Error Bound for Conic Inequality in Hilbert Spaces

2 downloads 0 Views 2MB Size Report
Mar 23, 2014 - We consider error bound issue for conic inequalities in Hilbert spaces. In terms .... Recall that the FrΓ©chet subdifferential of at is defined.
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 785213, 7 pages http://dx.doi.org/10.1155/2014/785213

Research Article Error Bound for Conic Inequality in Hilbert Spaces Jiangxing Zhu, Qinghai He, and Jinchuan Lin Department of Mathematics, Yunnan University, Kunming 650091, China Correspondence should be addressed to Qinghai He; [email protected] Received 15 February 2014; Accepted 23 March 2014; Published 15 April 2014 Academic Editor: Jen-Chih Yao Copyright Β© 2014 Jiangxing Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We consider error bound issue for conic inequalities in Hilbert spaces. In terms of proximal subdifferentials of vector-valued functions, we provide sufficient conditions for the existence of a local error bound for a conic inequality. In the Hilbert space case, our result improves and extends some existing results on local error bounds.

1. Introduction Let 𝑋 be a Banach space and let 𝑓 : 𝑋 β†’ R := R βˆͺ {+∞} be a proper lower semicontinuous function. Consider the following inequality: 𝑓 (π‘₯) ≀ 0.

(IE)

Let 𝑆𝑓 := {π‘₯ ∈ 𝑋 : 𝑓(π‘₯) ≀ 0} and π‘Ž ∈ 𝑆𝑓 . Recall that inequality (IE) has a local error bound at π‘Ž if there exist 𝜏, 𝛿 ∈ (0, +∞) such that 𝑑 (π‘₯, 𝑆𝑓 ) ≀ 𝜏[𝑓 (π‘₯)]+

βˆ€π‘₯ ∈ 𝐡 (π‘Ž, 𝛿) ,

(1)

where 𝑑(π‘₯, 𝑆𝑓 ) := inf{β€–π‘₯ βˆ’ 𝑒‖ : 𝑒 ∈ 𝑆𝑓 }, [𝑓(π‘₯)]+ := max{𝑓(π‘₯), 0} = 𝑑(0, 𝑓(π‘₯) + R+ ) and 𝐡(π‘Ž, 𝛿) denotes the open ball centered at π‘Ž of radius 𝛿. In the variational analysis literature, sensitivity analysis of mathematical programming and convergence analysis of some algorithms of optimization problems are deeply tied to the notion of error bound. Since Hoffman’s pioneering work [1], the study of error bounds has received extensive attention in the mathematical programming literature (for details, see [2–9] and references therein). For us, the work of Ioffe in this area will be particularly important. The author in his seminal work [10] first characterized error bound (under a different name) in terms of the subdifferentials and gave the following interesting result: if 𝑓 is locally Lipschitz at π‘Ž ∈ 𝑆𝑓 and there exist πœ‚, 𝛿 ∈ (0, +∞) such that πœ‚ ≀ 𝑑 (0, πœ•π‘“ (π‘₯))

βˆ€π‘₯ ∈ 𝐡 (π‘Ž, 𝛿) \ 𝑆𝑓 ,

(2)

then (IE) has a local error bound at π‘Ž, where πœ•π‘“(π‘₯) denotes the Clarke-Rockafellar subdifferential of 𝑓 at π‘₯ (for its definition, see Section 2). Results of the same flavour have sprung up. In 2010, in considering a general closed multifunction 𝐹 in place of 𝑓 and with the subdifferential πœ•π‘“(π‘₯) replaced by the coderivative of 𝐹, Zheng and Ng [11] extended the above-mentioned result to a generalized equation defined by a closed multifunction. Recently, Zheng and Ng [12] once again extended Ioffe’s classic result to the conic inequality case in Asplund spaces in terms of the conic subdifferential Μ‚πœ•πΎ Ξ¦ defined by FrΒ΄echet normal cone. In this paper, we will extend Ioffe’s result to the conic inequality case in the Hilbert space setting. Let 𝑋, π‘Œ be Banach spaces with π‘Œ ordered by a closed convex cone 𝐾 βŠ‚ π‘Œ. Let 𝑏 ∈ π‘Œ and Ξ¦ : 𝑋 β†’ π‘Œβˆ™ be a function, where π‘Œβˆ™ is the union of π‘Œ with an abstract infinity βˆžπ‘Œ . In this paper, we consider the following conic inequality: Ξ¦ (π‘₯) ≀𝐾 𝑏.

