Ecological Importance of Spiders

127 downloads 0 Views 12MB Size Report
Students will gain an appreciation for the benefits that spiders provide humans, including food ... organisms (dead or alive; plant, fungi, or animal). Herbivores ...
Investigating  Community  Food  WEBS:  The  Ecological  Importance  of  Spiders     Dustin  J.  Wilgers   Department  of  Natural  Sciences,  McPherson  College     Overview   This  hands-­‐‑on  activity  investigates  food  webs  through  focusing  on  a  key  predator  in  many   communities,  spiders.  By  building  their  own  webs,  students  not  only  learn  about  how  spider   webs  function,  but  also  how  web  design  may  affect  capture  efficiency  by  using  the  scientific   method.  Students  will  gain  an  appreciation  for  the  benefits  that  spiders  provide  humans,   including  food  production  and  disease  control,  through  their  role  in  the  ecological  communities.     Learning  Objectives   From  this  activity,  students  will  gain  a  better  understanding  of:   -­‐‑the  organization  of  biological  communities  with  regards  to  food-­‐‑based  interactions   -­‐‑food  web  construction  and  organization   -­‐‑the  importance  of  spiders  to  the  stability  of  their  communities  and  to  humans   -­‐‑engineering  solutions  to  complex  problems   -­‐‑how  the  scientific  method  works     Introduction   Biological  communities  are  a  collection  of  interacting  species  in  a  given  area.  One  of  the   most  important  interactions  that  these  species  engage  in  involves  the  transfer  of  energy   from  one  individual  to  another,  consumption  (i.e.  herbivory,  predator-­‐‑prey).  Tracking  the   transfer  of  energy  throughout  this  collection  of  species  is  one  extremely  important  method   to  understand  how  communities  are  organized,  and  they  even  allow  us  to  identify  species   that  are  important  for  community  stability.  Food-­‐‑web  diagrams  are  one  way  to  represent   the  structure  and  interactions  in  a  community  or  subset  of  a  community  (Figure  1).   Food  webs  are  organized  into  similar  groups  based  on  where  organisms  get  their   energy  called  trophic  levels.  Plants  are  considered  producers  because  of  their  ability  to   convert  sunlight  energy  into  usable  energy  (food)  through  the  process  of  photosynthesis.  All   other  organisms  are  considered  consumers,  as  they  must  eat  their  food  by  consuming  other   organisms  (dead  or  alive;  plant,  fungi,  or  animal).  Herbivores  are  animals  that  eat  only   plants,  while  predators  eat  only  other  animals.     Classroom  Questions  (Depending  on  age-­‐‑level  and  time,  these  questions  can  be  done  as  a  group   or  assigned  as  homework,  there  are  blank  food  webs  at  the  back)     1.   Name  the  consumers  in  the  diagram?  Name  the  producers?   Consumers:  Caterpillar,  Grasshopper,  Beetle,  Spider,  Bird   Producers:  Corn,  Tree,  Grass     2.   What  is  different  between  the  animals  found  in  the  middle  row,  compared  to  the   animals  found  on  the  top  row?  What  are  the  names  for  these  groups  of  consumers?   The  animals  found  in  the  middle  row  only  consume  plants;  these  animals  are   called  herbivores.  The  animals  on  the  top  row  mostly  consume  other  animals   (except  birds,  which  are  a  great  example  of  another  generalist  consumer);  these   animals  are  called  predators.      

3.   What  do  the  arrows  on  the  diagram  represent?   The  arrows  represent  interactions  between  organisms,  specifically  consumption.   The  arrow  is  pointing  toward  the  organisms  being  eaten.  This  means  the  arrows   also  represent  a  transfer  of  energy  from  one  organism  to  another.  

 

4.   Why  aren’t  any  arrows  pointing  from  the  plants?  What  do  they  eat?  Where  do  they  get   their  energy?   Plants  don’t  consume  anything  in  that  food  web.  Plants  make  their  own  food   through  photosynthesis  using  energy  from  the  sun,  not  other  organisms.  If  there   were  a  sun  at  the  base  of  the  food  web,  then  all  the  producers  would  have   arrows  pointing  toward  it.    

5.   Optional:  Have  students  draw  their  own  arrows  between  the  organisms  to  make  their   own  food  web,  then  label  each  organism  as  a  producer,  predator,  or  herbivore.    

