Early gold and silver

0 downloads 0 Views 1MB Size Report
U. Zwicker, Antike Münzen aus Kleinasien. (Mysien bis Pisidien). Sammlung Zwicker 3. Schr. Univbibl. ErlangenNürnberg 31. (Erlangen 1996). source of figures.
TAGUNGEN DES LANDESMUSEUMS FÜR VORGESCHICHTE HALLE

Metalle der Macht – Frühes Gold und Silber

Metalle der Macht – Frühes Gold und Silber Metals of power – Early gold and silver 6. Mitteldeutscher Archäologentag vom 17. bis 19. Oktober 2o13 in Halle (Saale) Herausgeber Harald Meller, Roberto Risch und Ernst Pernicka

I S B N 9 7 8 - 3 - 9 4 4 5 0 7-1 3 - 2 I S S N 18 6 7- 4 4 0 2

11/I

11/I

2014

TAGUNGEN DES L ANDESMUSEUMS FÜR VORGESCHICHTE HALLE

Tagungen des Landesmuseums für Vorgeschichte Halle Band 11/I | 2014

Metalle der Macht – Frühes Gold und Silber Metals of power – Early gold and silver 6. Mitteldeutscher Archäologentag vom 17. bis 19. Oktober 2o13 in Halle (Saale) 6th Archaeological Conference of Central Germany October 17–19, 2o13 in Halle (Saale)

Tagungen des Landesmuseums für Vorgeschichte Halle Band 11/I | 2014

Metalle der Macht – Frühes Gold und Silber Metals of power – Early gold and silver 6. Mitteldeutscher Archäologentag vom 17. bis 19. Oktober 2o13 in Halle (Saale) 6th Archaeological Conference of Central Germany October 17–19, 2o13 in Halle (Saale)

Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt

landesmuseum für vorgeschichte

herausgegeben von Harald Meller, Roberto Risch und Ernst Pernicka Halle (Saale) 2o14

Dieser Tagungsband entstand mit freundlicher Unterstützung von: The conference proceedings were supported by:



Die Beiträge dieses Bandes wurden einem Peer-Review-Verfahren unterzogen. Die Gutachtertätigkeit übernahmen folgende Fachkollegen: PD Dr. Barbara Regine Armbruster, Prof. Dr. François Bertemes, Prof. Dr. Christoph Brumann, Prof. Dr. Robert Chapman, Dr. Andrea Dolfini, Prof. Dr. Gerhard Eggert, Dr. José Lull Gracía, Dr. Maria Filomena Guerra, Prof. Dr. Detlef Günther, Prof. Dr. Andreas Hauptmann, PD Dr. Reinhard Jung, Dr. Laurence Manolakakis, Prof. Dr. Gregor Markl, Dr. Regine Maraszek, Prof. Dr. Carola Metzner-Nebelsick, Prof. Dr. Pierre de Miroschedji, Prof. Dr. Louis Daniel Nebelsick, Prof. Dr. Ernst Pernicka, Prof. Dr. Margarita Primas, PD Dr. Sabine Reinhold, Dr. Ralf Schwarz, Dr. Zofia Anna Stos-Gale, Dr. Christian-Heinrich Wunderlich.

Bibliografische Information Der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://portal.dnb.de abrufbar.

isbn 978-3-9445o7-13-2 issn 1867-44o2

Redaktion Redaktion und Übersetzung der englischen Texte Organisation und Korrespondenz Technische Bearbeitung

Jennifer Bröcher, Dirk Höhne, Kathrin Legler, Janine Näthe, Sven Roos, Monika Schlenker, Manuela Schwarz, Anna Swieder, Andrea Welk Tanja Romankiewicz, Nicholas Uglow • beide Edinburgh, Bettina Stoll-Tucker Konstanze Geppert Thomas Blankenburg, Nora Seeländer, Mario Wiegmann

Vor-/Nachsatz, Sektionstrenner, S. 19, 49, 367 Fotos Juraj Liptàk • München, Gestaltung Brigitte Parsche Umschlag Rubriktrenner S. 51 © G. Borg, Halle (Saale); S. 151 © CEZA, Mannheim; S. 321 © C.-H. Wunderlich, LDA; S. 369 Piotrovski 2o13; S. 313 Abb. 2o,15–16; S. 449 J. A. Soldevilla, © ASOME-UAB; S. 6o9 Piotrovski 2o13, S. 466 Abb. 157,3 u. Staatl. Museum f. Bildende Künste A. S. Puschkin; S.  883 J. Lipták, München Für den Inhalt der Arbeiten sind die Autoren eigenverantwortlich.



© by Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt – Landesmuseum für Vorgeschichte Halle (Saale). Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt unzulässig. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen sowie die Einspeicherung und Verarbeitung in elektronischen Systemen.

Papier alterungsbeständig nach din/iso 97o6 Satzschrift FF Celeste, News Gothic Konzept und Gestaltung Carolyn Steinbeck • Berlin Layout, Satz und Produktion Nora Seeländer Druck und Bindung Salzland Druck GmbH & Co. KG

Inhalt / Contents

Band I

11 Vorwort der Herausgeber / Preface of the editors

Sektion Allgemeines / Section General Perspectives

21 Hans Peter Hahn

Die Sprache des Glanzes: Wert und Werte als Kontext von Gold

33 Hans-Gert Bachmann

Gold: pursued, desired, cursed – Reverence for a precious metal

Sektion Herkunft und Verarbeitung / Section Procurement and craft

Bergbau / Mining 53 Gregor Borg

»Gold is where you find it« – Zeitgenössischer artisanaler Goldbergbau in Afrika als Analogie (prä-)historischer Goldgewinnung

71 Thomas Stöllner

Gold in the Caucasus: New research on gold extraction in the Kura-Araxes Culture of the 4th millenium BC and early 3rd millenium BC

111 Danilo Wolf und René Kunze

Gegharkunik – Neue Quellen für altes Gold aus Südkaukasien?

141 Rosemarie Klemm und Dietrich Klemm

Früher Goldbergbau in Ägypten und Nubien



Archäometrie / Archaeometry 153 Ernst Pernicka

Possibilities and limitations of provenance studies of ancient silver and gold

165 Verena Leusch, Ernst Pernicka, and Barbara Armbruster

Chalcolithic gold from Varna – Provenance, circulation, processing, and function

183 Zofia Anna Stos-Gale

Silver vessels in the Mycenaen Shaft Graves and their origin in the context of the metal supply in the Bronze Age Aegean

209 Christopher D. Standish, Bruno Dhuime, Chris J. Hawkesworth, and Alistair W. G. Pike

New insights into the source of Irish Chalcolithic and Early Bronze Age gold through lead isotope analysis



223 Nicole Lockhoff and Ernst Pernicka

Archaeometallurgical investigations of Early Bronze Age gold artefacts from central Germany including gold from the Nebra hoard

237 Robert Lehmann, Daniel Fellenger, and Carla Vogt

Modern metal analysis of Bronze Age gold in Lower Saxony by using laser ablation mass spectrometry (ns-LA-ICP-QMS and fs-LA-ICP-MCMS) and portable X-ray fluorescence (pXRF)

247 Ernst Pernicka

Zur Frage der Echtheit der Bernstorfer Goldfunde

257 Mercedes Murillo-Barroso, Ignacio Montero Ruiz, and Martin Bartelheim

Native silver ressources in Iberia

269 Francisco Contreras-Cortés, Auxilio Moreno-Onorato, and Martin Bartelheim

New data on the origin of silver in the Argaric Culture: The site of Peñalosa

285 Beatriz Comendador Rey, Jorge Millos, and Paula Álvarez-Iglesias

Provenance of the prehistoric silver set of Antas de Ulla, north-western Iberia, using lead stable isotope ratios

309 Katja Martin

Was bleibt ... Der Metallurg und sein Handwerk im archäologischen Befund



Experimentelle Archäologie / Experimental archaeology 323 Barbara Armbruster

Ethnoarchäologie und experimentelle Archäologie in der Forschung prähistorischen Goldes

335 Eleni Konstantinidi-Syvridi, Nikolas Papadimitriou, Anna Philippa-Touchais, and Akis Goumas

Goldworking techniques in Mycenaean Greece (17th/16th–12th century BC): some new observations

349 Christian-Heinrich Wunderlich

Wie golden war die Himmelsscheibe von Nebra? Gedanken zur ursprünglichen Farbe der Goldauflagen

353 Christian-Heinrich Wunderlich, Nicole Lockhoff und Ernst Pernicka

De Cementatione oder: Von der Kunst, das Gold nach Art der Alten zu reinigen

Band II Sektion Kontext und Interpretation / Section Context und interpretation

Osten / East 371 Raiko Krauß, Steve Zäuner, and Ernst Pernicka

Statistical and anthropological analysis of the Varna necropolis

389 Svend Hansen

Gold and silver in the Maikop Culture

411 Barbara Helwing

Silver in the early societies of Greater Mesopotamia

423 Romain Prévalet

Bronze Age Syrian gold jewellery – Technological innovation

435 Andreas Reinecke

Der Anfang des Goldhandwerks in Südostasien. Zur Verknüpfung archäologischer Befunde und metallanalytischer Ergebnisse