(CIE)

Indeed, many constraint systems in optimization can be viewed as special cases of (CIE). For example, when π‘Œ = R𝑛+π‘š , K = R𝑛+ Γ— {0}, and Ξ¦(π‘₯) = (πœ™1 (π‘₯), . . . , πœ™π‘›+π‘š (π‘₯)), (CIE) reduces to πœ™π‘– (π‘₯) ≀ 0 πœ™π‘– (π‘₯) = 0

for 𝑖 = 1, 2, . . . , 𝑛,

for 𝑖 = 𝑛 + 1, . . . , 𝑛 + π‘š,

(3)

where each πœ™π‘– is a real-valued function on 𝑋. Another important case is the following: when π‘Œ = 𝐢(𝑇, R) and

2

Abstract and Applied Analysis

𝐾 = {πœ™ ∈ 𝐢(𝑇, R) : πœ™(𝑑) β‰₯ 0 βˆ€π‘‘ ∈ 𝑇}, (CIE) reduces to constraint systems of semi-infinite optimization problems; of course, one can also view the constraint systems in conic optimization problems as examples of (CIE). Hence conic inequality systems exist quite extensively. For such a kind of systems, we consider their error bounds. Let 𝑆(Ξ¦, 𝑏, 𝐾) denote the solution set of (CIE); that is, 𝑆 (Ξ¦, 𝑏, 𝐾) := {π‘₯ ∈ 𝑋 : Ξ¦ (π‘₯) ≀𝐾 𝑏} .

(4)

We say that (CIE) has a local error bound at π‘Ž ∈ 𝑆(Ξ¦, 𝑏, 𝐾) if there exist 𝜏, 𝛿 ∈ (0, +∞) such that 𝑑 (π‘₯, 𝑆 (Ξ¦, 𝑏, 𝐾)) ≀ πœπ‘‘ (𝑏, Ξ¦ (π‘₯) + 𝐾)

βˆ€π‘₯ ∈ 𝐡 (π‘Ž, 𝛿) . (5)

It is clear that (5) reduces to (1) when π‘Œ = R and 𝐾 = R+ . The main aim of this paper is to extend the abovementioned Ioffe’s classic result on error bounds to conic inequality (CIE) with 𝑋, π‘Œ being any pair of Hilbert spaces in terms of proximal subdifferentials of vector-valued functions defined by proximal normal cone with a kind of variational behavior of β€œorder two.” In particular, we have improved Zheng and Ng’s result in the Hilbert space setting.

For a closed subset 𝐴 of 𝑋 and π‘Ž ∈ 𝐴, define, respectively, the Μ‚ π‘Ž) FrΒ΄echet normal cone and the proximal normal cone 𝑁(𝐴, and 𝑁𝑃 (𝐴, π‘Ž) of 𝐴 to π‘Ž as Μ‚ (𝐴, π‘Ž) = Μ‚πœ•π›Ώπ΄ (π‘Ž) , 𝑁

(9)

where 𝛿𝐴 denotes the indicator function of 𝐴 (i.e., 𝛿𝐴 (π‘₯) = 0 if π‘₯ ∈ 𝐴 and 𝛿𝐴 (π‘₯) = +∞ otherwise). Clearly, π‘₯βˆ— ∈ 𝑁𝑃 (𝐴, π‘Ž) if and only if each of the following two conditions holds. (1) There exist 𝜎, π‘Ÿ ∈ (0, +∞) such that ⟨π‘₯βˆ— , π‘₯ βˆ’ π‘ŽβŸ© ≀ πœŽβ€–π‘₯ βˆ’ π‘Žβ€–2

βˆ€π‘₯ ∈ 𝐡 (π‘Ž, π‘Ÿ) ∩ 𝐴.