Predators  

Consumers

Herbivores

 

Producers

  Figure  1.  An  example  food-­‐‑web  diagram  representing  some  of  the  interactions  that   commonly  occur  in  various  Kansas  biological  communities.  The  animals  in  this  diagram  are   general  representations  of  that  group  (e.g.  all  birds,  not  just  a  meadowlark)  and  what  they   could  eat.  Several  blank  versions  of  this  diagram  are  in  Appendix  1,  in  case  you  want  to  have   your  students  work  this  as  part  of  the  optional  activities  just  below.     Spiders  are  obligate  predators,  meaning  they  must  obtain  the  energy  needed  to   sustain  life  by  eating  other  animals.  Spiders  can  prey  on  a  variety  of  organisms,  including   other  spiders,  vertebrates  (rarely),  and  their  most  common  prey  type,  insects.  It  is  estimated   that  one  spider  can  eat  as  many  as  2000  insects  in  one  year  (Walker  2010).  As  generalist   consumers,  many  spiders  play  an  important  role  in  each  of  the  communities  they  are  found   in  by  regulating  the  density  of  organisms  across  multiple  trophic  levels  (herbivores  and  

predators).  When  you  combine  their  variety  of  food  types  and  their  sheer  abundance,   spiders  are  one  of  the  most  important  invertebrate  predators  in  many  ecosystems.     It  is  clear  that  spiders  have  important  ecological  roles  in  maintaining  a  healthy  and   stable  community.  Spiders  also  directly  benefit  humans  by  consuming  prey  items  that  are   pests  to  humans  and  thus  reducing  their  abundance.  Many  of  the  insects  that  spiders  eat  are   directly  affect  humans,  including  mosquitoes,  a  pest  that  transmits  deadly  diseases  like  West   Nile  virus,  malaria,  dengue  and  yellow  fever.  While  many  spiders  eat  mosquitos  that  fly  into   their  web  (Figure  2),  two  species  of  jumping  spiders,  Evarcha  culicivora  and  Paracyrba   wanlessi,  are  known  as  “mosquito  terminators.”  Both  of  these  species  are  specialist   predators,  each  preferring  to  eat  mosquitoes  from  different  life  stages  (adult  &  nymph   respectively;  Jackson  &  Cross  2015).  Regardless  of  how  mosquitoes  are  consumed,  spiders   that  have  this  pest  as  a  part  of  their  diet  directly  reduce  numbers  of  these  pests  and  have  the   potential  to  reduce  the  spread  of  disease.    

  Figure  2.  Mosquito  in  Web  (Frank  Starmer)       There  is  an  ancient  proverb:  “The  enemy  of  my  enemy  is  my  friend.”  Agricultural   pests  directly  reduce  crop  yields  by  feeding  on  the  plants,  robbing  their  fruit/seed  output   that  we  harvest  for  food.  Spiders  indirectly  benefit  humans  by  eating  of  a  variety  of  pests,   including  aphids,  grasshoppers,  leafhoppers,  beetles,  caterpillars  (Maloney  et  al.  2003).   Reductions  in  pest  abundance  have  led  to  decreased  crop  damage  (Reichert  &  Bishop  1990),   which  could  help  increase  yields.  Sadly,  farmers  spend  billions  of  dollars  on  non-­‐‑natural   pesticides  designed  to  reduce  weeds  and  insect  pests  that  have  been  shown  to  reduce  the   abundance  of  spiders  in  fields,  a  natural  and  thus  environmentally  friendly  form  of  pest   control  (Maloney  et  al.  2003,  Haughton  et  al.  1999,  Thomas  &  Jepson  1997),  and  could  end   up  resulting  in  a  pest  resurgence  (Tanaka  et  al.  2000).     Classroom  Questions  (Depending  on  age-­‐‑level  and  time,  these  questions  can  be  done  as  a  group   or  assigned  as  homework,  there  are  blank  food  webs  at  the  back)     1.   Which  of  the  groups  of  organisms  is  more  harmful  to  farmers  (a  farmer’s  enemy)?  Why?   All  of  the  herbivores  are  potentially  harmful  to  a  farmer  and  his  crops.  By   consuming  plant  material,  this  could  reduce  the  amount  of  grain  or  fruit  (yield)   a  farmer  gets  from  his  field.     2.   Which  groups  of  organisms  are  enemies  to  the  group  you  just  identified?   The  predator  groups  (spiders  and  birds)  are  enemies  of  the  herbivores,  since   they  consume  them.    

 

3.   If  each  insect  herbivore  eats  two  cobs  of  corn,  and  each  spider  eats  five  insects,  how   many  cobs  of  corn  does  one  spider  save  humans  if  they  are  allowed  to  live  in  crop  fields?   In  this  situation,  one  spider  could  save  10  cobs  of  corn  by  eating  the  insect   herbivores  that  live  in  the  crop  fields.   4.   Explain  why  conserving  spiders  actually  helps  humans  instead  of  potentially  hurting   them.   If  we  conserve  spiders,  they  help  us  naturally  because  of  their  place  in  their   community’s  food  web.  Because  spiders  are  predators  on  insects  and  other   herbivores  and  not  predators  of  humans  or  their  crops,  by  consuming  the   organisms  that  are  pests  to  us,  spiders  actually  help  us.  We  see  are  reduced   number  of  pests,  like  mosquitos  and  other  herbivores  that  may  be  consuming   our  crops  and  hurting  our  fields.    

    Spiders  capture  their  prey  in  many  different  ways.  Many  spiders  actively  hunt  for   their  food,  including  two  of  the  more  recognizable  families  wolf  spiders  (Lycosidae)  and   jumping  spiders  (Salticidae).  Other  spiders  construct  webs  from  the  silk  they  make  (all   spiders  make  silk).  These  webs  take  on  a  variety  of  shapes  and  sizes  (Figure  3),  but  all  have   one  goal,  to  help  catch  prey.  Some  webs  are  sticky,  while  others  help  the  spider  detect   (through  vibrations)  when  prey  items  walk  across  their  web.  This  adaptation  helps  spiders   catch  a  variety  of  insects,  flying  and  ground  dwelling,  more  efficiently.      

