Effects of Cyclic Loading on the Deformation and Elastic-Plastic ...

2 downloads 0 Views 1MB Size Report
High Cycle Fatigue Crack Growth Data for Cast Stainless. Steel Showing .... to develop the appropriate material property data to characterize cyclic deformation ...
AD-A242 564 IiIIII!IIIIIJi]/III]J///ll/ih/hII/iI.i Betneso,

7)

)r Research Center w, &.w-4-5000.

DTRC-SME-91-11

October 1991

Ship Materials Engineering Department Research and Development Report

Effects of Cyclic Loading on the Deformation and Elastic-Plastic Fracture Behavior of a Cast Stainless Steel _iby

_

J.A. Joyce

_€

E.M. Hackett C. Roe

_

"

)0 -C

00_)

5o MCU

CO " 00 00

to_ I U~J

91-15815

I?C. I-_ 03

Approved for public release; distribution is unlimited. _

_

_

_

_

_

_

__

_

_

_

_

_

_

_

_

_

CODE 011

DIRECTOR OF TECHNOLOGY, PLANS AND ASSESSMENT

12

SHIP SYSTEMS INTEGRATION DEPARTMENT

14

SHIP ELECTROMAGNETIC SIGNATURES DEPARTMENT

15

SHIP HYDROMECHANICS DEPARTMENT

16

AVIATION DEPARTMENT

17

SHIP STRUCTURES AND PROTECTION DEPARTMENT

18

COMPUTATION, MATHEMATICS & LOGISTICS DEPARTMENT

19

SHIP ACOUSTICS DEPARTMENT

27

PROPULSION AND AUXILIARY SYSTEMS DEPARTMENT

28

SHIP MATERIALS ENGINEERING DEPARTMENT

DTRC ISSUES THREE TYPES OF REPORTS 1. DTRC reports, a formal series, contain information of permanent technical value. They carry a consecutive numerical identification regardless of their classification or the originating department. 2. Departmental reports, a semiformal series, contain information of a preliminay, temporary or proprietary nature or of limited interest or significance They carry a departmental alphanumerical identification. 3. Technical memoranda, an informal series, contain technical documentation of limted use and interest. They are primarily workinq papers intended for internal use They carry an identifying number which indicates their type and the numerical code of the originating clepartment. Any distribution outside DTRC must be approvea by the head of the originating department on a case-by-case basis

NDVLWrTNSP[) - 'SF.,

-

;- ,

88'

David Taylor Research Center Bethesda, MD 20084-5000

DTRC-SME-91-11

October 1991

Ship Materials Engineering Department Research and Development Report

Effects of Cyclic Loading on the Deformation and Elastic-Plastic Fracture Behavior of a Cast Stainless Steel by J.A. Joyce E.M. Hackett C. Roe

CONTENTS Page ABSTRACT ............................................................

1

ADMINISTRATIVE INFORMATION .........................................

1

INTRODUCTION .......................................................

2

MATERIAL .....

2

......................................................

CHEMISTRY .....

..................................................

2

...............................................

3

.............................................

3

..................................................

3

.....................................................

4

METALLOGRAPHY .... TENSILE PROPERTIES .... MONOTONIC ..... CYCLIC .....

MONOTONIC J-R CURVE BEHAVIOR .......................................

5

FATIGUE CRACK GROWTH RATE BEHAVIOR ................................

6

LINEAR ELASTIC ....

..............................................

6

.............................................

6

....................................................

8

CYCLIC J DATA .... ...............................................

8

ELAST1C-PLASTIC .... DISCUSSION .....

COMBINED CYCLIC K AND J RESULTS ................................. 12 CONCLUSIONS .... ....................................................

14

RECOMMENDATIONS ....................................................

15

REFERENCES .... .....................................................

16

ii

FIGURES 1.

Macroetch of Section Through Cast Stainless Steel HLVT pipe elbow ................................................