(10)

(2) There exists πœŽσΈ€  ∈ (0, +∞) such that ⟨π‘₯βˆ— , π‘₯ βˆ’ π‘ŽβŸ© ≀ πœŽσΈ€  β€–π‘₯ βˆ’ π‘Žβ€–2

βˆ€π‘₯ ∈ 𝐴.

(11)

Let 𝑁𝑀(𝐴, π‘Ž) denote the Mordukhovich (limiting) normal cone of 𝐴 to π‘Ž; that is, π‘₯βˆ— ∈ 𝑁𝑀(𝐴, π‘Ž) if and only if there exist sequences {π‘Žπ‘› } βŠ‚ 𝐴 and {π‘₯π‘›βˆ— } βŠ‚ π‘‹βˆ— such that π‘Žπ‘› 󳨀→ π‘Ž,

2. Preliminaries

𝑁𝑃 (𝐴, π‘Ž) = πœ•π‘ƒ 𝛿𝐴 (π‘Ž) ,

π‘€βˆ—

π‘₯π‘›βˆ— 󳨀→ π‘₯βˆ— ,

π‘₯π‘›βˆ— ∈ 𝑁𝑃 (𝐴, π‘Žπ‘› ) .

(12)

It is well known that

In this section, we summarize some fundamental tools of variational analysis and nonsmooth optimization using basically standard terminology and notation; see, for example, [13–15], for more details. Let 𝑋 be a Banach space with topological dual π‘‹βˆ— and let R := R βˆͺ {+∞}. For a proper lower semicontinuous function 𝑓 : 𝑋 β†’ R, we denote by dom(𝑓) and epi(𝑓) the domain and the epigraph of 𝑓, respectively; that is, dom (𝑓) := {π‘₯ ∈ 𝑋 : 𝑓 (π‘₯) < +∞} , epi (𝑓) := {(π‘₯, 𝛼) ∈ 𝑋 Γ— 𝑅 : 𝑓 (π‘₯) ≀ 𝛼} .

(6)

Throughout the paper, the symbol β†’ always denotes the convergence relative to the distance 𝑑(β‹…, β‹…) induced by the βˆ—

𝑀

norm while the arrow 󳨀󳨀→ signifies the weakβˆ— convergence in the dual space π‘‹βˆ— . Recall that the FrΒ΄echet subdifferential of 𝑓 at π‘₯ is defined as (see [15, 16]) Μ‚πœ•π‘“ (π‘₯) := {π‘₯βˆ— ∈ π‘‹βˆ— 𝑓 (𝑒) βˆ’ 𝑓 (π‘₯) βˆ’ ⟨π‘₯βˆ— , 𝑒 βˆ’ π‘₯⟩ : lim inf β‰₯ 0} . 𝑒→π‘₯ ‖𝑒 βˆ’ π‘₯β€–

(7)

Let πœ•π‘ƒ 𝑓(π‘₯) denote the proximal subdifferential of 𝑓 at π‘₯; that is, πœ•π‘ƒ 𝑓 (π‘₯) := {π‘₯βˆ— ∈ π‘‹βˆ— : βˆƒπœŽ, πœ‚ ∈ (0, +∞) σ΅„©2 σ΅„© s.t. ⟨π‘₯βˆ— , 𝑦 βˆ’ π‘₯⟩ ≀ 𝑓 (𝑦) βˆ’ 𝑓 (π‘₯) + πœŽσ΅„©σ΅„©σ΅„©π‘¦ βˆ’ π‘₯σ΅„©σ΅„©σ΅„© βˆ€π‘¦ ∈ 𝐡 (π‘₯, πœ‚)} . (8)