Cob

Sheet

Funnel

Orb

  Figure  3.  Some  of  the  basic  web  types  that  spiders  construct  with  silk  in  order  to  capture   their  food.  Each  type  represents  the  typical  structure,  but  these  can  vary  considerably  in   shape  size  and  pattern  depending  on  the  species  of  spider  that  spins  it.     In  this  activity,  students  get  to  design  and  construct  their  own  webs,  test  how  effective  they   are  at  removing  pests,  and  then  see  how  the  removal  of  pests  affects  crop  yield.  From  this,   students  will  hopefully  gain  an  appreciation  of  the  ecological  importance  of  spiders  to  their   ecosystem  and  humans,  especially  in  the  Midwest,  where  agriculture  is  a  big  part  of  our   economy).     Useful  Terms   Community  –  a  group  of  potentially  interacting  species  in  a  given  area   Food  web  –  a  diagram  representing  consumer  interactions  that  occur  in  a  community   Predator  –  an  animal  that  naturally  eats  other  animals  as  food  for  its  energy  needs  

 

Generalist  –  an  organism  that  consumes  a  variety  of  different  prey  types   Ecosystem  –  a  biological  community  of  organisms  and  their  physical  environment   Trophic  Levels  –  groups  of  organisms  in  a  community  that  share  the  same  function  in  the   food  chain  by  consuming  their  energy  from  the  same  group  or  level  of   organisms  in  their  community   Consumers  –  organisms  that  must  get  their  energy  by  consuming  another  organism   Producers  –  organisms  that  can  get  their  energy  from  the  sun   Photosynthesis  –  the  process  that  plants  use  to  convert  sunlight  energy  into  food  energy   Specialist  –  an  organism  that  consumes  only  a  very  specific  food  type   Adaptation  –  a  trait  that  has  evolved  to  increase  an  organism’s  ability  to  survive  and/or   reproduce  in  their  environment     Intended  Age  Range:  K-­‐‑8  (See  below  for  NGSS  Core  Ideas  Addressed)     Group  Activity     Depending  on  the  grade  level,  you  can  adjust  this  activity  to  meet  several  outcomes.     -­‐‑Younger  grade  levels-­‐‑  Simply  create  a  “typical”  spider  web  by  following  the   directions  below.  Afterwards,  each  student  can  test  how  good  these  webs  are  at   catching  prey  items.  This  artistic  activity  will  engage  students  with  a  really  important   spider  trait  that  helps  them  catch  prey  and  will  also  reinforce  the  importance  of   spiders  to  their  ecosystem  and  humans.   -­‐‑Older  grade  levels-­‐‑  Challenge  the  students  to  “Design  a  Better  Web”  that  is  more   efficient  spider  web  at  catching  prey  with  a  limited  amount  of  “silk”.  This  engineering   style  problem  introduces  a  variety  of  engineering  skills,  such  as  creativity,  product   design,  and  testing,  while  also  introducing  aspects  of  the  scientific  method,  such  as   producing  hypotheses,  collecting  data  to  test  hypotheses,  and  forming  conclusions   (Appendix  2).     Activity  Supplies   Paper  Plates  (1  /  student)   Silk  =  Knitting  Yarn  (1  roll,  any  color)   Tape   Scissors  (enough  to  share  between  students)   Paper  hole  punch   Ping-­‐‑pong  balls  (6  pack)   Self-­‐‑stick  Velcro  (dots  or  thin  strips;  1  package)  –  hint:  strips  work  better   Candy  corn  or  Popcorn  (prize)     Create  a  Typical  Spider  Web  and  Test  Its  Effectiveness   Create  a  spider  orb  web  using  a  paper  plate  and  yarn  (your  “silk”)  by  following  the   directions  below.       1)   Make  six  ½-­‐‑inch  cuts  equally  spaced  around  the  outside  of  a  paper  plate.  These  cuts   will  hold  the  “spokes”  of  the  spider  web.   2)   Cut  three  pieces  of  “silk”  into  ~  12  inch-­‐‑long  strips.  Stretch  one  strand  at  a  time   between  two  of  the  cuts  on  the  outside  of  the  plate  that  are  opposite  each  other,  and   tape  the  ends  of  the  silk  on  the  backside  of  the  plate.  Do  this  for  all  three  strands  so   that  all  the  cuts  have  a  string  through  them.  These  are  the  “radial  spokes”  of  the   spider  web.  You  should  have  something  that  looks  like  an  asterisk.  

