002)  and  Pierce  County  (Pierce  County  2005)  that  described  habitat  as  it  existed  at  the  time   of  these  assessments.  Some  observational  data  regarding  recent  trends  in  flow  and  habitat   suggested  that  conditions  might  be  worsening  in  the  subbasin.  In  the  Mashel  River,  long-­‐term   monitoring  of  water  temperature  has  occurred  and  some  new  information  was  available  specific  to   restoration  projects  in  lower  Mashel.  Habitat  assessment  work  occurred  in  the  upper  Mashel  in  the   1990s  as  part  of  a  watershed  analysis,  which  informed  the  upper  basin’s  description  of  channel   stability,  sediment,  and  wood.  The  NSRT  recommends  more  monitoring  in  that  portion  of  the  basin   to  better  understand  the  basin’s  potential  for  steelhead  and  to  evaluate  trends  in  these  attributes  as   they  relate  to  recent  logging  activities.   Finally,  knowledge  of  marine  habitats  and  factors  affecting  marine  survival  are  large  gaps  in  our   knowledge.  Fortunately,  work  is  currently  underway  to  address  this  gap  and  the  Nisqually  is  a  key   component  of  those  study  plans.  The  NSRT  stresses  the  need  to  continue  this  work  and  remain   involved  as  new  information  is  produced  that  can  lead  to  recovery  actions  to  improve  survival.  

8.3.1.2

Biological  Data  

The  outmigrant  trap  operated  by  WDFW  and  resulting  estimates  of  smolt  abundance,  size  and  age   composition  greatly  helped  in  development  of  our  recovery  plan.  This  information  will  be  extremely   valuable  in  the  future  as  we  monitor  freshwater  productivity  and  abundance.  The  1  year  of  low     Nisqually  River  Steelhead  Recovery  Plan    

8-­‐11  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Implementation  

abundance  and  low  smolts  per  spawner  raised  multiple  questions  within  the  NSRT  as  to  the  validity   of  the  estimate  and  adult  escapement  estimates.  The  possibility  that  smolt  recruitment  could  vary  to   the  extent  observed  prompted  the  NSRT  to  consider  other  data  that  may  help  better  understand   variation  in  freshwater  recruitment.  Juvenile  monitoring  data  during  freshwater  residence  may  help   explore  these  questions.  A  data  gap  that  may  be  related  is  the  relationship  between  resident  and   anadromous  O.  mykiss.  The  NSRT  hypothesized  based,  in  part  on  some  observations,  that  resident   trout  are  abundant  in  the  Nisqually  River  mainstem.  The  NSRT  wanted  more  information  on  their   relationship  to  anadromous  fish.     Adult  age  composition  in  the  return  is  a  significant  data  gap  affecting  our  ability  to  evaluate  brood   year  recruitment  back  to  adult  and  smolt  to  adult  survival  rates.  WDFW  and  NIT  updated  the   escapement  methods  in  2004  for  the  mainstem  Nisqually.  In  recent  years,  all  mainstem  and  lower   Mashel  River  redds  are  mapped  to  better  evaluate  escapement  in  the  mainstem.  These  revisions   greatly  improved  our  understanding  of  escapement  abundance  and  distribution.  The  NSRT   recommended  additional  review  of  methods  and  expansion  of  survey  efforts  to  improve  escapement   estimates  for  the  watershed.  

8.3.1.3

Hydropower  

The  Nisqually  River  Project  affects  peak  flows  and  routing  of  sediment  and  wood  from  the  upper   watershed.  The  NSRT  was  not  able  to  evaluate  potential  impacts  of  this  project  on  mainstem   habitats  because  of  a  lack  of  data.  The  NSRT  recommends  a  geomorphic  assessment  of  the   mainstem  to  better  understand  the  potential  for  long-­‐term  impacts  of  reduced  peak  flow  and   storage  of  sediment  upstream  of  the  La  Grande/Alder  Dam  complex  on  mainstem  channel  function   and  form.     The  N SRT  did  not  have  information  on  risk  of  impingement  and  entrainment  into  the  diversion   canal  of  juvenile  steelhead  at  the  Yelm  Project.  The  analysis  assumed  a  loss  of  small  fish  at  the   project,  but  information  to  support  this  hypothesis  w as  lacking.  Furthermore,  w ithin  the   Nisqually  R iver  bypass  reach  there  w as  some  concern  by  the  N SRT  that  low  flow  and  flow   management  m ay  affect  juvenile  steelhead  and  steelhead  redds.  Information  w as  not  available   to  better  evaluate  these  potential  impacts.  In  this  case,  the  analysis  used  to  support  the  recovery   plan  does  not  assume  an  impact  in  the  m ainstem  bypass  reach.  Information  w as  also  not   available  to  assess  impacts  on  adults  at  the  Yelm  Project.  The  N SRT  concluded  there  could  be  a   slight  impact  on  upstream  m igration  related  to  adult  steelhead’s  ability  to  navigate  up  the  fish   ladder  or  jump  over  the  dam  itself.    

8.3.2

Assessment  Needs  

By  better  identifying  the  restoration  actions  that  will  best  restore  habitat  capacity,  quality,  and   diversity  and  which  of  those  actions  will  most  improve  the  productivity,  abundance,  and  diversity  of   Nisqually  winter  steelhead,  watershed  assessments  can  improve  the  recovery  plan’s  effectiveness.   Watershed  assessments  targeting  key  data  gaps  can  help  link  land  use  and  habitat  quality  and   habitat  quality  and  biological  responses  in  such  a  way  that  restoration  actions  can  be  identified  and   transparently  prioritized  (Beechie  et  al.  2008).     Successful  implementation  of  the  recovery  plan  requires  assessments  across  a  variety  of  scales  to  fill   the  data  gaps  identified  in  Section  7.3.1,  Data  Gaps.  Assessments  also  serve  to  increase  information   regarding  the  impacts  of  human  activities  at  a  watershed  scale  and  the  magnitude  of  restoration     Nisqually  River  Steelhead  Recovery  Plan    

8-­‐12  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Implementation  

actions  necessary  to  correct  or  at  least  reduce  those  impacts  (Beechie  et  al.  2008).  Field  assessments   also  serve  to  help  refine  information  regarding  which  habitat  changes  are  having  the  most   significant  effects  on  Nisqually  winter  steelhead.   A  series  of  assessments  has  been  identified  to  address  threats  and  data  gaps  related  to  summer  base   flow,  winter  peak  flow,  hydrology,  water  quality,  aquifer  recharge,  and  restoration  of  natural   channel  processes.  Appendix  C,  Table  C-­‐8  presents  the  following  assessments  that  have  been   identified  to  address  data  gaps  and  support  adaptive  implementation  of  the  recovery  plan.     1. Assess  alternative  water  sources  for  Eatonville  to  potentially  increase  summer  base  flow  in  the   Mashel  River.   2. Assess  the  effects  of  future  growth  on  hydrology  and  water  quality  in  the  watershed,  including   potential  impacts  of  well  withdrawals  from  aquifer  on  summer  base  flows.   3. Assess  the  shifting  water  source  for  Yelm  from  the  Yelm  aquifer  to  the  deep  Nisqually  aquifer  to   potentially  improve  base  flows  in  Yelm  Creek.   4. Complete  a  study  of  Muck  Creek  hydrology  to  potentially  enhance  streamflow  in  Muck  Creek   during  periods  when  steelhead  would  access  and  spawn.   5. Assess  impacts  of  forest  roads  and  vegetation  changes  on  streamflow  using  updated  techniques   to  better  evaluate  the  past  practices  and  guide  future  forestry  practices  in  the  forested  lands  of   the  basin.   6. Assess  potential  for  former  clay  mining  operations  along  Twenty-­‐Five  Mile  Creek  and  Ohop   Creeks  to  cause  downstream  sedimentation  issues  in  Ohop  Lake  and  Ohop  Creek.   7. Complete  an  assessment  for  the  lower  Nisqually  River  to  identify  potential  restoration  actions   for  improving  instream  habitat  and  reconnect  floodplain  habitats  in  lower  Nisqually  River   upstream  of  I-­‐5.   8. Assess  the  benefits  and  feasibility  of  removing  I-­‐5  fill  from  the  lower  Nisqually  River  and   estuary.   9. Complete  a  geomorphic  assessment  of  hydrology,  sediment  dynamics,  and  channel  processes  in   the  Nisqually  River  mainstem.   10. Complete  a  geomorphic  assessment  of  sediment  load/channel  stability  in  Busywild  Creek  to   identify  restoration  actions.  

8.3.3

Research,  Monitoring,  and  Evaluation  Needs  

Successful  implementation  of  the  recovery  plan  also  requires  research,  monitoring,  and  evaluation   across  a  variety  of  scales  to  track  population  and  habitat  recovery  progress  and  to  feed  the  adaptive-­‐ management  process  of  refining  decision  rules  and  biological  targets.     A  series  of  research,  monitoring,  and  evaluation  needs  has  been  identified  to  address  threats  and   data  gaps  and  to  meet  the  monitoring  and  adaptive-­‐management  objectives  identified  by  the  NSRT.   These  needs  center  on  increasing  regional  knowledge  related  to  abundance,  escapement,  marine   survival,  predation,  nanophyetus,  intraspecific  interactions,  use  of  forested  tidal  areas,  and  the   importance  of  habitat  enhancements  to  winter  steelhead  abundance  and  productivity.    

  Nisqually  River  Steelhead  Recovery  Plan    

8-­‐13  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Implementation  

Appendix  C,  Table  C-­‐9  presents  the  following  research,  monitoring,  and  evaluation  needs  that  have   been  identified  to  address  data  gaps  and  support  adaptive  implementation  of  the  recovery  plan.     1. Improve  adult  escapement  estimates  and  the  understanding  of  Nisqually  winter  steelhead  life   history  through  expanded  surveys  and  counts  at  the  Centralia  Diversion  Dam  and  in  the  Muck   Creek  subbasin.   2. Maintain  and  expand  activities  at  the  WDFW  smolt  trap  to  better  evaluate  abundance  and   survival  of  Nisqually  winter  steelhead  through  expanding  operations  to  include  a  passive   integrated  transponder  (PIT)  tag  component  and  detector  array  downstream  of  the  trap.     3. Continue  the  steelhead  marine  survival  acoustic  study  with  a  refined  design  as  part  of  a  Puget   Sound-­‐wide  study.     4. Evaluate  the  effectiveness  of  screens  at  Centralia  Diversion  Dam  to  determine  if  steelhead   juveniles  experience  impingement  or  entrainment  into  the  diversion  canal  during  summer  and   survival  of  fish  encountering  the  screen  bypass  system.     5. Develop  a  research  study  to  assess  nanophyetus  impacts  on  steelhead  upon  marine  entry.   6. Continue  to  develop  and  participate  in  regional  studies  of  predation  upon  steelhead  smolts  in   the  Nisqually  River  estuary  and  Puget  Sound.   7. Develop  a  research  study  to  improve  the  understanding  of  the  links  between  anadromous  and   resident  O.  mykiss  in  the  Nisqually  River  watershed.   8. Research  methods  and  the  efficiency  of  long-­‐term  control  of  reed  canary  grass  in  the  Muck  Creek   channel.  Investigate  methods  to  increase  shade  of  the  channel  without  removing  too  much   groundwater.   9. Research  the  feasibility  of  using  large  wood  and  rootwads  from  commercial  forestry  operations   for  instream  habitat  restoration.   10. Research  steelhead  use  in  the  forested  tidal  area  of  the  upper  estuary.  

8.3.4

Annual  Project  Review  

An  integral  part  of  achieving  Nisqually  winter  steelhead  recovery  goals  is  to  assemble  the  most   recent  and  relevant  information,  and  to  use  this  information  to  evaluate  the  status  of  the  population,   the  effectiveness  of  habitat  recovery,  and  new  information  related  to  marine  survival.  The   assessment,  research,  monitoring,  and  evaluation  information  gained  through  the  actions  described   previously  and  in  Appendix  C  will  be  consolidated  and  used  during  an  APR  process,  similar  to  the   Chinook  APR  process,  which  is  implemented  annually  as  part  of  the  Nisqually  Chinook  Recovery   Plan.     The  APR  is  a  science-­‐driven  process  that  informs  the  workshop  participants  and  will  result  in  an   action  plan  for  the  coming  season.  This  action  plan  will  be  presented  as  a  recommendation  to   decision  makers.  The  APR  participants  will  include  all  participants  involved  in  the  recovery  plan.   The  workshop  and  subsequently  adopted  action  plan  will  constitute  the  All-­‐H  coordinated   implementation  component  of  the  recovery  plan.  The  APR  for  steelhead  will  follow  what  is   described  for  Chinook  and  outlined  in  Figure  7-­‐1  (NCRP  2010).  Elements  of  the  APR  of  particular   significance  to  steelhead  recovery  are  described  in  the  following  sections.    

  Nisqually  River  Steelhead  Recovery  Plan    

8-­‐14  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Implementation  

Figure  8-­‐1.   Process  for  Reviewing  and  Updating  Information  during  Annual  Project  Review  

Annual  Implementation  Steps   Step  1

Step  2

Step  3

Step  4

Update  Key   Assumptions (EDT  &   Forecasting Tools)

Update  Status   and  Trends   Information

Review   Decision  Rules

Set  Upcoming Restoration,   Monitoring  &   Research   Activities

Annual  Project  Review

Results  from   Research and   M&E, External to   Program

In-­‐Season   Updates Post-­‐Season   Performance   Review

Post-­‐Season   Analysis   Population   Status  and   Trends

M&E  Results  

8.3.4.1

Review  and  Update  Key  Assumptions  

Updating  key  assumptions  is  a  critical  component  of  adaptive  management.  Key  assumptions  will  be   updated  based  on  data  collected  from  the  monitoring  and  evaluation  activities.  This  ensures  that  the   best  available  information  is  applied  to  the  decision-­‐making  process.     Updates  would  be  provided  to  key  assumptions  about  the  following  parameters.   

Quality  and  quantity  of  Nisqually  basin  habitat.  



Steelhead  life  history  and  habitat  use  in  freshwater  



Adult  to  smolt  productivity,  age  composition,  and  abundance  



Marine  survival  



Escapement  trends,  abundance,  and  distribution  

8.3.4.2

Review  Research  and  Monitoring  Results  

The  monitoring  and  evaluation  program  will  be  designed  to  collect  data  that  support  the   implementation  of  the  action  plan.  Although  these  data  may  vary  from  year  to  year,  they  should  be   monitored  precisely  enough  to  ensure  performance  parameters  are  being  achieved.    

  Nisqually  River  Steelhead  Recovery  Plan    

8-­‐15  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Implementation  

The  monitoring  and  evaluation  elements  provide  information  to  support  the  evolution  and   refinement  of  the  following.   

Key  assumptions  used  in  planning  tools  



Status  and  trends  analysis  



Decision  rules  for  potential  harvest  or  direct  intervention  to  avoid  loss  of  population  diversity   and  viability  

8.3.4.3

Review  and  Update  Steelhead  Recovery  Action  Plan  

The  action  plan  will  be  updated  annually  as  part  of  the  adaptive  management  cycle  by  incorporating   updates  to  the  habitat  status  and  trends,  action  prioritization  matrix,  decision  rules,  and  recovery   objectives.  The  assessment,  research,  monitoring,  and  evaluation  information  gained  through  the   actions  described  in  Section  7.3.2,  Assessment  Needs,  Section  7.3.3,  Research,  Monitoring,  and   Evaluation,  and  Appendix  C  will  also  be  used  to  update  the  action  plan  and  to  refine  the  actions   taken  in  support  of  Nisqually  winter  steelhead  recovery.    

8.4

Climate  Change  Considerations  

Sustainable  recovery  of  Nisqually  winter  steelhead  is  contingent  upon  recovering  sufficient  numbers   of  fish  with  the  genetic  diversity  and  life-­‐history  plasticity  to  adapt  to  the  effects  of  climate  change.   Recovery  is  also  contingent  on  maintaining  and  restoring  a  sufficient  amount  and  diversity  of   habitats  with  the  capacity  to  moderate  climate  change  effects.  Climate  change  is  projected  to  affect   several  of  the  watershed-­‐scale  processes  that  control  riverine  ecosystem  dynamics  (Beechie  et  al.   2010),  and  hence,  affect  the  expression  of  life-­‐history  diversity  in  steelhead.  Watershed-­‐scale   processes  projected  to  be  affected  by  climate  changes  anticipated  in  the  Pacific  Northwest  include   hydrology  (e.g.,  changes  in  the  timing  and  distribution  of  precipitation,  and  thus  changes  in  timing,   duration  and  volume  of  river  flow),  sediment  (e.g.,  changes  in  air  temperature  and  the  distribution   and  nature  of  upper  watershed  forests  habitats),  organic  matter  (e.g.,  changes  in  forest  habitats  and   fire  regime  and  thus  recruitment  of  large  woody  material),  as  well  as  stream  and  air  temperatures   and  possibly  the  delivery  of  nonpoint  source  pollution  via  predicted  changes  in  precipitation   patterns  and  landscape  runoff  (Snover  et  al.  2013;  Beechie  et  al.  2012;  Battin  et  al.  2007).  

8.4.1

Projected  Impacts  of  Climate  Change  in  the  Pacific   Northwest  

The  Pacific  Northwest  is  experiencing  long-­‐term  increases  in  temperature  of  approximately  0.13   degrees  Fahrenheit  per  decade  (1895  to  2011),  lengthening  of  the  frost-­‐free  season  by   approximately  3  days  per  decade  (1895  to  2011),  and  a  statistically  significant  increase  in  the   frequency  of  nighttime  heat  events  west  of  the  Cascade  Mountains  in  Oregon  and  Washington  (1901   to  2009)  (Snover  et  al.  2013).  Decreases  in  glacial  area  (including  a  14%  decline  in  the  volume  of   glaciers  on  Mount  Rainier)  and  a  25%  decrease  in  spring  snowpack  in  the  Washington  Cascades,   earlier  peak  streamflow  in  many  rivers  as  a  result  of  decreased  snow  accumulation  and  earlier   spring  melt,  and  rising  sea  levels  in  some  areas  are  also  now  documented  climate  trends  in  the   Pacific  Northwest  (Snover  et  al.  2013).  Ocean  acidification  due  to  absorption  of  carbon  dioxide  (in   the  range  of  10%  to  40%  more  acidic)  and  an  average  0.4  degrees  Fahrenheit  per  decade  warming     Nisqually  River  Steelhead  Recovery  Plan    

8-­‐16  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Implementation  

of  the  top  330  feet  of  water  in  the  Strait  of  Georgia  and  off  the  west  coast  of  Vancouver  Island  have   also  been  detected  (Snover  et  al.  2013).  These  climate  trends  are  projected  to  continue  regardless  of   the  trend  in  greenhouse  gas  emissions,  albeit  with  smaller  increases  projected  for  low-­‐emissions   scenarios.  

