Dynamics of Fuzzy BAM Neural Networks with Distributed Delays and ...

2 downloads 0 Views 2MB Size Report
Nov 17, 2011 - for a class of fuzzy bidirectional associative memory BAM neural ... of BAM neural networks with diffusion effects, which are expressed by partial ...
Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2012, Article ID 136048, 19 pages doi:10.1155/2012/136048

Research Article Dynamics of Fuzzy BAM Neural Networks with Distributed Delays and Diffusion Qianhong Zhang,1 Lihui Yang,2 and Jingzhong Liu3 1

Guizhou Key Laboratory of Economics System Simulation, School of Mathematics and Statistics, Guizhou College of Finance and Economics, Guiyang, Guizhou 550004, China 2 Department of Mathematics, Hunan City University, Yiyang, Hunan 413000, China 3 Department of Computer and Information Science, Hunan Institute of Technology, Hengyang, Hunan 421002, China Correspondence should be addressed to Qianhong Zhang, [email protected] Received 23 May 2011; Accepted 17 November 2011 Academic Editor: Carlos J. S. Alves Copyright q 2012 Qianhong Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Constructing a new Lyapunov functional and employing inequality technique, the existence, uniqueness, and global exponential stability of the periodic oscillatory solution are investigated for a class of fuzzy bidirectional associative memory BAM neural networks with distributed delays and diffusion. We obtained some sufficient conditions ensuring the existence, uniqueness, and global exponential stability of the periodic solution. The results remove the usual assumption that the activation functions are differentiable. An example is provided to show the effectiveness of our results.

1. Introduction The bidirectional associative memory BAM neural network was first introduced by Kosko 1, 2. These models generalize the single-layer autoassociative Hebbian correlator to a two layer pattern-matched heteroassociative circuits. BAM neural network is composed of neurons arranged in two-layers, the X-layer and the Y-layer. The BAM neural network has been used in many fields such as image processing, pattern recognition, and automatic control 3. Recently, the stability and the periodic oscillatory solutions of BAM neural networks have been studied see, e.g., 1–25. In 2002, Cao and Wang 7 derived some sufficient conditions for the global exponential stability and existence of periodic oscillatory solution of BAM neural networks with delays. Some authors 16, 19, 25 studied the BAM neural networks with distributed delays, which are more appropriate when neural networks have a multitude of parallel pathways with a variety of axon sizes and lengths.

2

Journal of Applied Mathematics

However, strictly speaking, diffusion effects cannot be avoided in the neural networks when electrons are moving in asymmetric electromagnetic fields. So we must consider that activations vary in space as well as in time. Song et al. 25 have considered the stability of BAM neural networks with diffusion effects, which are expressed by partial differential equations. In this paper, we would like to integrate fuzzy operations into BAM neural networks. Speaking of fuzzy operations, T. Yang and L. B. Yang 26 first introduced fuzzy cellular neural networks FCNNs combining those operations with cellular neural networks. So far, researchers have founded that FCNNs are useful in image processing, and some results have been reported on stability and periodicity of FCNNs 26–32. However, to the best of our knowledge, few authors consider the global exponential stability and existence of periodic solutions for fuzzy BAM neural networks with distributed delays and diffusion terms. In 33, Li studied the global exponential stabilities of both the equilibrium point and the periodic solution for a class of BAM fuzzy neural networks with delays and reactiondiffusion terms. Motivated by the above discussion, in this paper, by constructing a suitable Lyapunov functional and employing inequality technique, we will derive some sufficient conditions of the global exponential stability and existence of periodic solutions for fuzzy BAM neural networks with distributed delays and diffusion terms.

2. System Description and Preliminaries In this paper, we consider the globally exponentially stable and periodic fuzzy BAM neural networks with distributed delays and diffusion terms described by partial differential equations with delays: t   l m    ∂ ∂ui ∂ui t, x   Kji t − sfj vj s, x ds Dik − ai ui t, x cji ∂t ∂xk ∂xk −∞ j1 k1  t t m m      Kji t − sfj vj s, x ds βji Kji t − sfj vj s, x ds αji j1



m 

−∞

Tji ωj

j1 l ∂vj t, x  ∂  ∂t ∂x k k1

Hji ωj Ii t,

j1



−∞

j1 m

∗ Djk

∂vj ∂xk



t n  − bj vj t, x dij Nij t − sgi ui s, xds

2.1

−∞

i1

t t n n  Nij t − sgi ui s, xds qij Nij t − sgi ui s, xds pij i1

−∞

n n  Sij ωi Lij ωi Jj t, i1

i1

−∞

i1

where n and m correspond to the number of neurons in X-layer and Y -layer, respectively. For i  1, 2, . . . , n, j  1, 2, . . . , m, x  x1 , x2 , . . . , xl T ∈ Ω ⊂ Rl , Ω is a bounded compact set with smooth boundary ∂Ω and mess Ω > 0 in space Rl . u  u1 , u2 , . . . , un T ∈ Rn , v  v1 , v2 , . . . , vm T ∈ Rm . ui t, x and vj t, x are the state of the ith neuron and the jth neurons at time t and in space x, respectively. ai > 0, bj > 0, and they denote the rate with which the ith neuron and jth neuron will reset its potential to the resting state in isolation when