Mittelmeer / Mediterranean sea 451 Stelios Andreou and Michael Vavelidis

So rich and yet so poor: Investigating the scarcity of gold artefacts in Bronze Age northern Greece

467 Borja Legarra Herrero

The role of gold in south Aegean exchange networks (31oo–18oo BC)

483 Maria Grazia Melis

Silver in Neolithic and Eneolithic Sardinia

495 Maria Bernabò Brea, Filippo Maria Gambari, and Alessandra Giumlia-Mair

Preliminary remarks on the gold cup from Montecchio Emilia, northern Italy

505 Teodoro Scarano and Giovanna Maggiulli

The golden sun discs from Roca Vecchia, Lecce, Italy: archaeological and cultural context

527 Alicia Perea

Goldworking processes and ontologies at the inception of metallurgy in the western Mediterranean 541 Maria Carme Rovira Hortalà, Ferran Borrell, Mònica Oliva, Maria Saña, Oriol Vicente, and Gabriel Alcalde

Early gold remains in the north-east of the Iberian Peninsula

547 Maria Carme Rovira Hortalà, Ignacio Montero Ruiz, and Alicia Perea

The funerary »treasure« of Montilla, Cordova, Spain

557 Vicente Lull, Rafael Micó, Christina Rihuete Herrada, and Roberto Risch,

The social value of silver in El Argar

577 Selina Delgado-Raack, Vicente Lull, Katja Martin, Rafael Micó, Cristina Rihuete Herrada und Roberto Risch

Die Silberschmiede von Tira del Lienzo, Totana, Prov. Murcia, im Kontext der El Argar Metallurgie



593 Mauro S. Hernández Pérez, Gabriel García Atiénzar, and Virginia Barciela González

The treasures of Villena and Cabezo Redondo, Alicante, Spain



Mitteleuropa / Central Europe 611 Harald Meller

Die neolithischen und bronzezeitlichen Goldfunde Mitteldeutschlands – Eine Übersicht

717 Ralf Schwarz

Goldene Schleifen- und Lockenringe – Herrschaftsinsignien in bronzezeitlichen Rang­gesellschaften Mitteldeutschlands. Überlegungen zur Gesellschaft der Aunjetitzer Kultur

743 Juliane Filipp und Martin Freudenreich

Dieskau Revisited I: Nachforschungen zur »Lebensgeschichte« des Goldhortes von Dieskau und zu einem weiteren Grabhügel mit Goldbeigabe bei Osmünde im heutigen Saalekreis, Sachsen-Anhalt

753 Martin Freudenreich und Juliane Filipp

Dieskau Revisited II. Eine mikroregionale Betrachtung

761 Rupert Gebhard, Rüdiger Krause, Astrid Röpke und Vanessa Bähr

Das Gold von Bernstorf – Authentizität und Kontext in der mittleren Bronzezeit Europas

777 Henning Haßmann, Andreas Niemuth, Mario Pahlow, Bernd Rasink, Stefan Winghart und Friedrich-Wilhelm Wulf

Der Goldhort von Gessel

789 Franziska Knoll, Harald Meller und Juliane Filipp

»Nordisch by nature«. Die jundbronzezeitlichen, goldenen Eidringe Sachsen-Anhalts an der südlichen Peripherie des Nordischen Kreises in ihrem Kontext

873 Christian-Heinrich Wunderlich

Gemeinsamkeiten und Unterschiede der goldenen Eidringe von Schneidlingen, Könnern, Hundisburg und Klein Oschersleben hinsichtlich ihrer Herstellungs- und Abnutzungsspuren



Westen und Norden / West and North 885 Flemming Kaul

Bronze Age gold from Denmark

903 Stuart Needham and Alison Sheridan

Chalcolithic and Early Bronze Age goldwork from Britain: new finds and new perspectives

Possibilities and limitations of provenance studies of ancient silver and gold Ernst Pernicka

Zusammenfassung

Summary

Möglichkeiten und Grenzen der Herkunftsbestimmung von antikem Silber und Gold

The possibilities and limitations of provenance studies of gold and silver are discussed. For silver, because of its complex ways of production, only limited information can be gained from analysis of the chemical composition. More important and decisive for the provenancing are the lead isotopes ratios, the analysis of which was introduced in the 196o's for provenancing archaeological finds. However, this does not mean that the provenancing of silver is superfluous; quite the reverse is true as it is important to discern native silver from the silver yielded from argentiferous lead ores, and to test whether the silver had been alloyed with other metals such as copper, which could also add traces of lead to the composition. Gold presents the completely opposite case. So far, isotope analysis only yielded little insight into provenancing, while the trace element analysis ratios of prehistoric gold objects is still important, at least for classification. A direct comparison of micro nuggets with archaeological objects proves difficult, as gold appears alloyed with other components already in nature.

Es werden die Möglichkeiten und Grenzen der Herkunftsbestimmung von Gold und Silber diskutiert. Dazu sind bei Silber wegen der komplexen Herstellungsprozesse nur wenige Informationen aus der chemischen Zusammensetzung zu gewinnen. Wesentlich wichtiger und kennzeichnend für die Herkunftsbestimmung sind dagegen die Bleiisotopenverhältnisse, deren Analyse in den 196oer-Jahren zur Herkunftsbestimmung von archäologischen Funden eingeführt wurde. Das bedeutet aber nicht, dass die chemische Analyse von Silberobjekten obsolet wäre. Ganz im Gegenteil ist es wichtig, zwischen gediegen Silber und dem aus Bleierzen gewonnenen Metall zu unterscheiden und zu prüfen, ob das Silber mit anderen Elementen wie Kupfer legiert wurde, denn diese können ebenfalls Spuren von Blei enthalten. Bei Gold ist es umgekehrt. Bisher haben Isotopenanalysen wenige Erkenntnisse zur Herkunft beigetragen, während das Spurenelementmuster von prähistorischen Goldobjekten immer noch zumindest für die Klassifikation wichtig ist. Ein direkter Vergleich von Mikronuggets mit archäologischen Objekten gestaltet sich schwierig, weil Gold in der Natur bereits mit anderen Komponenten vermischt vorkommt.

Introduction Silver and gold occur as native metals in nature. Yet they are not the first metals to be used and produced although they were obviously highly appreciated from the beginning of their use and are usually considered as prestige items indi­ cating the social status of their owner. This is certainly undisputed in the context of royal burials such as those at Ur in Mesopotamia (Iraq) and at Mycenae in the Peloponnese (Greece). Accordingly, such an explanation has also been suggested for the earliest gold finds in the Chalcolithic ceme­ tery of Varna in Bulgaria of the late 5th millennium BC. More than 9o % of the roughly 3ooo gold items were found in only three of some 24o graves, which have been interpreted in terms of a social hierarchy. Since many of the find com­ plexes of precious metals are located in regions where there are no geological sources, with Ur and Mycenae as promi­ nent examples, the question of provenance suggests itself immediately. While there is no doubt that gold was always collected from placers in rivers and visible gold was also mined, the situation is less clear with silver. First of all, native silver is Ta g u n g e n d e s L a n d e s m u s e u m s f ü r V o r g e s c h i c h t e H a ll e • B a n d 11 • 2 014

less abundant than gold. Patterson (1971) estimated it as around five times less abundant than native gold and about 5oo times less abundant than native copper. It is also much less conspicuous, not only because of its grey colour com­ pared with the bright yellow of gold but also because it is chemically less stable than gold and easily develops patinas of sulfides (black; Fig. 1) or chlorides (gray to brown) on the surface. Finally, most native silver occurs in the form of rather small wires (Fig. 2) and only rarely in massive form. Thus, the reported block of native silver of about 2 m 3, on which Duke Albrecht of Saxony dined together with his noble men in St. George mine at Schneeberg in 1477, is certainly the exception rather than the rule. The principal ores of silver are the sulfides (argentite: silver glance) and the chlorides (cerargyrite: horn silver), from which the metal can be produced by simple smelting at reducing con­ ditions. However, until today most of the silver is produced from argentiferous lead ores. Therefore, it may not be too surpris­ ing that the earliest silver finds in the archaeological record were produced from such ores, notably galena (lead sulfide) and cerussite (lead carbonate). This provides the possibility

154

Ernst Pernick a

Fig. 1 Silver spoon with black corrosion from the medieval hoard of Wiener Neustadt. Abb. 1 Silberlöffel mit schwarzer Korrosion aus dem mittelalterlichen Hort von Wiener Neustadt.