8.4.2

Projected  Impacts  of  Climate  Change  in  the  Nisqually   River  Watershed  

In  the  Nisqually  River  watershed,  the  mainstem  of  the  river  is  key  habitat  for  steelhead.  Habitat   conditions  are  strongly  affected  by  temperature  and  precipitation  patterns  in  the  upper  watershed   above  the  Alder  Dam,  as  well  as  temperature  and  snowpack  conditions  in  the  Mashel  River  subbasin   and  precipitation  patterns  in  the  Muck  Creek  subbasin.  Washington  State  is  projected  to  experience   decreasing  snowpack,  increasing  rain  (rather  than  snow),  increasing  stream  temperatures,  and   changes  in  streamflow  timing,  flooding  and  summer  minimum  flows,  although  there  is  less   confidence  in  the  degree  and  location  of  changes  in  precipitation  patterns  than  there  is  in  the  trend   of  increased  temperatures.     The  Nisqually  River  upper  basin  and  higher  to  mid-­‐elevation  subbasins  such  as  the  Mashel  River  will   likely  see  shifts  from  a  snowmelt-­‐dominated  precipitation  regime  (i.e.,  the  highest  monthly   streamflows  occur  during  the  spring  snowmelt)  to  a  rainfall-­‐dominated  regime  in  which  the  highest   streamflows  occur  during  the  fall-­‐winter  floods  (Beechie  et  al.  2012),  with  perhaps  10%  to  40%  of   winter  precipitation  falling  as  mixed  rain  and  snow  by  the  2040s  (compared  to  more  than  40%  of   winter  precipitation  falling  as  snow  under  historical  conditions  (1916  to  2006)  (Snover  et  al.  2013).   The  loss  of  a  spring  snowmelt  peak  flow  is  likely  to  result  in  a  concomitant  decline  in  late  summer   flows,  which  could  physically  limit  tributary  and  mainstem  habitat  for  steelhead  through  increased   temperatures  and  loss  of  wetted  instream  habitat.  Management  of  the  reservoirs  may  moderate  fall   and  winter  peak  flows  to  some  degree,  which  could  maintain  streamflow  and  viable  habitat   conditions  in  the  mainstem.  However,  water  supply  management  needs  will  undoubtedly  compete   with  habitat  needs  as  this  shift  in  precipitation  patterns  takes  hold  and  the  implications  of  the  loss  of   spring  snowmelt  begin  to  significantly  affect  water  storage  and  release  patterns.  Changes  in  the   intensity  and  duration  of  precipitation  will  also  affect  timber  practices  in  the  upper  Mashel  River   subbasin,  including  increasing  the  potential  for  slope  failure  in  clearcuts,  more  road  washouts,  and   increased  undermining  of  culverts.  This  could  alter  the  delivery  of  sediment  to  the  lower  basin  and   fill  pools,  cause  channel  aggradation,  and  increase  water  temperatures  across  shallow  broad  riffles.     Rain-­‐dominated  subbasins  such  as  Muck  Creek  will  likely  experience  changes  in  the  timing,   duration,  and  volume  of  rainfall,  but  the  extent  and  nature  of  those  changes  remains  uncertain.   Hydrologic  conditions  in  Muck  Creek  are  also  strongly  connected  to  groundwater  and  are  affected   by  channel  modifications  and  groundwater  extraction.  Summer  low  flow  is  a  constraint  to  steelhead   in  Muck  Creek,  and  so  changes  in  precipitation  and  a  change  in  the  timing  of  peak  flows  could   further  constrain  steelhead  recovery  in  this  subbasin.  Similarly,  factors  that  create  or  maintain   incised  channels  and  a  disconnected  floodplain  (such  as  changes  in  sediment  or  in  the  transport  of   large  wood)  could  negatively  affect  groundwater  recharge  during  the  winter  and  thus  summer  low   flow  conditions  in  the  Muck  Creek  subbasin.  

  Nisqually  River  Steelhead  Recovery  Plan    

8-­‐17  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

Implementation  

Sea-­‐level  rise  will  affect  the  Nisqually  River  estuary,  progressively  pushing  tidal  mudflat,  marsh,  and   forested  habitats  farther  inland  and  to  higher  elevations  (where  the  topography  allows  for  such  a   shift).  The  effects  of  sea-­‐level  rise  on  estuarine  habitats  can  be  partially  mitigated  by  protecting   lands  adjacent  to  the  estuary,  farther  upstream  from  the  tidal  extent,  and  at  higher  elevations  to   create  additional  protected  habitat  areas  as  sea-­‐level  rise  progresses  and  precipitation  patterns   change.    

8.4.3

Restoration  Actions  to  Ameliorate  Climate  Change   Effects  

Beechie  et  al.  (2012)  classified  actions  that  improve  longitudinal  and  lateral  connectivity  between   streams  and  their  floodplains  (e.g.,  dam  removal,  levee  breaching,  barrier  removal,  and  reconnection   of  floodplain  features)  as  being  the  most  likely  to  ameliorate  the  increases  in  temperature,  decreases   in  base  flow,  and  increases  in  peak  flows  projected  to  result  from  climate  change.  These  same  types   of  restoration  actions  are  also  classified  as  actions  most  likely  to  confer  resiliency  to  a  population   through  increases  in  habitat  diversity  (e.g.,  by  creating  a  variety  of  physical  and  thermal  conditions)   and  thus  increased  potential  for  the  expression  of  alternative  life  history  strategies  within  a  species   (Beechie  et  al.  2012).     The  recovery  plan’s  objectives  are  focused  on  protecting  the  highest  quality  habitat  and  restoring   natural  processes  in  the  primary  habitat  areas  (i.e.,  the  mainstem  and  Mashel  River)  to  preserve  and   potentially  increase  diversity  of  life-­‐history  expressions  in  Nisqually  winter  steelhead.  Climate   change  implications  will  be  incorporated  into  the  recovery  plan,  particularly  focusing  on   maintaining  and  creating  resiliency  to  anticipated  changes  in  flow  and  temperature  through  the   protection  and  restoration  of  habitat  diversity.  This  recovery  plan  includes  a  variety  of  such  priority   actions  (Appendix  C,  Tables  C-­‐3  and  C-­‐4)  for  restoring  watershed  processes,  including  the  removal   of  barriers  to  fish  passage,  sediment  transport,  and  transport  of  large  woody  material  to  restore   floodplain  connectivity  and  ensure  long-­‐term  restoration  of  riverine  functions.  The  NSRT  will  work   to  prioritize  these  actions  to  occur  in  the  most  highly  used  subbasins  and  those  most  likely  to  see  the   greatest  changes  in  precipitation  patterns.  The  NSRT  will  also  carefully  evaluate  habitat  restoration   and  passage  barrier  projects  in  Muck  Creek  and  Ohop  Creek  subbasins  for  their  utility  and  capacity   to  help  improve  the  potential  resiliency  of  Nisqually  winter  steelhead  to  climate  change.    

  Nisqually  River  Steelhead  Recovery  Plan    

8-­‐18  

July  2014   ICF  00153.13  

 

Chapter  9  

References   AGI  Technologies.  1999.  Conceptual  model  of  the  McAllister  Springs  area.  Technical  Memorandum   #3,  December  13,  1999.  Prepared  for  the  Cities  of  Olympia  and  Lacey  Public  Works   Departments.  Prepared  for  AGI  Technologies,  in  cooperation  with  Jones  and  Stokes  Associates,   Evans-­‐Hamilton,  Inc.  and,  Hydrology  Northwest.  66  pages  plus  appendices.   Beechie,  T.,  G.  Pess,  P.  Roni,  and  G.  Giannico.  2008.  Setting  River  Restoration  Priorities:  A  Review  of   Approaches  and  a  General  Protocol  for  Identifying  and  Prioritizing  Actions.  North  American   Journal  of  Fisheries  Management  28:891–905.   Berejikian,  B.  A.,  T.  Johnson,  R.S.  Endicott,  and  J.  Lee-­‐Waltermire.  2008.  Increases  in  Steelhead   (Oncorhynchus  mykiss)  Redd  Abundance  Resulting  from  Two  Conservation  Hatchery  Strategies   in  the  Hamma  Hamma  River,  Washington.  Canadian  Journal  of  Fisheries  and  Aquatic  Sciences,  65,   4,  754-­‐764.   Beverton,  R.J.H.  and  S.J.  Holt.  1957.  On  the  dynamics  of  exploited  fish  populations.  U.K.  Ministry  of   Agriculture,  Fisheries  Investigation  Service  2(19):553  p.   Blair,  G.R.,  L.C.  Lestelle,  and  L.E.  Mobrand.  2009.  The  Ecosystem  Diagnosis  and  Treatment  Model:  A   tool  for  assessing  salmonid  performance  potential  based  on  habitat  conditions.  Pages  289–309.   Pacific  Salmon  Environment  and  Life  History  Models.  Bethesda,  MD:  American  Fisheries  Society.   Bortleson,  M.J.,  M.J.  Chrzastowski,  and  A.K.  Helgerson.  1980.  Historical  Changes  of  Shoreline  and   Wetland  at  Nisqually  River  and  Nisqually  Reach,  Washington.  U.S.  Geological  Survey  Hydrologic   Investigations  Atlas  HA-­‐617  (Sheet  9).  Prepared  in  cooperation  with  U.S.  Department  of  Justice   and  the  Bureau  of  Indian  Affairs.   City  of  Olympia.  2013.  McAllister  Wellfield  website.  Available:  .  Accessed:  December  2013.   Christie,  M.R.,  ML.  Marine,  and  M.S.  Blouin.  2011.  Who  are  the  missing  parents?  Grandparentage   analysis  identifies  multiple  sources  of  gene  flow  into  a  wild  population.  Molecular  Ecology   20:1263–1276.   Collins,  B.D.,  D.R.  Montgomery,  and  A.J.  Sheikh.  2003.  Reconstructing  the  historical  riverine   landscape  of  the  Puget  Lowland.  Pages  79-­‐128.  In:  D.R.  Montgomery,  S.M.  Bolton,  D.B.  Booth,  and   L.  Wall  (eds.).  Restoration  of  Puget  Sound  Rivers.  University  of  Washington  Press,  Seattle,  WA.   Conservation  Measures  Partnership.  2013.  Open  Standards  for  the  Practice  of  Conservation.  Version   3.0.  Available:  .  Accessed:  February  2014.   Courter,  I.I.,  D.B.  Child,  J.A.  Hobbs,  T.M.  Garrison,  J.J.G.  Glessner,  and  S.  Duery.  2013.  Resident  rainbow   trout  produce  anadromous  offspring  in  a  large  interior  watershed.  Canadian  Journal  of  Fisheries   and  Aquatic  Sciences  70:701–710.   Curran,  C.A.,  E.E.  Grossman,  and  C.S.  Magir.  2014  in  review.  Suspended  Sediment  Delivery  to  Puget   Sound  in  the  Lower  Nisqually  River,  Washington,  2011:  U.S.  Geological  Survey  Open-­‐File  Report.     Nisqually  River  Steelhead  Recovery  Plan    

9-­‐1  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

References  

Czuba,  J.A.,  C.S.  Magirl,  C.R.  Czuba,  E.E.  Grossman,  C.A.  Curran,  A.S.  Gendaszek,  and  R.S.  Dinicola.   2011.  Sediment  load  from  major  rivers  into  Puget  Sound  and  its  adjacent  waters:  U.S.  Geological   Survey  Fact  Sheet,  2011–3083.  4  pp.  Available:  .   Accessed:  March  2014.   Czuba,  J.A.,  T.D.  Olsen,  C.R.  Czuba,  C.S.  Magirl,  and  C.C.  Gish.  2012a.  Changes  in  Sediment  Volume  in   Alder  lake,  Nisqually  River  Basin,  Washington,  1945-­‐2011:  U.S.  Geological  Survey  Open-­‐File   Report  2012-­‐1068,  30  p.  Available:.  Accessed:  March   2014.   Czuba,  J.A.,  C.S.  Magirl,  C.R.  Czuba,  C.A.  Curran,  K.H.  Johnson,  T.D.  Olsen,  H.K.  Kimball,  and  C.C.  Gish.   2012b,  Geomorphic  analysis  of  the  river  response  to  sedimentation  downstream  of  Mount   Rainier,  Washington:  U.S.  Geological  Survey  Open-­‐File  Report  2012-­‐1242.  134  pp.  Available:   .  Accessed:  March  2014.   David  Evans  and  Associates.  2000.  Upper  Nisqually  Level  1  Technical  Assessment.  Prepared  for   Nisqually  River  Watershed  Planning  Unit.  December.   Ford,  M.  J.  2002.  Selection  in  Captivity  during  Supportive  Breeding  May  Reduce  Fitness  in  the  Wild.   Conservation  Biology  16(3):815-­‐825.   Garza,  J.C.,  E.A.  Gilbert-­‐Horvath,  B.C.  Spence,  T.H.  Williams,  H.  Fish,  S.A.  Gough,  J.H.  Anderson,  D.   Hamm  and  E.C.  Anderson.  2014.  Population  Structure  of  Steelhead  in  Coastal  California.   Transactions  of  the  American  Fisheries  Society  143(1):134–152.   Gayeski,  N.,  B.  McMillan,  and  P.  Trotter.  2011.  Historical  abundance  of  Puget  Sound  Steelhead,   Oncorhynchus  mykiss,  estimated  from  catch  record  data.  Canadian  Journal  of  Fisheries  and   Aquatic  Sciences  68:498–510.   Gross,  M.R.  1991.  Salmon  breeding  behavior  and  life  history  evolution  in  changing  environments.   Ecology  72:1180–1186.   Hatchery  Scientific  Review  Group  (HSRG).  2009.  Columbia  River  Hatchery  Reform  System-­‐wide   Report.  272  pp.  Available:  .   Hatchery  Scientific  Review  Group  (HSRG).  2014.  On  the  Science  of  Hatcheries:  An  Updated  Perspective   on  the  Role  of  Hatcheries  in  Salmon  and  Steelhead  Management  in  the  Pacific  Northwest.   A.  Appleby,  H.L.  Blankenship,  D.  Campton,  K.  Currens,  T.  Evelyn,  D.  Fast,  T.  Flagg,  J.  Gislason,  P.   Kline,  C.  Mahnken,  B.  Missildine,  L.  Mobrand,  G.  Nandor,  P.  Paquet,  S.  Patterson,  L.  Seeb,  S.  Smith,   and  K.  Warheit  (eds.).  160  pp.  Available:  .   Hilborn,  R.  and  C.J.  Walters.  1992.  Quantitative  Fish  Stock  Assessment.  Chapman  and  Hall,  London.   Hiss,  J.M.,  W.  Harrington-­‐Tweit,  and  R.S.  Boomer.  1982.  Downstream  Migration  of  Juvenile   Rainbow/Steelhead  Trout  in  the  Nisqually  River  and  Muck  Creek,  1980–1981.  U.S.  Fish  and   Wildlife  Service,  Fisheries  Assistance  Office,  Olympia,  WA.  Final  Report  NMFS  Contract  No.  80-­‐ ABG-­‐0007.   Kendall,  Bruce  E.  1998.  Estimating  the  magnitude  of  environmental  stochasticity  in  survivorship   data.  Ecological  Applications  8(1):184–193.   Kerwin,  John.  1999.  Salmon  and  Steelhead  Habitat  Limiting  Factors  WRIA  11.  Washington  State   Conservation  Commission.  Final  Report.  January  21,  1999.     Nisqually  River  Steelhead  Recovery  Plan    

9-­‐2  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

References  

Kostow,  K.  2003.  Factors  that  influence  evolutionarily  significant  unit  boundaries  and  status   assessment  in  a  highly  polymorphic  species,  Oncorhynchus  mykiss,  in  the  Columbia  Basin.   Information  Report  #2003-­‐04.  Oregon  Department  of  Fish  and  Game  and  NOAA  Fisheries.   Kostow,  K.  2008.  Factors  that  Contribute  to  the  Ecological  Risks  of  Salmon  and  Steelhead  Hatchery   Programs  and  Some  Mitigating  Strategies.  Rev.  Fish  Biol  Fisheries.  19:9–31.   Lestelle,  L.C.,  L.E.  Mobrand,  J.A.  Lichatowich,  and  T.S.  Vogel.  1996.  Applied  ecosystem  analysis  -­‐  a   primer,  EDT:  the  ecosystem  diagnosis  and  treatment  method.  Project  number  9404600.  Report   to  Bonneville  Power  Administration.  Mobrand  Biometrics,  Inc.  Vashon,  WA.   Lestelle,  L.  C.  2004.  Guidelines  for  Rating  Level  2  Environmental  Attributes  in  Ecosystem  Diagnosis   and  Treatment:  Mobrand  Biometrics,  Inc.  Vashon,  WA.     Lestelle,  L.,  L.  Mobrand,  and  W.  McConnaha.  2004.  Information  structure  of  Ecosystem  Diagnosis  and   Treatment  (EDT)  and  habitat  rating  rules  for  Chinook  salmon,  coho  salmon  and  steelhead  trout:   Mobrand  Biometrics,  Inc.  Vashon,  WA.     Lichatowich,  J.A.,  and  L.E.  Mobrand.  1995.  Analysis  of  Chinook  salmon  in  the  Columbia  River  from  an   ecosystem  perspective.  U.S.  Department  of  Energy  Bonneville  Power  Administration,   Environment  Fish  and  Wildlife.  DOE/BP-­‐25105-­‐2.   Mantua,  N.J.,  S.R.  Hare,  Y.  Zhang,  J.M.  Wallace,  and  R.C.  Francis.  1997.  A  Pacific  decadal  climate   oscillation  with  impacts  on  salmon.  Bulletin  of  the  American  Meteorological  Society  78:  1069-­‐ 1079.   Mantua,  N.J.,  and  P.W.  Mote.  2001.  The  Underlying  Rhythms:  Patterns  of  Pacific  Northwest  Climate   Variability.  In  Miles,  E.,  and  A.  Snover  (eds.)  Rhythms  of  Change:  An  Integrated  Assessment  of   Climate  Impacts  on  the  Pacific  Northwest.  MIT  Press.   May,  C.W.  2002.  Measures  of  Ecological  Integrity  for  Salmonid  Streams  on  Department  of  Defense   Facilities  in  the  Pacific  Northwest:  Current  Watershed  Conditions  and  Management   Recommendations,  Technical  Report  APL-­‐UW  TR  0104,  University  of  Washington,  Seattle,  WA.   May,  C.W.,  E.B.  Welch,  R.R.  Horner,  J.R  Karr,  and  B.W.  Mar.  1997.  Quality  indices  for  urbanization   effects  of  Puget  Sound  lowland  streams.  Water  Resources  Series  Technical  Report  no.  154.  Final   report  prepared  for  the  Washington  State  Department  of  Ecology.  Olympia,  WA.   McElhany,  P.,  M.H.  Ruckelshaus,  M.J.  Ford,  T.C.  Wainwright,  and  E  P.  Bjorkstedt.  2000.  Viable   salmonid  populations  and  the  recovery  of  evolutionary  significant  units:  U.S.  Department  of   Commerce.  Seattle,  WA.  NOAA  Tech.  Memo  NMFS-­‐NWFSC-­‐42.   McMillan,  J.R.,  S.L.  Katz,  and  G.R.  Pess.  2007.  Observational  evidence  of  spatial  and  temporal   structure  in  a  sympatric  anadromous  (winter  steelhead)  and  resident  Oncorhynchus  mykiss   mating  system  on  the  Olympic  Peninsula,  Washington  State.  Transactions  of  the  American   Fisheries  Society  136:736–748.   McPhee,  M.V.,  F.  Utter,  J.A.  Stanford,  K.V.  Kuzishchin,  K.A.  Savvaitova,  D.S.  Pavlov,  and  F.W.  Allendorf.   2007.  Population  structure  and  partial  anadromy  in  Oncorhynchus  mykiss  from  Kamchatka:   relevance  for  conservation  strategies  around  the  Pacific  Rim.  Ecology  of  Freshwater  Fish  16:539– 547.  