Journal of Applied Mathematics

3

disconnected from the network and external inputs; cji and dij are constants, denoting the connection weights. αji , βji , Tji , and Hji are elements of fuzzy feedback MIN template and fuzzy feedback MAX template, fuzzy feed-forward MIN template and fuzzy feed-forward MAX template in X-layer, respectively; pij , qij , Sij , and Lij are elements of fuzzy feedback MIN template and fuzzy feedback MAX template, fuzzy feed-forward MIN template and

fuzzy feed-forward MAX template in Y -layer, respectively; and denote the fuzzy AND and fuzzy OR operations, respectively; ωj , ωi denote external input of the ith neurons in Xlayer and external input of the jth neurons in Y -layer, respectively; Ii t and Jj t denote the external inputs on the ith neurons in X-layer and the jth neurons in Y -layer at time t, respectively; I i : R → R and Jj : R → R are continuously periodic functions with periodic ω., that is, Ii t ω  Ii t, Jj t ω  Jj t. Kji · and Nij · are delay kernels functions. gi · and fj · are signal transmission functions of ith neurons and jth neurons at ∗ t, x, v ≥ 0 correspond to the time t and in space x. Smooth functions Dik t, x, u ≥ 0 and Djk transmission diffusion operators along the ith neurons and the jth neurons, respectively. The boundary conditions and the initial conditions are given by ∂ui : ∂n ∂vj : ∂n



∂ui ∂ui ∂ui , ,..., ∂x1 ∂x2 ∂xl ∂vj ∂vj ∂vj , ,..., ∂x1 ∂x2 ∂xl

T

 0,

i  1, 2, . . . , n,

T

2.2  0,

j  1, 2, . . . , m,

ui s, x  φui s, x,

s ∈ −∞, 0, i  1, 2, . . . , n,

vj s, x  ϕvj s, x,

s ∈ −∞, 0, i  1, 2, . . . , m,

2.3

where φui s, x and ϕvj s, x i  1, 2, . . . , n; j  1, 2, . . . , m. are continuous bounded functions defined on −∞, 0 × Ω, respectively. Throughout the paper, we give the following assumptions. A1 The signal transmission functions fj ·, gi · i  1, 2, . . . , n, j  1, 2, . . . , m are Lipschtiz continuous on R with Lipschtiz constants μj and νi , namely, for any x, y ∈ R,      fj x − fj y  ≤ μj x − y,

     gi x − gi y  ≤ νi x − y,

fj 0  gi 0  0. 2.4

A2 The delay kernels Kji , Nij : 0, ∞ → 0, ∞i  1, 2, . . . , n; j  1, 2, . . . , m are nonnegative continuous functions that satisfy the following conditions: ∞ ∞ i 0 Kji sds  0 Nij sds  1, ∞ ∞ ii 0 sKji sds < ∞, 0 sNij sds < ∞, iii there exists a positive constant η such that ∞ 0

se Kji sds < ∞, ηs

∞ 0

seηs Nij sds < ∞.

2.5

4

Journal of Applied Mathematics

To be convenient, we introduce some notations. Let ui  ui t, x, vj  vj t, x. Let ∗ u∗  u∗1 , u∗2 , . . . , u∗n T and v∗  v1∗ , v2∗ , . . . , vm  be the equilibrium of system 2.1. We denote



ut, x − u 



n    ui − u∗ 2 dx i

Ω i1

  φu s, x − u∗   sup

1/2 ,

 1/2 n   2 ∗ φui s, x − u  dx ,

−∞≤s≤0

Ω i1

i

⎤1/2 ⎡   m  2   vt, x − v∗  ⎣ vj − vj∗  dx⎦ ,

2.6

Ω j1

⎡ ⎤1/2   m  2     φv s, x − v∗   sup ⎣ ϕvj s, x − vj∗  dx⎦ . −∞≤s≤0

Ω j1

∗ T  of the delay Definition 2.1. The equilibrium u∗  u∗1 , u∗2 , . . . , u∗n T , v∗  v1∗ , v2∗ , . . . , vm fuzzy BAM neural networks 2.1 is said to be globally exponentially stable, if there exist positive constants M ≥ 1, λ > 0 such that

    ut, x − u∗ vt, x − v∗ ≤ M φu s, x − u∗  ϕv s, x − v∗  e−λt

2.7

for every solution ut, x, vt, x of the delay fuzzy BAM neural networks 2.1 with the initial conditions 2.2 and 2.3 for all t > 0. Definition 2.2. If ft : R → R is a continuous function, then the upper right derivative of ft is defined as D ft  lim sup h→0

 1 ft h − ft . h

2.8

Lemma 2.3 see 26. Suppose x and y are two states of system 2.1, then one has     n n   n        αij gj x − αij gj y  ≤ αij gj x − gj y ,    j1 j1 j1     n n  n        βij gj x − βij gj y  ≤ βij gj x − gj y .   j1  j1 j1

2.9

The remainder of this paper is organized as follows. In Section 3, we will study global exponential stability of fuzzy BAM neural networks 2.1. In Section 4, we present

Journal of Applied Mathematics

5

the existence of periodic solution for fuzzy BAM neural networks 2.1. In Section 5, an example will be given to illustrate effectiveness of our results obtained. We will give a general conclusion in Section 6.