to investigate the provenance of silver, mainly via lead iso­ (Mellichamp/Levey 1963), and from various Early Bronze Age sites in Anatolia (Yener et al. 1991), in the Aegean (Gale/ tope ratios as will be shown below. Gold already appears in the 5th millennium BC, mainly Stos-Gale 1981; Pernicka 1987) and in Egypt (Gale/Stos-Gale in south-eastern Europe (Ivanov 1988; for a recent review see 1981a). Hansen 2oo9) but also in the Levant (Gopher/Tsuk 1996). This marks the beginning of an expanding polymetallism that continues in the 4th millennium BC when we are faced Provenance analysis of ancient silver with a substantial body of silver and lead objects covering the area between eastern Anatolia (Asia Minor, Turkey) and Other than with copper and copper alloys there were no seri­ Egypt (Prag 1978; Kohlmeyer 1994), and with a climax in ous attempts to determine the provenance of silver by trace the 3rd millennium BC when tin enters the scene. It is cer­ element analysis. Although ancient silver was frequently tainly significant that lead and silver distinctly increased in analysed by neutron activation analysis (NAA) this was number and weight together during the later phase of this mainly restricted to coins (e. g. Gordus 1967), and it was period, around 35oo BC, in south-west Asia. Combined with often not the provenance of the silver that was sought but the evidence for cupellation in the 4th and early 3rd millen­ rather the alloy composition, especially the silver content. nium BC in eastern Anatolia, the Middle Euphrates region Trace element analyses of ancient silver were performed and in Iran (Hess et al. 1998; Pernicka et al. 1998; Chegini with the same method with the aim to group objects accord­ et al. 2ooo; Pernicka et al. 2o11) this clearly demonstrates ing to trace element compositions and to relate such groups that argentiferous lead ores were the main source for silver to art historical information (Meyers et al. 1974). However, in this region. This is also reflected in the chemical compo­ attempts to determine the silver’s geological source resitions of the silver objects, which usually contain only low mained inconclusive. A new approach for provenancing of concentrations of gold and copper and, characteristically, at ancient silver was introduced at the Max-Planck-Institut für least o.1 % lead (Pb) and at least o.o1 % bismuth (Bi), for Kernphysik in Heidelberg, where extensive field surveys of example in the silver objects from the Royal cemetery of Ur lead and silver deposits in the Aegean were combined with trace element and lead isotope analysis of ancient silver coins (Gale et al. 198o). This work showed that lead isotope ratios are clearly the most valuable parameter for prove­ nance studies of ancient silver. However, it is necessary to consider carefully, if the lead in the silver is indeed related to the geological source of the silver and did not originate from other processes. This can be assessed by chemical analysis, but NAA is not the ideal method for this purpose as it can­ not determine the two most significant elements for this dis­ tinction, namely lead and bismuth. Native silver can certainly be distinguished from silver derived from silver and lead ores as has been shown by Pat­ terson (1971) and Pernicka (1987). It is characterised by very low concentrations of gold and lead, mostly less than o.o1 %, and – significantly – shows high concentrations of volatile and easily oxidisable elements such as mercury, arsenic, and antimony, up to several percent. Until recently no prehisFig. 2 Native silver on calcite from Kongsberg (Buskerud County, Norway). toric silver artefact had been identified as having been Abb. 2 Gediegenes Silber auf Calzit aus Kongsberg (Prov. Buskerud, Nor­ made of native silver. However, it now becomes evident that wegen). in the late Chalcolithic El Argar Culture in south-eastern Ta g u n g e n d e s L a n d e s m u s e u m s f ü r V o r g e s c h i c h t e H a ll e • B a n d 11 • 2 014

P o s s i b i l i t i e s a n d l i m i tat i o n s o f p r o v e n a n c e s t u d i e s o f a n c i e n t s i lv e r a n d g o l d

Liquation

Cupellation

Cementation

Lead ore (with silver)

Copper ore (with silver) Reduction

Reduction Copper matte (with silver)

Native gold (with silver)

Melting down with lead Oxidation

Oxidation

Oxidation

Copper oxides (with silver)

Reduction Silver

Litharge

Black copper (with silver)

Desilvered copper (leaded copper)

Melting down with lead

Copper-lead alloy

+ Litharge and charcoal Argentiferous lead with silver

Reduction Reduction

+ Salt and fireclay Desilvered gold and silver chloride

Argentiferous lead (with silver)

Desilvered (soft) lead

Argentiferous lead

Fig. 3 Technological processes for silver production from argentiferous copper ores by liquation, from argentiferous lead ores by cupellation and from native gold with silver by cementation. Abb. 3 Technologische Wege der Silberproduktion aus silberführenden Kupfererzen durch das Saigerverfahren, aus silberführenden Bleierzen durch Kupellation und aus gediegenem Gold durch Zementation.

Spain native silver was abundantly used (Bartelheim et al. 2o12) and recently it was also found in an Iron Age burial in central Italy (Pernicka 2o13). It is not yet clear, if combined Laurion trace element and lead isotope analysis will be as useful for Euböa the determination of the provenance of native silver as it is for copper and copper alloys, but there are at least two Kea major obstacles: if native silver is melted for casting then Seriphos the chemical composition is bound to change considerably Siphnos and a direct comparison of trace element patterns in ores Syros and artefacts is no longer possible. Secondly, the generally low lead concentration combined with frequently high con­ Panäon centrations of mercury of several percent render the precise Chalkidiki determination of all four lead isotopes difficult if not impos­ Pontokerasia sible. Apart from native metals sources, silver can also be pro­ Thasos duced from different ores with different processes (Fig. 3), Samos which result in characteristic trace element patterns. The Altinoluk oldest technology is the smelting of argentiferous lead ores Balya to lead first, followed by an oxidation of the lead to litharge (lead oxide, PbO) leaving behind the silver. The second oper­ Gümü¸köy s ation is known as the cupellation process, which frees the 10 10 10 10 10 10 silver very efficiently from the impurities in the argentif­ erous lead (chiefly antimony, arsenic, tin, iron, zinc, less well from copper and bismuth), but does not alter the gold/silver Fig. 4 Au/Ag ratios in a number of lead-zinc deposits in the Aegean. ratio. This should be reflected in the lead ore which is thus, Abb. 4 Verhältnisse von Au und Ag in einer Reihe von Blei-Zink-Ablage­ besides possibly the bismuth content, the only chemical rungen aus der Ägäis. parameter for classification and discussion of provenance. However, this ratio can range over two or more orders of magnitude within a single deposit (Fig. 4) and therefore the nicka/Bachmann 1983) so that most ancient silver also con­ ability to differentiate is reduced. The only further chemical parameter for the provenance tains bismuth. Since bismuth, like gold, is mostly present in of silver could be the bismuth concentration, since it was separate mineralogical phases (Schapbachite, Matildite, found that the bismuth/silver ratio is only reduced by a fac­ AgBiS2) the variation is usually also large and, therefore, of tor of about 5 by cupellation from argentiferous lead (Per­ limited value for provenance discussions. -7

Ta g u n g e n d e s L a n d e s m u s e u m s f ü r V o r g e s c h i c h t e H a ll e • B a n d 11 • 2 014

-7

-7

-7

-7

-7

155

Ernst Pernick a

Fig. 5 Lead isotope ratios in lead-zinc deposits of the Aegean.

2.10

Fig. 5 Bleiisotopenverhältnisse in Blei-ZinkLagerstätten aus der Ägäis.

2.09

Kallianou (TG59)

2.08

Antiparos Syros

Siphnos

Samos (TG50) Pb/206Pb

2.07

Troas

Milos (TG44) Pontokerasia (TG34)

Chalkidike

Kimolos (TG99)

208

156

2.06

Thasos

Seriphos Laurion Gümüs¸köy (TG5)

2.05

2.04 0.825

0.830 207

0.835

0.840

0.845

Pb/206Pb

More important is the fact that cupellation means that there is typically o.1 % lead left in the silver, often more (Gale et al. 198o). Although, in principle, lower lead concen­ trations can be achieved, it is unlikely that this was regu­ larly attempted as suggested by the analyses of archaic Greek silver coinage, because substantial silver losses can occur at the end of the cupellation ranging up to 25 % (Pernicka/ Bachmann 1983). The remaining lead then is firmly associ­ ated with the geological source by its lead isotope ratios, if one can assume that no lead from other sources was added during cupellation. It is obvious from Figure 3 that this method is not applicable to silver that was produced from native gold containing silver via the cementation process (see below) or from argentiferous copper ores, because it is uncertain whether the lead that was used out of necessity is in any way related to the geological source of the silver. The use of lead isotope ratios as a kind of »fingerprint« for the location of archaeological metal objects was pioneered independently by Brill and Wampler (1967) and by Grögler et al. (1966). While these early studies concentrated on ancient lead the application of the method was soon expanded to include silver among other materials. One of the first largescale projects on the provenance of silver with the lead iso­ tope method was on archaic Greek coinage (Gale et al. 198o). Elements of a high atomic number generally show no meas­ ur­able isotope fractionation in the natural environment. However, some elements such as lead consist partly of iso­ topes that are products of radioactive decay. For example, uranium (U) and thorium (Th) decay with half-lives of sever-

