EC SrkA Suppl Figs Final

10 downloads 0 Views 3MB Size Report
∆sakA partial resistance to fludioxonil is not mediated by SrkA. 1x104 spores from strains CLK43 (WT), TOL1 (∆sakA), CRJ2 (∆srkA) and CRJ5 (∆sakA ∆srkA) ...
   

FIG.   S1.   The   srkA   gene   encodes   a   protein   member   of   CAMK   serine-­‐threonine   protein   kinase   superfamily.   Protein   alignment   of   A.   nidulans   SrkA,   S.   pombe   Srk1,   S.   cerevisiae   Rck2,  C.  albicans  Rck2  and  homologs  from  N.  crassa,  A.  oryzae,  A.  flavus  and  A.  fumigatus.   Consensus  gray  bars  indicate  identity.  All  proteins  share  a  kinase  domain  and  conserved   motifs   from   the   CAMK   superfamily.   A   conserved   glycine   loop,   a   potential   phosphorylation   site  and  a  MAP  kinase  interaction  domain  are  present  at  the  –C  terminus.  Alignment  was   performed   using   Unipro   UGene   software   with   muscle   algorithm.   A   putative   mitochondrial   targeting   sequence   (PTM)   was   identified   only   in   SrkA   homologs   from   filamentous   fungi,   using   MitoProt   software,   which   uses   the   MTLS   algorithm   (Mitochondrial-­‐Targeting-­‐ Sequence-­‐Localization).  The  predicted  cleavage  site  for  SrkA  is  ARL∧VT.        

          FIG.   S2.   Deletion   of   the   srkA   gene.   (A)   The   srkA   ORF   was   replaced   by   the   AfpyrG   gene,   used   as   a   selective   marker.   The   indicated   cassette   was   generated   by   double   joint   PCR   and   used   to   transform   strain   1155.   (B)   PCR   products   flanking   the   srkA   ORF   or   the   AfpyrG   replacing  cassette  were  generated  using  primers  5’  srkA  For  and  3’  srkA  Rev,  then  purified   and  digested  with  EcoRI.  WT  restriction  pattern  corresponds  to  bands  of  2.2,  2.4  Kb  and   401  bp,  while,  in  while  ∆sakA  strains  EcoRI  pattern  corresponds  to  bands  of  4.3  Kb  and  401   bp.  Numbers  above  each  row  correspond  to  different  transformants.      

            FIG.  S3.  Sexual  derepression  in  ∆sakA  and  ∆srkA  mutants  in  a  veA+  background.  (A)  veA+   strains   CRJ9   (WT),   CRJ6   (∆sakA),   CRJ7   (∆srkA)   and   CRJ8   (∆sakA   ∆srkA)   were   induced   to   undergo   sexual   development   as   reported   previously   (1).   Pictures   were   taken   from   confluent  cultures  after  5  days  of  induction.  (B)  The  total  number  of  cleistothecia  per  fixed   area   was   counted   under   a   dissection   microscope   and   used   to   calculate   cleistothecia   per   cm2   as   reported   (1).   Data   are   mean   values   from   three   independent   experiments;   bars   indicate  standard  deviation.  Circles  in  (A)  highlight  cleistothecia.            

  FIG.  S4.  In  contrast  to  ∆sakA  mutants,  ∆srkA  strains  are  not  sensitive  to  calcofluor.  1x104   spores   from   strains   CLK43   (WT),   TOL1   (∆sakA)   and   CRJ2   (∆srkA)   and   CRJ5   (∆sakA   ∆srkA)   were   inoculated   on   minimal   media   plus   supplements   with   or   without   the   indicated   concentration  of  calcofluor.    

    FIG.   S5.   ∆sakA   partial   resistance   to   fludioxonil   is   not   mediated   by   SrkA.     1x104   spores   from   strains   CLK43   (WT),   TOL1   (∆sakA),   CRJ2   (∆srkA)   and   CRJ5   (∆sakA   ∆srkA)   were   inoculated   on   minimal   medium   plus   supplements   without   (upper   panel)   or   with   the   fungicide  fludioxonil  (lower  panel).    