3. Global Exponential Stability In this section, we will discuss the global exponential stability of fuzzy BAM neural networks 2.1 by constructing suitable functional. Theorem 3.1. Under assumptions (A1) and (A2), if there exist δi > 0, δn j > 0 such that ⎡

⎤ m   m              cji  αji  βji  μj ⎦ νi δn j dij  pij  qij  < 0, δi ⎣−2ai j1

j1

 δn j



n  n               dij  pij  qij  νi μj δi cji  αji  βji  < 0, −2bj i1

3.1

i1

where i  1, 2, . . . , n, j  1, 2, . . . , m then the equilibrium u∗ , v∗ of system 2.1 is the globally exponentially stable. Proof. By using 3.1, we can choose a small number λ > 0 such that ⎡

⎤  m   m              ∞ cji  αji  βji  μj ⎦ 2νi δn j dij  pij  qij  δi ⎣λ − 4ai 2 Nij seλs ds < 0, 

j1 n 

δn j λ − 4bj 2



      dij  pij  qij  νi 2μj

i1

0

j1 n 

∞

i1

0

      δi cji  αji  βji 

Kji seλs ds < 0. 3.2

It is well known that the bounded functions always guarantee the existence of an equilibrium point for system 2.1. The uniqueness of the equilibrium for system 2.1 will follow from the global exponential stability to be established below. Suppose u1 t, x, . . . , un t, x, v1 t, x, . . . , vm t, xT is any solution of system 2.1. Rewrite 2.1 as follows

    l  ∂ ui − u∗i ∂ ui − u∗i   ∂ Dik − ai ui − u∗i  ∂t ∂x ∂x k k k1 t m       cji Kji t − s fj vj − fj vj∗ ds j1

−∞

6

Journal of Applied Mathematics

m 

t αji

−∞

j1



m

m    Kji t − sfj vj ds − αji

t

βji

−∞

j1

j1

  Kji t − sfj vj ds −

m

t −∞

t

βji

−∞

j1

  Kji t − sfj vj∗ ds   Kji t − sfj vj∗ ds, 3.3

  ∂ vj − vj∗ ∂t

⎛ ⎞  ∗ l    ∂ ⎜ ∗ ∂ vj − vj ⎟  ⎝Djk ⎠ − bj vj − vj∗ ∂xk ∂xk k1 t n     dij Nij t − s gi ui  − gi u∗i ds −∞

i1



t

n 

pij

−∞

i1



m

t qij

−∞

j1

Nij t − sgi ui ds −

n 

pij

i1

Nij t − sgi ui ds −

m

t −∞

t qij

j1

−∞

3.4   Nij t − sgi u∗i ds   Nij t − sgi u∗i ds.

Multiply both sides of 3.3 by ui − u∗i and integrate, we have

1 d 2 dt



 Ω

ui −

2 u∗i dx

 

 Ω

ui −

 

j1

⎡ ⎤ t m     Kji t − sfj vj ds⎦dx ui − u∗i ⎣ αji j1

−∞

⎡ ⎤ t m     Kji t − sfj vj∗ ds⎦dx ui − u∗i ⎣ αji

 Ω



−∞





j1

−∞

⎡ ⎤ t m    Kji t − sfj vj ds⎦dx ui − u∗i ⎣ βji

 Ω

 −

⎡ ⎤ t m        Kji t − s fj vj − fj vj∗ ds⎦dx ui − u∗i ⎣ cji

Ω



     l ∂ ui − u∗i    2 ∂ Dik dx − ai ui − u∗i dx ∂xk ∂xk Ω k1

 Ω



u∗i

j1

−∞

⎤ ⎡ t m    Kji t − sfj vj∗ ds⎦dx. ui − u∗i ⎣ βji

 Ω

j1

−∞

3.5

Journal of Applied Mathematics

7

Applying the boundary condition 2.2 and the Gauss formula, we get 

    l ∂ ui − u∗i   ∂ Dik dx ui − ∂xk ∂xk k1 ⎡

  l ⎤  ∗ l  ∂ u − u   i i ⎦dx ui − u∗i ⎣ ∇ Dik  ∂xk Ω k1 k1

   l  l  

∗ ∂ u i − ui ∂ ui − u∗i     ∗ Dik  ∇· ui − ui Dik dx − ∇ ui − u∗i dx ∂xk ∂xk Ω Ω k1 k1

    2 l 

 ∗ ∗ l  ∂ u i − ui ∂ u i − ui    ds − Dik dx ui − u∗i Dik ∂xk ∂xk ∂Ω k1 Ω k1

  2 l   ∂ ui − u∗i − Dik dx ≤ 0 ∂xk k1 Ω

 Ω

u∗i

3.6

in which ∇  ∂/∂x1 , ∂/∂x2 , . . . , ∂/∂xl T is the gradient operator and

  l ∂ ui − u∗i Dik ∂xk

      T ∂ ui − u∗i ∂ ui − u∗i ∂ ui − u∗i Di1 , Di1 , . . . , Di1 . ∂xi ∂x2 ∂xl



k1

3.7

From 3.5, 3.6, hypothesis A1, Lemma 2.3, and the Holder inequality, we have  2 dui − u∗i  dt