3)   To  make  the  spiral  catching  threads  of  the  web,  start  by  punching  a  hole  in  the  plate   directly  behind  one  of  the  spokes  toward  the  center.  Run  one  end  of  a  longer  strand   of  silk  through  that  hole  and  tape  the  end  of  the  strand  to  the  back  of  the  plate.  Work   your  way  around  the  circle,  slowly  making  your  way  toward  the  outside  of  the  plate,   wrapping  the  strand  once  around  each  spoke  as  you  go,  forming  a  hexagon.  Once  you   reach  the  outside  of  the  web,  run  the  other  end  of  the  strand  through  the  another   hole  punched  next  to  a  radial  spoke.     4)   Tape  the  end  of  the  circling  strand  to  the  backside  of  the  plate  once  you  have   adjusted  the  tightness  and  placement  of  the  crossbars.      

 

 

 

 

 

 

Figure  4.  A  finished  paper  plate  spider  web.            

 

Design  a  Spider  Web  Option   -­‐‑Using  the  basic  principles  above,  students  can  create  an  endless  variety  of  web  designs.   Challenge  them  to  come  up  with  a  web  that  is  the  best  at  catching  prey.  In  order  to  keep  the   challenge  fair,  you  must  standardize  several  features.       1)  There  must  be  at  least  4  anchor  points  to  the  outside  of  the  plate  (step  2  above)     2)  All  students  will  be  limited  to  60”  of  silk   3)  All  silk  strands  must  be  connected  (looped  or  taped)  to  another  stand  on  at  least              one  end       Catching  Prey  with  the  Webs   Place  either  thin  strips  of  Velcro  or  Velcro  dots  onto  Ping-­‐‑Pong  balls  so  that  the  Velcro  is   evenly  spaced  around  the  ball.  You  may  draw  insect  designs  on  the  Ping-­‐‑Pong  balls  for   added  fun.  These  Ping-­‐‑Pong  balls  will  be  your  “agricultural  pests.”  (Figure  5).   1)  Have  each  student  stand  four  feet  away  from  their  web  and  gently  toss  five  prey  items  at   their  web.   2)  For  each  prey  item  that  gets  caught  in  their  web  (Figure  5),  the  student  receives  a  prize  of   three  candy  corn*.   *Any  candy  or  snack  will  work  as  a  prize;  we  chose  candy  corn  because  it  represents  a  crop   that  is  normally  harvested  and  affected  by  agricultural  pests,  but  popcorn  works  too!   Make  sure  to  point  out  that  more  prey  captured  by  spider  webs  results  in  a  larger   “harvest.”    

  Figure  5.  A  prey  item  ping-­‐‑pong  ball,  and  one  caught  in  a  spider  web.     Design  a  Better  Spider  Web     Challenge  students  to  design  a  spider  web  that  is  better  at  catching  prey,  given  a  limited   amount  of  “silk”  for  constructing  the  web.  Students  can  use  this  spider  web  design   worksheet  to  sketch  out  and  evaluate  their  design.   Using  the  web-­‐‑making  and  prey-­‐‑capture  protocols  above,  students  can  create  and   test  an  endless  variety  of  web  designs.  Encourage  them  to  use  the  webs  of  real  spiders  for   inspiration  by  searching  for  different  spider  web  designs  on  the  Internet  (great  resource  on   spider  web  construction:  http://www.spiderzrule.com/spiderweb.htm).  Next,  challenge   them  to  come  up  with  a  web  that  is  the  best  at  catching  prey.  In  order  to  keep  the  challenge   fair,  you  must  standardize  several  features.       1)  There  must  be  at  least  four  silk  anchor  points  to  the  outside  of  the  plate    

 

2)  All  students  will  be  limited  to  60  inches  of  silk   3)  Every  silk  strand  must  be  connected  (looped  or  taped)  to  another  strand  on  at   least  one  end  