                                                  FIG.   S6.   GFP   or   S-­‐tag   tagging   of   SrkA   does   not   affect   its   function   in   repressing   sexual   development.   Strains   1155   (WT),   TRJ4   (∆srkA)   TRJ1   (SrkA::GFP)   and   TRJ2   (SrkA::S-­‐tag)   were   induced   to   undergo   sexual   development.   Pictures   were   taken   under   a   dissection   microscope   after   10   days   of   induction.     Arrows   point   some   of   the   masses   of   Hülle   cells   associated  with  the  development  of  fruiting  bodies  or  cleistothecia.                  

!"#$%%!&'()* !"#

#

$#

%#

&#

'#

(#

$%#

    FIG.  S7.  Detection  of  SrkA::S-­‐tag  by  Western  blot.  A  DNA  fragment,  based  in  the  AfpyrG   gene   as   genetic   marker,   was   generated   double   joint   PCR   to   label   SrkA   at   its   C-­‐terminus.   This   gene   replacement   module   was   used   to   transform   strain   1155   by   protoplast   fusion.   The   resultant   transformants   were   grown   in   liquid   media   at   37   C   with   shaking   during   12   hours.     Mycelial   samples   were   frozen   and   processed   for   protein   extraction.   30   μg   of   protein  from  each  transformant  were  used  for  immunoblot  detection  using  an  anti-­‐S-­‐tag   antibody.  Untagged  strain  1155  (WT)  was  used  as  control.  

Table  S1.     Proteins  identified  as  associated  with  SakA  and  /  or  SrkA   ID   Putative  function  and  protein  name   Stress  

No  stress  

 

 

SakA    

SrkA  

SakA    

SrkA  

 

Cell  cycle    /  Signal  transduction  

 

 

 

 

AN4483  

Protein  serine  /  threonine  kinase  (SrkA)    

18  

28  

20  

28  

AN1017  

Putative  mitogen-­‐activated  protein  kinase  (MAPK)  SakA  

15  

12  

18  

11  

AN6982  

PtpA    Putative  phosphotyrosine-­‐specific  protein   phosphatase     MpkC  Putative  mitogen  activated  protein  kinase  (MAPK)  

6  

 

17  

 

3  

 

5  

 

3  

2  

 

 

AN4501  

Protein  with  a  conserved  CDC48,  cell  division  protein  N-­‐ terminal  domain     ArtA  Putative  14-­‐3-­‐3  protein  

2  

 

 

 

AN5744  

Putative  14-­‐3-­‐3-­‐like  protein  

 

2  

 

 

AN10593  

2  

 

5  

 

 

Has  domain(s)  with  predicted  phosphoserine  phosphatase   activity    

 

 

 

 

 

Histone  /  DNA  damage  response  

 

 

 

 

AN0734  

H4.1    Histone  H4.1  

3  

3  

 

 

AN3468  

H2A.X    Histone  H2A  

2  

2  

 

 

AN2765  

HhoA  Putative  histone  H1  

2  

2  

2  

 

AN3469  

H2B  Histone  H2B;  core  histone  protein  

 

2  

 

 

 

 

 

 

 

 

 

Protein  folding  /  Signal  transduction  

 

 

 

 

AN8269  

Hsp90  90  kilodalton  heat  shock  protein  

7  

3  

4  

2  

AN6089  

Putative  60  kilodalton  heat  shock  protein  

 

3  

3  

 

AN2062  

BipA    Putative  ER-­‐resident  chaperone  of  the  HSP70  family  

2  

4  

 

3  

 

 

 

 

 

 

 

Protein  biosynthesis  /  mRNA  stability  

 

 

 

 

AN4802  

2  

3  

3  

 

AN8704  

60S  ribosomal  protein  L21;  ortholog  of  S.  cerevisiae   Rpl21Ap   60S  ribosomal  protein  L24a  

2  

3  

3  

 