  Nisqually  River  Steelhead  Recovery  Plan    

9-­‐3  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

References  

Melnychuk,  M.C.  2009.  Estimation  of  survival  and  detection  probabilities  for  multiple  tagged  salmon   stocks  with  nested  migration  routes,  using  a  large-­‐scale  telemetry  array.  Marine  and  Freshwater   Research  60:1231–1243.   Mobrand,  L.E.,  J.A.  Lichatowich,  L.C.  Lestelle,  and  T.S.  Vogel.  1997.  An  approach  to  describing   ecosystem  performance  "through  the  eyes  of  salmon".  Canadian  Journal  of  Fisheries  and  Aquatic   Sciences  54:2964–2973.   Mobrand,  L.,  J.  Barr,  L.  Blankenship,  D.  Campton,  T.  Evelyn,  T.  Flagg,  C.  Mahnken,  L.  Seeb,  P.  Seidel,   and  W.  Smoker.  2005.  Hatchery  Reform  in  Washington  State:  Principles  and  Emerging  Issues.   Fisheries  30(6):11-­‐23.   Montgomery,  D.R.  and  J.M.  Buffington.  1993.  Channel  classification,  prediction  of  channel  response,   and  assessment  of  channel  conditions.  Washington  State  Department  of  Natural  Resources,   Timber/Fish/Wildlife  Agreement.  Report  TFW-­‐SH10-­‐93-­‐002.  84  p.   Moore,  Megan.  Research  Fisheries  Biologist.  National  Oceanic  Atmospheric  Administration.  January   2014—personal  communication  with  Sayre  Hodgson.  Nisqually  Indian  Tribe.   Moussalli,  E.  and  R.  Hilborn.  1986.  Optimal  stock  size  and  harvest  rate  in  multistage  life  history   models.  Canadian  Journal  of  Fisheries  and  Aquatic  Sciences  43(1):135–141.   National  Marine  Fisheries  Service  (NMFS).  1996.  Making  ESA  determinations  for  individual  or   grouped  actions  at  the  watershed  scale.  Environmental  and  Technical  Services  Division,  Habitat   Conservation  Branch.  Portland,  OR.   Nelson,  L.M.  1974.  Sediment  transport  by  streams  in  the  Deschutes  and  Nisqually  River  basins,   Washington.  November  1971-­‐June  1973:  U.S.  Geological  Survey  Open-­‐File  Report  74-­‐1078,  33  p.   Nisqually  Chinook  Recovery  Team.  2001.  Nisqually  Chinook  Recovery  Plan.  Prepared  by  Mobrand   Biometrics,  Inc.,  Vashon,  WA.  August.   Nisqually  Chinook  Recovery  Team.  2011.  Nisqually  Chinook  Stock  Management  Plan.  Prepared  by   Nisqually  Chinook  Working  Group  with  ICF  International,  Yelm,  WA.  April.   Omernik,  J.M.  1995.  Ecoregions:  A  spatial  framework  for  environmental  management.  In:  Biological   Assessment  and  Criteria:  Tools  for  Water  Resource  Planning  and  Decision  Making.  Davis,  W.S.   and  T.P.  Simon  (eds.),  Lewis  Publishers,  Boca  Raton,  FL.  p.  49–62.   Pater,  D.E.,  S.A.  Bryce,  T.D.  Thorson,  J.  Kagan,  C.  Chappell,  J.M.  Omernik,  S.H.  Azevedo,  and  A.J.  Woods.   1998.  Ecoregions  of  Western  Washington  and  Oregon  (two-­‐sided  color  poster  with  map,   descriptive  text,  summary  tables,  and  photographs).  U.S.  Geological  Survey,  Reston,  VA.  Scale   1:1,350,000.   Peterson,  N.P.,  A.  Hendry,  and  T.  Quinn.  1992.  Assessment  of  cumulative  effects  on  salmonid  habitat:   some  suggested  parameters  and  threshold  values.  Center  for  Streamside  Studies.  University  of   Washington.  Seattle,  WA.   Phelps,  S.R.,  S.  A.  Leider,  P.L.  Hulett,  B.M.  Baker,  and  T.  Johnson.  1997.  Genetic  Analyses  of  Washington   Steelhead:  Preliminary  Results  Incorporating  36  New  Collections  from  1995  and  1996.  Washington   Department  of  Fish  and  Wildlife.  29  pp.  plus  appendices.  

  Nisqually  River  Steelhead  Recovery  Plan    

9-­‐4  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

References  

Pierce  County.  2005.  Muck  Creek  Basin  Plan.  Prepared  for  Pierce  County  Public  Works  and  Utilities,   Water  Programs  Division.  Tacoma,  WA.   ———.  2012.  Nisqually  River  Basin  Plan.  Prepared  for  Pierce  County  Public  Works  and  Utilities,   Water  Programs  Division.  Tacoma,  WA.   Poff,  N.L.,  J.D.  Allan,  M.B.  Bain,  J.R.  Karr,  K.L.  Prestegaard,  B.D.  Richter,  R.E.  Sparks,  and  J.C.  Stromberg.   1997.  The  natural  flow  regime:  a  paradigm  for  river  conservation  and  restoration.  Bioscience   47:769–784.   Puget  Sound  Steelhead  Technical  Recovery  Team  (PSSTRT).  2013a.  Viability  Criteria  for  Puget  Sound   Steelhead.  Final  Review  Draft.  373  pp.   Puget  Sound  Steelhead  Technical  Recovery  Team  (PSSTRT).  2013b.  Identifying  Historical   Populations  of  Steelhead  within  the  Puget  Sound  Distinct  Population  Segment.  Final  Review  Draft.   149  p.     Puget  Sound  Recovery  Implementation  Technical  Team.  2013.  Puget  Sound  Chinook  Salmon   Recovery:  A  Framework  for  the  Development  of  Monitoring  and  Adaptive  Management  Plans.   Final  Review  Draft  Available:  <  http://www.eopugetsound.org/sites/default/files/features/   resources/RITTMAMP_FINALDraft_3_29_2013.pdf>.  Accessed:  February  2014.   Roni,  P.,  T.  Beechie,  R.  Bilby,  F.  Leonetti,  M.  Pollock,  and  G.  Press.  2002.  A  review  of  river  restoration   techniques  and  a  hierarchical  strategy  for  prioritizing  restoration  in  Pacific  Northwest   Watersheds.  North  American  Journal  of  Fisheries  Management  22:1–20.  Rundio,  D.E.,  T.H.   Williams,  D.E.  Pearse,  and  S.T.  Lindley.  2012.  Male-­‐biased  sex  ratio  of  nonanadromous   Oncorhynchus  mykiss  in  a  partially  migratory  population  in  California.  Ecology  of  Freshwater   Fish  21:293–299.   Ryman,  N.,  and  L.  Laikre.  1991.  Effects  of  Supportive  Breeding  on  the  Genetically  Effective   Population  Size.  Conservation  Biology  5:325-­‐3329.   Savvaitova,  K.A.,  K.V.  Kuzishchin,  M.A.  Gruzdeva,  D.S.  Pavlov,  J.A.  Stanford,  and  B.K.  Ellis.  2003.  Long-­‐ term  and  short-­‐term  variation  in  the  population  structure  of  Kamchatka  steelhead  Parasalmo   mykiss  from  rivers  of  western  Kamchatka.  Journal  of  Ichthyology  43:  757–768.   Scott,  J.B.  1981.  The  Distribution  and  Abundance  of  Juvenile  Salomonids  in  the  Nisqually  River  from   Spring  to  Midsummer.  Univ.  Washington,  Fish.  Res.  Inst.  Final  Rep.  FRI—UW—8102.  63  pp.   Seamons,  T.R.,  P.  Bentzen,  and  T.P.  Quinn.  2004.  The  mating  system  of  steelhead,  Oncorhynchus   mykiss,  inferred  by  molecular  analysis  of  parents  and  progeny.  Environmental  Biology  of  Fishes   69:333–344.   Shapovalov,  L.,  and  A.C.  Taft.  1954.  The  life  histories  of  the  steelhead  rainbow  trout  (Salmogairdneri   gairdneri)  and  silver  salmon  (Onchorhynchus  kisutch)  with  special  reference  to  Waddell  Creek,   California,  and  recommendations  regarding  their  management.  Calif.  Dep.  Fish  Game  Fish  Bull.   98:375.   Steelhead  Marine  Survival  Workgroup.  2014.  Research  Work  Plan:  Marine  Survival  of  Puget  Sound   Steelhead.  February  2014  Long  Live  the  Kings,  Seattle,  WA.  Available:   .   Accessed:  March  2014.     Nisqually  River  Steelhead  Recovery  Plan    

9-­‐5  

July  2014   ICF  00153.13  

  Nisqually  Steelhead  Recovery  Team    

References  

Stober,  Q.J.  and  M.C.  Bell.  1986.  The  feasibility  of  Anadromous  Fish  Production  above  the  Alder/La   Grande  Hydroelectric  Projects  on  the  Nisqually  River.  Univ.  Washington,  Fish.  Res.  Inst.  Final  Rep.   FRI—UW—8609.  66  pp.   Svoboda,  P.,  and  B.  Harrington-­‐Tweit.  1981.  Nisqually  River  1981  Winter  Steelhead  Redd  Aerial   Survey.  Nisqually  Indian  Tribe  Technical  Report  No.  3.   Thompson,  B.E.,  L.C.  Lestelle,  G.R.  Blair,  L.E.  Mobrand,  and  J.B.  Scott.  2009.  EDT  application  in  salmon   recovery  planning:  diagnosing  habitat  limitations  and  modeling  restoration  action  effectiveness.   Pages  311-­‐335.  Pacific  Salmon  Environment  and  Life  History  Models.  Bethesda,  MD:  American   Fisheries  Society.   Tyler,  R.W.  1980.  Nisqually  River  Juvenile  Salmonid  Study.  Univ.  Washington,  Fish.  Res.  Inst.  Final   Rep.  FRI—UW—8009.  39  pp.   Van  Doornik,  D.,  Berejikian,  B.,  Campbell,  L.,  and  E.  Volk.  2010.  The  Effect  of  a  Supplementation   Program  on  the  Genetic  and  Life  History  Characteristics  of  an  Oncorhynchus  mykiss  Population.   Canadian  Journal  of  Fisheries  and  Aquatic  Sciences,  67,  1449-­‐1458.   Walter,  G.F.  1986.  Nisqually  River  Drainage  Basin.  In-­‐stream  Habitat  Assessment  and  Policy   Recommendations.  Technical  Report  No.  15.  Nisqually  Indian  Tribe.  Olympia,  WA.   Warrick,  J.A.,  Draut,  A.E.,  McHenry,  M.L.,  Miller,  I.M.,  Magirl,  C.S.,  Beirne,  M.M.,  Stevens,  A.W.,  and  J.B.   Logan.  2011.  Geomorphology  of  the  Elwha  River  and  its  Delta,  chap.  3  of  Duda,  J.J.,  Warrick,  J.A.,   and  Magirl,  C.S.,  eds.,  Coastal  habitats  of  the  Elwha  River,  Washington—Biological  and  physical   patterns  and  processes  prior  to  dam  removal:  U.S.  Geological  Survey  Scientific  Investigations   Report  2011-­‐5120-­‐2,  p.  48-­‐73.  Available:  .  Accessed:  March  2014.   Watershed  Professionals  Network,  LLC.  2002.  Nisqually  River  Level  I  watershed  assessment  (WRIA   11).  Prepared  for  the  Nisqually  Watershed  Planning  Group.     Whiley,  A.J.  and  G.F.  Walter.  2000.  Review  and  analysis  of  water  quality  for  the  Nisqually  River  and   the  major  lakes  of  the  Nisqually  Basin.  Nisqually  Natural  Resources,  Water  Quality  Program.   Technical  Report  #6.  Nisqually  Indian  Tribe.  Olympia,  WA.   Williams,  R.W.,  R.M.  Laramie,  and  J.J.  Ames.  1975.  A  catalog  of  Washington  streams  and  salmon   utilization.  Volume  1  Puget  Sound  region.  Washington  Department  of  Fisheries  (now   Washington  Department  of  Fish  and  Wildlife).  Olympia,  WA.   Woo,  I.,  K.  Turner,  A.  Smith,  P.  Markos,  and  J.  Y.  Takekawa.  2011.  Assessing  habitat  development  in   response  to  large  scale  restoration  at  the  Nisqually  River  Delta.  Unpublished  data  summary   report  to  the  National  Fish  and  Wildlife  Foundation,  Puget  Sound  Marine  Conservation  Fund   #2006-­‐0180-­‐017.  USGS  Western  Ecological  Research  Center,  San  Francisco  Bay  Estuary  Field   Station,  Vallejo,  CA.  21  pp.    

  Nisqually  River  Steelhead  Recovery  Plan    

9-­‐6  

July  2014   ICF  00153.13  

 

Appendix  A   Reach  Structure  for  Assessment  of  Winter   Steelhead  Performance  in  the  Nisqually  River

 



Table  A-­‐1.   Subbasin  

Nisqually  Watershed  Steelhead  Reach  Structure   Sub-­‐Watershed   Nisqually  Lower   Reach  2A  

Nisqually   Reservation   Reaches  

Nisqually  River   Mainstem  

Nisqually   Whitewater   Reach  

Nisqually   McKenna  Reach  

Centralia   Diversion  Dam  

Nisqually  Wilcox   Reach  

  Nisqually  Steelhead  Recovery  Plan    

Length   (mi)  

Gradient   (%)  

Confinement   Class  

This  reach  extends  from  the  I-­‐5   bridge  to  the  upper  end  of   railroad  grade  (RM  2.5  to  4.0)  

1.50  

0.10%  

Unconfined  

Nisqually2B.1-­‐ LowerReach  

Upper  end  of  railroad  grade  to   Clear  Creek  (RM  4.0  to  6.1)  

1.70  

0.10%  

Unconfined  

Nisqually   River  

Nisqually2B.2-­‐ LowerReach  

Clear  Creek  Hatchery  to  Kalama   Creek  Hatchery  outlet  (RM  6.1   to  9.5)  

3.16  

0.25%  

Unconfined  

Nisqually   River  

Nisqually2B.3-­‐ LowerReach  

Kalama  Creek  Hatchery  outlet   to  Muck  Creek  (RM  9.5  to  10.6)  

1.95  

0.25%  

Unconfined  

Nisqually   River  

Nisqually2B.4-­‐ LowerReach  

Muck  Creek  to  Centralia   Powerhouse  (RM  10.6  to  12.7)  

1.73  

0.20%  

Unconfined  

Nisqually   River  

Nisqually3.1-­‐Whitewater  

Centralia  Powerhouse  to  Yelm   Creek  (RM  12.7  to  13.1)  

0.45  

0.57%  

Confined  

Nisqually   River  

Nisqually3.2-­‐Whitewater  

Yelm  Creek  to  Murray  Creek   (RM  13.1  to  19.0)  

6.11  

0.38%  

Confined  

Nisqually   River  

Nisqually3.3-­‐Whitewater  

Murray  Creek  to  highway   bridge  at  McKenna  (RM  19.0  to   21.0)  

2.68  

0.52%  

Confined  

Nisqually   River  

Nisqually4.1-­‐Mckenna  

Highway  bridge  in  McKenna  to   Horn  Creek  (RM  21.0  to  25.8)  

3.95  

0.13%  

Moderately   Confined  

Nisqually   River  

Nisqually4.2-­‐Mckenna  

Horn  Creek  to  Centralia   Diversion  Dam  (RM  25.8  to   26.2)  

0.45  

0.15%  

Moderately   Confined  

Nisqually   River  

Centralia  Diversion  Dam  

Nisqually  Mainstem  Diversion   Dam  including  screens  and  spill   (RM  26.2)  

0.00  

0.00%  

   

Nisqually   River  

Nisqually5.1-­‐Wilcox  

Centralia  diversion  dam  to   mouth  of  Lacamas  Creek  (RM   26.2  to  28.8)  

2.56  

0.15%  

Moderately   Unconfined  

Nisqually   River  

Nisqually5.2-­‐Wilcox  

Mouth  of  Lacamas  Creek  to   mouth  of  Toboton  Creek  (RM   28.8  to    29.0)  

0.43  

0.15%  

Moderately   Unconfined  

Nisqually   River  

Nisqually5.3-­‐Wilcox  

Mouth  of  Toboton  Creek  to   mouth  of  Tanwax  Creek  (RM  

1.50  

0.10%  

Moderately   Unconfined  

Stream  

EDT  Reach  Name  

Reach  Description  

Nisqually   River  

Nisqually2a-­‐LowerReach  

Nisqually   River  

A-­‐1  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Subbasin  

Sub-­‐Watershed  

Stream  

EDT  Reach  Name  

Reach  Description  

Length   (mi)  

Gradient   (%)  

Confinement   Class  

29.0  to  30.8)  

Nisqually  Middle   Reach  

Nisqually  Upper   Reach  

Prairie   Tributaries  

McAllister   Creek  

Red  Salmon   Creek  

McAllister  Creek  

  Nisqually  Steelhead  Recovery  Plan    

Nisqually   River  

Nisqually6.1-­‐MiddleReach  

Mouth  of  Tanwax  Creek  to  the   mouth  of  Powell  Creek  (RM   30.8  to  31.9)  

0.93  

0.22%  

Moderately   Unconfined  

Nisqually   River  

Nisqually6.2-­‐MiddleReach  

Mouth  of  Powell  Creek  to  the   mouth  of  Kreger  Creek  (RM   31.9  to  34.0)  

1.75  

0.30%  

Moderately   Unconfined  

Nisqually   River  

Nisqually6.3-­‐MiddleReach  

Mouth  of  Kreger  Creek  to  the   mouth  of  Ohop  Creek  (RM  34.0   to  37.3)  

2.62  

0.20%  

Moderately   Unconfined  

Nisqually   River  

Nisqually7A-­‐UpperReach  

Mouth  of  Ohop  Creek  to  the   mouth  of  Mashel  River  (RM  37.3   to  39.6)  

2.39  

0.29%  

Confined  

Nisqually   River  

Nisqually7B-­‐UpperReach  

Mouth  of  the  Mashel  River  to   Tacoma's  Grande  powerhouse   (RM  39.6  to  40.8)  

1.23  

0.95%  

Confined  

Nisqually   River  

Nisqually7C-­‐UpperReach  

Tacoma's  La  Grande   powerhouse  to  barrier   upstream  of  powerhouse  (RM   40.8  to  41.3)  

0.54  

0.95%  

Confined  

Red  Salmon   Creek  

Red_Salmon_RR_Culvert  

Railroad  culvert  near  mouth  of   Red  Salmon  Creek    (top  of   estuary)  

0.00  

   

   

Red  Salmon   Creek  

Red  Salmon  Creek  

Right  bank  tributary  of   Nisqually  Estuary.    Mouth  to   coho  and  chum  upper  extent.  