≤ −2ai

 Ω

2 ui − u∗i dx 2



 Ω

ui − u∗i



⎤ ⎡ t m       Kji t − s fj vj − fj vj∗ ds⎦dx × ⎣ cji j1



Ω



Ω

−∞

⎤ ⎡ t t m m         ∗ ⎣ ∗ 2 ui − ui αji Kji t − sfj vj ds − αji Kji t − sfj vj ds⎦dx j1



m   2 ui − u∗i ⎣ βji j1

−∞

t −∞

j1 m   Kji t − sfj vj ds − βji j1

−∞

t −∞

⎤   Kji t − sfj vj∗ ds⎦dx

8

Journal of Applied Mathematics ⎡ ⎤    m     t        ∗ 2 ∗ ⎣ ∗ ≤ −2ai μj cji  Kji t − svj − vj ds⎦dx ui − ui dx 2 u i − ui Ω

Ω

−∞

j1

⎡ ⎤  t m              2 ui − u∗i ⎣ μj αji  βji  Kji t − svj − vj∗ ds⎦dx Ω

−∞

j1

 m         t     2   cji  αji  βji  ≤ −2ai ui − u∗i 2 Kji t − sui − u∗i μj vj − vj∗ ds. −∞

j1

3.8 Multiply both sides of 3.4 by vi − vi∗ , similarly, we get 2    dvj − vj∗  dt



≤ −2bj vj −

vj∗

2

 n           t           dij pij qij 2 Nij t − svj − vj∗ νi ui − u∗i ds. −∞

i1

3.9

We construct a Lyapunov functional ⎡   ∞ n m        2   cji  αji  βji  μj V t  δi ⎣ui − u∗i  eλt 2 Kji s Ω i1

0

j1

×

t t−s

⎤  2   eλζ s vj ζ, x − vj∗  dζ ds ⎦dx

   ∞ n  m  2          dij  pij  qij  νi δn j vj − vj∗  eλt 2 Nij s Ω j1

0

i1

×

t e t−s



λζ s 

ui ζ, x −

3.10





2 u∗i  dζ ds

dx.

Calculating the upper right derivative D V t of V t along the solution of 3.3 and 3.4, from 3.8 and 3.9, we get      n   ∂ui − u∗i  λt  2 ∗  e λeλt ui − u∗i  D V t  δi 2 ui − ui ∂t Ω i1

2eλt

m         cji  αji  βji  μj j1

×

∞ 0

m    2         cji  αji  βji  μj Kji seλs vj t, x − vj∗  ds − 2eλt j1

Journal of Applied Mathematics ×

∞ 0

9

 2   ∗ Kji s × vj t − s, x − vj  ds dx

    m  ∂vj − vj∗   2      eλt λeλt vj − vj∗  δn j ⎣2vj − vj∗  ∂t Ω j1 ⎡

∞ n         2        dij pij qij νi 2e Nij seλs ui t, x − u∗i  ds λt

0

i1

⎤ ∞ n         2  ∗ dij  pij  qij  νi −2e Nij sui t − s, x − ui  ds⎦dx λt

0

i1

⎛ ⎡   m   n       2  λt cji  αji  βji  δi ⎣2e ⎝ − 2ai ui − u∗i 2 ≤ Ω i1

j1

×

t −∞

⎞      2   Kji t − sui − u∗i  × μj vj − vj∗ ds⎠ λeλt ui − u∗i 

∞ m    2               cji αji βji μj 2e Kji seλs vj t, x − vj∗  ds λt

0

j1

− 2eλt

∞ m         cji  αji  βji  μj Kji s 0

j1



 2   ×vj t − s, x − vj∗  ds⎦dx

   m  2 λt − 2bj vj − vj∗ δn j 2e Ω j1

n         dij  pij  qij  2 i1

×

t −∞

     ∗  ∗ Nij t − svj − vj νi ui − ui ds

n   2          dij  pij  qij  νi λeλt vj − vj∗  2eλt

×

∞

i1

 2 Nij seλs ui t, x − u∗  ds i

0

− 2eλt ×

∞ 0

n         dij  pij  qij  νi i1

 2  ∗ Nij sui t − s, x − ui  ds dx

10

Journal of Applied Mathematics ⎧⎡  m   n ⎨         2 2  cji  αji  βji  ≤ eλt δi ⎣ − 4ai ui − u∗i  λui − u∗i  4 ⎩ Ω i1 j1 ×

t −∞

      ∗ ∗ Kji t − sui − ui μj vj − vj ds

∞ m    2               cji αji βji μj Kji seλs vj t, x − vj∗  ds 2 0

j1

⎫ ∞ m    2 ⎬         cji  αji  βji  μj Kji svj t − s, x − vj∗  ds dx −2 ⎭ 0 j1 

m  e δn j

%

λt

Ω

n   2 2             dij  pij  qij  − 4bj vj − vj∗  λvj − vj∗  4

j1

i1

t

×

−∞

      ∗  ∗ Nij t − svj − vj νi ui − ui ds

∞ n         2  dij  pij  qij  × νi Nij seλs ui t, x − u∗i  ds 2 0

i1 n         dij  pij  qij  νi −2 i1

×

∞

 2 Nij sui t − s, x − u∗  ds

0

i

& dx. 3.11

Estimating the right of 3.11 by elemental inequality 2ab ≤ a2 b2 , we obtain that