al billion years into the lead isotopes 206Pb, 207Pb, and 208Pb. Lead consists of these three isotopes and a fourth, 204Pb, that is not produced by radioactive decay. It is evident that the lead isotope composition of the earth will change through geological time scales. It is also evident that lead deposits in the earth's crust can vary in their isotope composition, depending on their geological age and the U/Pb and Th/Pb ratios of the geological reservoir that supplied the lead. During the formation of a lead deposit, these elemental ratios are changed by many orders of magnitude so that any further contribution by the decay of uranium and thorium becomes insignificant and the lead isotope composition becomes fixed. It is also then extremely unlikely that the lead isotope ratios will be altered by any of the physical and chemical processes that occur during the metallurgical proc­ ess from ore to finished artefact, save for the mixing of lead of different origins. The advantage of looking at the isotopic composition of an element, rather than at abundances (or the abundance pattern) of minor and trace elements, is that the isotopic composition of an element does not change from ore to arte­ fact. Regardless of the processes involved in the treatment of ores or metal – whether it is roasting or smelting, melting, alloying, dissolution or corrosion – the isotopic composition remains constant. Most of these processes are diffusion con­ trolled and physical laws determine that measurable (i. e. in the permill range) effects can only be expected if substantial amounts of lead were lost by volatilisation (Budd et al. 1995). The extent of evaporative lead loss in ancient metallurgical Ta g u n g e n d e s L a n d e s m u s e u m s f ü r V o r g e s c h i c h t e H a ll e • B a n d 11 • 2 014

P o s s i b i l i t i e s a n d l i m i tat i o n s o f p r o v e n a n c e s t u d i e s o f a n c i e n t s i lv e r a n d g o l d

processes is not known but it is certainly too small to noticeably affect the lead isotope ratios in the remaining metal (Cui/Wu 2o11). This has two important consequences. First, neither the exact procedures from ore to artefact, nor the metallurgical techniques employed, need to be known. While both processes affect the behaviour of trace elements and govern how the elemental abundance pattern in ores relates to that in the metal, they have no bearing on the iso­ topic composition. Although this characteristic has pro­vided many important new insights on the provenance of ancient lead and silver, it cannot be regarded as unique, like a true fingerprint would be.

Silver in the Aegean as an example The possibilities and limitations of lead isotope analysis are best demonstrated by Bronze Age silver in the Aegean. This was the region where the first large-scale analysis programs were initiated, first on archaic Greek coinage (Gale et al. 198o) and later extended to Bronze Age lead and silver (Gale/ Stos-Gale 1981; Pernicka et al. 1983). In the course of these programs practically all known lead-silver mineralisations in the Aegean were sampled and analysed for their lead iso­ tope ratios (see Pernicka 1987 for an overview). Moreover, extensive field studies were aimed at the search for remains of ancient mining and lead and silver production (Wagner/ Weisgerber 1985; 1988; Pernicka et al. 1984). From Figure 5 it is evident that lead isotope ratios alone do not allow distin­ guishing between all lead mineralisations in the Aegean Fig. 6 Lead isotope ratios of Early Bronze Age lead and silver objects from the Aegean with fields of variation in the deposits of Laurion and Siphnos, for which there is field evidence that they were exploited in the Early Bronze Age. Also indicated is the field of variation of all published lead isotope ratios of lead and copper ores from the Aegean.

and additional information is required to reduce the num­ ber of possible sources in the case of overlapping lead iso­ tope signatures. This is provided by the field studies which revealed Early Bronze Age mining at Laurion in Attika and on the Cycladic island of Siphnos (Greece). With analytical and field data combined it was possible to demonstrate that these two mining districts were the main sources for lead and silver in the southern Aegean during the 3rd millen­ nium BC (Fig. 6). Moreover, it could be concluded that even those objects which could not be clearly related to one of these two sources are at least consistent with Aegean lead mineralisations such as found in Early Bronze Age lead and silver objects from the Troad (Turkey; Fig. 7). While matching lead isotope ratios of ores and artefacts are not necessarily compelling evidence for a relationship because it cannot be excluded that some hitherto unknown source may have the same signature, the reverse argumen­ tation is very strong. If there is no match between artefacts and suspected ore deposits, the artefacts cannot have been produced from the metal of this deposit. Only when the spread of lead isotope ratios in a presumed production area is very small, as indicated by several ore and/or slag sam­ ples, then a positive assignment can be justified. The hydro­ thermal lead-zinc deposit of Nakhlak in central Iran and the association of litharge samples of the late 4th millen­ nium BC from Arisman and Tepe Sialk may serve as an example (Fig. 8). The lead isotope ratios are clearly different from the ores of the Aegean, which is no surprise. But the variation within the deposit is so minimal that the exact match of the litharge samples from Arisman and Tepe Sialk

2.10

2.09

Abb. 6 Bleiisotopenverhältnisse von frühbronzezeitlichen Blei- und Silberobjekten aus der Ägäis mit den Streufeldern in den Lagerstätten von Laurion und Siphnos, für die die Feldforschung eine Nutzung in der Frühbronzezeit nachweisen konnte. Weiterhin angezeigt ist das Streufeld aller publizierten Bleiisotopenverhältnisse von Blei- und Kupfererzen aus der Ägäis.

2.08

208

Pb/206Pb

2.07

2.06

Lead Silver 2.05

2.04 0.825

0.830 207

Ta g u n g e n d e s L a n d e s m u s e u m s f ü r V o r g e s c h i c h t e H a ll e • B a n d 11 • 2 014

0.835

Pb/206Pb

0.840

0.845

157

Ernst Pernick a

Fig. 7 Lead isotope ratios of Early Bronze Age lead and silver objects from the Troad with fields of variation in the deposits of Laurion and Siphnos, for which there is field evidence that they were exploited in the Early Bronze Age. Also indicated is the field of variation of all published lead isotope ratios of lead and copper ores from the Aegean and other leadzinc depos­its which match the objects from the Troad.

2.10

2.09

Antiparos

Abb. 7 Bleiisotopenverhältnisse von frühbronzezeitlichen Blei- und Silberobjekten aus der Troas mit den Streufeldern der Lagerstätten von Laurion und Siphnos, für die die Feldforschung eine Nutzung in der Frühbronzezeit nachweisen konnte. Weiterhin angezeigt ist das Streufeld aller publizierten Bleiisotopenverhältnisse von Blei- und Kupfererzen aus der Ägäis und anderer Blei-Zink-Lagerstätten, die mit den Objekten aus der Troas übereinstimmen.

2.08

Siphnos Thasos Pb/206Pb

2.07

208

Troad

2.06

Laurion

2.05

Poliochni (Pernicka 1990) Troia (Yener et al. 1991) 2.04 0.825

0.830

0.835

207

0.840

0.845

Pb/206Pb

can safely be interpreted as deriving from the Nakhlak deposit (Fig. 9). Finally, it must be kept in mind that lead isotope ratios are only an indicator of the ore source, if the assumptions

hold that neither lead ores nor silver metal from different sources were mixed and that the lead in the silver derives directly from the original lead ore and no further lead from other sources was added in the production process. The lat­ Fig. 8 Published lead isotope ratios of lead and copper ores from the Aegean compared with Early Bronze Age litharge from Arisman and lead ores from Nakhlak in central Iran.

2.09

Central Iran Arisman and Nakhlak

2.08

Abb. 8 Publizierte Bleiisotopenverhältnisse der Blei- und Kupfererze aus der Ägäis im Vergleich zu frühbronzezeitlicher Bleiglätte aus Arisman und Bleierzen aus Nakhlak im Zentraliran.

Pb/206Pb

2.07

208

158

Aegean ores

2.06

2.05

2.04 0.820

0.825

0.830

0.835

0.840

0.845

0.850

Pb/206Pb

207

Ta g u n g e n d e s L a n d e s m u s e u m s f ü r V o r g e s c h i c h t e H a ll e • B a n d 11 • 2 014

P o s s i b i l i t i e s a n d l i m i tat i o n s o f p r o v e n a n c e s t u d i e s o f a n c i e n t s i lv e r a n d g o l d

2.088

Litharge, Tepe Sialk

Pb/206Pb

Abb. 9 Bleiisotopenverhältnisse der Bleierze und Bleischlacken aus Nakhlak im Zentraliran. Bleiproben, die mit einem Stern gekennzeichnet sind, stammen von einer anderen Grabungskampagne und vermutlich auch von einer anderen Stelle dieser Lagerstätte. Trotzdem können beide Signaturen in den Schlackeproben nachgewiesen werden, die von der Oberfläche um die Mineneingänge gesammelt worden waren. Die Signaturen der Bleiglätteproben aus Arisman and Tepe Sialk stimmen perfekt mit denen der Erz- und Schlackenproben überein. Die Fehlerintervalle zeigen relative 2 σ Fehler von o.o3 %. Die meisten Blei­ lagerstätten in der Ägäis streuen über mindestens o,5 % in ihren Bleiisotopenverhältnissen.