0.70  

1.90%  

Moderately   Confined  

McAllister   Creek  

McAllister-­‐1  

McAllister  Creek  Relocated   Reach  (top  of  Estuary  to  0.3   miles  upstream  of  Martin  Way)  

1.18  

0.11%  

Unconfined  

McAllister   Creek  

McAllister-­‐2  

McAllister  Creek  Middle  Reach   (0.3  miles  upstream  of  Martin   Way  to  Steilacoom  Rd)  

0.68  

0.11%  

Unconfined  

McAllister   Creek  

McAllister-­‐3A  

McAllister  Creek  Upper  Reach   (Steilacoom  Rd-­‐RM  4.6  to   confluence  with  Little   McAllister-­‐RM  5.3)  

0.69  

0.11%  

Unconfined  

A-­‐2  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Subbasin  

Sub-­‐Watershed  

Length   (mi)  

Gradient   (%)  

Confinement   Class  

McAllister  Creek  Upper  Reach   (confluence  with  Little   McAllister-­‐RM  5.3  to  McAllister   Springs-­‐RM  6.3)  

0.93  

0.11%  

Unconfined  

Little  McAllister-­‐1  

Little  McAllister  Creek  (mouth   to  extent  of  anadromous  use-­‐ RM  0.3)  

0.75  

0.30%  

Moderately   Confined  

Clear  Creek  

Clear  Cr-­‐1  

Right  bank  tributary  to   Nisqually  River  at  RM  5.    Mouth   to  barrier  at  hatchery.  

0.24  

2.30%  

Unconfined  

Clear  Creek  

Clear  Cr  Hatchery  Rack  

Hatchery  Weir  in  Clear  Creek;   blocks  assess  to  upper  Clear   Creek  

0.00  

0.00%  

   

Clear  Creek  

Clear  Cr-­‐2  

Left  bank  tributary  to  Nisqually   River  at  RM  5.    Barrier  at   hatchery  to  original  upper   extent.  

0.95  

0.90%  

Moderately   Unconfined  

Kalama   Creek  

Kalama  Cr-­‐1  

Left  bank  tributary  to  Nisqually   River  at  RM  9.5.    Mouth  to   barrier  at  hatchery.  

0.55  

1.50%  

Unconfined  

Kalama   Creek  

Kalama  Hatchery  Weir  

Kalama  Hatchery  Weir;  blocks   access  to  upper  Kalama  Creek  

0.00  

0.00%  

   

Kalama   Creek  

Kalama  Cr-­‐2  

Left  bank  tributary  to  Nisqually   River  at  RM  9.5.    Barrier  at   hatchery  to  original  upper   extent.  

0.64  

0.30%  

Unconfined  

Muck  Creek  

Muck  flow  obstruction   mouth  

Flow  obstruction  at  mouth  used   to  model  lack  of  flows  during   certain  months  

0.00  

   

   

Muck  Creek  

Muck-­‐1A_a  Canyon  

Muck  Creek  -­‐  Mouth  to  RM  1.0   (top  of  canyon)  

1.00  

1.30%  

Confined  

Muck  Creek  

Muck-­‐1A_b  Canyon  

Muck  Creek  -­‐  RM  1.0  (top  of   canyon)  to  RM  2.4  (Exeter   Springs)  

0.95  

1.30%  

Confined  

Muck  Creek  

Muck-­‐1B_a  Canyon  

Muck  Creek  -­‐  Exter  Springs  (RM   2.4)  to  top  of  moderate  gradient   (RM  3.0)  

1.05  

0.41%  

Confined  

Stream  

EDT  Reach  Name  

Reach  Description  

McAllister   Creek  

McAllister-­‐3B  

Little   McAllister   Creek  

Clear  Creek  

Prairie   Tributaries  

Kalama  Creek  

Muck  Creek  

Muck  Creek   Canyon  

  Nisqually  Steelhead  Recovery  Plan    

A-­‐3  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Subbasin  

Sub-­‐Watershed  

Muck  Creek   Prairie  

Muck  Creek   Lakes  

Muck  Creek   Upper  Reaches  

  Nisqually  Steelhead  Recovery  Plan    

Length   (mi)  

Gradient   (%)  

Confinement   Class  

Muck  Creek  -­‐  Top  of  moderate   gradient  (RM  3.0)  to  Preacher   Spring  (RM  ~4.7)  

1.57  

0.41%  

Confined  

Muck-­‐2A  Prairie  

Muck  Creek  -­‐  Preacher  Spring  to   Halverson  Springs  (Rm  5.6)  

0.62  

0.50%  

Unconfined  

Muck  Creek  

Muck-­‐2B  Prairie  

Muck  Creek  -­‐  Halverson  Springs   to  Lacamas  Cr  (RM  6.4);  top   section  of  reach  within  Roy  city   limits  

0.89  

0.50%  

Unconfined  

Muck  Creek  

Muck-­‐3AA  Lakes  

Muck  Creek  -­‐  Lacamas  Creek   (RM  6.4)  to  Inlet  of  Muck  Lake   (RM  6.7)  

0.31  

0.10%  

Unconfined  

Muck  Creek  

Muck-­‐3AB  Lakes  

Muck  Creek  -­‐  Muck  Lake  to   Chambers  Lake  (RM  6.9)  

0.28  

0.10%  

Moderately   Unconfined  

Muck  Creek  

Muck-­‐Chamber  Outlet  

Muck  Creek  -­‐Outlet  of   Chambers  Lake  (RM  6.9).   Upstream  fish  ladder.  

0.00  

0.00%  

Unconfined  

Muck  Creek  

Muck-­‐3BA  Lakes  

Muck  Creek  -­‐  Chambers  Lake   (upstream  end  RM  8.5)  

1.49  

0.10%  

Unconfined  

Muck  Creek  

Muck-­‐3BB  Lakes  

Muck  Creek  -­‐  Inlet  of  Chambers   Lake  to  Johnson  Creek  (RM  9.3)  

0.92  

0.10%  

Unconfined  

Muck  Creek  

Muck  flow  obstr  abv   johnson  

Muck  Creek  Above  Johnson   Creek  Intermittent  flow   obstruction  

0.00  

   

   

Muck  Creek  

Muck-­‐4A  Upper  Reach  

Muck  Creek  -­‐  Johnson  Creek   (RM  9.3)  to  confluence  with  SF   Muck  Creek  (RM  13.4)  

4.19  

0.28%  

Moderately   Unconfined  

Muck  Creek   South  Fork  

Muck-­‐4SFA_aa  Upper   Reach  

SF  Muck  Creek  -­‐  Confluence   Muck  Creek  (@  RM  13.4)  to   28th  Ave  E  (intermittent  flow   section  of  S.F.  Muck  Creek)  

3.00  

0.36%  

Moderately   Unconfined  

Muck  Creek   South  Fork  

Muck-­‐4SFA_ab  Upper   Reach  

SF  Muck  Creek  -­‐  28th  Ave  E  to   approximately  294th  St  E   (perennial  flow  section  of  S.F.   Muck  Creek)  

1.45  

0.36%  

Moderately   Unconfined  

Stream  

EDT  Reach  Name  

Reach  Description  

Muck  Creek  

Muck-­‐1B_b  Canyon  

Muck  Creek  

A-­‐4  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Subbasin  

Sub-­‐Watershed  

  Nisqually  Steelhead  Recovery  Plan    

Length   (mi)  

Gradient   (%)  

Confinement   Class  

SF  Muck  Creek  -­‐  Approximately   294th  St  E  (top  of  perennial   flow  section  of  S.F.  Muck  Creek)   to  304th  St  Culvert   (intermittent  flow  section  of  S.F.   Muck)  

8.95  

0.36%  

Moderately   Unconfined  

Muck-­‐4SFA  Upper  Reach   304th  St  E  culvert  

SF  Muck  Creek  -­‐  304th  St  E   culvert  (RM  10.7);  partial   barrier  (PCD  database)  

0.00  

   

   

Muck  Creek   South  Fork  

Muck-­‐4SFA_b  Upper   Reach  

SF  Muck  Creek  -­‐  304th  St  E   culvert  (RM  10.7)  to  upper   extent  of  chum  (RM  12.8)  

0.77  

0.36%  

Moderately   Unconfined  

Muck  Creek   South  Fork  

Muck-­‐4SFB_a  Upper   Reach  

SF  Muck  Creek  -­‐  Upper  extent   chum  (RM  12.8)  to  126th  Ave  E   culvert  (RM  13.5)  

1.61  

0.32%  

Moderately   Unconfined  

Muck  Creek   South  Fork  

Muck-­‐4SFB  Upper  Reach   126th  Ave  E  Culvert  

SF  Muck  Creek  -­‐  126th  Ave  E   culvert  (RM  13.5);  partial   barrier  (PCD  database)  

0.00  

   

   

Muck  Creek   South  Fork  

Muck-­‐4SFB_b  Upper   Reach  

SF  Muck  Creek  -­‐  126th  Ave  E   culvert  (RM  13.5)  to  culvert    at   274th  St.  E.,  RM  14  

0.38  

0.32%  

Moderately   Unconfined  

Muck  Creek   South  Fork  

Muck  274th  St.  E.  culvert  

274th  St.  E.  culvert  on  SF  Muck,   at  RM  14  

0.00  

   

   

Muck  Creek   South  Fork  

Muck-­‐4SFB_c  Upper   Reach  

SF  Muck  Creek  -­‐  culvert  at   274th  St.  E.,  RM  14  to   headwaters  (RM  17.8)  

1.59  

0.32%  

Moderately   Unconfined  

Muck  Creek  

Muck-­‐4C_a  Upper  Reach  

Muck  Creek  -­‐  Confluence  with   SF  Muck  Creek  (RM  13.4)  to   unauthorized  dam  @  RM  17.5,   approximately  4.2  mile  long   reach  

4.22  

0.30%  

Moderately   Unconfined  

Muck  Creek  

Muck-­‐4C  Upper  Reach   Unauthorized  Dam  

Muck  Creek  -­‐  Unauthorized  dam   @  RM  17.5  

0.00  

   

   

Muck  Creek  

Muck-­‐4C_b  Upper  Reach  

Muck  Creek  -­‐  Unauthorized   Dam  (RM  17.5)  to  headwaters   (RM  19.9)  

2.28  

0.30%  

Moderately   Unconfined  

Stream  

EDT  Reach  Name  

Reach  Description  

Muck  Creek   South  Fork  

Muck-­‐4SFA_ac  Upper   Reach  

Muck  Creek   South  Fork  

A-­‐5  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Subbasin  

Sub-­‐Watershed  

Muck  Creek   Tributaries  

  Nisqually  Steelhead  Recovery  Plan    

Gradient   (%)  

Confinement   Class  

Culvert  at  252nd  Street  at  upper   0.00   extent    of  north  fork  Muck   Creek  (RM  20)  

   

   

Exeter  Spring  

Exeter  Springs  -­‐  Muck  Cr  to   head  of  springs  

0.30  

0.19%  

Unconfined  

Preacher  

Preacher  Creek  

Preach  Creek  -­‐  Muck  Cr  to   springs  

0.27  

0.40%  

Unconfined  

Halverson  

Halverson  Creek  

Halverson  Creek  -­‐  Muck  to   springs  above  lake  

0.89  

0.40%  

Unconfined  

Lacamas   Creek  

Lacamas  Cr_a  

Lacamas  Creek  -­‐  Mouth  to  16th   Ave  Culvert  (RM  5.5)  

5.85  

0.36%  

Moderately   Unconfined  

Lacamas   Creek  

Lacamas  Cr_16th  Ave  S   Culvert  

Lacamas  Creek  -­‐  16th  Ave   Culvert;  partial  barrier  at  RM   5.5  (PCD  database)  

0.00  

   

   

Lacamas   Creek  

Lacamas  Cr_b  

Lacamas  Creek  -­‐  16th  Ave   Culvert  (RM  5.5)  to  17th  Ave   Culvert  (RM  5.75)  

0.43  

0.36%  

Moderately   Unconfined  

Lacamas   Creek  

Lacamas  Cr_17th  Ave  S   Culvert  

Lacamas  Creek  -­‐  17th  Ave   Culvert;  partial  barrier  at  RM   5.75(PCD  database)  

0.00  

   

   

Lacamas   Creek  

Lacamas  Cr_c  

Lacamas  Creek  -­‐  17th  Ave   Culvert  (RM  5.75)  to  318th  St   Culvert  (RM  6.0)  

0.20  

0.36%  

Moderately   Unconfined  

Lacamas   Creek  

Lacamas  Cr_318th  Ave  S   Culvert  

Lacamas  Creek  -­‐  318th  St   Culvert;  partial  barrier  at  RM   6.0  (PCD  database)  

0.00  

   

   

Lacamas   Creek  

Lacamas  Cr_d  

Lacamas  Creek  -­‐  318th  St  S   Culvert  (RM  6.0)    to  private   driveway  culvert  (RM  7.0)  

0.91  

0.36%  

Moderately   Unconfined  

Lacamas   Creek  

Lacamas  Cr_Private   Driveway  Culvert  

Lacamas  Creek  -­‐  Private   driveway  culvert;  partial   barrier  at  RM  7.0  (PCD   database)  

0.00  

   

   

Lacamas   Creek  

Lacamas  Cr_e  

Lacamas  Creek  -­‐  Private   driveway  culvert  (RM  7.0)  to   headwaters  (RM  7.7)  

0.96  

0.36%  

Moderately   Unconfined  

Stream  

EDT  Reach  Name  

Reach  Description  

Muck  Creek  

Muck  252nd  St  E  culvert  

Exter  

A-­‐6  

Length   (mi)  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Subbasin  

Sub-­‐Watershed  

Length   (mi)  

Gradient   (%)  

Confinement   Class  

Nixon  Springs  -­‐  short  reach  to   head  of  springs  

0.31  

0.50%  

Unconfined  

Johnson  Creek  

Johnson  Creek  -­‐  Muck  Creek  to   outlet  of  Johnson  marsh  (fish   ladder)  

0.60  

0.10%  

Unconfined  

Johnson  

Johnson  Ladder  

Johnson  Creek  -­‐  Fish  Ladder   below  marsh  

0.00  

0.00%  

   

Johnson  

Johnson  Marsh  

Johnson  Creek  -­‐  Johnson  outlet   (fish  ladder)  to  upstream  end  of   marsh  

0.76  

0.10%  

Unconfined  

Thompson   Creek  

Thompson  Cr  

Left  bank  tributary  to  Nisqually   River  at  RM  12.4.    Mouth  to   incised  barrier  at  Centralia   Diversion  overflow.  Routing  is   approximate  (need  to  review).  

0.71  

4.00%  

Moderately   Confined  

Yelm  Creek  

Yelm  Cr-­‐1_a  

Left  bank  tributary  to  the   Nisqually  River  at  RM  13.1.   Yelm  Creek  from  mouth  to  CM   0.49,  portion  of  creek  in   Nisqually  floodplain  (Chinook,   chum,  and  pink  spawning   extent)  

0.49  

2.30%  

Moderately   Confined  

Yelm  Creek  

Yelm  Cr-­‐1_b  

Yelm  Creek  upstream  of   Chinook  distribution  CM  0.49  to   1.8  High  gradient  portion  of   creek,  steelhead  and  coho   extent.  Upper  end  is  Centralia   Canal  crossing.  

1.29  

2.30%  

Moderately   Confined  

Murray   Creek  

Murray  Cr-­‐1  

Right  Bank  tributary  to   Nisqually  River  at  RM  19.1.     Murray  Cr-­‐  mouth  to  railroad   crossing  (RM  0.4),  chinook   upper  extent.  

0.40  

0.79%  

Moderately   Unconfined  

Murray   Creek  

Murray  Cr-­‐2_a  

Right  Bank  tributary  to   Nisqually  River  at  RM  19.1.     Murray  Cr-­‐  railroad  crossing   (RM  0.4)  to  barrier  at  RM  2.3   Chehalis  RR  Crossing  

1.97  

0.30%  

Moderately   Confined  

Stream  

EDT  Reach  Name  

Reach  Description  

Nixon  

Nixon  Spring  

Johnson  

Thompson  Creek  

Yelm  Creek   Prairie   Tributaries  

Murray  Creek  

  Nisqually  Steelhead  Recovery  Plan    

A-­‐7  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Subbasin  

Sub-­‐Watershed  

  Nisqually  Steelhead  Recovery  Plan    

Length   (mi)  

Gradient   (%)  

Confinement   Class  

Right  Bank  tributary  to   Nisqually  River  at  RM  19.1.     Murray  Cr-­‐  Chehalis  RR   Crossing  at  RM  2.3;  partial   barrier  (  67%  passable  PCD   database)  

0.00  

   

   

Murray  Cr-­‐2_ba  

Right  Bank  tributary  to   Nisqually  River  at  RM  19.1.     Murray  Cr-­‐  Chehalis  RR   crossing  (RM  2.3)  to  culvert  at   Hinkleman  Rd.,  RM  4.7  

2.47  

0.30%  

Moderately   Confined  

Murray   Creek  

Murray   Cr_culvert_hinkleman  

culvert  at  Hinkleman  Rd.,  RM   4.7  

0.00  

   

   

Murray   Creek  

Murray  Cr-­‐2_bb  

Culvert  at  Hinkleman  Rd.,  RM   4.7  to  barrier  at  RM  6.2;   complete  barrier  (PCD   database)  

1.48  

0.30%  

Moderately   Confined  

Murray   Creek  

Murray  Culvert  Barrier  

Murray  Creek  -­‐  Barrier  at  RM   6.2;  48th  Ave  S.  barrier  -­‐   complete  (PCD  database)  

0.00  

0.00%  

   

Murray   Creek  

Murray  Cr-­‐3_a  

Right  Bank  tributary  to   Nisqually  River  at  RM  19.1.     Murray  Cr-­‐  barrier  at  RM  6.2  to   RM  7.2  pipeline  crossing;  partial   barrier  (PCD  database).  