  Have  students  collect  “data”  on  how  effective  their  web  was  at  protecting  crops,  using  the   catching  prey  game  rules  above.  Record  their  data  and  observation  in  the  worksheet  below   in  the  appendix.  Compare  students’  data  for  different  web  designs  and  make  conclusions  on   the  most  effective  web  design.       Suggested  Discussion  Topics  with  Class  After  Activity  (Can  assign  these  as  homework)   1)   What  does  the  candy  corn  prize  represent?  Why  did  you  receive  more  candy  corn  for   every  insect  caught  in  the  spider  web?  What  real  life  interaction  and  processes  does  this   represent?   The  candy  corn  represents  one  of  the  many  grains,  fruits,  or  vegetables  that  farmers  harvest   from  their  fields.  Through  predation,  spiders  reduce  the  number  of  insect  pests  in  a  farm   field,  which  will  reduce  herbivory  and  crop  damage  from  pests  and  increase  crop  yield.     2)   When  farmers  spray  insecticide  on  fields  to  kill  insect  pests,  spiders  also  decrease  in   abundance.  How  does  this  affect  the  community’s  natural  way  of  controlling  the   numbers  of  insect  pests?  If  you  could  design  a  better  insecticide,  what  kind  of   insecticide  would  be  most  effective  at  controlling  pest  populations?   By  spraying  artificial  insecticides  to  control  pest  populations,  this  reduces  the  natural   control  of  these  insect  populations  by  also  removing  their  predators.  A  better   insecticide  or  pest  control  would  be  one  that  reduces  insects  while  not  affecting  spider   populations.     3)   Where  would  you  normally  find  spider  webs  at  in  a  crop  field?  What  kinds  of  insects   do  these  webs  typically  catch?  What  kinds  of  insects  would  be  captured  if  the  web   was  turned  more  horizontal,  or  was  found  directly  on  the  ground?   The  spider  webs  from  this  activity  are  typically  vertical  webs  found  above  the  ground   between  plants.  These  kinds  of  webs  are  very  good  at  capturing  flying  insects.   Horizontal  webs  would  capture  slightly  different  prey,  maybe  insects  flying  off  the   ground,  while  webs  on  the  ground  would  be  effective  at  catching  ground  dwelling   insects  that  very  rarely  fly.     4)   For  the  spider  web  design  option.  What  spider  web  design  was  most  effective?  What   features  of  the  web  do  you  think  made  it  so  great  at  catching  “prey.”  Are  these   features  found  in  natural  spider  webs?  If  not,  why  do  think  this  is  the  case?   The  answers  to  this  question  will  depend  on  the  webs  that  are  constructed  by  your   students.     Literature  Cited   Haughton,  A.  J.,  Bell,  J.  R.,  and  Boatman,  N.  D.  1999.  The  effects  of  different  rates  of  the   herbicide  glyphosate  on  spiders  in  arable  field  margins.  The  Journal  of  Arachnology   27:249-­‐‑254.   Jackson.  R.  R.,  &  Cross,  F.  R.  2015.  Mosquito-­‐‑terminator  spiders  and  the  meaning  of   predatory  specialization.  Journal  of  Arachnology  43:123-­‐‑142.  

Maloney,  D.,  Drummond,  F.  A.,  and  Alford,  R.  2003.  Spider  predation  in  agroecosystems:  Can   spiders  effectively  control  pest  populations?  Maine  Agricultural  and  Forest   Experiment  Station  Technical  Bulletin:  190.   Tanaka,  K.,  Endo,  S.,  and  Kazano,  H.  2000.  Toxicity  of  insecticides  to  predators  of  rice   planthoppers:  Spiders,  the  mired  bug  and  the  dryinid  wasp.  Applied  Entomology   35:177-­‐‑187.   Vollrath,  F.,  and  Selden,  P.  2007.  The  role  of  behavior  in  the  evolution  of  spiders,  silks,  and   webs.  Annual  Review  of  Ecology,  Evolution,  and  Systematics  38:819-­‐‑846.   Walker,  C.  2010.  Spider  sense:  fast  facts  on  extreme  arachnids.  National  Geographic  News.   October  28,  2010.  Accessed  July  14,  2015.   http://news.nationalgeographic.com/news/2004/06/0623_040623_spiderfacts.htm l     Credits   Thanks  to  Ariel  Zych  and  the  editors  at  Science  Friday  (http://www.sciencefriday.com/)  for   comments  and  help  improving  this  activity.  The  activity  is  free  of  charge  to  all  educators.  The   Kansas  Department  of  Wildlife,  Parks  and  Tourism  provided  financial  support  for  the  development   of  this  activity  through  the  Chickadee  Checkoff  small  grant  program  dedicated  to  nongame  wildlife   conservation.  All  I  ask  is  that  you  please  give  me  credit  for  the  developing  the  activity  and  if   possible,  please  let  me  know  if  you  have  used  it  and  how  it  went  via  email   ([email protected]).  Please  feel  free  to  provide  any  feedback  on  these  activities  so  they  can   be  modified/improved  for  future  users.       Kansas  NGSS  Science  Disciplinary  Core  Ideas  Addressed  by  this  Activity   Kindergarten   K-­‐‑LS1.C:  Life  Science  –  Organization  for  Matter  and  Energy  Flow  in  Organisms   -­‐‑  All  animals  need  food  in  order  to  live  and  grow.  They  obtain  their  food  from  plants  or  from   other  animals.  Plants  need  water  and  light  to  live  and  grow.  (K-­‐‑LS1-­‐‑1)   -­‐‑K-­‐‑ESS2.C:  Earth’s  Systems  -­‐‑  Human  Impacts  on  Earth  Systems   -­‐‑  Things  that  people  do  to  live  comfortably  can  affect  the  world  around  them.  But  they  can   make  choices  that  reduce  their  impacts  on  the  land,  water,  air,  and  other  living  things.   (secondary  to  K-­‐‑ESS2-­‐‑2)   -­‐‑K-­‐‑ESS3.A:  Earth  and  Human  Activities  –  Natural  Resources   -­‐‑  Living  things  need  water,  air,  and  resources  from  the  land,  and  they  live  in  places  that  have   the  things  they  need.  Humans  use  natural  resources  for  everything  they  do.  (K-­‐‑ESS3-­‐‑1   -­‐‑K-­‐‑ETS1.A:  Defining  and  Delimiting  an  Engineering  Problem   -­‐‑  Asking  questions,  making  observations,  and  gathering  information  are  helpful  in  thinking   about  problems.  (secondary  to  K-­‐‑ESS3-­‐‑2)   -­‐‑K-­‐‑ETS1.B:  Developing  Possible  Solutions   -­‐‑Designs  can  be  conveyed  through  sketches,  drawings,  or  physical  models.  These   representations  are  useful  in  communicating  ideas  for  a  problem’s  solutions  to  other  people.   (secondary  to  K-­‐‑ESS3-­‐‑3)     1st  Grade            