2.090

208

Fig. 9 Lead isotope ratios in lead ores and lead smelting slags from Nakhlak in central Iran. Ore samples marked with an asterisk derive from different campaigns and probably also from a different part of the deposit. However, both signatures are represented in slag samples collected from the surface around the mines. The signatures of the litharge samples from Arisman and Tepe Sialk match those of the ores and slag perfectly. The error bars indicate rela­ tive 2 σ errors of o.o3 %. In most lead ore depos­ its of the Aegean the values of the lead isotope ratios range over at least o.5 %.

2.086

Lead slag, Nakhlak Lead ores, Nakhlak Lead ores, Nakhlak* Litharge, Arisman 2.084 0.844

ter prerequisite is not accomplished in most cases, where sil­ ver was produced either from argentiferous copper ores via the liquation process and from gold via the cementation proc­ ess. In both instances, lead has to be added to the system, which most likely is not related to the source of the silver ore.

Provenance of ancient gold At first sight the provenancing of gold seems to be much more straightforward than for silver. Gold mainly occurs in the metallic state in nature so that one may assume that native gold can be directly compared with ancient gold objects. This would render the provenancing of gold similar to that of stone materials like obsidian, where only a limited number of natural occurrences exist that can be differenti­ ated by their trace element patterns. The material is not changed during the processes from the geological deposit to the finished artefact, neither through the fabrication proc­ esses nor through its depositional conditions. Similar considerations may underlie the large series of analyses by atomic emission spectrometry (AES) of prehis­ toric gold objects at the Württembergisches Landesmuseum Stuttgart by Hartmann (197o; 1982). This study followed an even larger one of prehistoric copper objects, where it was certainly discussed that the technological processes neces­ sary for the production of the metal would substantially alter the chemical compositions of the copper ores and it would not be straightforward to compare them with the fin­ ished artefacts. This is still true but partly successful appli­ cations of the comparison of trace element patterns of copper ore with artefacts were reported (Pernicka 1999). Since the geographical scope of the Stuttgart team extended across all of Europe including the Mediterranean, it became obvious that systematic analyses of copper ores would go beyond the capacities of the laboratory and it was decided to confine the investigation to artefacts and search for production centres Ta g u n g e n d e s L a n d e s m u s e u m s f ü r V o r g e s c h i c h t e H a ll e • B a n d 11 • 2 014

0.845 207

0.846

Pb/206Pb

through the distribution of objects with similar material composition in space and time. This approach was also fol­ lowed with gold and, indeed, certain material groups showed a definitely unequal geographical distribution, although this would not necessarily indicate local production of gold, like in Denmark (Fig. 1o). There are several obstacles to a convincing provenance determination of gold. The first is the generally high purity of native gold. As a consequence, the analytical method applied must be very sensitive in order to be able to deter­ mine many elements in the mg/kg concentration range or lower. This was not possible with AES as applied by A. Hart­ mann but it was the best choice at that time. It has nowadays been replaced by inductively coupled plasma (ICP) mass spectrometry coupled with laser ablation (e. g. Guerra/Calli­ garo 2oo3; Schlosser et al. 2oo9). The only element that occurs in native gold at percent range is silver but it carries little information on its prove­ nance. First, the variation within gold deposits is large, rang­ ing over more than an order of magnitude and, accordingly, providing little ability to differentiate. Moreover, the silver concentrations in small gold nuggets are often heterogene­ ously distributed. Especially in alluvial gold it is frequently observed that the surfaces of nuggets are depleted in silver due to dissolution of silver during transport in the river. Accordingly, it is difficult to directly compare alluvial gold of a fine grain size with archaeological gold artefacts, because these consist of a large number of individual micro nuggets that were melted together and thus the silver concentrations was homogenised. Even the assumption that the trace element pattern of the gold is not altered from the alluvial deposits to the artefacts is, unfortunately, not correct. If gold is melted under oxi­ dising conditions, then most of the less precious elements, i. e. almost all elements, are oxidised and depleted com­ pared with the native gold (Hauptmann et al. 1995; Schmide­ rer 2oo9). Under reducing conditions, which are more likely

159

160

Ernst Pernick a

124 125

126

128 127 133 131 130 134 135 136 142132 141 143 GROSSBRITANIEN 137140 178 138 139 144 145 129

Abb. 7 IRLAND 100 Funde 121 11 Funde 122 1 Fund 123

Abb. 6

Goldfund, bestehend aus einem Stück mit weniger 2,6% Kupfer 2 bis 6 Stücke in geschlossenem Fund mit weniger als 2,6% Kupfer mehr als 6 Stücke in geschlossenem Fund mit weniger als 2,6% Kupfer

DÄNEMARK 406

146 153 147 152 148 151 154 149 155 150 174 175 244 156 247 248 243 176 157 173 242 159 158 246 177 171 245 241 160 170 172 163 169 168 161 162 167 165 198 164 166 200 199 205 221 201 206 204 202 183 207 184 203 222 193 182 208 220 179 185 196 195 180 188 186 209 219 223 224 187 218 181 190189 191 225 FRANKREICH 192 197 210 217 227 226 211 194 213 216 212 215 214

mit 2,6% bis 5,6% Kupfer mit 2,6% bis 5,6% Kupfer mit 2,6% bis 5,6% Kupfer mit mehr als 5,6% Kupfer mit mehr als 5,6% Kupfer mit mehr als 5,6% Kupfer

239 238

230 228 229

DONAULÄNDER 240 237

231

236

232 234

33 31 30 29

233

235

32

28 27 22 2426 20 21 19 23 25 7 18 16 5 4 3 6 17 14 13 8 10 2 1215 9 11 1

IBER. HALBINSEL 35

Fig. 1o Geographical distribution of material group N (after Hartmann 197o) of prehistoric gold finds. Abb. 1o Geografische Verbreitung der Materialgruppe N (nach Hartmann 197o) bei prähistorischen Goldfunden.

because gold dudt grains would certainly best melted facts, because the sample has to be substantial (more than together when covered with charcoal, more trace elements 2o mg) and it has to be dissolved so that the lead can be remain in the gold unaltered but they still do not occur in chemically separated from the matrix and other interfering large quantities. elements such as mercury. The presence of mercury makes A further complication has arisen when it turned out that it often impossible to accurately determine the lead isotope most prehistoric gold contains more copper than the native ratios in native gold with 204Pb as its denominator, because gold, which usually contains less than o.1 % copper. Al- of the interference of mercury (204Hg) as e. g. reported by though copper was alloyed with gold from the beginning of Standish et al. (2o13). Moreover, analysis of samples of its use (cf. Leusch et al. in the present volume), most ancient native gold frequently relies on samples only available from gold artefacts contain only a few tenths to a few percent cop­ museum collections and those are particularly prone to con­ per. Such low concentrations do not alter the physical prop­ tamination with lead and/or mercury. Last if not least, if erties of the gold, especially not the colour, in an easily copper was added to the gold then copper would also intro­ recognisable way. Hence, it is possible that the copper came duce lead into the mixture and, accordingly, the lead iso­ into the gold unintentionally, either as impurities in the tope ratios would be difficult to interpret in terms of the workshop environment or as an impurity of the native gold. provenance of the gold. Copper minerals have also rather high specific gravities and When Young et al. (1965) observed that Lydian gold coins could be enriched together with the gold during panning. and gold objects from Mesopotamia contained inclusions of On melting of the heavy mineral separate some of the cop­ platinum group minerals (PGM, containing ruthenium, rho­ per may have been reduced and thus increased the copper dium, palladium, osmium, iridium, platinum besides other content of the gold. coponents) they concluded that the gold in Mesopotamia In principle, lead isotope ratio analysis could be applied must have been derived from western Anatolia. However, it to gold artefacts in a similar way as with lead, silver and cop­ soon turned out that such PGM inclusions were much more per alloys (Bendall et al. 2oo9; Standish et al. 2013). Native frequent in ancient gold than originally thought (Fig. 11), gold generally has low concentrations of lead and this makes and their mere presence only indicates alluvial gold, because it often difficult to obtain good analytical results from arte­ PGMs do not occur in primary gold deposits (Ogden 1977). Ta g u n g e n d e s L a n d e s m u s e u m s f ü r V o r g e s c h i c h t e H a ll e • B a n d 11 • 2 014

P o s s i b i l i t i e s a n d l i m i tat i o n s o f p r o v e n a n c e s t u d i e s o f a n c i e n t s i lv e r a n d g o l d

Fig. 11 Chemical compositions of platinum group minerals (PGM) inclusions in gold objects from the Royal Cemetery of Ur (3rd millen­ nium BC; Meeks/Tite 198o). It is obvious that the PGM inclusions have very variable com­po­sitions that cannot be correlated with any natural occurrence.