Μ‚πœ•π‘“ (π‘₯) := {π‘₯βˆ— ∈ π‘‹βˆ— : (π‘₯βˆ— , βˆ’1) ∈ 𝑁 Μ‚ (epi (𝑓) , (π‘₯, 𝑓 (π‘₯)))} , πœ•π‘ƒ 𝑓 (π‘₯) := {π‘₯βˆ— ∈ π‘‹βˆ— : (π‘₯βˆ— , βˆ’1) ∈ 𝑁𝑃 (epi (𝑓) , (π‘₯, 𝑓 (π‘₯)))} . (13) Let π‘Œ be a Banach space and let 𝐾 βŠ‚ π‘Œ be a closed convex cone, which defines a preorder ≀𝐾 in π‘Œ as follows: 𝑦1 ≀𝐾 𝑦2 ⇔ 𝑦2 βˆ’ 𝑦1 ∈ 𝐾. Let 𝐾+ := {π‘¦βˆ— ∈ π‘Œβˆ— : βŸ¨π‘¦βˆ— , π‘¦βŸ© β‰₯ 0 βˆ€π‘¦ ∈ 𝐾} , σ΅„© σ΅„© I𝐾+ := {π‘¦βˆ— ∈ 𝐾+ : σ΅„©σ΅„©σ΅„©π‘¦βˆ— σ΅„©σ΅„©σ΅„© = 1} ;

(14)

usually 𝐾+ is called the dual cone of 𝐾. Let βˆžπ‘Œ denote an abstract infinity and π‘Œβˆ™ = π‘Œ βˆͺ {βˆžπ‘Œ }. For a vector-valued function 𝑓 : 𝑋 β†’ π‘Œβˆ™ , the epigraph of 𝑓 with respect to the ordering cone 𝐾 is defined by epi𝐾 (𝑓) := {(π‘₯, 𝑦) ∈ 𝑋 Γ— π‘Œ : 𝑓 (π‘₯) ≀𝐾 𝑦} .

(15)

In the vector-valued setting, in view of (13), we will use the following kinds of subdifferentials of 𝑓: Μ‚πœ• 𝑓 (π‘₯) = {π‘₯βˆ— ∈ π‘‹βˆ— 𝐾 Μ‚ (epi𝐾 (𝑓) , (π‘₯, 𝑓 (π‘₯))) =ΜΈ 0} , : (π‘₯βˆ— , βˆ’I𝐾+ ) ∩ 𝑁 𝑃 πœ•πΎ 𝑓 (π‘₯) = {π‘₯βˆ— ∈ π‘‹βˆ—

: (π‘₯βˆ— , βˆ’I𝐾+ ) ∩ 𝑁𝑃 (epi𝐾 (𝑓) , (π‘₯, 𝑓 (π‘₯))) =ΜΈ 0} , 𝑀 πœ•πΎ 𝑓 (π‘₯) = {π‘₯βˆ— ∈ π‘‹βˆ—

: (π‘₯βˆ— , βˆ’I𝐾+ ) ∩ 𝑁𝑀 (epi𝐾 (𝑓) , (π‘₯, 𝑓 (π‘₯))) =ΜΈ 0} . (16)

Abstract and Applied Analysis

3

In the special case when π‘Œ = R and 𝐾 = R+ , we have I𝐾+ = {1}, Μ‚πœ• 𝑓 (π‘₯) = Μ‚πœ•π‘“ (π‘₯) , 𝐾

𝑃 πœ•πΎ 𝑓 (π‘₯) = πœ•π‘ƒ 𝑓 (π‘₯) .

(17)

(ii) 𝑑(β‹…, 𝐴) is FrΒ΄echet differentiable at π‘₯ and πœ•π‘ƒ 𝑑 (β‹…, 𝐴) (π‘₯) = {𝑑󸀠 (β‹…, 𝐴) (π‘₯)} = {

π‘₯βˆ’π‘Ž }. β€–π‘₯ βˆ’ π‘Žβ€–

(25)

The following lemma will be useful in our analysis later. Lemma 1. Let 𝑋, π‘Œ be π»π‘–π‘™π‘π‘’π‘Ÿπ‘‘ spaces with 𝐾 βŠ‚ π‘Œ being a closed convex cone and suppose that 𝑓 : 𝑋 β†’ π‘Œβˆ™ is a function such that epi𝐾 (𝑓) is closed. Then, for any π‘₯ ∈ dom(𝑓) and 𝑦 ∈ 𝐾, 𝑁𝑃 (epi𝐾 (𝑓) , (π‘₯, 𝑓 (π‘₯) + 𝑦)) βŠ‚ 𝑁𝑃 (epi𝐾 (𝑓) , (π‘₯, 𝑓 (π‘₯))) . (18)