⎧⎡ ⎤ m   n ⎨               2 2 cji  αji  βji  × μj ui − u∗ 2 ⎦ eλt δi ⎣−4ai ui − u∗i  λui − u∗i  2 D V ≤ i ⎩ Ω i1 j1 

⎫ ∞ m    2 ⎬         cji  αji  βji  μj 2 Kji seλs vj t, x − vj∗  ds dx ⎭ 0 j1 

Ω

e

λt

m 

% δn j

 2 2      − 4bj vj − vj∗  λvj − vj∗ 

j1 n  2         dij  pij  qij  νi vj − v∗  2 j i1



Journal of Applied Mathematics

11

& ∞ n           λs  ∗ 2       dij pij qij νi 2 Nij se ui t, x − ui ds dx 0

i1

⎧ ⎡ ⎤  m   n ⎨         cji  αji  βji  μj ⎦ δ ⎣λ − 4ai 2 eλt  ⎩ i Ω i1 j1 ⎫  m ⎬  2       ∞ Nij seλs ds ui − u∗i  dx 2νi δn j dij  pij  qij  ⎭ 0 j1 

Ω

e

λt

m 

%



n         dij  pij  qij  νi λ − 4bj 2

δn j

j1



i1

&  n 2         ∞   λs       Kji se ds vj − vj∗  dx ≤ 0. 2μj δi cji αji βji 0

i1

3.12 Therefore, V t ≤ V 0,

t ≥ 0.

3.13

Noting that eλt min δi  ut, x − u∗ vt, x − v∗  ≤ V t, 1≤i≤n m

t ≥ 0.

3.14

On the other hand, we have ⎡ ∞   n m           ∗ 2        ⎣ cji αji βji μj δi ui 0, x − ui 2 Kji s V 0  Ω i1

j1

×

  m Ω j1

0 −s

0



 2   eλζ s vj ζ, x − vj∗  dζ ds⎦dx

 ∞ n   2          dij  pij  qij  νi δn j vj 0, x − vj∗  2 Nij s ×

0



−s

i1

 2 eλζ s ui ζ, x − u∗i  dζ ds dx

n         dij  pij  qij  νi ≤ maxδi  2max δn j



1≤i≤n



1≤j≤m



⎣ max δn j 1≤j≤m



0



∞

   Nij sse φu s, x − u∗  λs

0

i1

⎤ ∞ m           cji  αji  βji  μj Kji sseλs ⎦ϕv s, x − v∗ . 2maxδi  1≤i≤n

j1

0

3.15

12

Journal of Applied Mathematics

Let %

n          dij  pij  qij  νi M  max maxδi  2max δn j 1≤i≤n

1≤j≤m



max δn j

1≤j≤m



∞

Nij sseλs ,

0

i1

⎫ ∞ m   ⎬       cji  αji  βji  μj Kji sseλs , 2maxδi  ⎭ 1≤i≤n 0 j1

3.16

then M ≥ 1 and     ut, x − u∗ vt, x − v∗ ≤ M φu s, x − u∗  ϕv s, x − v∗  e−λt .

3.17

This implies that the equilibrium point of system 2.1 is globally exponentially stable. The proof is completed. Corollary 3.2. Suppose (A1) and (A2) hold. Then, the equilibrium u∗ , v∗ of system 2.1 is the globally exponentially stable, if the following conditions are satisfied: −2ai

m    m              cji  αji  βji  μj νi dij  pij  qij  < 0, j1

−2bj

j1

n 

n               dij  pij  qij  νi μj cji  αji  βji  < 0.

i1

3.18

i1

4. Periodic Oscillatory Solutions of Fuzzy BAM Neural Networks In this section, we consider the existence and uniqueness of periodic oscillatory solutions for system 2.1. Theorem 4.1. Suppose that assumption (A1) and (A2) hold. Then, there exists exactly an ω-periodic solution of system 2.1, with the initial values 2.2 and 2.3, and all other solutions converge exponentially to it as t → ∞. If there exists δi ≥ 0, δn j > 0 such that ⎡

⎤ m   m              cji  αji  βji  μj ⎦ νi δn j dij  pij  qij  < 0, δi ⎣−2ai  δn j

j1



j1

n  n               dij  pij  qij  νi μj δi cji  αji  βji  < 0, −2bj i1

4.1

i1

where i  1, 2, . . . , n, j  1, 2, . . . , m. Proof. Let ' (  T  T C  Φ | Φ  φu , ϕv  φu1 , . . . , φun , ϕv1 , . . . , ϕvm , Φ : −∞, 0 × −∞, 0 −→ Rn m . 4.2