Ru

10 20

80

30

70

Abb. 11 Chemische Zusammensetzung der Platin­metalleinschlüsse (PGM) in Goldobjekten aus der königlichen Nekropole von Ur (3. Jt. v. Chr.; Meeks/Tite 198o). Es wird offensichtlich, dass die PGM-Einschlüsse sehr variable Zusammensetzungen haben, die nicht mit natürlichen Vorkommen korreliert werden können.

1 PG 804 1 Strip 4 2 2 Strip 18

90

Tomb Tomb Tomb Tomb

40

60

50

50

60

40 20

80

70

30

90

10

Os

10

It was then supposed that if not the mere presence of PGM inclusions in gold could determine the provenance of the gold, than their chemical compositions may be a guide (Whitmore/Young 1973). Again, this hope was frustrated when it was found that the variability of the chemical composition of such PGM inclusions was so large that not even a classifica­ tion based on chemical composition is possible, not to speak of an assignment to a specific gold deposit (Meeks/Tite 198o).

20

30

40

50

60

70

80

Ir

90

The sudden increase in the amount of Celtic gold coins circulating in central Europe during the 2nd century BC coincides with the appearance of platinum group mineral inclusions in the Celtic gold. It had been proposed that large amounts of gold were introduced from the eastern Mediter­ ranean by mercenaries following the conquest by Alexander the Great. However, an alternative hypothesis might be the discovery of entirely new gold sources in central Europe

Fig. 12 Osmium isotope ratios in three Celtic gold coins. It is obvious that the variation within each coin is large, but the pattern of the different osmium isotope ratios is similar for all three coins. Abb. 12 Osmiumisotopenverhältnisse in drei kelti­schen Goldmünzen. Es wird deutlich, dass diese für die einzelne Münze stark variieren, aber das Muster der Streuung der Osmiumiso­ topenverhältnisse in allen drei Münzen ähnlich ist.

F20000314/1 Nr. 4

F20000314/2 Nr. 28

F20000314/3 Nr. 54

Os/188Os

187

0.135

0.13

0.125

Os/186Os

187

1.05

0.115

Ta g u n g e n d e s L a n d e s m u s e u m s f ü r V o r g e s c h i c h t e H a ll e • B a n d 11 • 2 014

1.1

1.15

161

162

Ernst Pernick a

Fig. 13 Variation patterns of an electron stater from Lydia, around 7oo –561 BC (above, Z1544, 1/12; Zwicker 1996), and of a Celtic gold coin (below, so-called Regenbogenschüsselchen No. 4, Wallersdorf hoard).

Ga 1.5

1.0

0.5

0.25

0 99

2

Abb. 13 Variationsmuster eines Elektron-Staters aus Lydien, um 7oo –561 v. Chr. (oben, Z1544, 1/12; Zwicker 1996), und einer keltischen Goldmünze (unten, sog. Regenbogenschüsselchen Nr. 4, Hort von Wallersdorf).

95 90 1 75

Q

0

50

%

25 -1 10 5 -2 1 0.118

0.12

0.122

0.124

0.126

0.128

0.13

Os/188Os

187

Ga 1.5

1.0

0.5

0.25

0 99

2 95 90 1 75

Q

0

50

%

25 -1 10 5 -2 1 0.118

0.12

0.122

0.124

0.126

0.128

0.13

Os/188Os

187

during this time. In yet another attempt Junk and Pernicka (2oo3) measured the osmium isotope ratios in these PGMs in the hope that these would be indicative of provenance. Similarly to lead, osmium exhibits a variable isotopic com­ position due to the radioactive decay of rhenium (187Re) and platinum (190Pt). Since the gold sources of western Anatolia are known to be associated with PGMs, it was hoped that one would be able to distinguish between those and central European gold deposits. The result was similarly disappointing as the chemical compositions of the PGMs: the variation of the osmium iso­ tope ratios of several inclusions within a single coin was so large that differentiation was not possible (Fig. 12). A more detailed analysis showed, however, that the variation pat­ tern of the osmium isotope ratios could be characteristic (Fig. 13). It turned out that in at least one Celtic gold coin this pattern matched with a gold stater from Lydia that may have obtained its raw gold from western Anatolia according to textual evidence. This finding supported the hypothesis that at least part of the early Celtic gold coins were struck from

gold from Asia Minor. Nevertheless, this method is hardly generally applicable, because it requires the presence of several PGMs, ideally more than ten, in the investigated gold object in order to define the pattern of variation. Presently the only chance to somehow obtain informa­ tion on the provenance on ancient gold is the trace element pattern based on as many elements as possible. This approach allowed the conclusion that the gold on the Sky Disc of Nebra could derive from Cornwall, Great Britain (Ehser et al. 2o11). But again, this pattern may not be as unique as originally assumed and the association between Nebra and Cornwall remains less secure.

Conclusion While the introduction of lead isotope analysis has provided many insights into the provenance of ancient silver, chemi­ cal analysis of the same samples is highly recommended in order to establish the mineralogical source of the silver and Ta g u n g e n d e s L a n d e s m u s e u m s f ü r V o r g e s c h i c h t e H a ll e • B a n d 11 • 2 014

P o s s i b i l i t i e s a n d l i m i tat i o n s o f p r o v e n a n c e s t u d i e s o f a n c i e n t s i lv e r a n d g o l d

the associated production processes. This is a prerequisite for a meaningful discussion of the lead isotope ratios in ancient silver. The provenance analysis of prehistoric gold proved fraught with many problems. Isotope analyses have as yet been inconclusive and trace element patterns only rarely provide a convincing relationship between ore depos­ its and artefacts. The major reason behind these observa­ tions may be that artefactual gold itself is already often a mixture of several components. It is possible that not only gold

but other heavy minerals such as pure gold, platinum group minerals, and cassiterite (tin oxide), were enriched together naturally and by panning. Recently, several hundred micro nuggets of gold from the river Rhine were analysed and none contained platinum or tin. However, macro samples of several grams of gold from the Rhine frequently contain both elements (M. Braun, pers. comm.). In later periods one must also consider the possibility that gold was recycled and mixed because of its chemical stability and intrinsic value.

Bibliography Bartelheim et al. 2o12 M. Bartelheim/F. Contreras Cortés/A. Moreno Onorato/M. Murillo-Barroso/E. Pernicka, The silver of the South Iberian El Argar Cul­ ture: A first look at production and distribu­ tion. Trab. Prehist. 69,2, 2o12, 293–3o9. Bendall et al. 2oo 9 C. Bendall/D. Wigg-Wolf/Y. Lahaye/H.-M. v. Kaenel/G. P. Brey, Detecting changes of Celtic gold sources through the application of trace element and Pb isotope laser ablation analysis of Celtic gold coins. Archaeometry 51,4, 2oo9, 598–625. Brill/Wampler 1967 R. H. Brill/J. M. Wampler, lsotope Ratios in Archaeological Objects of Lead. In: P. England (ed.), Application of Science in the Examina­ tion of Works of Art. Proceedings of the seminar, September 7–16, 1965 (Boston 1967) 155–166. Budd et al. 1995 P. Budd/A. M. Pollard/B. Scaife/R. G. Thomas, The possible fractionation of lead isotopes in ancient metallurgical processes. Archae­ ometry 37,1, 1995, 143–15o. Chegini et al. 2ooo N. N. Chegini/M. Momenzadeh/H. Parzinger/ E. Pernicka/T. Stöllner/R. Vatandoust/G. Weis­ gerber, Preliminary report on archaeometall­ urgical investigations around the prehistoric site of Arisman near Kashan, western Central Iran. Arch. Mitt. Iran u. Turan 32, 2ooo, 281– 318. Cui/Wu 2o11 J. Cui/X. Wu, An experimental investigation on lead isotopic fractionation during metal­ lurgical processes. Archaeometry 53,1, 2o11, 2o5–214. Ehser et al. 2o11 A. Ehser/G. Borg/E. Pernicka, Provenance of the gold of the Early Bronze Age Nebra Sky Disk, central Germany: geochemical charac­ terization of natural gold from Cornwall. European Journal Mineralogy 23, 2o11, 895–91o. Gale et al. 198 o N. H. Gale/W. Gentner/G. A. Wagner, Mineral­ ogical and geographical silver sources of Archaic Greek coinage. In: D. M. Metcalf (ed.), Metallurgy in Numismatics 1. Royal Num. Soc. Special Publ. 13 (London 198o) 3–49. Gale/Stos-Gale 1981 N. H. Gale/Z. A. Stos-Gale, Cycladic lead and silver metallurgy. Ann. Brit. School Athens 76, 1981, 169–224. Gale/Stos-Gale 1981a N. H. Gale/Z. A. Stos-Gale, Ancient Egyptian Silver. Journal Egyptian Arch. 67, 1981, 1o3–115.