AN6202  

Rpl3  Putative  ribosomal  protein  L3  

 

2  

3  

 

AN10416  

Putative  60s  ribosomal  protein  

 

2  

 

 

AN1964  

3  

 

 

 

2  

2  

 

 

AN5520  

Ortholog  of  S.  cerevisiae  RPS6B  and  RPS6A;  palA-­‐ dependent  expression   Ortholog(s)  have  structural  constituent  of  ribosome   activity   Has  domain(s)  with  predicted  role  in  ribosome  biogenesis  

2  

2  

3  

 

AN6083  

Ortholog(s)  have  role  in  ribosomal  large  subunit  assembly  

2  

3  

3  

3  

AN7003  

 

5  

2  

 

 

2  

 

 

AN4475  

Has  domain(s)  with  predicted  structural  constituent  of   ribosome  activity   Has  domain(s)  with  predicted  structural  constituent  of   ribosome  activity   Ortholog(s)  have  role  in  ribosomal  large  subunit  assembly  

 

2  

 

 

AN4916  

Ortholog(s)  have  role  in  ribosome  biogenesis    

 

2  

 

 

AN7107  

Has  domain(s)  with  predicted  structural  constituent  of   ribosome  activity  

 

2  

2  

 

AN4668   AN7254  

AN10681  

AN10740  

ID  

Putative  function  and  protein  name  

 

 

AN2980  

AN6679  

Ortholog(s)  have  structural  constituent  of  ribosome   activity   Ortholog(s)  have  structural  constituent  of  ribosome   activity   Ortholog(s)  have  structural  constituent  of  ribosome   activity   Ortholog(s)  have  structural  constituent  of  ribosome   activity   Ortholog(s)  have  SSU  rRNA  binding  

AN2734  

Stress  

No  stress  

SakA    

SrkA  

SakA    

SrkA  

 

2  

2  

 

 

2  

 

 

 

2  

 

 

 

2  

2  

 

2  

2  

2  

 

Ortholog(s)  have  LSU  rRNA  binding  activity  

2  

3  

2  

 

AN4000  

FabM  Protein  with  similarity  to  poly(A)-­‐binding  proteins  

 

2  

 

 

AN6202  

Rpl3    Putative  ribosomal  protein  L3  

 

 

3  

 

AN4222  

 

 

2  

 

 

 

2  

 

 

 

2  

 

 

 

2  

 

 

 

2  

 

 

 

2  

 

AN3172  

Has  domain(s)  with  predicted  structural  constituent  of   ribosome  activity   Has  domain(s)  with  predicted  structural  constituent  of   ribosome  activity   Ortholog(s)  have  structural  constituent  of  ribosome   activity   Ortholog(s)  have  RNA  binding  activity  and  role  in   ribosomal  large  subunit  assembly   Putative  40s  ribosomal  protein  S26  ortholog  of    S.   cerevisiae    Rps26Bp   Ortholog(s)  have  structural  constituent  of  ribosome   activity   Ortholog  of  S.  cerevisiae  RPS0A  and  RPS0B  

 

 

2  

 

AN2932  

Putative  eukaryotic  initiation  factor  4A  

 

2  

 

 

AN5931  

Putative  ATP-­‐dependent  RNA  helicase  

4  

 

 

 

 

 

 

 

 

 

 

Energy  metabolism  /  Mitochondrial  function  

 

 

 

 

AN0554  

AldA  Aldehyde  dehydrogenase  

9  

10  

3  

 

AN2435  

AclA    Putative  ATP  citrate  synthase    

4  

3  

 

 

AN2316  

Putative  cytochrome  c  oxidase  subunit    

3  

3  

2  

 

AN8273  

Putative  ubiquinol-­‐cytochrome-­‐c  reductase  subunit    

2  

 

2  

 

AN9403  

PdhC    Putative  pyruvate  dehydrogenase  (lipoamide)    

2  

4  

 

 

AN8979  

2  

2  

 

 