1.18  

0.20%  

Moderately   Confined  

Murray   Creek  

Murray  Cr-­‐3  Pipeline   crossing  

Right  Bank  tributary  to   Nisqually  River  at  RM  19.1.     Murray  Cr-­‐  barrier  at  RM  6.2  to   pipeline  crossing  at  RM  7.2  

0.00  

   

   

Murray   Creek  

Murray  Cr-­‐3_b  

Right  Bank  tributary  to   Nisqually  River  at  RM  19.1.     Murray  Cr-­‐  pipeline  crossing   barrier  at  RM  7.2  to  RM  9  upper   extent  for  coho,  chum  steelhead.  

1.85  

0.20%  

Moderately   Confined  

Stream  

EDT  Reach  Name  

Reach  Description  

Murray   Creek  

Murray  Cr-­‐2  Chehalis  RR   Crossing  

Murray   Creek  

A-­‐8  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Subbasin  

Sub-­‐Watershed  

Length   (mi)  

Gradient   (%)  

Confinement   Class  

Left  bank  tributary  to  Nisqually   River  at  river  mile  21.7.    Mouth   to  top  of  pond,  current  upper   extent  of  McKenna  Creek;  ends   at  pasture  ditch.  Reach  includes   a  culvert  that  was  replaced  in   2009  to  be  100%  passable.  

1.19  

0.10%  

Moderately   Unconfined  

McKenna  Cr-­‐2  

Upper  McKenna  from  top  of   Pond/ditch  through  field,   presumed  historic  upper   section  of  McKenna  Creek  

0.43  

0.10%  

Moderately   Unconfined  

Brighton   Creek  

Brighton  Cr-­‐1_a  

Right  bank  tributary  to   Nisqually  River  at  RM  23.6.     Mouth  to  impassable  culvert  at   Harts  Lake  Loop  Rd.  Routing  is   approximate  (need  to  review).  

0.32  

4.70%  

Moderately   Unconfined  

Brighton   Creek  

Brighton  Cr  Culvert  

Impassable  culvert  at  Harts   Lake  Loop  Rd.  

0.00  

0.00%  

   

Brighton   Creek  

Brighton  Cr-­‐1_b  

Right  bank  tributary  to   Nisqually  River  at  RM  23.6.     Impassable  culvert  at  Harts   Lake  Loop  Rd.  to  partially   passible  driveway  culvert  RM   0.7  

0.20  

0.40%  

Confined  

Brighton   Creek  

Brighton  Cr  Private   Driveway  Culvert  

Partially  passable  driveway   culvert  at  RM  0.7  on  Brighton   Creek  (PCD  data)  

0.00  

   

   

Brighton   Creek  

Brighton  Cr-­‐1_c  

Right  bank  tributary  to   Nisqually  River  at  RM  23.6.     Driveway  Culvert  (RM  0.7)  to   62nd  Ave  So  Culvert  (RM  0.9);   partial  barrier  culvert  

0.25  

0.40%  

Confined  

Brighton   Creek  

Brighton  Cr  62nd  Ave  So   Culvert  

Partially  passable  driveway   culvert  62nd  Ave  So  at  RM  0.9   on  Brighton  Creek  (PCD  data)  

0.00  

   

   

Brighton   Creek  

Brighton  Cr-­‐1_d  

Right  bank  tributary  to   Nisqually  River  at  RM  23.6.     62nd  Ave  So  Culvert  (RM  0.9)  to  

3.49  

0.40%  

Confined  

Stream  

EDT  Reach  Name  

Reach  Description  

McKenna   Creek  

McKenna  Cr-­‐1  

McKenna   Creek  

McKenna  Creek  

Brighton  Creek  

  Nisqually  Steelhead  Recovery  Plan    

A-­‐9  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Subbasin  

Sub-­‐Watershed  

Stream  

EDT  Reach  Name  

Reach  Description  

Length   (mi)  

Gradient   (%)  

Confinement   Class  

Highway  702  barrier  (RM  4.2)  

Horn  Creek  

  Nisqually  Steelhead  Recovery  Plan    

Brighton   Creek  

Brighton  Cr  Highway  702   Culvert  

Complete  barrier  under   Highway  702  (PCD)  at  RM  4.2   on  Brighton  Creek  (PCD  data)  

0.00  

   

   

Brighton   Creek  

Brighton  Cr-­‐1_e  

Right  bank  tributary  to   Nisqually  River  at  RM  23.6.     Highway  702  (RM  4.2)  to  upper   extent  potential  for  coho,  chum,   steelhead  (RM  4.4)  

0.16  

0.40%  

Confined  

Horn  Creek  

Horn  Cr-­‐1_A  

Right  bank  tributary  at  RM  25.8   of  the  Nisqually  River.    Horn   Creek  from  mouth  to  Harts   Creek  confluence  (RM  0.4),  pink   distribution  extends  into  the   next  reach  ~0.25  mi.  

0.39  

1.80%  

Moderately   Unconfined  

Horn  Creek  

Horn  Cr-­‐1_B  

Horn  Creek  from  confluence   0.82   Harts  Cr  at  RM  0.4  to  end  of   chinook  distribution  at  RM  1.22;   pink  salmon  found  in  the  lower   0.25  mi  of  this  reach.  

1.80%  

Moderately   Unconfined  

Horn  Creek  

Horn  Cr  Falls  

Horn  Creek  Falls  (unnatural  -­‐   did  not  exist  in  template);   partial  ladder  (includes  nearby   bridge)  

0.00  

0.00%  

   

Horn  Creek  

Horn  Cr-­‐2_a  

Upper  extent  of  chinook  (RM   1.22)  to  368th  St  Culvert;  this  is   a  complete  barrier.  

1.58  

0.31%  

Moderately   Confined  

Horn  Creek  

Horn  Cr-­‐2  368th  St   Culvert  

Horn  Creek  -­‐  368th  St  Culvert;   this  is  a  complete  barrier.  

0.00  

   

   

Horn  Creek  

Horn  Cr-­‐2_b  

Horn  Creek  -­‐  from  368th  St   Culvert  to  private  culvert  at  RM   3.9.  

1.72  

0.31%  

Moderately   Confined  

A-­‐10  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Subbasin  

Lacamas,   Toboton,  Powell  

Sub-­‐Watershed  

Lacamas  Creek  

  Nisqually  Steelhead  Recovery  Plan    

Length   (mi)  

Gradient   (%)  

Confinement   Class  

Private  culvert  at  RM  3.9,  0%   passable,  Location:  100m  N  of   364th  St  So  on  private  road,  just   over  0.5  mi  E  of  8th  Ave  So.  

0.00  

   

   

Horn  Cr-­‐2_c  

Horn  Creek  -­‐  from    private   culvert  at  RM  3.9  to  upper   extent  of  steelhead  potential  in   Horn  Creek  (updated  length   mile  4.9)  

0.39  

0.31%  

Moderately   Confined  

Harts  Creek  

Harts  Creek-­‐1_a  

Left  bank  tributary  of  Horn   Creek  at  RM  0.4.    Confluence   with  Horn  Creek  Up  to  private   culvert  at  RM  0.2  (river  rd.  on   Wilcox  farm)  

0.23  

0.20%  

Moderately   Unconfined  

Harts  Creek  

Harts   Creek_private_culvert_riv er_rd  

Harts  Creek  Private  culvert  at   RM  0.2,  spur  of  River  Rd  on   Wilcox  farm  

0.00  

   

   

Harts  Creek  

Harts  Creek-­‐1_b  

Private  culvert  at  RM  0.2  (river   rd.  on  Wilcox  farm)  up  to  Harts   Lk  Valley  Rd  culvert,  RM  1.2  

1.29  

0.20%  

Moderately   Unconfined  

Harts  Creek  

HartsCr_Harts_Lk_Valley_ Rd_Culvert  

Harts  Lk  Valley  Rd  culvert,  RM   1.2  

0.00  

   

   

Harts  Creek  

Harts  Creek-­‐1_c  

Harts  Lk  Valley  Rd  culvert,  RM   1.2  up  to  private  driveway   culvert  (RM  1.3);  PCD  database   partial  barrier.  

0.27  

0.20%  

Moderately   Unconfined  

Harts  Creek  

Harts  Creek  Private   Driveway  Culvert  

Right  bank  tributary  of  Horn   Creek  at  RM  0.2.    Harts  Cr-­‐   Private  driveway  culvert;   partial  barrier  (PCD  database)  

0.00  

   

   

Harts  Creek  

Harts  Creek-­‐1_d  

Right  bank  tributary  of  Horn   Creek  at  RM  0.2.    Harts  Cr-­‐   Private  driveway  culvert  (RM   1.3)  to  Harts  Lake.  

0.47  

0.20%  

Moderately   Unconfined  

Lacamas   Creek  

Lacamas  Cr-­‐1a  

Left  bank  tributary  to  Nisqually   River  at  RM  28.8.    Mouth  to   present  culvert  barrier  at  RM  

0.78  

0.57%  

Moderately   Confined  

Stream  

EDT  Reach  Name  

Reach  Description  

Horn  Creek  

Horn  Cr-­‐ private_culvert_upper  

Horn  Creek  

A-­‐11  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Subbasin  

Sub-­‐Watershed  

Stream  

EDT  Reach  Name  

Reach  Description  

Length   (mi)  

Gradient   (%)  

Confinement   Class  

0.4.  

Toboton  Creek  

  Nisqually  Steelhead  Recovery  Plan    

Lacamas   Creek  

Lacamas  Culvert  Barrier  

Private  driveway  barrier  at  RM   0.4;  Hensen  Ln.  Partial  barrier  -­‐   33%  (PCD  database)  

0.00  

0.00%  

   

Lacamas   Creek  

Lacamas  Cr-­‐1b  

Left  bank  tributary  to  Nisqually   River  at  RM  28.8.    Culvert   barrier  at  RM  0.4  to  Bald  Hills   Rd  Culvert  (also  upper  extent  of   chinook  spawning)  (RM  1)  

0.66  

0.57%  

Moderately   Confined  

Lacamas   Creek  

Lacamas  Bald  Hills  Rd   Culvert  Barrier  

Barrier  at  RM  1.4  Bald  Hills  Rd;   partial  barrier  -­‐  33%  (PCD   database)  

0.00  

0.00%  

   

Lacamas   Creek  

Lacamas  Cr-­‐2a  

Left  bank  tributary  to  Nisqually   River  at  RM  28.8.    Bald  Hills  Rd   culvert  (RM  1.0)  to  Pasture   culvert  barrier  at  RM  2.  

1.46  

0.66%  

Moderately   Unconfined  

Lacamas   Creek  

Lacamas  Pasture  Barrier  

Pasture  Culvert  Barrier  at  RM  2;   partial  barrier  to  fish  passage  -­‐   67%  (PCD  database)  

0.00  

   

   

Lacamas   Creek  

Lacamas  Cr-­‐2b  

Left  bank  tributary  to  Nisqually   River  at  RM  28.8.    Pasture   culvert  barrier  (RM  2.0)  to   complete  barrier  at  RM  2.8.  

0.79  

0.66%  

Moderately   Unconfined  

Lacamas   Creek  

Lacamas  Upper  Culvert   Barrier  

Culvert  Barrier  at  RM  2.8;   complete  barrier  to  fish  passage   (PCD  database)  

0.00  

0.00%  

   

Lacamas   Creek  

Lacamas  Cr-­‐2c  

Left  bank  tributary  to  Nisqually   River  at  RM  28.8.  Culvert   barrier  at  RM  2.8  to  upper   extent  of  potential  coho,  chum   and  steelhead  (RM  3.0)  

0.31  

0.66%  

Moderately   Unconfined  

Toboton   Creek  

Toboton  Cr-­‐1  

Left  bank  tributary  to  the   1.21   Nisqually  River  at  RM  29.  Mouth   to  upper  extent  of  chinook  (RM   1)  

0.76%  

Moderately   Unconfined  

A-­‐12  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Subbasin  

Sub-­‐Watershed  

  Nisqually  Steelhead  Recovery  Plan    

Length   (mi)  

Gradient   (%)  

Confinement   Class  

Right  bank  tributary  of  Toboton   Creek  at  RM  1.  

0.16  

1.00%  

Moderately   Unconfined  

Toboton  Cr-­‐2aa  

Left  bank  tributary  to  Nisqually   River  at  RM  29.    Chinook  upper   extent  (RM  1.0)  to  partial   barrier  at  Private  culvert  (RM   1.25)  

0.18  

0.72%  

Moderately   Unconfined  

Toboton   Creek  

Toboton  Private  Pasture   Culvert  

Partial  barrier  at  private   pasture  culvert  (RM  1.25);   assume  66%  passability  (best   guess)  

0.00  

   

   

Toboton   Creek  

Toboton  Cr-­‐2ab  

Left  bank  tributary  to  Nisqually   River  at  RM  29.    Private  pasture   culvert  (RM  1.25)  to  partial   barrier  at  Piessner  Rd.  

0.17  

0.72%  

Moderately   Unconfined  

Toboton   Creek  

Toboton  Piessner  Rd   Culvert  

Partial  culvert  barrier  at   Piessner  Rd  (RM  1.4)  -­‐  Toboton   Creek;  33%  passability  (PCD   database)  

0.00  

0.00%  

   

Toboton   Creek  

Toboton  Cr-­‐2ba  

Left  bank  tributary  to  Nisqually   River  at  RM  29.    Partial  barrier   at  Piessner  Rd  (RM  1.4)  to   complete  barrier  at  Bald  Hill  Rd   (RM  2.1)  

0.74  

0.72%  

Moderately   Unconfined  

Toboton   Creek  

Toboton  Bald  Hill  Rd   Culvert  

Complete  culvert  barrier  at  Bald   Hill  Rd    (RM  2.1)  -­‐  Toboton   Creek;  0%  passability  (PCD   database)  

0.00  

   

   

Toboton   Creek  

Toboton  Cr-­‐2bb  

Left  bank  tributary  to  Nisqually   River  at  RM  29.    Partial  barrier   at  Bald  Hill  Rd    (RM  2.1)  to  173   Ave  SE  culvert  (RM  2.5)  

0.56  

0.72%  

Moderately   Unconfined  

Toboton   Creek  

Toboton  173  Ave  SE   Culvert  

Complete  culvert  barrier  at  173   Ave  SE  (RM  2.5)  -­‐  Toboton   Creek;  0%  passability  (PCD   database)  

0.00  

   

   

Stream  

EDT  Reach  Name  

Reach  Description  

Spring  Trib   to  Toboton  

Toboton  spring  tributary  

Toboton   Creek  

A-­‐13  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Subbasin  

Sub-­‐Watershed  

Length   (mi)  

Gradient   (%)  

Confinement   Class  

Left  bank  tributary  to  Nisqually   River  at  RM  29.    Complete   barrier  at  173  Ave  SE(RM  2.5)   to  potential  chum,  coho,   steelhead  upper  extent  (RM  4.4)  

1.68  

0.72%  

Moderately   Unconfined  

Powell  Cr-­‐1a  

Left  bank  tributary  to  Nisqually   River  at  RM  31.9.    Mouth  to   Elbow  Creek  confluence  at  RM   0.5  (also  approximate  Piessner   Rd  culvert)  

0.51  

1.56%  

Moderately   Unconfined  

Powell   Creek  

Powell  Cr-­‐1  Piessner  Rd   Culvert  

Left  bank  tributary  to  Nisqually   River  at  RM  31.9.    Partial   barrier  for  Piessner  Rd;  culvert   barrier  in  main  channel,  side   channel  passage  (PCD  database)  

0.00  

   

   

Powell   Creek  

Powell  Cr-­‐1b  

Left  bank  tributary  to  Nisqually   River  at  RM  31.9.    Elbow  Creek   confluence  (also  approximate   Piessner  Rd  culvert)  at  RM  0.5   to  chum  upper  extent  at  RM  1.3  

0.77  

1.56%  

Moderately   Unconfined  

Powell   Creek  

Powell  Cr-­‐2  

Left  bank  tributary  to  Nisqually   River  at  RM  31.9.    Chum  upper   extent  at  RM  1.3  to  springs  at   RM  2.3  

1.04  

3.00%  

Confined  

Powell   Creek  

Powell  Cr-­‐3  

Left  bank  tributary  to  Nisqually   River  at  RM  31.9.    Springs  at  RM   2.3  to  coho  and  steelhead  upper   extent  at  RM  4.8  (upper  extent   not  well  known)  

2.46  

0.80%  

Moderately   Confined  

Elbow   Creek  

Elbow  Cr  

Left  bank  tributary  to  Powell   Creek  at  RM  0.4.  

1.00  

1.10%  

Confined  

Tanwax   Creek  

Tanwax  Cr-­‐1  

RB  trib  Nisqually  River  (RM   30.8);  Mouth  to  RM  3.2   (changes  from  large  tributary  to   small  tributary)  

3.36  

0.51%  

Moderately   Unconfined  

Tanwax   Creek  

Tanwax  Cr-­‐2  

RB  trib  Nisqually  River  (RM   30.8);  RM  3.5  to  Rapjohn  Lake   outlet  confluence.  

3.42  

0.75%  

Moderately   Unconfined  

Stream  

EDT  Reach  Name  

Reach  Description  

Toboton   Creek  

Toboton  Cr-­‐2bc  

Powell   Creek  

Powell  Creek  

Prairie   Tributaries  

Tanwax  Creek  

  Nisqually  Steelhead  Recovery  Plan    

A-­‐14  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Subbasin  

Sub-­‐Watershed  

  Nisqually  Steelhead  Recovery  Plan    

Length   (mi)  

Gradient   (%)  

Confinement   Class  

RB  trib  Nisqually  River  (RM   30.8);    Rapjohn  Lake  outlet   confluence  to  Eatonville  Cutoff   Rd  culvert  (RM  7.8)  

0.98  

0.23%  

Moderately   Unconfined  

Tanwax  Cr-­‐3  Eatonville   Cutoff  Rd  Culvert  

RB  trib  Nisqually  River  (RM   30.8);    Culvert  barrier  at  RM  7.8   (Eatonville  Cutoff  Rd);  partial   barrier  (modified  PCD   database)  

0.00  

   

   

Tanwax   Creek  

Tanwax  Cr-­‐3_b  

RB  trib  Nisqually  River  (RM   30.8);  Eatonville  Cutoff  Rd  (RM   7.8)  to  Tanwax  Lake  screen.  