Gopher/Tsuk 1996 A. Gopher/T. Tsuk, The Nahal Qanah Cave. Earliest Gold in the southern Levant. Monogr. Ser. Inst. Arch. 12 (Tel Aviv 1996). Gordus 1967 A. A. Gordus, Quantitative non-destructive neutron activation analysis of silver in coins. Archaeometry 1o, 1967, 78–86. Grögler et al. 1966 N. Grögler/J. Geiss/M. Grünenfelder/ F. G. Houtermans, Isotopenuntersuchungen zur Bestimmung der Herkunft römischer Bleirohre und Bleibarren. Zeitschr. Natur­ forsch. 21,7, 1966, 1167–1172. Guerra/Calligaro 2oo3 M. F. Guerra/T. Calligaro, Gold cultural herit­ age objects: a review of studies of provenance and manufacturing technologies. Measure­ ment Science and Technology 14, 2oo3, 1527–1537. Hansen 2oo 9 S. Hansen, Kupfer, Gold und Silber im Schwarzmeerraum während des 5. und 4. Jahrtausends v. Chr. In: J. Apakidze/ B. Govedarica/B. Hänsel (eds.), Der Schwarz­ meerraum vom Äneolithikum bis in die Früh­ eisenzeit (5ooo –5oo v. Chr.). Internationale Fachtagung von Humboldtianern für Hum­ boldtianer im Humboldt-Kolleg in Tiflis, Georgien, 17.–2o. Mai 2oo7. Prähist. Arch. Südosteuropa 25 (Rahden/Westf. 2oo9) 11–5o. Hauptmann et al. 1995 A. Hauptmann/T. Rehren/E. Pernicka, The composition of gold from the ancient mining district of Verespatak/Rosia Montana, Roma­ nia. In: G. Morteani/J. Northover (eds.), Pre­ historic Gold in Europe – Mines, Metallurgy and Manufacture. NATO Advanced Scien. Inst. Ser. E, Applied Scien. 28o (Dordrecht, Boston, London 1995) 369–381. Hartmann 197o A. Hartmann, Prähistorische Goldfunde aus Europa. Studien zu den Anfängen der Metal­ lurgie 3 (Berlin 197o). Hartmann 1982 A. Hartmann, Prähistorische Goldfunde aus Europa II. Spektralanalytische Untersuchun­ gen und deren Auswertung. Studien zu den Anfängen der Metallurgie 5 (Berlin 1982). Hess et al. 1998 K. Hess/A. Hauptmann/H. Wright/R. Whallon, Evidence of fourth millennium BC silver pro­ duction at Fatmali-Kalecik, East Anatolia. In: T. Rehren/A. Hauptmann/J. Muhly (eds.), Metallurgica Antiqua. In Honour of HansGert Bachmann and Robert Maddin. Der Anschnitt Beih. 8 (Bochum 1998) 57–67. Ivanov 1988 I. Ivanov, Die Ausgrabungen des Gräberfeldes von Varna (1972–1986). In: A. Fol/J. Lichardus

Ta g u n g e n d e s L a n d e s m u s e u m s f ü r V o r g e s c h i c h t e H a ll e • B a n d 11 • 2 014

(eds.), Macht, Herrschaft und Gold: Das Gräberfeld von Varna (Bulgarien) und die Anfänge einer neuen europäischen Zivilisa­ tion (Saarbrücken 1988) 49–66. Junk/Pernicka 2oo3 S. A. Junk/E. Pernicka, An assessment of osmium isotope ratios as a new tool to deter­ mine the provenance of gold with platinum group metal inclusions. Archaeometry 45,2, 2oo3, 313–331. Kohlmeyer 1994 K. Kohlmeyer, Zur frühen Geschichte von Blei und Silber. In: R. B. Warke (ed.), Handwerk und Technologie im Alten Orient: Ein Beitrag zur Geschichte der Technik im Altertum. Internationale Tagung Berlin 12.–15. März 1991 (Mainz 1994) 41–48. Kovacs et al. 2oo 9 R. Kovacs/S. Schlosser/S. P. Staub/A. Schmi­ derer/E. Pernicka/D. Günther, Characteriza­ tion of calibration materials for trace element analysis and fingerprint studies of gold using LA-ICP-MS. Journal Analytical Atomic Spec­ trometry 24, 2oo9, 476–483. Leusch et al. in print V. Leusch/M. Brauns/E. Pernicka, Precise and accurate analysis of gold alloys: Varna, the earliest gold of mankind as an example. In: L. Dussubieux/M. Golitko/B. Gratuze (eds.), Recent Advances in Laser Ablation ICP-MS for Archaeology (Berlin, Heidelberg, New York 2o14) (in print). Meeks/Tite 198 o N. D. Meeks/M. S. Tite, The analyses of plati­ num-group element inclusions in gold antiqui­ ties. Journal Arch. Scien. 7, 198o, 267–275. Mellichamp/Levey 1963 J. W. Mellichamp/M. Levey, Silver from Ur of Ancient Mesopotamia. Science 142, 1963, 44–45. Meyers et al. 1974 P. Meyers/L. van Zelst/E. V. Sayre, Major and Trace Elements in Sasanian Silver. In: C. W. Beck (ed.), Archaeological Chemistry. Symposium sponsored by the Division of the History of Chemistry at the 165th meeting of the American Chemical Society, Dallas, Tex., April 9–1o, 1973. Advances in Chemistry 138 (Letchworth 1974) 22–33. Ogden 1977 J. M. Ogden, Platinum group metal inclusions in ancient gold artefacts. Journal Hist. Metall­ urgical Soc. 11, 1977, 53–72. Patterson 1971 C. C. Patterson, Native Copper, Silver, and Gold Accessible to Early Metallurgists. Am. Antiquity 36, 1971, 286–321. Pernicka 1984 E. Pernicka, Instrumentelle Multi-Element­ analyse archäologischer Kupfer- und Bronze­

163

164

Ernst Pernick a

artefakte: Ein Methodenvergleich. Jahrb. RGZM 31, 1984, 517–531. Pernicka 1987 E. Pernicka, Erzlagerstätten in der Ägäis und ihre Ausbeutung im Altertum: Geochemische Untersuchungen zur Herkunftsbestimmung archäologischer Metallobjekte. Jahrb. RGZM 34, 1987, 6o7–714. Pernicka 199 o E. Pernicka, Entstehung und Ausbreitung der Metallurgie in prähistorischer Zeit. Jahrb. RGZM 37, 199o, 21–129. Pernicka 1999 E. Pernicka, Trace Element Fingerprinting of Ancient Copper: A Guide to technology or Provenance? In: S. M. M. Young/A. M. Pollard/ P. Budd/R. A. Ixer (eds.), Metals in Antiquity. BAR Internat. Ser. 792 (Oxford 1999) 163–171. Pernicka 2o13 E. Pernicka, Chemische und Bleiisotopenana­ lysen an zwei Silbergefäßen aus einem eisen­ zeitlichen Kriegergrab bei Tarquinia. In: A. Babbi/U. Peltz (eds.), La Tomba del Guer­ riero di Tarquinia: Identità elitaria, concen­ trazione del potere e networks dinamici nell’avanzato VIII sec. a. C. (Das Kriegergrab von Tarquinia: Eliteidentität, Machtkonzent­ ration und dynamische Netzwerke im späten 8. Jh. v. Chr.). Monogr. RGZM 1o9 (Mainz 2o13) 179–181. Pernicka/Bachmann 1983 E. Pernicka/H.-G. Bachmann, Archäometal­ lurgische Untersuchungen zur antiken Silber­ gewinnung in Laurion. Teil III: Das Verhalten einiger Spurenelemente beim Abtreiben des Bleis. Erzmetall 36, 1983, 592–597. Pernicka et al. 1983 E. Pernicka/G. A. Wagner/K. Assimenos/ C. Doumas/F. Begemann/W. Todt, An Ana­ lytical Study of Prehistoric Lead and Silver Objects from the Aegean. In: A. Aspinall/ S. E. Warren (eds.), Proceedings of the 22nd Symposium on Archaeometry, held at the University of Bradford, 3oth March–3rd April 1982 (Bradford 1983) 292–3o2.