AN6717  

AlcA  Alcohol  dehydrogenase  with  a  role  in  two-­‐carbon   compound  metabolism   MdhA  Putative  mitochondrial  malate  dehydrogenase  

2  

 

 

 

AN4888  

PdcA  Putative  pyruvate  decarboxylase  

 

3  

 

 

AN8275  

CitA  Mitochondrial  citrate  synthase    

 

2  

 

 

AN1534  

Putative  F1F0-­‐ATPase  complex  subunit  

 

2  

 

 

AN9340  

2  

2  

 

 

AN6287  

TreA  Alpha,alpha-­‐trehalase  with  a  role  in  trehalose   hydrolysis   Putative  F1F0-­‐ATPase  complex  subunit    

 

 

2  

 

AN10296  

Ortholog(s)  have  fumarate  reductase  (NADH)    

 

 

2  

 

AN2526  

Putative  ketol-­‐acid  reductoisomerase    

 

 

2  

 

AN7594  

DUF636  domain-­‐containing  protein  

 

 

2  

 

AN2275   AN0843   AN9465  

AN7003   AN2980   AN8856   AN5715   AN9465  

ID  

Putative  function  and  protein  name  

 

 

AN5746  

Stress  

 No  stress   SakA     SrkA  

SakA    

SrkA  

AcuN  Putative  phosphopyruvate  hydratase    

 

 

 

2  

 

 

 

 

 

 

 

Nitrogen  metabolism  

 

 

 

 

AN1007  

NiiA  Putative  nitrite  reductase    

3  

 

2  

 

AN4376  

GdhA  Putative  NADP-­‐linked  glutamate  dehydrogenase  

3  

5  

4  

 

 

 

 

 

 

 

 

Fatty  acid  metabolism  

 

 

 

 

AN9407  

FasA  Fatty  acid  synthase,  alpha  subunit  

3  

2  

3  

 

AN9408  

FasB  Fatty  acid  synthase,  beta  subunit  

2  

 

 

 

 

 

 

 

 

 

 

Unclassified    

 

 

 

 

AN10103  

Has  domain(s)  with  predicted  DNA  binding  activity  

3  

3  

3  

2  

AN4463  

Ortholog(s)  have  structural  molecular  activity  

2  

 

 

 

AN8870  

Expression  increased  in  salt-­‐adapted  strains  

2  

2  

 

 

AN3804  

Ortholog(s)  have  IgE  binding  activity  

2  

2  

 

 

AN4865  

Has  domain(s)  with  predicted  nucleic  acid  binding  

2  

2  

 

 

AN7725  

PyroA  Protein  required  for  biosynthesis  of  pyridoxine  

2  

2  

 

 

AN0745  

Putative  nucleolar  protein  

2  

2  

 

 

AN0870  

2  

2  

3  

 

AN1551  

Putative  transporter  with  a  predicted  role  in  small   molecule  transport   BtgE  Putative  beta-­‐glucosidase  

2  

3  

 

 

AN8953  

AgdB  Putative  alpha-­‐glucosidase    

2  

 

2  

 

AN10202  

Has  domain(s)  with  predicted  ATP  binding  activity  

 

2  

 

4  

AN3226  

PkfC  aspernidine  A  secondary  metabolism  gene  cluster   member  

 

 

 

4  

   

Numbers  below  SakA  and  SrkA  columns  correspond  to  the  number  of  peptides  from   each  protein  identified  in  those  samples.  

Table  S2.  SakA  and  /  or  SrkA-­‐interacting  proteins  previously  reported  as  regulated  by   farnesol  or  menadione   ID       AN7254   AN2435   AN4376   AN9340   AN5746       AN8273   AN8979   AN0745   AN4802   AN5931   AN3226   AN7594   AN3172   AN5715       AN0554   AN6717   AN5746       AN4376   AN7594  

Putative  function  and  protein  name     Farnesol  increased   Protein  with  a  conserved  CDC48,  cell  division  protein  N-­‐terminal   domain     AclA    Putative  ATP  citrate  synthase    