 

2nd  Grade   -­‐‑2-­‐‑LS4.D:  Life  Science  –  Biological  Evolution:  Biodiversity  and  Humans   -­‐‑There  are  many  different  kinds  of  living  things  in  any  area,  and  they  exist  in  different  places   on  land  and  in  water.  (2-­‐‑LS4-­‐‑1)   -­‐‑2-­‐‑ETS1.A:  Designing  and  Delimiting  Engineering  Problems     -­‐‑A  situation  that  people  want  to  change  or  create  can  be  approached  as  a  problem  to   be  solved  through  engineering.  (K-­‐‑2-­‐‑ETS1-­‐‑1)     -­‐‑Asking  questions,  making  observations,  and  gathering  information  are  helpful  in   thinking  about  problems.  (K-­‐‑2-­‐‑ETS1-­‐‑1)       -­‐‑Before  beginning  to  design  a  solution,  it  is  important  to  clearly  understand  the   problem.  (K-­‐‑2-­‐‑ETS1-­‐‑1) -­‐‑K-­‐‑ETS1.B:  Developing  Possible  Solutions   -­‐‑Designs  can  be  conveyed  through  sketches,  drawings,  or  physical  models.  These   representations  are  useful  in  communicating  ideas  for  a  problem’s  solutions  to  other  people.   (secondary  to  K-­‐‑ESS3-­‐‑3)   -­‐‑K-­‐‑ETS1.C:  Optimizing  the  Design  Solution     -­‐‑Because  there  is  always  more  than  one  possible  solution  to  a  problem,  it  is  useful  to   compare  and  test  designs.  (K-­‐‑2-­‐‑ETS1-­‐‑3)       3rd  Grade   -­‐‑3-­‐‑LS2.C:  Life  Science  –  Ecosystem  Dynamics,  Functioning,  and  Resilience   -­‐‑When  the  environment  changes  in  ways  that  affect  a  place’s  physical  characteristics,   temperature,  or  availability  of  resources,  some  organisms  survive  and  reproduce,  others   move  to  new  locations,  yet  others  move  into  the  transformed  environment,  and  some  die.   (secondary  to  3-­‐‑LS4-­‐‑4)   -­‐‑3-­‐‑LS4.C:  Life  Science  –  Adaptation     -­‐‑For  any  particular  environment,  some  kinds  of  organisms  survive  well,  some  survive  less   well,  and  some  cannot  survive  at  all.  (3-­‐‑LS4-­‐‑3)     -­‐‑3-­‐‑LS4.D:  Life  Science  –  Biodiversity  and  Humans     -­‐‑Populations  live  in  a  variety  of  habitats,  and  change  in  those  habitats  affects  the  organisms   living  there.  (3-­‐‑LS4-­‐‑4)       4th  Grade   -­‐‑4-­‐‑LS1.A:  Life  Science  –  Structure  and  Function   -­‐‑Plants  and  animals  have  both  internal  and  external  structures  that  serve  various  functions   in  growth,  survival,  behavior,  and  reproduction.  (4-­‐‑LS1-­‐‑1)     5th  Grade   -­‐‑5-­‐‑PS3.D:  Physical  Science  -­‐‑  Energy  in  Chemical  Processes  and  Everyday  Life   -­‐‑The  energy  released  [from]  food  was  once  energy  from  the  sun  that  was  captured  by  plants   in  the  chemical  process  that  forms  plant  matter  (from  air  and  water).  (5-­‐‑PS3-­‐‑1)   -­‐‑5-­‐‑LS1.C:  Life  Science  –  Organization  for  Matter  and  Energy  Flow  in  Organisms   -­‐‑Food  provides  animals  with  the  materials  they  need  for  body  repair  and  growth  and  the   energy  they  need  to  maintain  body  warmth  and  for  motion.  (secondary  to  5-­‐‑PS3-­‐‑1)   -­‐‑5-­‐‑LS2.A:  Life  Science  -­‐‑  Interdependent  Relationships  in  Ecosystems   -­‐‑The  food  of  almost  any  kind  of  animal  can  be  traced  back  to  plants.  Organisms  are  related  in   food  webs  in  which  some  animals  eat  plants  for  food  and  other  animals  eat  the  animals  that   eat  plants.  Some  organisms,  such  as  fungi  and  bacteria,  break  down  dead  organisms  (both   plants  or  plants  parts  and  animals)  and  therefore  operate  as  “decomposers.”  Decomposition   eventually  restores  (recycles)  some  materials  back  to  the  soil.  Organisms  can  survive  only  in  