Journal of Applied Mathematics

13

For any Φ ∈ C, we define ⎡ ⎤1/2  1/2   n  m   2 2 φμi  dx ϕvi  dx⎦ . sup ⎣ Φ  sup −∞≤s≤0

Ω i1

−∞≤s≤0

4.3

Ω j1

Then, C is the Banach space of continuous functions. For any φu , ϕv T , φu , ϕ v T ∈ C, we denote the solutions of system 2.1 through T 0, 0 , φu , ϕv T , and 0, 0T , φu , ϕ v T as      T  u t, φu , x  u1 t, φu , x , . . . , un t, φu , x ,      T  v t, ϕv , x  v1 t, ϕv , x , . . . , vm t, ϕv , x ,      T  u t, φu , x  u1 t, φu , x , . . . , un t, φu , x ,      T  v t, ϕ v , x  v1 t, ϕ v , x , . . . , vm t, ϕ v , x ,

4.4

respectively. And define that     ut φu , x  u t θ, φu , x ,

    vt ϕv , x  v t θ, ϕv , x ,

θ ∈ −∞, 0, t ≥ 0,

4.5

then ut φu , x, vt ϕv , xT φu , x, vt ϕv , xT ∈ C for t ≥ 0. Let uix  ui t, φu , x − ui t, φu , x, vjx  vj t, ϕv , x − vj t, ϕ v , x. Therefore, it follows from system 2.1 that   l ∂uix  ∂ ∂uix  Dik − ai uix ∂t ∂xk ∂xk k1

t m   * )     cji Kji t − s fj vj s, ϕv , x − fj vj s, ϕ v , x ds −∞

j1



m 

t αji

−∞

j1



m 

t αji

j1



m

βji

j1



m

−∞

t −∞

t βji

j1

−∞

   Kji t − sfj vj s, ϕv , x ds

   Kji t − sfj vj s, ϕ v , x ds    Kji t − sfj vj s, ϕv , x ds    Kji t − sfj vj s, ϕ v , x ds,

14

Journal of Applied Mathematics l ∂vjx  ∂  ∂t ∂x k k1



∂vjx ∂xk

∗ Djk

− bj vjx

t n   * )     dij Nij t − s gi ui s, φu , x − fj vj s, φu , x ds −∞

i1



t n     pij Nij t − sgi ui s, φu , x ds −∞

i1



t n     pij Nij t − sgi ui s, φu , x ds −∞

i1



t n    qij Nij t − sgi ui s, φu , x ds −∞

i1



n qij

t

i1

   Nij t − sgi ui s, φv , x ds.

−∞

4.6

Considering the following Lyapunov functional

V t 

  n Ω i1



δi |uix | e dx

  n Ω i1

× μj

2 λt

∞

2δi



×

Ω j1

∞ 0

Ω j1

 2 δn j vjx  eλt dx

m         cji  αji  βji  j1

Kji s

t

0

  m

  m

t−s

2δn j

Nij s

n 

   2  eλζ s vj ζ, ϕv , x − vj ζ, ϕ v , x  dζ dsdx

      dij  pij  qij  νi

i1

t t−s

    2  eλζ s ui ζ, φu , x − ui ζ, φu , x  dζ dsdx. 4.7

By a minor modification of the proof of Theorem 3.1, we can easily obtain               u t, φu , x − u t, φu , x  v t, ϕv , x − v t, ϕ v , x  ≤ M φu − φu  ϕv − ϕ v  e−λt , 4.8

Journal of Applied Mathematics

15

for all t ≥ 0. We can choose a positive integer N such that Me−λNω ≤

1 4

4.9

and define a Poincare mapping C → C by P

T 



φu , ϕv

    T  uω φu , uω ϕv .

4.10

It follows that PN



φu , ϕv

T 

    T  uNω φu , uNω ϕv .

4.11

Letting t  nω, we, from 4.8 to 4.11, obtain that    T  T  1  T  T   N − P N φu , ϕ v φu , ϕv  ≤  φu , ϕv − φu , ϕ v . P 2

4.12

It implies that P N is a contraction mapping. Hence, there exist a unique equilibrium point φu∗ , ϕ∗v T ∈ C such that PN



φu∗ , ϕ∗v

T 

 T  φu∗ , ϕ∗v .

4.13

Note that      T  T  T   P P N φu∗ , ϕ∗v  P φu∗ , ϕ∗v . P N P φu∗ , ϕ∗v

4.14

Let ut, φu∗ , vt, ϕ∗v T be the solution of system 2.1 through 0, 0T , φu∗ , ϕ∗v T , then ut ω, φu∗ , x, vt ω, ϕ∗v , xT is also the solution of system 2.1. It is clear that 

   T   ∗   ∗ T ut ω φu∗ , vt ω ϕ∗v  ut φu , vt ϕv

4.15

for all t ≥ 0. It follows from 4.15 that     T   ∗   ∗ T u t ω, φu∗ , x , v t ω, ϕ∗v , x  u t, φu , x , v t, ϕv , x ,

t ≥ 0,

4.16

which shows that ut, φu∗ , x, vt, ϕ∗v , xT is exactly an ω-periodic solution of system 2.1 with the initial conditions 2.2 and 2.3 and other solutions of system 2.1 with the initial conditions 2.2 and 2.3 converge exponentially to it as t → ∞.