17

Cyclic Tensile Stress-Strain Curve for Cast Stainless Steel Specimen GPQ-36 ................................................

18

Cyclic Tensile Stress-Strain Envelope for Cast Stainless Steel Specimen GPQ-33 ..........................................

19

Tensile Specimen of Cast Stainless Steel Showing Anisotropic Deformation ....................................................

20

Cyclic Tensile Stress-Strain Envelope and Static Tensile Stress-Strain Envelope for Cast Stainless Steel .............

21

6.

Monotonic J-R curves for Cast Stainless Steel ...............

22

7.

1/2T C(T) Specimen with Integral Knife Edges ................

23

8.

High Cycle Fatigue Crack Growth Data for Cast Stainless Steel Showing Comparison with Rolfe and Barsom Fit ..........

24

Cyclic Load vs. Displacement Curve for Cast Stainless Steel, R-0 Specimen GPQ-11 .....................................

25

Cyclic Load vs. Displacement Curve for Cast Stainless Steel, R-0.3 Specimen GPQ-20 ..................................

26

Cyclic Load vs. Displacement Curve for Cast Stainless Steel, R--l Specimen GPQ-16 ...................................

27

12.

Improved Load Cap Fixtures for 1/2T C(T) Specimens .........

28

13.

Schematic of DTRC/USNA Analysis for Closure Load Calculation .... ............................................. .

29

Crack Length vs. Cycle Count for Cast Stainless Steel R--l Specimens ..... ...........................................

30

Closure Load vs. Cycle Count for Cast Stainless Steel R--1 Specimens ... .............................................

31

J Range vs. Cycle Count for Cast Stainless Sreel R-0 Specimens .................................................

32

J Range vs. Cycle Count for Cast Stainless Steel R-0.3 Specimens ...............................................

33

J Range vs. Cycle Count for Cast Stainless Steel R--1 Specimens ... .............................................

34

2.

3.

4.

5.

9.

10.

11.

14.

15.

16.

17.

18.

iii

19.

Crack Growth Rate for Cast Stainless Steel R-0 Specimens ...

35

20.

Crack Growth Rate for Cast Stainless Steel R-0.3 Specimens .... .................................................

36

Crack Growth Rate for Cast Stainless Steel R--l Specimens .... .................................................

37

Crack Growth Rate for Cast Stainless Steel (Combined R Ratios) ...........................................

38

Comparison of Japanese and DTRC/USNA Crack Growth Rates for Cast Stainless Steel ..........................................

39

DTRC/USNA Crack Growth Rates for Cast Stainless Steel with Different Closure Loads ..................................

40

DTRC/USNA Crack Growth Rate for Cast Stainless Steel at Minimum Closure Load Compared with Japanese Crack Growth Rate Data ..............................................

41

21.

22.

23.

24.

25.

iv

TABLES

1.

Chemistry of Cast Stainless Steel ..............................

3

2.

Monotonic Tensile Properties of Cast Stainless Steel ..........

4

3.

Estimated vs. Measured Crack Growth for FCGR Tests ............

10

Acceqslon

For

*r

a4-

I-/

0 -4

C

(12

4)

IC)

>z4

r.

z~

C)

0CN

-4-

C)

V)-4

C)

C C))

CD CD C) CD 00l

CD C) CD CD

CD C) CD CD

CD C) CD CD

CD C) C) CD

CD CD CD CD

C) C) C) C)

IC)

I)

m

(N

ISd

£SHIS

19

CD CD CD C)

CD CD

Fig. 4.