environments  in  which  their  particular  needs  are  met.  A  healthy  ecosystem  is  one  in  which   multiple  species  of  different  types  are  each  able  to  meet  their  needs  in  a  relatively  stable   web  of  life.  Newly  introduced  species  can  damage  the  balance  of  an  ecosystem.  (5-­‐‑LS2-­‐‑1)   -­‐‑5-­‐‑ESS3.C:  Earth  Systems  –  Human  Impacts  on  Earth  Systems   -­‐‑Human  activities  in  agriculture,  industry,  and  everyday  life  have  had  major  effects  on  the   land,  vegetation,  streams,  ocean,  air,  and  even  outer  space.  But  individuals  and  communities   are  doing  things  to  help  protect  Earth’s  resources  and  environments.  (5-­‐‑ESS3-­‐‑1)   -­‐‑5-­‐‑ETS1.A:  Engineering  Design  –  Defining  and  Delimiting  Engineering  Problems   -­‐‑Possible  solutions  to  a  problem  are  limited  by  available  materials  and  resources   (constraints).  The  success  of  a  designed  solution  is  determined  by  considering  the  desired   features  of  a  solution  (criteria).  Different  proposals  for  solutions  can  be  compared  on  the   basis  of  how  well  each  one  meets  the  specified  criteria  for  success  or  how  well  each  takes   the  constraints  into  account.  (3-­‐‑5-­‐‑ETS1-­‐‑1)   -­‐‑5-­‐‑ETS1.B:  Engineering  Design  –  Developing  Possible  Solutions   -­‐‑Research  on  a  problem  should  be  carried  out  before  beginning  to  design  a  solution.  Testing   a  solution  involves  investigating  how  well  it  performs  under  a  range  of  likely  conditions.  (3-­‐‑ 5-­‐‑ETS1-­‐‑2)     -­‐‑At  whatever  stage,  communicating  with  peers  about  proposed  solutions  is  an  important   part  of  the  design  process,  and  shared  ideas  can  lead  to  improved  designs.  (3-­‐‑5-­‐‑ETS1-­‐‑2)     -­‐‑5-­‐‑ETS1.C:  Engineering  Design  –  Optimizing  the  Design  Solution     -­‐‑Different  solutions  need  to  be  tested  in  order  to  determine  which  of  them  best  solves  the   problem,  given  the  criteria  and  the  constraints.  (3-­‐‑5-­‐‑ETS1-­‐‑3)       Middle  School   -­‐‑MS-­‐‑LS1.C:  Life  Science  –  Organization  for  Matter  and  Energy  Flow  in  Organisms     -­‐‑Plants,  algae  (including  phytoplankton),  and  many  microorganisms  use  the  energy  from   light  to  make  sugars  (food)  from  carbon  dioxide  from  the  atmosphere  and  water  through   the  process  of  photosynthesis,  which  also  releases  oxygen.  These  sugars  can  be  used   immediately  or  stored  for  growth  or  later  use.  (MS-­‐‑LS1-­‐‑  6)       -­‐‑Within  individual  organisms,  food  moves  through  a  series  of  chemical  reactions  in  which  it       is  broken  down  and  rearranged  to  form  new  molecules,  to  support  growth,  or  to  release       energy.  (MS-­‐‑LS1-­‐‑7)   -­‐‑MS-­‐‑LS2.A:  Life  Science  –  Interdependent  Relationships  in  Ecosystems     -­‐‑Organisms,  and  populations  of  organisms,  are  dependent  on  their  environmental   interactions  both  with  other  living  things  and  with  nonliving  factors.  (MS-­‐‑LS2-­‐‑1)     -­‐‑In  any  ecosystem,  organisms  and  populations  with  similar  requirements  for  food,  water,   oxygen,  or  other  resources  may  compete  with  each  other  for  limited  resources,  access  to   which  consequently  constrains  their  growth  and  reproduction.  (MS-­‐‑LS2-­‐‑  1)     -­‐‑Similarly,  predatory  interactions  may  reduce  the  number  of  organisms  or  eliminate  whole   populations  of  organisms.  Mutually  beneficial  interactions,  in  contrast,  may  become  so   interdependent  that  each  organism  requires  the  other  for  survival.  Although  the  species   involved  in  these  competitive,  predatory,  and  mutually  beneficial  interactions  vary  across   ecosystems,  the  patterns  of  interactions  of  organisms  with  their  environments,  both  living   and  nonliving,  are  shared.  (MS-­‐‑LS2-­‐‑2)     -­‐‑MS-­‐‑LS2.B:  Life  Science  –  Cycle  of  Matter  and  Energy  Transfer  in  Ecosystems     -­‐‑Food  webs  are  models  that  demonstrate  how  matter  and  energy  is  transferred  between   producers,  consumers,  and  decomposers  as  the  three  groups  interact  within  an  ecosystem.   Transfers  of  matter  into  and  out  of  the  physical  environment  occur  at  every  level.   Decomposers  recycle  nutrients  from  dead  plant  or  animal  matter  back  to  the  soil  in   terrestrial  environments  or  to  the  water  in  aquatic  environments.  The  atoms  that  make  up  