(iii) π‘₯ βˆ’ π‘Ž ∈ 𝑁𝑃 (𝐴, π‘Ž). Lemma 4. Let 𝑋 be a Hilbert space and let 𝑓 : 𝑋 β†’ Rβˆͺ{+∞} be a proper lower semicontinuous function. Let π‘₯0 ∈ 𝑋 and πœ€ ∈ (0, +∞) be such that 𝑓(π‘₯0 ) < inf π‘₯βˆˆπ‘‹ 𝑓(π‘₯) + πœ€. Then, for any > 0, there exist 𝑦 and 𝑧 in 𝑋 with σ΅„©σ΅„© σ΅„© 󡄩󡄩𝑧 βˆ’ π‘₯0 σ΅„©σ΅„©σ΅„© < πœ†,

Proof. Let (π‘₯βˆ— , π‘¦βˆ— ) ∈ 𝑁𝑃 (epi𝐾 (𝑓), (π‘₯, 𝑓(π‘₯) + 𝑦)). Then it follows from (11) that there exists 𝜎 ∈ (0, +∞) such that

βˆ€ (𝑒󸀠 , VσΈ€  ) ∈ epi𝐾 (𝑓) . (19)

Noting that for any 𝑦 ∈ 𝐾 (𝑒, V) ∈ epi𝐾 (𝑓) 󳨐⇒ (𝑒, V + 𝑦) ∈ epi𝐾 (𝑓)

βˆ€π‘₯ ∈ 𝑋. (27)

(21)

(22)

This means that (π‘₯βˆ— , π‘¦βˆ— ) ∈ 𝑁𝑃 (epi𝐾 (𝑓), (π‘₯, 𝑓(π‘₯))), which implies in turn that 𝑁𝑃 (epi𝐾 (𝑓) , (π‘₯, 𝑓 (π‘₯) + 𝑦)) βŠ‚ 𝑁𝑃 (epi𝐾 (𝑓) , (π‘₯, 𝑓 (π‘₯))) , (23) and thus completes the proof of the lemma. In establishing our main results, it will be crucial to present the following lemmas (cf. Chapter 1, Proposition 2.11 and Theorem 6.1 in [14] and Chapter 8, Theorem 8.3.3 in [16]). Lemma 2. Let 𝑋 be a Hilbert space and let 𝑓, 𝑔 : 𝑋 β†’ R βˆͺ {+∞} be proper lower semicontinuous and suppose that 𝑔 is twice continuously differentiable at π‘₯0 ∈ dom 𝑓. Then πœ•π‘ƒ (𝑓 + 𝑔) (π‘₯0 ) = πœ•π‘ƒ 𝑓 (π‘₯0 ) + 𝑔󸀠 (π‘₯0 ) ,

πœ€ σ΅„©σ΅„© πœ€σ΅„© σ΅„©2 σ΅„©2 󡄩𝑦 βˆ’ 𝑧󡄩󡄩󡄩 ≀ 𝑓 (π‘₯) + 2 σ΅„©σ΅„©σ΅„©π‘₯ βˆ’ 𝑦󡄩󡄩󡄩 πœ†2 σ΅„© πœ†

As an extension of Ioffe’s classic results on error bounds to conic inequality in Asplund spaces, Zheng and Ng [12] proved Theorem I.

⟨(π‘₯βˆ— , π‘¦βˆ— ) , (𝑒, V) βˆ’ (π‘₯, 𝑓 (π‘₯))⟩ βˆ€ (𝑒, V) ∈ epi𝐾 (𝑓) .