Reference       Wartenberg  D,   et  al.  (2012)   Wartenberg  D,   et  al.  (2012)   GdhA  Putative  NADP-­‐linked  glutamate  dehydrogenase   Wartenberg  D,   et  al.  (2012)   TreA  Alpha,alpha-­‐trehalase  with  a  role  in  trehalose  hydrolysis   Savoldi  M,  et   al.  (2008)   Putative  phosphopyruvate  hydratase     Wartenberg  D,   et  al.  (2012)       Farnesol  decreased     Putative  ubiquinol-­‐cytochrome-­‐c  reductase  subunit     Wartenberg  D,   et  al.  (2012)   AlcA  Alcohol  dehydrogenase  with  a  role  in  two-­‐carbon  compound   Wartenberg  D,   metabolism   et  al.  (2012)   Putative  nucleolar  protein   Savoldi  M,  et   al.  (2008)   60S  ribosomal  protein  L21;  ortholog  of  S.  cerevisiae  Rpl21Ap   Savoldi  M,  et   al.  (2008)   Putative  ATP-­‐dependent  RNA  helicase   Savoldi  M,  et   al.  (2008)   PkfC  Has  domain  protein;  aspernidine  A  secondary  metabolism   Wartenberg  D,   gene  cluster  member   et  al.  (2012)   DUF636  domain-­‐containing  protein   Wartenberg  D,   et  al.  (2012)   Ortholog  of  S.  cerevisiae  RPS0A  and  RPS0B   Savoldi  M,  et   al.  (2008)   Putative  40s  ribosomal  protein  S26   Savoldi  M,  et   al.  (2008)       Menadione  stress  repressed     AldA  Aldehyde  dehydrogenase   Pusztahelyi  T,   et  al.  (2011)     MdhA  Putative  mitochondrial  malate  dehydrogenase   Pusztahelyi  T,   et  al.  (2011)     Putative  phosphopyruvate  hydratase     Pusztahelyi  T,   et  al.  (2011)       Menadione  stress  induced     GdhA  Putative  NADP-­‐linked  glutamate  dehydrogenase   Pusztahelyi  T,   et  al.  (2011)     DUF636  domain-­‐containing  protein   Pusztahelyi  T,      

REFERENCES     1.  

Kawasaki   L,   Sanchez   O,   Shiozaki   K,   Aguirre   J.   2002.   SakA   MAP   kinase   is   involved   in   stress   signal   transduction,   sexual   development   and   spore   viability   in  Aspergillus  nidulans.  Mol  Microbiol  45:1153-­‐1163.  

2.  

Wartenberg   D,   Vodisch   M,   Kniemeyer   O,   Albrecht-­‐Eckardt   D,   Scherlach   K,   Winkler  R,  Weide  M,  Brakhage  AA.  2012.   Proteome   analysis   of   the   farnesol-­‐ induced   stress   response   in   Aspergillus   nidulans-­‐-­‐The   role   of   a   putative   dehydrin.  J  Proteomics  75:4038-­‐4049.  

3.  

Savoldi  M,  Malavazi  I,  Soriani  FM,  Capellaro  JL,  Kitamoto  K,  da  Silva  Ferreira   ME,   Goldman   MH,   Goldman   GH.   2008.  Farnesol  induces  the  transcriptional   accumulation  of  the  Aspergillus  nidulans  Apoptosis-­‐Inducing  Factor  (AIF)-­‐like   mitochondrial  oxidoreductase.  Mol  Microbiol  70:44-­‐59.  

4.  

Pusztahelyi   T,   Klement   E,   Szajli   E,   Klem   J,   Miskei   M,   Karanyi   Z,   Emri   T,   Kovacs   S,   Orosz   G,   Kovacs   KL,   Medzihradszky   KF,   Prade   RA,   Pocsi   I.   2011.   Comparison  of  transcriptional  and  translational  changes  caused  by  long-­‐term   menadione  exposure  in  Aspergillus  nidulans.  Fungal  Genet  Biol  48:92-­‐103.