16

Journal of Applied Mathematics

5. An Illustrative Example In this section, we will give an example to illustrate feasible our result. Example 5.1. Consider the following system

  l ∂ui t, x  ∂ ∂ui  Dik − ai ui t, x ∂t ∂xk ∂xk k1

m 

t cji

−∞

j1



m 

t αji



t βji

−∞

j1



m 

m

j1

l ∂vj t, x  ∂  ∂t ∂x k k1 n 

−∞

∂vj ∂xk

− bj vj t, x

Nij t − sgi ui s, xds

t n  pij Nij t − sgi ui s, xds n qij i1



∗ Djk

t

i1





dij

i1



  Kji t − sfj vj s, x ds

Tji ωj ∨ Hji ωj Ii ,

j1



  Kji t − sfj vj s, x ds

−∞

j1 m

  Kji t − sfj vj s, x ds

−∞

t −∞

Nij t − sgi ui s, xds

n  n Sij ωi ∨ Lij ωi Jj , i1

i1

5.1

where

Kji t  Nij t  te−t ,

i  1, 2, j  1, 2,

f1 r  f2 r  g1 r  g2 r 

1 |r 1| − |r − 1|. 2

5.2

Journal of Applied Mathematics

17

It is obvious that f·, g· satisfy assumption A1 and K·, N· satisfy assumption A2, moreover μ1  μ2  ν1  ν2  1. Let c11 

1 , 2

c21  1,

1 c12  − , 2

c22 

d11 

1 , 3

d21 

1 , 2

1 d12  − , 3

d22 

2 , 3

α11 

2 , 3

α21 

1 , 2

1 α12  − , 4

α22 

1 , 3

β11 

1 , 3

β21 

1 , 2

1 β12  − , 4

β22 

5 , 3

p11 

2 , 3

p21 

1 , 4

1 p12  − , 2

p22 

2 , 3

q11 

2 , 3

q21 

1 , 2

1 q12  − , 4

q22 

1 , 3

b1  3,

b2  4.5.

a1  4,

a2  3.5,

2 , 3

5.3

By simply calculating, we can get

−2a1

2  2                cj1  αj1  βj1  μj ν1 d1j  p1j  q1j   −1.75 < 0, j1

−2a2

2 

j1 2               cj2  αj2  βj2  μj ν2 d2j  p2j  q2j   −0.75 < 0,

j1

−2b1 −2b2

j1

2  

2  

i1

i1

    |di1 | pi1  qi1  νi μ1

2  i1

  |c1i | |α1i | β1i   −0.583 < 0,

5.4

2         |di2 | pi2  qi2  νi μ2 |c2i | |α2i | β2i   −1.583 < 0.



i1

Since all the conditions of Corollary 3.2 are satisfied, therefore the system 5.1 has a unique equilibrium point which is globally exponentially stable.

6. Conclusion In this paper, we have studied the exponential stability of the equilibrium point and the existence of periodic solutions for fuzzy BAM neural networks with distributed delays and diffusion. Some sufficient conditions set up here are easily verified, and the conditions which are only correlated with parameters of the system 2.1 are independent of time delays. The results obtained in this paper remove the assumption about the activation functions with differentiable and only require the activation functions are bounded and Lipschitz continuous. Thus, it allows us even more flexibility in choosing activation functions.

18

Journal of Applied Mathematics

Acknowledgments The authors would like to thank the editor and anonymous reviewers for their helpful comments and valuable suggestions, which have greatly improved the quality of this paper. This work is partially supported by the Scientific Research Foundation of Guizhou Science and Technology Department2011J2096.