Pernicka et al. 1984 E. Pernicka/T. C. Seeliger/G. A. Wagner/ F. Begemann/S. Schmitt-Strecker/C. Eibner/ Ö. Öztunali/I. Baranyi, Archäometallurgische Untersuchungen in Nordwestanatolien. Jahrb. RGZM 31, 1984, 533–599. Pernicka et al. 1998 E. Pernicka/T. Rehren/S. Schmitt-Strecker, Late Uruk silver production by cupellation at Habuba Kabira, Syria. In: T. Rehren/ A. Hauptmann/J. D. Muhly (eds.), Metallurgica Antiqua. In Honour of Hans-Gert Bachmann and Robert Maddin. Der Anschnitt Beih. 8 (Bochum 1998) 123–134. Pernicka et al. 2o11 E. Pernicka/K. Adam/M. Böhme/Z. Hezark­ hani/N. Nezafati/M. Schreiner/B. Winter­ holler/M. Momenzadeh/A. Vatandoust, Archaeometallurgical researches at Arisman in central Iran. In: A. Vatandoust/H. Parzinger/B. Helwing (eds.), Early mining and metallurgy on the Central Iranian Plateau. Report on the first five years of research of the Joint Iranian-German Research Project. Arch. Iran u. Turan 9 (Mainz 2o11) 633–7o5. Prag 1978 K. Prag, Silver in the Levant in the fourth millenium B.C. In: P. R. S. Moorey/P. Parr (eds.), Archaeology in the Levant. Essays for Kathleen Kenyon (Warminster 1978) 36–45. Schlosser et al. 2oo 9 S. Schlosser/R. Kovacs/E. Pernicka/D. Günther/ M. Tellenbach, Fingerprints in Gold. In: M. Reindel/G. Wagner (eds.), New Technol­ ogies for Archaeology. Multidisciplinary investigations in Palpa and Nasca, Peru. Natural Scien. Arch. (Berlin, Heidelberg 2oo9) 4o9–436. Schmiderer 2oo 9 A. Schmiderer, Geochemische Charakterisie­ rung von Goldvorkommen in Europa. Unpubl. Diss. Martin-Luther-Univ. Halle-Wittenberg (Halle [Saale] 2oo9).

Singer 2o14 M. Singer, Der Schatzfund von Wiener Neu­ stadt. Eine kulturhistorische Analyse. In: N. Hofer (ed.), Der Schatzfund von Wiener Neustadt (Horn 2o14) 13o –237. Standish et al. 2o13 C. D. Standish/B. P. Dhuime/M. R. Chapman/ C. D. Coath/C. J. Hawkesworth/A. W. G. Pike, Solution and laser ablation MC-ICP-MS lead isotope analysis of gold. Journal Analytical Atomic Spectrometry 28, 2o13, 217–225. Wagner/Weisgerber 1985 G. A. Wagner/G. Weisgerber, Silber, Blei und Gold auf Sifnos, prähistorische und antike Metallproduktion. Der Anschnitt Beih. 3 (Bochum 1985). Wagner/Weisgerber 1988 G. A. Wagner/G. Weisgerber (eds.), Antike Edel- und Buntmetallgewinnung auf Thasos. Der Anschnitt Beih. 6 (Bochum 1988). Whitmore/Young 1973 F. E. Whitmore/W. J. Young, Application of the laser microprobe and electron microprobe in the analysis of platiniridium inclusions in gold. In: W. J. Young (ed.), Application of Science in Examination of Works of Art. Proceedings of the seminar, June 15–19, 197o (Boston 1973) 88–95. Yener et al. 1991 K. A. Yener/E. V. Sayre/E. C. Joel/H. Ozbal/ I. L. Barnes/R. H. Brill, Stable lead isotope studies of Central Taurus Ore sources and related artifacts from Eastern Mediterranean Chalcolithic and Bronze Age sites. Journal Arch. Scien. 18, 1991, 541–577. Young 1972 W. J. Young, The fabulous gold of the Pactolus valley. Bull. Boston Museum of Fine Arts 7o, 1972, 5–13. Zwicker 1996 U. Zwicker, Antike Münzen aus Kleinasien (Mysien bis Pisidien). Sammlung Zwicker 3. Schr. Univbibl. Erlangen-Nürnberg 31 (Erlangen 1996).



6–9 author 1o Hartmann 197o, 55 Fig. 5 11–13 author

Source of figures

1 Singer 2o14, Fig.  255 2 A. Dulyan, Natural History Museum, London

3 author 4 Pernicka 1987, Fig.  36 5 Pernicka 1987, Fig.  31

Address Prof. Dr. Ernst Pernicka Curt-Engelhorn-Zentrum Archäometrie gGmbH (CEZA) D6, 3 D-68159 Mannheim [email protected]

Universität Heidelberg Institut für Geowissenschaften Im Neuenheimer Feld 236 D-6912o Heidelberg [email protected]

Ta g u n g e n d e s L a n d e s m u s e u m s f ü r V o r g e s c h i c h t e H a ll e • B a n d 11 • 2 014

Bislang erschienene Bände in der Reihe »Tagungsbände des Landesmuseums für Vorgeschichte Halle«

Die Reihe der Tagungsbände des Landesmuseums wurde 2oo8 ins Leben gerufen. Anlass dazu war die Konferenz »Luthers Lebenswelten«, die im Jahr 2oo7 in Halle ausgerichtet wurde. Bereits der zweite Tagungsband widmete sich mit dem Thema »Schlachtfeldarchäologie« dem Mitteldeutschen Archäologentag, der seit 2oo8 jährlich von Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt veranstaltet und zeitnah publiziert wird. Dem großen Anteil inter-

nationaler Autorinnen und Autoren entsprechend, erscheinen viele Beiträge dieser Reihe in englischer Sprache mit deutscher Zusammenfassung. Mit dem bislang zuletzt erschienenen Tagungsband konnten die Vorträge und Posterpräsentationen des 5. Mittel­ deutschen Archäologentags »Rot – Die Archäologie bekennt Farbe« in zahlreichen Artikeln renommierter Forscher verschiedenster Fachdisziplinen vorgelegt werden.

Lieferbar sind folgende Bände: Band 1/2oo8 Harald Meller/Stefan Rhein/Hans-Georg Stephan (Hrsg.),  Luthers Lebenswelten. Tagung vom 25. bis 27. September 2oo7 in Halle (Saale). ISBN 978-3-939414-22-3, € 39,oo Band 2/2oo9 Harald Meller (Hrsg.),  Schlachtfeldarchäologie. Battlefield Archaeology. 1. Mitteldeutscher Archäologentag vom o9. bis 11. Oktober 2oo8 in Halle (Saale). ISBN 978-3-939414-41-4, € 35,oo Band 3/2o1o Harald Meller/Kurt W. Alt (Hrsg.),  A nthropologie, Isotopie und DNA – biografische Annäherung an namenlose vorgeschichtliche Skelette? 2. Mitteldeutscher Archäologentag vom o8. bis 1o. Oktober 2oo9 in Halle (Saale). ISBN 978-3-939414-53-7, € 29,oo Band 4/2o1o Harald Meller/Regine Maraszek (Hrsg.),  Masken der Vorzeit in Europa I. Internationale Tagung vom 2o. bis 22. November 2oo9 in Halle (Saale). ISBN 978-3-939414-54-4, € 32,oo Band 5/2o11 Harald Meller/François Bertemes (Hrsg.),  Der Griff nach den Sternen. Wie Europas Eliten zu Macht und Reichtum kamen. Internationales Symposium in Halle (Saale) 16.–21. Februar 2oo5 (2 Bände). ISBN 978-3-939414-28-5, € 128,oo

Ta g u n g e n d e s L a n d e s m u s e u m s f ü r V o r g e s c h i c h t e H a ll e • B a n d 11 • 2 014

Band 6/2o11 Hans-Rudolf Bork/Harald Meller/ Renate Gerlach (Hrsg.),  Umweltarchäologie – Naturkatastrophen und Umweltwandel im archäologischen Befund. 3. Mitteldeutscher Archäologentag vom o7. bis o9. Oktober 2o1o in Halle (Saale). ISBN 978-3-939414-64-3, € 32,oo Band 7/2o12 Harald Meller/Regine Maraszek (Hrsg.),  Masken der Vorzeit in Europa II. Internationale Tagung vom 19. bis 21. November 2o1o in Halle (Saale). ISBN 978-3-939414-9o -2, € 32,oo

Band 8/2o12 François Bertemes/Harald Meller (Hrsg.),  Neolithische Kreisgabenanlagen in Europa. Neolithic Circular Enclosures in Europe. Internationale Arbeitstagung 7. bis 9. Mai 2oo4 in Goseck (Sachsen-Anhalt). ISBN 978-3-939414-33-9, € 59,oo

Band 1o/2o13 Harald Meller/Christian-Heinrich Wunderlich/Franziska Knoll (Hrsg.),  Rot – die Archäologie bekennt Farbe. 5. Mitteldeutscher Archäologentag vom o4. bis o6. Oktober 2o12 in Halle (Saale). ISBN 978-3-9445o7- o1-9, € 49,oo

Band 9/2o13 Harald Meller/Francois Bertemes/ Hans-Rudolf Bork/Roberto Risch (Hrsg.),  16oo – Kultureller Umbruch im Schatten des Thera-Ausbruchs? 16oo – Cultural change in the shadow of the Thera-Eruption? 4. Mitteldeutscher Archäologentag vom 14. bis 16. Oktober 2o11 in Halle (Saale). ISBN 978-3-9445o7- oo -2, € 69,oo

Erhältlich im Buchhandel oder direkt beim Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt Landesmuseum für Vorgeschichte Richard-Wagner-Str. 9 D- o6114 Halle (Saale) Tel.: +49-345-5247-332 Fax: +49-345-5247-351 E-Mail: [email protected]

Ta g u n g e n d e s L a n d e s m u s e u m s f ü r V o r g e s c h i c h t e H a ll e • B a n d 11 • 2 014