3.30  

0.23%  

Moderately   Unconfined  

Tanwax   Creek  

Tanwax  Lake  

Tanwax  Lake  

1.49  

0.00%  

Unconfined  

Tanwax   Creek  

Tanwax  Upper   Tributaries  

Inlet  of  Tanwax  Lake  up  outlet   tributaries  to  Twin  Lake,  Byron   Lake,  and  Lake  Whitman  

1.06  

0.70%  

Moderately   Confined  

Cranberry  

Cranberry  

Left  bank  tributary  to  Tanwax   Creek  at  RM  5.1.    Cranberry   Lake  outlet  creek  from   confluence  with  Tanwax  Creek   to  Cranberry  Lake.  

0.55  

5.00%  

Confined  

Rapjohn   Lake  Outlet  

Rapjohn  

Left  bank  tributary  of  Tanwax   Creek  at  RM  6.8.    Rapjohn-­‐   confluence  with  Tanwax  Creek   up  to  Rapjohn  Lake.  

1.13  

1.50%  

Moderately   Confined  

Mud  Lake   Outlet  

Mud  

Left  bank  tributary  of  Tanwax   Creek  at  RM  7.2.    Mud  Lake   outlet  Creek  from  confluence   with  Tanwax  Creek  to  Mud   Lake.  

1.89  

0.70%  

Moderately   Confined  

Trout  Creek  

Trout  Creek  

Right  bank  tributary  to  Tanwax   Creek  at  RM  9.2.    Trout  Lake   outlet  creek  from  confluence   with  Tanwax  Creek  to   impassable  cascades  at  RM  0.2.  

0.15  

5.70%  

Moderately   Confined  

Stream  

EDT  Reach  Name  

Reach  Description  

Tanwax   Creek  

Tanwax  Cr-­‐3_a  

Tanwax   Creek  

A-­‐15  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Subbasin  

Sub-­‐Watershed  

Kreger  Creek  

Ohop  Creek   Lower  

Ohop  Creek  

Ohop  Lake  

Ohop  Creek   Tributaries  

  Nisqually  Steelhead  Recovery  Plan    

Length   (mi)  

Gradient   (%)  

Confinement   Class  

Right  bank  tributary  to   Nisqually  River  at  RM  34.05.     Mouth  to  top  of  steep  lower   reach  (RM  0.6)  

0.62  

3.60%  

Confined  

Kreger  Cr-­‐2  

Right  bank  tributary  to   Nisqually  River  at  RM  34.05.     Top  of  steep  lower  reach  (RM   0.6)  to  Kreger  Lake  outlet.  

0.96  

0.10%  

Moderately   Unconfined  

Kreger   Creek  

Kreger  Lake  

Kreger  Lake  

0.65  

0.00%  

Unconfined  

Kreger   Creek  

Kreger  Cr-­‐3  

Right  bank  tributary  to   Nisqually  River  at  RM  34.05.     Kreger  Lake  inlet  to  Silver  Lake   outlet.  

1.42  

1.30%  

Moderately   Confined  

Kreger   Creek  

Silver  Lake  

Silver  Lake  (coho  and  steelhead   upper  extent)  

0.49  

0.00%  

Unconfined  

Ohop  Creek  

Ohop  Cr-­‐1_a  

Ohop  Creek;  Mouth  to  RM  4.2   (where  a  break  in  gradient  and   gravel  transport  occurs)  

1.77  

0.10%  

Unconfined  

Ohop  Creek  

Ohop  Cr-­‐1_b  

Ohop  Creek;  RM  4.2  (where  a   break  in  gradient  and  gravel   transport  occurs)  to  Lynch   Creek  confluence  at  RM  6.25  

4.74  

0.47%  

Unconfined  

Ohop  Creek  

Ohop  Cr-­‐2  

Ohop  Creek;  Lynch  Creek   confluence  to  Ohop  Lake  Outlet  

0.21  

0.37%  

Unconfined  

Ohop  Creek  

Ohop  Lake  

Low  log  dam  to  upper  end  of   lake  (RM  6.3  to  8.4)  

2.27  

0.05%  

Unconfined  

Lynch  Creek  

Lynch  Cr  

Tributary  to  Ohop  Creek  at  RM   6.2  (below  Ohop  Lake);  Mouth   to  impassible  falls.  

1.09  

3.41%  

Confined  

Trib0094  

Trib0094  

Left  bank  tributary  to  Ohop   Creek  at  RM  9.2.    Mouth  to  coho   upper  extent.  

0.22  

1.00%  

Moderately   Confined  

Twentyfive   Mile  Creek  

Twentyfive  Mile  Cr  

Tributary  to  Ohop  Creek  at  RM   8.4,  above  Ohop  Lake  to   impassible  falls.  

2.87  

0.74%  

Moderately   Confined  

Stream  

EDT  Reach  Name  

Reach  Description  

Kreger   Creek  

Kreger  Cr-­‐1  

Kreger   Creek  

A-­‐16  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Subbasin  

Sub-­‐Watershed  

Mashel  River   Lower  

Mashel  River   Middle  

Mashel  River   Upper   Mashel  River  

Mashel  River   Tributaries  

Length   (mi)  

Gradient   (%)  

Confinement   Class  

Mashel  River,  mouth  to  river   mile  3.5,  passable  cascades,   upper  extent  for  chum  

3.81  

1.16%  

Confined  

Lower  Mashel-­‐ab  

Mashel  River  from  RM  3.5   (passable  cascades)  to  Little   Mashel  River  (RM  4.4)  

0.94  

1.16%  

Confined  

Mashel   River  

Lower  Mashel-­‐b  

Little  Mashel  River  (RM  4.4)  to   Boxcar  Canyon  (RM  6.6)  

2.34  

0.96%  

Confined  

Mashel   River  

Middle  Mashel  R-­‐1  

Box  Car  Canyon  (RM  6.6)  to   Beaver  Creek  (RM  10.5),  upper   extent  pink  salmon.  

4.07  

1.92%  

Confined  

Mashel   River  

Middle  Mashel  R-­‐2  

Beaver  Creek  (RM  10.5  to  Busy   Wild  Cr  (RM  14.6)  

4.41  

1.85%  

Confined  

Mashel   River  

Upper  Mashel  R  

Mashel  River  from  BusyWild   Creek  to  impassable  falls    (RM   14.6  to  15.4)  

0.76  

0.95%  

Confined  

Little   Mashel   River  

Little  Mashel  R  

Tributary  to  the  Mashel  River  at   RM  4.4.  

0.81  

4.50%  

Confined  

Beaver   Creek  

Beaver  Cr-­‐1  

Tributary  to  the  Mashel  River  at   RM  10.4.  Upper  extent  chinook   (falls)  RM  0.3  

0.39  

6.94%  

Confined  

Beaver   Creek  

Beaver  Creek  Falls  

Partial  barrier  to  coho  and   steelhead.      Upper  extent  of   chinook.  

0.00  

0.00%  

   

Beaver   Creek  

Beaver  Cr-­‐2  

Tributary  to  the  Mashel  River  at   RM  10.4.  -­‐  Falls  to  upper  extent   of  Steelhead  spawning  (RM  8.3)  

7.15  

1.73%  

Unconfined  

Busy  Wild   Creek  

Busy  Wild  Cr-­‐1  

Tributary  to  the  Mashel  River  at   RM  14.4.  Mouth  to  Upper  extent   of  chinook  spawning  (RM  5)  

4.33  

0.76%  

Moderately   Confined  

Busy  Wild   Creek  

Busy  Wild  Cr-­‐2  

Tributary  to  the  Mashel  River  at   RM  14.4.  Upper  extent  of   chinook  (RM  5)  to  Upper  extend   of  steelhead  (RM  7.8)  

3.01  

5.68%  

Confined  

Stream  

EDT  Reach  Name  

Reach  Description  

Mashel   River  

Lower  Mashel-­‐aa  

Mashel   River  

    Nisqually  Steelhead  Recovery  Plan    

A-­‐17  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Table  A-­‐2.  

Identified  Fish  Passage  Barriers  in  the  Nisqually  Watershed  Steelhead  Reach  Structure  

Juvenile   Upstream   Passage1  

Adult   Upstream   Passage  

Stream  Length   (m)  accessible   to  Steelhead   downstream  of   PI   Score2   barrier3  

Stream  Length   (m)  upstream   of  barrier4  

Subbasin  

Stream  

Type  

Description  

Prairie   Tributaries  

Clear  Creek  

Fish  Weir  

Hatchery  Weir  in  Clear   Creek;  blocks  assess  to   upper  Clear  Creek  

0  

0  

 

390  

1,521  

Prairie   Tributaries  

Kalama   Creek  

Fish  Weir  

Kalama  Hatchery  Weir;   blocks  access  to  upper   Kalama  Creek  

0  

0  

 

881  

1,033  

Muck  Creek  

Muck  Creek  

Flow   Obstruct-­‐ ion  

Muck  Cr.  Above  Johnson  Cr.   Intermittent  flow   obstruction  

0  

0  

 

14,625  

35,078  

Muck  Creek  

S.F.  Muck   Creek  

Culvert  

304th  St  E  culvert  (RM  10.7);   0   partial  barrier  (PCD   database)  

0.33  

 

0  

3,827  

Muck  Creek  

S.F.  Muck   Creek  

Culvert  

126th  Ave  E  culvert  (RM   13.5);  partial  barrier  (PCD   database)  

0  

0.33  

 

0  

605  

Muck  Creek  

S.F.  Muck   Creek  

Culvert  

274th  St.  E.  culvert  (RM  14);   partial  barrier  (PCD   database)  

0  

0.33  

 

0  

2,559  

                                                                                                                          1  Fish  passage  values:  0  –  complete  barrier  and  0.33  and  0.66  partial  barriers.   2  PI  Score  (Priority  Index):  WDFW  fish  passage  assessment  method,  score  consolidates  several  factors  that  affect  a  fish  passage  project's  feasibility  (expected  

passage  improvement,  production  potential  of  the  blocked  stream,  fish  stock  health,  etc.)  for  developing  prioritized  lists  of  projects.  The  numeric  indicator   provides  a  relative  priority.  High  scores  are  higher  priority  and  blank  cells  indicate  a  PI  score  was  not  calculated  for  the  barrier.   3  Tributary  stream  length  downstream  of  barrier  accessible  to  steelhead  calculated  from  the  EDT  steelhead  reach  structure.   4  Tributary  stream  length  upstream  of  barrier  to  next  passage  barrier  calculated  from  the  EDT  steelhead  reach  structure.   4  Source:  Lacamas  Creek  Priority  Index  Survey,  Pierce  Conservation  District,  2002.   5  Source:  Toboton  Creek  Priority  Index  Survey,  Pierce  Conservation  District,  2002.     Nisqually  Steelhead  Recovery  Plan    

A-­‐18  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Adult   Upstream   Passage  

Stream  Length   (m)  upstream   of  barrier4  

Subbasin  

Stream  

Type  

Description  

Muck  Creek  

N.F.  Muck   Creek  

Dam  

Unauthorized  dam  @  RM   17.5  

0  

0  

 

0  

3,676  

Muck  Creek  

N.F.  Muck   Creek  

Culvert  

252nd  St  culvert  (RM  20);   partial  barrier  (PCD   database)  

0  

0.33  

 

0  

0  

Muck  Creek  

Lacamas   Creek  

Culvert  

16th  Ave  Culvert  (RM  5.5);   partial  barrier  (PCD   database)  

0  

0.33  

 

9,416  

685  

Muck  Creek  

Lacamas   Creek  

Culvert  

17th  Ave  Culvert  (RM  5.75);   partial  barrier  (PCD   database)  

0  

0.33  

 

0  

323  

Muck  Creek  

Lacamas   Creek  

Culvert  

318th  St  Culvert  (RM  6.0);   partial  barrier  (PCD   database)  

0  

0.33  

 

0  

1,472  

Muck  Creek  

Lacamas   Creek  

Culvert  

Private  driveway  culvert   (RM  7.0);  partial  barrier   (PCD  database)  

0  

0.33  

 

0  

1,540  

Prairie   Tributaries  

Murray   Creek  

Railroad   Crossing  

Chehalis  RR  Crossing  (RM   2.3);  partial  barrier  (PCD   database)  

0  

0.66  

 

3,821  

3,979  

Prairie   Tributaries  

Murray   Creek  

Culvert  

Hinkleman  Rd  culvert  (RM   4.7);  partial  barrier  (PCD   database)  

0  

0.66  

 

0  

2,376  

Prairie   Tributaries  

Murray   Creek  

Culvert  

48th  Ave  S.  culvert  (RM  6.2);   complete  barrier  (PCD   database)  

0  

0  

 

0  

1,893  

Prairie   Tributaries  

Murray   Creek  

Pipeline   Crossing  

Pipeline  crossing  (RM  7.2):   partial  barrier  (PCD   database)  

0  

0.33  

 

0  

2,974  

  Nisqually  Steelhead  Recovery  Plan    

Juvenile   Upstream   Passage1  

Stream  Length   (m)  accessible   to  Steelhead   downstream  of   PI   Score2   barrier3  

A-­‐19  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Adult   Upstream   Passage  

Stream  Length   (m)  upstream   of  barrier4  

Subbasin  

Stream  

Type  

Description  

Prairie   Tributaries  

Brighton   Creek  

Culvert  

Harts  Lake  Loop  Rd.;   complete  barrier  (PCD   database)  

0  

0  

 

522  

325  

Prairie   Tributaries  

Brighton   Creek  

Culvert  

Driveway  culvert  (RM  0.7);   partial  barrier  (PCD   database)  

0  

0.33  

 

0  

404  

Prairie   Tributaries  

Brighton   Creek  

Culvert  

Driveway  culvert  62nd  Ave   S.  (RM  0.9);  partial  barrier   (PCD  database)  

0  

0.66  

 

0  

5,619  

Prairie   Tributaries  

Brighton   Creek  

Culvert  

Highway  702  (RM  4.2);   complete  barrier  (PCD   database)  

0  

0  

 

0  

255  

Prairie   Tributaries  

Horn  Creek  

Falls  

Horn  Creek  Falls  (unnatural   barrier,  did  not  exist  in   historic);  partial  barrier  

0  

0.33  

 

1,957  

2,544  

Prairie   Tributaries  

Horn  Creek  

Culvert  

368th  St  Culvert;  complete   barrier  

0  

0  

 

0  

2,763  

Prairie   Tributaries  

Horn  Creek  

Culvert  

Private  culvert  100m  N  of   364th  St  S  on  private  road,   just  over  0.5  mi  E  of  8th  Ave   S  (RM  3.9);  complete  barrier  

0  

0.50  

 

0  

621  

Prairie   Tributaries  

Harts  Creek  

Culvert  

Harts  Cr.  private  culvert,   spur  road  on  Wilcox  Farm   (RM  0.2):  partial  barrier  

0  

0.66  

 

366  

2,069  

Prairie   Tributaries  

Harts  Creek  

Culvert  

Harts  Lk  Valley  Rd  culvert   (RM  1.2);  partial  barrier  

0  

0.66  

 

0  

437  

  Nisqually  Steelhead  Recovery  Plan    

Juvenile   Upstream   Passage1  

Stream  Length   (m)  accessible   to  Steelhead   downstream  of   PI   Score2   barrier3  

A-­‐20  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Adult   Upstream   Passage  

Stream  Length   (m)  upstream   of  barrier4  

Subbasin  

Stream  

Type  

Description  

Prairie   Tributaries  

Harts  Creek  

Culvert  

Private  driveway  culvert   (RM  0.2);  partial  barrier   (PCD  database).  

0  

0.66  

 

0  

750  

Lacamas/   Toboton/   Powell  

Lacamas   Creek  

Culvert  

Pasture  Culvert  Barrier  (RM   2);  partial  barrier  (PCD   database)  

0  

0.66  

20.534  

4,668  

1,267  

Lacamas/   Toboton/   Powell  

Lacamas   Creek  

Culvert  

Culvert  Barrier  (RM  2.8);   complete  barrier  (PCD   database)  

0  

0  

20.534  

0  

503  

Lacamas/   Toboton/   Powell  

Toboton   Creek  

Culvert  

Private  pasture  culvert  (RM   1.25);  partial  barrier  (best   guess)  

0  

0.66  

16.245  

2,232  

270  

Lacamas/   Toboton/   Powell  

Toboton   Creek  

Culvert  

Piessner  Rd  (RM  1.4);  partial   0   barrier  (PCD  database)  

0.33  

25.715  

0  

1,187  

Lacamas/   Toboton/   Powell  

Toboton   Creek  

Culvert  

Bald  Hill  Rd  (RM  2.1);   complete  barrier  (PCD   database)  

0  

25.315  

0  

894  

  Nisqually  Steelhead  Recovery  Plan    

Juvenile   Upstream   Passage1  

Stream  Length   (m)  accessible   to  Steelhead   downstream  of   PI   Score2   barrier3  

0  

A-­‐21  

July  2014   ICF  00153.13              

 

Appendix  A.   Reach  Structure  for  Assessment  of  Winter  Steelhead  Performance  in  the  Nisqually  River  

Nisqually  Steelhead  Recovery  Team    

Juvenile   Upstream   Passage1  

Adult   Upstream   Passage  

Stream  Length   (m)  accessible   to  Steelhead   downstream  of   PI   Score2   barrier3  

Stream  Length   (m)  upstream   of  barrier4  

Subbasin  

Stream  

Type  

Description  

Lacamas/   Toboton/   Powell  

Toboton   Creek  

Culvert  

173  Ave  SE  (RM  2.5);   complete  barrier  (PCD   database)  

0  

0  

21.25  

0  

2,697  

Prairie   Tributaries  

Tanwax   Creek  

Culvert  

Eatonville  Cutoff  Rd.  (RM   7.8);  partial  barrier   (modified  PCD  database)  

0  

0.50  

 

12,488  

12,687  

 

  Nisqually  Steelhead  Recovery  Plan    

A-­‐22  

July  2014   ICF  00153.13              

 

Appendix  B   Nisqually  Steelhead  Tracking  Study    

 



   

Appendix  B     Nisqually  Steelhead  Tracking  Study   Draft  March  2014                                        

 



   

        Nisqually  River  Winter  Steelhead  Tracking  Study   DRAFT  March,  2014     Prepared  by:   Sayre  Hodgson,  Nisqually  Indian  Tribe   12501  Yelm  Hwy.  SE   Olympia,  Washington    98513   hodgson.sayre@nisqually-­‐nsn.gov    