Tensile Specimen of Cast Stainless Steel Showing Anisotropic Deformation

20

U)0

-4 -4

U))

CL4G

o co ( 94 U)

b-

'-4

A-

-

cc

(9

E-

1J4-

P

U) C)

U)

Wfl 4

z oc

t

C)

-

'-

4 V

-C) U)k dr0

E-

f)

E--

HK

C) C) C) C)

C) CD CD C)

C) CD C CD

C:) C:) C

C) CD

C) C)) CD C)

TSd

C)

C) C)

C)

sSSdj~S

21

C:)

C)

C)

C)

C) C)

C) C

C) C) CD

C) CD C)

C:

C)

-

C)-

U))

00

C400 'E00(Y

CN a4~- 4a4a ao0

z

-

c

Cl)

1-

OD

01

co 0

x

41-i CN

4-4

U

C

0

H-l4

U)

0

UC)

-4 CNL

c~C4

Z,,UT/qT-UT 22

r

4.75 DIA

79

9.52

30

I

.52157

4.775

23

(N

0

E

"

002

-0

O00

CO$

0

c

w 0

O0

L4

0

N

w

00 0

U) 0

Y

0

0

0

o

04o

--

o o

N

a

0

o

D0

1CD

(Ola/(/ui) NP/Dp 24

'

4

0 0

0

0

0,U

04

4

oo

o

0

u

0N

C,-)

C*4)

00

14 4n.

1-44

0

140)

-4

C)) C:)

CD

C> 04

25

CD

>

C)

C

04

Cl,

04 0

4

'.4

1--4

Cf)

Go CD 1-4~r

sqj~ 26

C>)

U)

N4-

C>J 4.)

C)-

C-)

cc

C)

-4

obo -4-

C)G

C)~~~~~

C)

C)

a-)

(D

C)

CC) C

C

C) )

C)

C) C)

>

C

~~~C (D

C) CD

C) C

sqT

)

C)

C

C

D

C

C

C

C)

)

C)

C)

C

CD

U)

eC-)

C)

c)-

C) C)

GVO'j 27

)

)C

C

C) C C)

Fig. 12.

Improved Load Cap Fixtures for 1/2T C(T) Specimens

0

0 1rC)S. ul

0 C)

4

C)-4d

to 0

C:

00o C:)n

00

o-4 r--4'

C)J

CD rIJCQ ~~~~ r~l)

oC C

r--q(N sqT

GV00 29(-

4)0co r-

1D 10 CN (N

000000000

0

-D4Q

101

C)G

10

0~L 0

C)b

0 00

0

UTIDVQ HIDN3

LC)

U--4

k-

r -

CD

CN)

C)) Lnn

0

r-I

0n CN

C)

C

C)

CC 0

U)-4

-4

CD

CD C)

CD

CD ICD

CD IC)

--

CD C)

CD C)

C) CD

IN

sqT

GVOrI 3SInSor 31

C

C:)) C))

CD,

C:))

0

E z

0

C) C

co

14Wj

)

0

CD.

CDC.

N\-4(

(N

00

C)

0n 'IT

m

D r)

0-

CD

(N

(Ncl

O

v-Hl

{dP

Z,,U T/qT-UT 32

C0

V0

C)) C))

C4.

C:)) OD4

4.)

c

Un

Ct-)

41~

E--

C)4

E

--. 4

bb~

(D C()

C)

CD

C

D

C CD Ill

1-

clq

cu/q ~

) co Ci

-A

CD I'D

C

CD

o

r-

-TSc

33

-V

fC) I'

CD

CDC

4

LC)

(N~

Ln

CN

-

0.

C)

o10

u

%u cn>U-)

4

0

CD

C C))

C)M

:0

CC)

34S

-4

C))

LC)

-4 4-1

ca -1

-14 -H

CN C:

4

CA u

34 0

Ir)0

'-4

b

(N

-4



'tLO

rN--

44

0

C)NN-u)

0l

C COlO

a4-4-

~

((

oPU 3~U 38D

0 .0 4

0

ccv

0

00

L0

00

40%

4:

0

c. 0

IrL L

o0

44

0

0 0 0

c $ 4c

0

04

~~1)4 0fif M)0

-4'~'-

0

ccE 004

~-cL