the  organisms  in  an  ecosystem  are  cycled  repeatedly  between  the  living  and  nonliving  parts   of  the  ecosystem.  (MS-­‐‑LS2-­‐‑3)     -­‐‑MS-­‐‑LS2.C:  Life  Science  –  Ecosystem  Dynamics,  Functioning,  and  Resilience     -­‐‑Ecosystems  are  dynamic  in  nature;  their  characteristics  can  vary  over  time.  Disruptions  to   any  physical  or  biological  component  of  an  ecosystem  can  lead  to  shifts  in  all  its  populations.   (MS-­‐‑LS2-­‐‑4)     -­‐‑Biodiversity  describes  the  variety  of  species  found  in  Earth’s  terrestrial  and  oceanic   ecosystems.  The  completeness  or  integrity  of  an  ecosystem’s  biodiversity  is  often  used  as  a   measure  of  its  health.  (MS-­‐‑LS2-­‐‑5)   -­‐‑MS-­‐‑LS4.D:  Life  Science  –  Biodiversity  and  Humans   -­‐‑Changes  in  biodiversity  can  influence  humans’  resources,  such  as  food,  energy,  and   medicines,  as  well  as  ecosystem  services  that  humans  rely  on—for  example,  water   purification  and  recycling.  (secondary  to  MS-­‐‑LS2-­‐‑5)   -­‐‑MS-­‐‑ESS3.A:  Earth  Systems  –  Natural  Resources   -­‐‑Humans  depend  on  Earth’s  land,  ocean,  atmosphere,  and  biosphere  for  many  different   resources.  Minerals,  fresh  water,  and  biosphere  resources  are  limited,  and  many  are  not   renewable  or  replaceable  over  human  lifetimes.  These  resources  are  distributed  unevenly   around  the  planet  as  a  result  of  past  geologic  processes.  (MS-­‐‑ESS3-­‐‑1)   -­‐‑MS-­‐‑ESS3.C:  Earth  Systems  –  Human  Impacts  on  Earth  Systems   -­‐‑Human  activities  have  significantly  altered  the  biosphere,  sometimes  damaging  or   destroying  natural  habitats  and  causing  the  extinction  of  other  species.  But  changes  to   Earth’s  environments  can  have  different  impacts  (negative  and  positive)  for  different  living   things.  (MS-­‐‑ESS3-­‐‑3)   -­‐‑MS-­‐‑ETS1.A:  Engineering  Design  –  Defining  and  Delimiting  Engineering  Problems   -­‐‑The  more  precisely  a  design  task’s  criteria  and  constraints  can  be  defined,  the  more  likely  it   is  that  the  designed  solution  will  be  successful.  Specification  of  constraints  includes   consideration  of  scientific  principles  and  other  relevant  knowledge  that  are  likely  to  limit   possible  solutions.  (MS-­‐‑ETS1-­‐‑1)   -­‐‑MS-­‐‑ETS1.B:  Engineering  Design  –  Developing  Possible  Solutions   -­‐‑There  are  systematic  processes  for  evaluating  solutions  with  respect  to  how  well  they  meet   the  criteria  and  constraints  of  a  problem.  (secondary  to  MS-­‐‑LS2-­‐‑5)   -­‐‑MS-­‐‑ETS1.C:  Engineering  Design  –  Optimizing  the  Design  Solution     -­‐‑Although  one  design  may  not  perform  the  best  across  all  tests,  identifying  the   characteristics  of  the  design  that  performed  the  best  in  each  test  can  provide  useful   information  for  the  redesign  process—that  is,  some  of  those  characteristics  may  be   incorporated  into  the  new  design.  (MS-­‐‑ETS1-­‐‑3)     -­‐‑The  iterative  process  of  testing  the  most  promising  solutions  and  modifying  what  is   proposed  on  the  basis  of  the  test  results  leads  to  greater  refinement  and  ultimately  to  an   optimal  solution.  (MS-­‐‑  ETS1-­‐‑4)                        

Appendix  1.  Food-­‐‑web  diagram  student  worksheets.  The  first  one  allows  students  to   identify  producers,  consumers,  predators,  and  herbivores  from  the  depicted  interactions.   The  second  allows  students  to  imagine  the  various  consumer  interactions  within  this   community  and  represent  them  with  their  own  arrows,  and  then  label  them  as  above.    

 

 

                                     

 

 

 

                                                 

 

Appendix  2.  Design  a  Better  Spider  Web  Activity     Observations  –  sketch  a  picture  of  your  web  design.                                           Observations  –  sketch  pictures  of  several  of  your  classmates  web  designs.                                                      

Were  any  of  your  classmates  webs  similar?  What  features  did  they  have  in  common?                   Hypothesis:  (which  one  of  classmates  web  do  you  think  will  capture  the  most  prey)                   Why  do  you  think  this?                                                                

Data  Collection     WEB  CREATOR  

 

 

 

 

WEB  DESIGN  

 #  PREY  CAPTURED  

  ME  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Conclusions   Which  web  performed  the  best  (captured  the  most  prey)?  Were  any  general  designs  better   than  others?                 Why  was  this  web  better?                   Did  you  accept  or  reject  your  hypothesis?