References 1 B. Kosko, “Adaptive bidirectional associative memories,” Applied Optics, vol. 26, no. 23, pp. 4947– 4960, 1987. 2 B. Kosko, “Bidirectional associative memories,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 18, no. 1, pp. 49–60, 1988. 3 B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence, Prentice Hall, Englewood Cliffs, NJ, USA, 1992. 4 K. Gopalsamy and X. Z. He, “Delay-independent stability in bidirectional associative memory networks,” IEEE Transactions on Neural Networks, vol. 5, no. 6, pp. 998–1002, 1994. 5 J. Cao and L. Wang, “Periodic oscillatory solution of bidirectional associative memory networks with delays,” Physical Review E, vol. 61, no. 2, pp. 1825–1828, 2000. 6 B. Liu and L. Huang, “Global exponential stability of BAM neural networks with recent-history distributed delays and impulses,” Neurocomputing, vol. 69, no. 16–18, pp. 2090–2096, 2006. 7 J. Cao and L. Wang, “Exponential stability and periodic oscillatory solution in BAM networks with delays,” IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 457–463, 2002. 8 H. Zhao, “Global stability of bidirectional associative memory neural networks with distributed delays,” Physics Letters A, vol. 297, no. 3-4, pp. 182–190, 2002. 9 J. Zhang and Y. Yang, “Global stability analysis of bidirectional associative memory neural networks with time delay,” International Journal of Circuit Theory and Applications, vol. 29, no. 2, pp. 185–196, 2001. 10 X. Liao, K.-W. Wong, and S. Yang, “Convergence dynamics of hybrid bidirectional associative memory neural networks with distributed delays,” Physics Letters A, vol. 316, no. 1-2, pp. 55–64, 2003. 11 X. Liao and J. Yu, “Qualitative analysis of bi-directional associative memory with time delay,” International Journal of Circuit Theory and Applications, vol. 26, no. 3, pp. 219–229, 1998. 12 J. Cao and Q. Jiang, “An analysis of periodic solutions of bi-directional associative memory networks with time-varying delays,” Physics Letters A, vol. 330, no. 3-4, pp. 203–213, 2004. 13 A. Chen, J. Cao, and L. Huang, “Exponential stability of BAM neural networks with transmission delays,” Neurocomputing, vol. 57, no. 1–4, pp. 435–454, 2004. 14 A. Chen, L. Huang, and J. Cao, “Existence and stability of almost periodic solution for BAM neural networks with delays,” Applied Mathematics and Computation, vol. 137, no. 1, pp. 177–193, 2003. 15 A. Chen, L. Huang, Z. Liu, and J. Cao, “Periodic bidirectional associative memory neural networks with distributed delays,” Journal of Mathematical Analysis and Applications, vol. 317, no. 1, pp. 80–102, 2006. 16 Z. Liu, A. Chen, J. Cao, and L. Huang, “Existence and global exponential stability of almost periodic solutions of BAM neural networks with continuously distributed delays,” Physics Letters A, vol. 319, no. 3-4, pp. 305–316, 2003. 17 J. Cao, “A set of stability criteria for delayed cellular neural networks,” IEEE Transactions on Circuits and Systems I, vol. 48, no. 4, pp. 494–498, 2001. 18 J. Cao, “Global stability conditions for delayed CNNs,” IEEE Transactions on Circuits and Systems I, vol. 48, no. 11, pp. 1330–1333, 2001. 19 J. Cao and J. Wang, “Global asymptotic stability of a general class of recurrent neural networks with time-varying delays,” IEEE Transactions on Circuits and Systems I, vol. 50, no. 1, pp. 34–44, 2003. 20 J. Cao, “New results concerning exponential stability and periodic solutions of delayed cellular neural networks,” Physics Letters A, vol. 307, no. 2-3, pp. 136–147, 2003. 21 J. Cao and J. Wang, “Absolute exponential stability of recurrent neural networks with Lipschitzcontinuous activation functions and time delays,” Neural Networks, vol. 17, no. 3, pp. 379–390, 2004. 22 J. Cao and J. Wang, “Global exponential stability and periodicity of recurrent neural networks with time delays,” IEEE Transactions on Circuits and Systems I, vol. 52, no. 5, pp. 920–931, 2005.

Journal of Applied Mathematics

19

23 J. Cao and D. W. C. Ho, “A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach,” Chaos, Solitons and Fractals, vol. 24, no. 5, pp. 1317–1329, 2005. 24 J. Cao, D.-S. Huang, and Y. Qu, “Global robust stability of delayed recurrent neural networks,” Chaos, Solitons and Fractals, vol. 23, no. 1, pp. 221–229, 2005. 25 Q. Song, Z. Zhao, and Y. Li, “Global exponential stability of BAM neural networks with distributed delays and reaction-diffusion terms,” Physics Letters A, vol. 335, no. 2-3, pp. 213–225, 2005. 26 T. Yang and L.-B. Yang, “The global stability of fuzzy cellular neural network,” IEEE Transactions on Circuits and Systems I, vol. 43, no. 10, pp. 880–883, 1996. 27 T. Yang, L. B. Yang, C. W. Wu, and L. O. Chua, “Fuzzy cellular neural networks: theory,” in Proceedings of the 4th IEEE International Workshop on Cellular Neural Networks, and Their Applications, pp. 181–186, June 1996. 28 T. Yang, L. B. Yang, C. W. Wu, and L. O. Chua, “Fuzzy cellular neural networks: applications,” in Proceedings of the 4th IEEE International Workshop on Cellular Neural Networks, and Their Applications, pp. 225–230, June 1996. 29 T. Huang, “Exponential stability of fuzzy cellular neural networks with distributed delay,” Physics Letters A, vol. 351, no. 1-2, pp. 48–52, 2006. 30 T. Huang, “Exponential stability of delayed fuzzy cellular neural networks with diffusion,” Chaos, Solitons and Fractals, vol. 31, no. 3, pp. 658–664, 2007. 31 K. Yuan, J. Cao, and J. Deng, “Exponential stability and periodic solutions of fuzzy cellular neural networks with time-varying delays,” Neurocomputing, vol. 69, no. 13–15, pp. 1619–1627, 2006. 32 Q. Zhang and R. Xiang, “Global asymptotic stability of fuzzy cellular neural networks with timevarying delays,” Physics Letters A, vol. 372, no. 22, pp. 3971–3977, 2008. 33 Z. Li, “Dynamics in BAM fuzzy neutral networks with delays and reaction-diffusion terms,” International Mathematical Forum, vol. 3, no. 17–20, pp. 979–1000, 2008.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014