Introduction A Nisqually steelhead tracking study was done from 2006-2009 to investigate movement and mortality patterns during the early marine portion of the steelhead life history. Interest in this life stage was based on the observation of similar patterns of interannual variability and decline across various Puget Sound steelhead stocks, indicating that there may be high mortality in the marine portion of the life history where different stocks experience similar environmental conditions. The objectives of the tracking study were to: 1) Gather steelhead trout life history information to improve identification of actions needed to restore Nisqually River steelhead; 2) Characterize steelhead smolt movement and residency patterns (timing, areas of holding, and migratory routes) from the Nisqually River to the Strait of Juan de Fuca; and 3) Estimate survival rates to points along the steelhead outmigration, and identify areas of suspected high mortality. The study was part of a larger regional study with comparison of tagged Puget Sound and Hood Canal steelhead movement patterns and a shared network of acoustic receivers in Puget Sound and the straits of Georgia and Juan de Fuca. Methods Receivers Acoustic receiver lines, each composed of two Vemco VR2 receivers, were placed in 4 locations in the Nisqually River (Figure 1) prior to fish tagging each year to detect migration upstream of tagging and into and out of the estuary. In addition, partners throughout the Puget Sound area and beyond maintained receiver networks and shared the data on detections of tagged steelhead from the Nisqually (Figure 2). This included the Pacific Ocean Shelf Tracking (POST) network receiver lines at the Strait of Juan de Fuca in all years (the last point of detection on the outmigration) and at Admiralty Inlet in 2009. Most of the other Puget Sound receivers were point receivers, which generally have lower detection efficiencies than receiver lines. Capture Fish were caught by barbless hook and line (2006-8), fyke trap in the Nisqually estuary (2006), and at the Washington Department of Fish and Wildlife outmigrant trap in 2009 (Table 1). Tagging occurred between late April and Early June each year. In the first year of the study, estuary receivers were left in place until September but since there were no detections after June 14th, some or all of the receivers were removed in subsequent years by the end of June to prevent damage. To be selected for tagging, captured steelhead had to exceed a weight limit (32g), and score a 2 or higher on a qualitative smoltification scale. A total of 187 steelhead trout were tagged, with an average fork length of 199 mm. This was 50 or more fish per year, except for 2008 when only 14 fish were tagged due to high flows. Smaller fish were tagged with Vemco V7-2L tags, and larger fish were tagged with Vemco V9-6L tags. Tags ranged from 0.8-5.0% of body weight, averaging 3.2% (Table 1). Surgery Fish were held near the locations where they were caught in totes with supplemental oxygen and Stresscoat. They were anesthetized in MS-222 (0.07 g/L) with baking soda buffer and supported upside down by a spongy foam block during surgery,

during which they were given maintenance anesthetic by gravity feed over the gills (0.02 g/L). After an incision was made in the abdomen forward of the pelvic girdle muscle, a tag was inserted, antibiotic was injected (25 mg/kg oxytetracycline), and the incision was sutured with 2-3 stitches (4-0 RB-1 Taper antibacterial Ethicon Vicryl Plus violet braided). The wound was dabbed with antibacterial ointment (Bacitracin), a small genetic sample (fin clip) was taken, and the fish were then held in a recovery tote for an average of 1.5 hours (7 minute - 3.5 hour range) before being released near the location they were caught. Stresscoat was added to all water that fish were be held in before, during, and after surgery. Tags and surgery tools were disinfected in Nolvasan (chlorhexidine diacetate) and rinsed in saline solution prior to use. Table 1. Tag types used, fish lengths, capture dates and methods, and tag percentage of body weight. Year 2006 2007 2009 V7-2L tags used (25-75s delay) 20 35 34 V9-6L tags used (25-75s delay) 36 15 35 Total number of steelhead tagged 56 50 69 Average fork length (mm) 196 183 208 Average smoltification index 2.7 2.5 2.8 Average tag % of body weight 3.6 3.4 2.8 Number captured by hook and line in river 40 50 0 Number captured by seine of fyke trap in estuary 16 0 0 Number captured at outmigrant trap 0 0 69 Tagging date range 5/1 – 6/5 4/25 – 6/1 5/4 – 5/28 Figure 1. Map of Nisqually acoustic receiver lines active in 2006-2009.

Figure 2. Receiver network of research partners in 2006, 2007 and 2009. Nisqually estuary and Strait of Juan de Fuca receivers were active in all years but some receivers were not active in all years. Data was shared directly by partners or through the Hydra database.

Results Timing Tagged steelhead were detected in the estuary throughout May and early June (Figure 3), with the first estuary detection ranging from 3-32 days after tagging, or on average 11 days after tagging in river. The minimum estuary residence time for each fish was calculated as the difference between first and last detections in the estuary. This time was short for the majority of tagged steelhead, ranging from 0-31 days, with a median of almost 6.5 hours. 79% of the tagged fish had minimum estuary residence times of less than one day (Figure 4). This time between first and last estuary detections is a minimum estuary residence time because the estuary continues beyond the location of our lowest receivers so some fish could have been in the lower estuary still without being detected there.

Figure 3. Dates of steelhead tagging in the river and estuary, along with the dates of first and last detection in the Nisqually estuary and first detection at the Stait of Juan de Fuca.

Figure 4. Minimum duration of estuary residence (based on duration of time between first and last estuary detections) for fish tagged in 2006-9. In 2006 some of the steelhead were tagged in the estuary, as noted.

The migration time from the Nisqually estuary to the Strait of Juan de Fuca receiver line (JDF) ranged from 7-21 days, averaging 12.8 days (Figure 5). All fish detected at JDF passed during a less than three week time period between May 25th and

June 12th (Figure 3). From Puget Sound to JDF, 53% of new detections (first detection at a new location) of the tagged steelhead occurred in daytime, 30% at night and 16% during twilight (based on Seattle astronomical twilight). Patterns for new detections in the Nisqually estuary were similar. Figure 5. Average timing of Nisqually steelhead outmigration, starting with estuary detection at day 0. All 2006, 2007 and 2009 tagged fish were included in the average as far as they were detected, with timing of fish past points where they weren’t detected interpolated based on distance if they were detected somewhere before and after the missing location. Line indicates simplified potential migration route, with thickness proportional to number of fish detected.

Survival The proportion of fish tagged in river that were detected in the estuary ranged from 78-90%. Detection efficiencies of the estuary and I-5 receiver lines combined were 100% and 82% respectively (based the proportion of fish detected past a receiver that were also detected at that receiver. Of the fish detected or tagged in the estuary, the proportion detected at points along the way gradually decreased down to only 5-18% detected at JDF. The proportion of fish detected at this last location, the Strait of Juan de Fuca receiver line, is assumed to be approximately 70-90% efficient, depending on tag type (Melnychuk 2009). None of the tagged steelhead were detected migrating east of Vancouver Island at the Strait of Georgia.

A regional analysis of 1393 hatchery and wild steelhead tagged in Puget Sound and Hood Canal between 2006 and 2009 used Cormac-Jolly-Seber mark-recapture models to account for receiver line inefficiency and estimate actual survival rates past lines of receivers along the outmigration. Modelled survival rates for Nisqually steelhead from the Nisqually river mouth, combined for 2006 and 2009 (the two years with good reception near Tacoma narrows) were 93%, 48%, 23%, and 13% to Tacoma Narrows, Central Puget Sound, Admiralty Inlet, and the Strait of Juan de Fuca respectively. When all years from 2006-2009 were included, the modelled survival rates from the river mouth to Central Puget Sound and the Strait of Juan de Fuca were 60% and 6% respectively (Megan Moore, NOAA, unpublished data). Survival rates of tagged Nisqually steelhead were similar to but slightly lower than the other wild steelhead populations in the study (Figure 2), while Nisqually steelhead had the longest migration distance to travel. Figure 6. Survivorship curves for steelhead smolts in Puget Sound and Hood Canal starting with river mouth entry. Data combined from 2006, 2007, and 2009 though not all segments and populations had data for all years. Location of receiver lines is marked for Tacoma Narrows (NAR), Central Puget Sound (CPS), Hood Canal Bridge (HCB), Admiralty Inlet (ADM), Deception Pass (DP), and final measurement at Juan de Fuca Strait (JDF). Preliminary data from Megan Moore (NOAA).

Discussion The timing of estuary presence found in this study ranged from May through June, peaking in late May. This matches well with the catch history at the Animal Slough fyke trap near the mouth of the Nisqually where steelhead are occasionally caught between April and June, with large catches only occurring between mid-May and the beginning of June. The majority of tagged fish had documented estuary residence times of less than a day but 21% of tagged steelhead were detected over a more prolonged period (up to 31 days). In some cases this prolonged residence may represent detections of the tags in predators. More information on stomach evacuation times for predators is needed. The 78-90% detection of tagged fish at the river mouth lines indicates that 1022% of the tagged fish either died naturally, died due to tagging, or were not actually smolting and stayed in the river. Survival dropped gradually with migration through Puget Sound. Modelled survival rates of Nisqually and other steelhead in the region indicated that Central Puget Sound and Admiralty Inlet areas are areas of concern with steeper drops in survival than in South Puget Sound and the Strait of Juan de Fuca. For the steelhead detected at JDF, estimated travel speeds from river mouth to JDF ranged from 12-34 km/day and averaged 21 km/day, with an average of only 12.8 days in transit between the Nisqually estuary and JDF but a survival of only about 5-18% between these two locations. The acoustics study based steelhead survival rates through Puget Sound to JDF are shown in the context of information on other stages of the life history in Figure 7. Assuming a 1% total smolt to adult survival rate, mortality is quite heavy in Puget Sound compared to during the ocean portion of the migration. Setting the returning number to match the 5 year average escapement estimate (470 for 2008-2012), or double that estimate (because it may be conservative and does not cover some areas), places the number of outmigrants within range of the average outmigrant trap estimate (an underestimate of fish outmigrating due to location) for the last 4 years. Continued study of Nisqually and other regional steelhead survival patterns during outmigration is underway. Figure 7. Number of steelhead surviving from outmigration to return, assuming a 1% total smolt to adult return and setting the escapement at either the 5 year average or double the five year average.

Reference Melnychuk, M.C. 2009. Estimation of survival and detection probablilities for multiple tagged salmon stocks with nested migration routes, using a large-scale telemetry array. Marine and Freshwater Research 60: 1231-1243.

 

Appendix  C   Nisqually  Winter  Steelhead  Action  Plan

 



Theme Action ID

Proposed Action

Action Name

Type

Description

Objectives

Geographic Area

1.0 ‐ Protection

Wetland and Headwater Protection

Shoreline and Floodplain Acquisition/Protection

1.1 ‐ Acquisition of key areas

Action 1.1.1

Action 1.1.2

This action intended to identify and protect additional shoreline and floodplain in some key areas of the mainstem. Percent of shoreline in protected status reported by mainstem reach is generally high; across Nisqually River Protect High all mainstem reaches 70% of the mainstem shoreline is protected. Acquire property or development rights for certain shore Ensure long‐term protection of high quality habitats in mainstem. combine with Mainstem Quality lands along the Nisqually River mainstem. restoration opportunities where possible and will provide benefits Protection Habitats Percent of shoreline unprotected by mainstem reach: 1) Lower Reach/Upper Estuary ‐ 54%, 2) Reservation Reach ‐ 8%, 3) Whitewater Reach ‐ 33%, 4) McKenna Reach ‐ 79%, 5) Wilcox Reach ‐ 51%, 6) Middle Reach ‐ 7%, and 7) Upper Reach ‐ 13%.

Acquire property or development rights of certain properties along tributary streams.

Nisqually Tributary Protection

This action intended to identify and protect additional shoreline and floodplain in some key tributaries important for steelhead. Protection of tributary habitat is spotty and not well documented. Portions of Protect High lower Ohop Creek and lower Mashel River are in protected status as Quality these areas were idenfitied for Chinook recovery. Habitats

Ensure long‐term protection of high quality habitats in tributaries and combine with restoration opportunities where possible and will provide benefits

Percent of shoreline unprotected by tributary reach: 1) Lower Ohop (mouth to lake) ‐ 61 % and 2) Lower Mashel (mouth to Boxcar) ‐ 31% The altering and filling of wetlands is prohibited under existing state Protect High and federal environmental laws. This action is intended to expand that Protect and enhance hydrology and water quality. Quality protection by increasing the buffer around wetlands the acquiring Habitats development rights or properties that are significant to stream hydrology and water quality.

Action 1.1.3

Acquire and protect (either through direct purchase or purchase of development rights) wetlands that have a significant influence on stream conditions.

Action 1.1.4

McAllister Coordinate with City of Olympia Public Works to develop Protect High Headwaters a succession plan to protect and restore the headwater Quality Protect and enhance the hydrology of McAllister Creek Protection/Res springs and wetlands of McAllister Creek. Habitats toration

Nisqually Wetland Protection

Protect and enhance hydrology and water quality in McAllister Creek.

The primary reaches for this action are the Lower Reach/ Upper Estuary (Nisqually 2a), Whitewater Reach (Nisqually 3), McKenna Reach (Nisqually 4), and Wilcox Reach (Nisqually 5).

The focus of this effort should be the Mashel sub‐basin (within the Lower Mashel and the Little Mashel reaches), the Ohop Creek sub‐basin (Ohop Creek, Ohop Lake, and the downstream portions of the Lynch Creek and Twenty‐ five Mile reaches ‐ including the former Clay City mining operation), and the lower and mid portions of the “prairie” type creek reaches.

Theme Action ID

Proposed Action

Action Name

Type

Description

Objectives

Geographic Area

1.0 ‐ Protection

Maintain and Enhance Protection Commitments

1.2 ‐ Maintain and Enhance Existing Commitments

Action 1.2.1

Nisqually ‐ Mashel State Park management plan to provide protection and opportunities for restoration of riparian, in‐channel, and floodplain condition.

Nisqually‐ Mashel State Park Management Plan

Protection Agreements

Ensure management plan for the Nisqually ‐ Mashel State Park will provide protection and opportunities for restoration of riparian, in‐ channel, and floodplain condition.

USDOD/ JBLM protection commitments for aquatic habitats adjoining and within managed lands.

USDOD/JBLM Protection Protection Agreements

Action 1.2.3

Tacoma Public Utilities (TPU) and City of Centralia protection commitments.

TPU and City of Central Protection

Action 1.2.4

Maintain and Enhance County and city governments protection commitments for Protection Protection City shoreline properties in public ownership. Agreements and County governments

Maintain and enhance county and city governments protection commitments for shoreline properties in public ownership. Review adequacy of existing laws and strengthen protection as related to steelhead habitat in the mainstem and tributaries.

Action 1.2.5

Nisqually Nisqually Indian Tribe permanent protection commitment Indian Tribe on reservation lands along mainstem. Protection

Maintain Nisqually Tribe commitments to protection.

Protection Agreements

Nisqually 7a Upper Reach, Ohop 1A and Lower Mashel A_A

Right‐bank areas in the Lower Reach (Nisqually 2A and 2B), for the Promote and maintain awareness of importance of protection and review adequacy of Maintain USDOD/JBLM protection commitments. Coordinate with JBLM Whitewater Reach (Nisqually 3), for existing policies. Seek out opportunities to strengthen protection as related to to be sure that ongoing management activities support recovery. reaches adjoining Muck Creek, and for steelhead habitat (mainstem and tributaries) its Puget Sound shoreline between the Nisqually River and Steilacoom. Wilcox Reach (Nisqually 5), Middle Maintain Tacoma Public Utilities (TPU) and City of Centralia protection Promote and maintain awareness of importance of protection and review adequacy of Reach (Nisqually 6), Upper Reach commitments. Coordinate with utilities to be sure that ongoing existing policies. Seek out opportunities to strengthen protection as related to (Nisqually 7A), and Upper Reach management activities support recovery. steelhead habitat (mainstem and tributaries) (Nisqually 7B).

Action 1.2.2

Protection Agreements

‐‐ Develop park infrastructure (trails, campsites, and buildings) outside of floodplain or in ways compatible with natural area. ‐‐ Include in plan restoration of degraded riparian and floodplain habitats. ‐‐ Include in plan in‐channel restoration actions to improve egg incubation and juvenile rearing habitats.

Promote awareness of importance of protection and review adequacy of existing laws. All locations with a special emphasis in Seek out opportunities to strengthen protection as related to steelhead habitat the Mashel River (mainstem and tributaries)

Theme Action ID

Proposed Action

Action Name

Type

Description

Objectives

Geographic Area

2.0 ‐ Restoration 2.1 ‐ Restoration Watershed Processes

Mainstem Floodplan Habitats

Streamside buffers, riparian restoration, and upland management

Action 2.1.1

Conduct shoreline stewardship workshops – inform residents on native planting techniques, riparian invasive Shoreline plant management, sources of native plants, natural lawn Stewardship care, technical and financial resources available, would Workshops help us identify partners for future plantings. Riparian Management for Improved Growth

Riparian restoration

Restoration of riparian native plant communities, improve composition and quantity Conduct workshops that will lead to future restoration actions to LWD recruitment to streams, stream shading, and reduce sediment transport to improve native plant communities along the mainstem and tributaries. streams

Riparian restoration

Enhance riparian through management (i.e.,manage small stands of suitable species to promote survival and growth), stand improvement for sites with marginal recruitment potential, underplanting of shade‐ tolerant conifers, or conversion of unsuitable sites (e.g., hardwood‐ dominated sites) to more suitable stands.

Focus areas on mainstem are Lower Reach, Whitewater, and McKenna Restoration of riparian native plant communities, improve composition and quantity reaches (2a‐Lower Reach; 2B.1‐Lower LWD recruitment to streams, stream shading, and reduce sediment transport to Reach; 2B.3‐Lower Reach, 3.3‐ streams Whitewater, 4.1‐McKenna & 4.2‐ McKenna)

Regular riparian and aquatic invasive plant surveys, early action invasive plant control, regular maintenance weed control and replanting following control of larger infestations.

Restoration of riparian native plant communities, improve composition and quantity LWD recruitment to streams, stream shading, and reduce sediment transport to streams

Action 2.1.2

Improve degraded riparian areas through management and passive restoration

Action 2.1.3

Implement a watershed‐wide riparian invasive plant Invasive Plant Riparian control program through the Nisqually River Cooperative Control restoration Weed Management Area working group

Action 2.1.4

Revegetate former Mock City site on JBLM/Whitewater reach

Action 2.1.5

Develop a Nisqually/Mashel Community Forestry initiative

Action 2.1.6

Encourage and implement voluntary restoration Voluntary opportunities for sedimentation problems from existing Forest Road roads identified in the Mashel Watershed Analysis Remediation Forest plans (Washington Department of Natural Resources, 1996) and and the Ohop/Tanwax/ Powell Watershed Analysis (Nisqually Abandonment Indian Tribe, 1998).

Action 2.1.7

Develop and implement farm plans to address loss or degradation of aquatic habitats

Action 2.1.8

Restore lost off‐channel habitat (floodplain channels and Floodplain ponds) and enhance existing habitats along Nisqually Restoration Mainstem

Action 2.1.9

Restore active channel river meander belt and natural channel configuration;

JBLM Mock City Riparian Restoration Community Forest Riparian Restoration

Riparian restoration

Began initial discussions with JBLM in 2014

Forest plans

Develop Nisqually/Mashel Community Forestry initiative to address riparian buffers, road networks, and upland timber harvest

Nisqually Farm Farm plans Plans

Floodplain Restoration

Channel CMZ Migration Zone Restoration Restoration

Restoration of riparian native plant communities, improve composition and quantity LWD recruitment to streams, stream shading, and reduce sediment transport to Nisqually River Whitewater reach streams ‐‐ Decrease forest management‐related mass wasting and subsequent sediment Initial focus will be in the Mashel delivery Watershed. ‐‐ Reduce sediment sources and delivery from roads and forest harvest ‐‐ Restore riparian vegetation and increase stream buffers ‐‐ Restore hydrology by disconnecting road network and drainage system from stream network ‐‐ Reduce sediment sources and delivery from roads

Includes conservation district approved farm plans (commercial and hobby farms) along the Nisqually River, Mashel River, Ohop Creek, and McAllister Creek. Intent is to eventually have plans implemented for 95% of farms in these areas.

‐‐ Reduce sediment input from agriculture lands ‐‐ Reduce inputs pesticides to streams ‐‐ Promote riparian revegetation ‐‐ Promote the reestablishment of natural channel form

Nisqually River, Mashel River, Ohop Creek, and McAllister Creek

Projects based on recommendations of the South Puget Sound Salmon Establish or promote the development and engagement of floodplain channels Enhancement Group off‐channel habitat assessment (Ellings 2004). Provide for channel forming flows, remove bank hardening, and promote in‐channel wood. Reestablish connections with existing side channels along the Nisqually mainstem and promote the creation of new side channels

Establish or promote the development and engagement of side channel habitats and unconstrained channel migration

Primarily Mckenna Reach (Nisqually 4) and Wilcox Reach (Nisqually 5), Lower Mashel River, and Ohop Creek.

Theme Action ID

Proposed Action

Action Name

Type

Description

Objectives

Geographic Area

2.0 ‐ Restoration Fish Passage Barriers

2.2 ‐ Restore Fish Passage Action 2.2.1

Replace fish passage barriers in the anadromous portion of the watershed with structures that pass juvenile and adult fish and instream wood.

Fish Passage Barrier Removal

Prioritize and address remaining barriers to fish passage in watershed. Restore fish passage and provide structures large enough to pass wood. Update inventory to identify any additional barriers

See separate list of barriers identified as of 2013. Not all potential barriers have been inventoried in watershed

Theme Action ID

Proposed Action

Action Name

Type

Description

Objectives

2.0 ‐ Restoration

Biotic Communit y and Food

Instream wood placement

2.3 ‐ Habitat Enhancement Action 2.3.1

Transport logs from above the Alder/LaGrande dams to mainstem Nisqually downstream to supplement LWD recruitment to mainstem reaches.

Upper Mainstem Instream Wood Enhancement

Action 2.3.2

Placement of in‐stream large wood (either individual pieces or aggregations) in the mainstem Nisqually River and side channels

Nisqually Using latest methods place single pieces and aggregations of wood on Mainstem In‐ Habitat mainstem Nisqually. Ideally locations would be combined with stream Wood Enhancement floodplain accquistion and restoration opportunities. Enhancement

Increase the quantity pools and pool complexity

Action 2.3.3

Nisqually Using latest methods place single pieces and aggregations of wood on Placement of in‐stream wood (either individual pieces or Tributary In‐ Habitat tributaries. Ideally locations would be combined with floodplain aggregations) in the tributaries. stream Wood Enhancement accquistion and restoration opportunities. Enhancement

Increase the quantity pools and pool complexity

Action 2.3.4

Continue program to distribute hatchery carcasses as food Fish Carcass source in headwater tributaries and upper mainstem Placement reaches.

Increase the contribution of MDN to stream productivity

Work with Tacoma Power to find ways to transport logs from above Habitat the Alder/LaGrande dams to downstream areas, supplement LWD Enhancement recruitment to mainstem reaches.

Habitat Continue existing program, in recent years carcass placement has Enhancement focused on locations higher in the watershed.

Increase the quantity pools and pool complexity

Geographic Area

Theme Action ID

Proposed Action

Action Name

Type

Description

Objectives

Geographic Area

2.0 ‐ Restoration

Area‐specific restoration plans

2.4 ‐ Area Restoration Plans

Ohop Creek Phase III Restoration

Action 2.4.1

Implement final phases of Lower Ohop restoration plan.

Action 2.4.2

Continue and expand Mashel River Restoration Plan

Action 2.4.3

Advance and implement the Nisqually Lower Reach (Nisqually 2a) Restoration Plan

Action 2.4.4

Develop and implement a Muck Creek Restoration plan

Muck Creek Restoration Plan

Action 2.4.5

Implement 2014 Eatonville Stormwater Comprehensive Management Plan projects

Eatonville Stormwater Multiple Comprehensiv strategies e Plan

Mashel River Restoration Lower Nisqually Reach Restoration Plan

Multiple strategies

The total project will re‐elevate the 4.4 miles of severely channelized creek back into its original floodplain recreating a 6 mile long stream with its original meander pattern and restoring its hydrologic connection to the adjacent floodplain and wetland areas. Off‐channel habitat will be created and the riparian areas will be planted with native vegetation. The project will also revegetate 400 acres of the surrounding valley floor which is dominated by wetlands.

Multiple strategies

Restoration channel form, riparian and habitat complexity

Lower Ohop Creek

Restoration channel form, riparian and complexity

Mashel River downstream of Boxcar

Multiple strategies

Restoration plan to address the degraded habitat in the lower Nisqually Address the following habitat issues: bank hardening, loss of in‐stream wood, loss of River mainstem upstream of I‐5. This action may be combined with pools, loss of backwater pools, loss of off‐channel habitat, condition and production of actions to remove of fill associated with I‐5 and other roads within and spawning gravel, loss of high flow refuge areas, reduction of or refuge from higher upstream of the reach, and placing roads on piers. scour events, loss of streamside vegetation.

Multiple strategies

Develop and implement a comprehensive restoration plan to remove or reduce impacts of invasive reed canary grass, restoration of Muck Creek wetlands (e.g., Chambers Lake), and stream hydrology.

Flow, channel form and habitat complexity

Implement projects identified in Eatonville Stormwater Protect and restore peak and low flow in Lynch Creek and Mashel River Comprehensive Plan. Monitor results on Lynch Cr. and Mashel R. flows

Muck Creek from Preacher Creek to lower portions of S.F. and N.F. Muck Creek Lynch Creek and Mashel River downstream of Boxcar

Theme Action ID

Proposed Action

Action Name

Type

Description

Objectives

Geographic Area

3.0 ‐ Regulatory Barriers, Policy Support, and Community Behavior

Community Behavior and Watershed Stewardship

Policies, Regulations, and Land Use Planning

3.1 ‐ Regulatory, Policy, and Community Action 3.1.1

Local government (Pierce County, Thurston County, Local Eatonville, Roy, Yelm) regulations, policies, and practices Government to protect and restore ecological functions in stream Regulations corridor and upland areas

Provide support for and assistance with development of local Policy and government (Pierce County, Thurston County, Eatonville, Roy, Yelm) Regulatory regulations, policies, and practices that protect ecological functions in Coordination stream corridor and upland areas that will affect aquatic conditions.

Identify and address regulations, policies, and practices that impede or adversely affect steelhead recovery in the watershed ‐‐ Coordinate objectives and activities ‐‐ Communicate objectives and activities ‐‐ Ensure activities are consistent with steelhead recovery goals

Action 3.1.2

Maintain long‐term forest zone designation for all current Forest Zone commercial forest lands. Designations

Policy and Maintain upland forests in commercial forest land. Evaluate and Regulatory monitor progress of forest management plans to protect aquatic Coordination resources.

‐‐ Coordinate objectives and activities ‐‐ Communicate objectives and activities ‐‐ Ensure activities are consistent with steelhead recovery goals

Middle Mashel, Upper Mashel, Busywild, Little Mashel River, Lynch Creek, Twenty‐five Mile Creek, Toboton, and Powell reaches.

Action 3.1.3

Provide incentives to small forest landowners (in and above the anadromous zone) to maintain timber.

Small Forest Landowners

Incentive Programs

‐‐ Coordinate objectives and activities ‐‐ Communicate objectives and activities ‐‐ Ensure activities are consistent with steelhead recovery goals

Focus on middle Mashel, Little Mashel, Ohop, Lynch, 25 mile, prairie tributaries

Action 3.1.4

Basin‐wide management policy on beaver‐dam removal; develop policy that weighs fish passage benefits of removal versus loss of key habitat associated with removal of dams.

Beaver Impact Policy and Policy will be developed from information collected on the role of Management Regulatory beaver dams in providing key habitat in tributaries and side channels Plan Coordination of the Nisqually River and tributaries

Action 3.1.5

Community support of shoreline habitat protection and restoration by private property owners on their properties.

Action 3.1.6

Ecourage stream habitat friendly practices by private property owners in the watershed.

Action 3.1.7

Action 3.1.8

Action 3.1.9

Community Support and Involvement on Private Land Stream Friendly Practices on Private Land

Protection of tributary, floodplain and wetland habitats.

Community Support

Encourage and support community involvement in shoreline habitat protection and restoration by private property owners on their properties.

‐‐ Coordinate objectives and activities ‐‐ Communicate objectives and activities ‐‐ Ensure activities are consistent with steelhead recovery goals

Community Support

Encourage use of best management practices by private property owners in the watershed.

‐‐ Coordinate objectives and activities ‐‐ Communicate objectives and activities ‐‐ Ensure activities are consistent with steelhead recovery goals Develop and support local sub‐watershed groups that build a sense of community for the watershed. Encourage and assist groups in involving the community in habitat protection and enhancement. Continue and expand the Nisqually Stream Stewards program to educate and involve local volunteers, communities, and businesses in salmon habitat protection and restoration projects.

Foster a Nisqually watershed community that is sustainable and supportive of salmon and steelhead recovery.

Nisqually Community Community Behavior and Support Watershed Stewardship

Foster a Nisqually watershed community that is sustainable and supportive of salmon recovery. Develop and support local sub‐ watershed groups and Stream Stewards program to build a sense of community for the watershed. Encourage and assist groups in involving the community in habitat protection and enhancement.

Support implementation of and updates to the Nisqually River Council's Nisqually Watershed Stewardship plan.

Nisqually Watershed Stewardship plan

Community Support

The plan provides for a "balanced stewardship of the area’s economic resources, natural resources, and cultural resources".

Policy and Technical Support

Findings and recommendations to address low steelhead marine survival is very important to Nisqually steelhead. This action is to ensure funding support for the Puget Sound Marine Survival Research Identify factors affecting Nisqually steelhead survival, develop a plan to address these Estuarine and marine habitats plan, the development and implementation of strategies and actions to factors, and ultimately improve survival to levels that achieve recovery goals. address low survival, and to encourage regional collaboration, policy and technical coordination, and information sharing.

Support funding of Puget Sound Marine Survival Research Marine plan and encourage regional collaboration, policy and Survival technical coordination, and information sharing. Support

Foster watershed stewardship through supporting the Nisqually River Education Project, the Nisqually Land Trust Stewardship Program, Pierce Conservation District and its Stream Team, Thurston Conservation District, and other education or outreach programs that foster stewardship in the Nisqually watershed. ‐‐ Coordinate objectives and activities ‐‐ Communicate objectives and activities ‐‐ Ensure activities are consistent with steelhead recovery goals

Theme Action ID

Proposed Action

Action Name

Type

Description

Objectives

Geographic Area

4.0 ‐ Assessments to Support Restoration Actions Action 4.1 Assess alternative water sources for the City of Eatonville

City of Eatonville Water Source

Assessment

Assess effects of future growth on hydrology and water quality Effects of Assessment Action 4.2 in watershed, including potential impacts of well withdrawals Future Growth from aquifer on summertime stream flows

Assessment to Support Restoration

Assess potential positive benefits to improving base flow in City of Yelm Action 4.3 Yelm Creek from the City of Yelm shifting its water source from Water Source the current Yelm aquifer to the deep Nisqually aquifer.

Action 4.4

Assess Muck Creek hydrology to idenfity strategies to improve Muck Creek stream flow and water quality. Hydrology

Assess the impacts of forest roads and vegetation changes on stream flow using latest techniques (build on methods since Forest Action 4.5 Mashel and Ohop Watershed Analysis was done in the 1990s) to Hydrology evaluate the effects of past practices, and to help guide future practices, for the area. Assess whether exposed sediment sources associated with former clay mining operations (Twenty‐five Mile and Ohop Ohop Water Action 4.6 Creek reaches) are causing any excess sediment problems Quality downstream in Ohop Lake and creek. Continue to develop a lower Nisqually Restoration Feasability Action 4.7 Assessment

Action 4.8

Assess the feasibility and benefits of removing fill associated with I‐5 in the Nisqually lower reach and estuary.

Lower Niqually Restoration

Assessment

Assessment

Increase summer base flow in Mashel River

Using modeling tools to assess the potential for future impacts of population growth on hydrology and water quality.

Maintain summer base flows, winter peak flow hydrology, and water quality throughout year

Improve Yelm Creek summer stream flows by finding alternative water sources for the City of Yelm, replace existing shallow groundwater source with deep wells pulling from the Nisqually aquifer Build on the work by DOE (Sinclair 2001) and complete a study of Muck Creek hydrology with the intent to evaluate the effects of Chambers Dam removal, subsurface hydrology, localized land activities on surface flow, and report recommendations to improve streamflow in Muck Creek. Include an evaluation of the potential benefits (or detriments) of prairie restoration (with mimic of historic fire regime to alter vegetation suriving) and riprarian planting for shade to Muck Creek flow.

Increased stream flow in Yelm Creek during summer and fall and quicker recharge of aquifer in fall and early winter.

Enhance stream flow in Muck Creek during periods that winter steelhead would access and spawn

Assessment

Build on earlier work and update recommendations to include latest science and techniques to protect and restore hydrology from forested lands in the basin.

Assessment

Former clay mine site has been identified as a potential source of sediment to Ohop Creek. Investigate the contribution of this site and identify actions to remediate this effect as necessary.

Improve water quality, suspended sediment and fine sediment deposition in Ohop Creek.

Assessment

A preliminary assessment was made that identified potential restoration actions to improve in‐stream habitat and reconnect floodplain habitats in the lower Nisqually River upstream of the I‐5 corridor.

Channel process restoration and enhancement

Lower Niqually/Estua Assessment ry Restoration

Nisqually Geomorphic assessment of hydrology, sediment dynamics and River Action 4.9 channel processes Nisqually River mainstem Geomorphic Assessment Busywild Action Geomorphic assessment of sediment load/channel stability in Geomorphic 4.10 Busywild Cr. to identify restoration options Assessment

Improve Mashel summer stream flows by finding alternative water sources for the city of Eatonville, replace existing surface water withdrawal with an alternative that will not impact surface water.

Assessment

Assessment

Ohop Creek

Theme Action ID

Proposed Action

Action Name

Type

Description

Objectives

5.0 ‐ Research and Monitoring Activities to Identify and Support Protection/Restoration Priorities

Action 5.1

Action 5.2

Improve adult escapement estimate and understanding of Nisqually steelhead life history

Maintain and expand activities at WDFW smolt trap to better evaluate abundance and survival of Nisqually River Steelhead

RM&E activities: ‐‐ Install an adult counter at Centralia Diversion Dam ' ‐‐Set a mainstem survey schedule that is frequent enough to avoid missing redds, based on redd life estimate Abundance Evaluate run timing and improve escapement estimates to in basin Research/Mo ‐‐ Expand surveys in Muck Creek to February and intensify survey Estimates and Expand juvenile monitoring nitoring efforts in tributaries Life History ‐‐ Install an outmigrant trap on Muck Cr. at the mouth, and an adult trap or counter to evaluate Muck Creek steelhead production and compare to historic data RM&E activities: ‐‐ Maintain juvenile trap operations at RKM 20 Juvenile ‐‐ Expand operations to include a PIT tag component to steelhead smolt Research/Mo abundance monitoring, tag fish at trap and instal a detector array downstream of Freshwater production estimate, marine survival, and steelhead life history estimates and nitoring the trap, potential to use adult detections to estimate escapement and life history adult life history information

Research and Monitoring

Marine Continue steelhead marine survival acoustic study with refined Survival Action 5.3 Accoustic design as part of Puget Sound wide study Study

Evaluate effectiveness of fish screens at Centralia Diversion Dam (impingement and entrainment juvenile fish entering the diversion canal). Evaluate effectiveness of adult ladder for Centralia Action 5.4 steelhead and ability steelhead to bypass ladder. Evaluate flow Diversion Dam management in mainstem bypass reach for adults, redds, and juveniles. Marine Survival Action 5.5 Assess nanophyetus impact on steelhead upon marine entry Disease Factors Marine Continue to develop and participate in regional studies of Survival Action 5.6 predation upon steelhead smolts in Nisqually River estuary and Predation Puget Sound Factors

Research to improve our understanding of the links between Action 5.7 anadromous and resident O. mykiss in the Nisqually River watershed

Resident and Anadromous

Research methods and efficiency for long‐term control of reed Action 5.8 canary grass in Muck Creek channel. Investigate methods to increase shade without removing too much groundwater.

Reed Canary Grass Control

Action 5.9

Research feasibility of using wood from commercial forestry operations for in‐stream habitat restoration

Instream Wood Enhancement

Action 5.10

Research steelhead use in forested tidal area of upper estuary

Steelhead Use Estuarine Habitats

Research

NSRT observations suggest steelhead fry may be impinged or entrained Research/Mo into diversion canal during summer. Some concern within the team that flow management may affect steelhead spawning and juvenile survival nitoring in the mainstem bypass reach.

Research

Research Studies identifed as recovery plan was developed: ‐‐ Complete an asssement and implement recommendations for managing the resident and anadromous genetic resource in the Nisqually watershed, including O. mykiss upstream of the dams. ‐‐ Continue WDFW otolith studies investigating contribution of resident O. mykiss parents to anadromous offspring and vice versa (provide otoliths whenever lethal samples are taken eg. marine survival fish health study) ‐‐ Complete an assessment of resident rainbow trout stocking programs in the watershed (origin, life history, reproductive cycle, risk of hybridization, etc), evaluate their potential impact to wild winter steelhead and develop a management plan to maintain these fisheries without impeding steelhead recovery.

Field study of fish use and potential for improving steelhead survival through the Nisqually estuary

Geographic Area



 

Appendix  D   Open  Standards  for  the  Practice  of  Conservation  

 



 

  Figure  D-­‐1  Nisqually  River  Watershed  Common  Framework  Based  Steelhead  Pressures   Pressures  represent  the  high  level  activities,  structures,  or  processes  that  have  caused,  are  causing,  or   may  cause  the  destruction,  degradation,  and/or  impairment  of  steelhead  and  their  habitat.  

  Figure  D-­‐2.  Preliminary  Nisqually  River  Watershed  Identified  Steelhead  Stressors   Stressors  are  generally  more  narrow  in  scope,  and  more  directly  responsible  for  degradation  of   steelhead  and  their  habitat.    

  Figure  D-­‐3.  General  Results  Chain  for  Nisqually  River  Subbasin  Protection  and  Restoration