𝑓 (𝑧) +

3. Main Results

one has σ΅„© σ΅„©2 ≀ πœŽσ΅„©σ΅„©σ΅„©(𝑒, V) βˆ’ (π‘₯, 𝑓 (π‘₯))σ΅„©σ΅„©σ΅„©

having the following property:

(20)

and that (𝑒, V) βˆ’ (π‘₯, 𝑓 (π‘₯)) = (𝑒, V + 𝑦) βˆ’ (π‘₯, 𝑓 (π‘₯) + 𝑦) ,

(26)

𝑓 (𝑦) ≀ 𝑓 (π‘₯0 ) ,

⟨(π‘₯βˆ— , π‘¦βˆ— ) , (𝑒󸀠 , VσΈ€  ) βˆ’ (π‘₯, 𝑓 (π‘₯) + 𝑦)⟩ σ΅„© σ΅„©2 ≀ πœŽσ΅„©σ΅„©σ΅„©σ΅„©(𝑒󸀠 , VσΈ€  ) βˆ’ (π‘₯, 𝑓 (π‘₯) + 𝑦)σ΅„©σ΅„©σ΅„©σ΅„©

σ΅„© σ΅„©σ΅„© 󡄩󡄩𝑦 βˆ’ 𝑧󡄩󡄩󡄩 < πœ†

(24)

where 𝑔󸀠 (π‘₯0 ) denotes the derivative of 𝑔 at π‘₯0 . Lemma 3. Let 𝐴 be a nonempty closed subset of a Hilbert space 𝑋 and let π‘₯ ∈ 𝑋 \ 𝐴 be such that πœ•π‘ƒ 𝑑(β‹…, 𝐴)(π‘₯) =ΜΈ 0. Then there exists π‘Ž ∈ 𝐴 satisfying the following properties. (i) The set of closest points 𝑃𝐴(π‘₯) in 𝐴 to π‘₯ is the singleton {π‘Ž}.

Theorem I. Let 𝑋, π‘Œ be Asplund spaces with 𝐾 βŠ‚ π‘Œ being a closed convex cone. Let Ξ¦ : 𝑋 β†’ π‘Œβˆ™ be a function such that its 𝐾-epigraph is closed. Let π‘Ž ∈ 𝑆(Ξ¦, 𝑏, 𝐾) and πœ‚, π‘Ÿ ∈ (0, +∞) be such that πœ‚ ≀ 𝑑 (0, Μ‚πœ•πΎ Ξ¦ (π‘₯))

βˆ€π‘₯ ∈ 𝐡 (π‘Ž, π‘Ÿ) \ 𝑆 (Ξ¦, 𝑏, 𝐾) .

(28)

Then conic inequality (CIE) has a local error bound at π‘Ž. 𝑃 Ξ¦(π‘₯) βŠ‚ Μ‚πœ•πΎ Ξ¦(π‘₯) for any π‘₯ ∈ It is well known that πœ•πΎ dom Ξ¦. So condition (28) will be much easier to be satisfied if Μ‚πœ• Ξ¦(π‘₯) is replaced by πœ•π‘ƒ Ξ¦(π‘₯). Taking this fact into account, 𝐾 𝐾 Theorem 6 provides a sharper result with Μ‚πœ•πΎ Ξ¦ replaced by 𝑃 Ξ¦ and gives a relationship between the modulus of error πœ•πΎ bound and corresponding radius which were not mentioned in Theorem I. Its proof, which is slightly different from the one of Theorem I in [12], is based on a smooth variational principle rather than the Ekeland variational principle. Since the proof of Theorem 6 proceeds by contradiction, we give the following proposition to describe quantitative properties for a point that violates (5).

Proposition 5. Let 𝑋, π‘Œ be Hilbert spaces with 𝐾 βŠ‚ π‘Œ being a closed convex cone. Let Ξ¦ : 𝑋 β†’ π‘Œβˆ™ be a function such that its 𝐾-epigraph is closed. Let π‘Ž ∈ 𝑆(Ξ¦, 𝑏, 𝐾), π‘₯0 ∈ 𝑋, and 𝜏 ∈ (0, +∞) be such that πœπ‘‘ (𝑏, Ξ¦ (π‘₯0 ) + 𝐾) < 𝑑 (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾)) .

(29)

4

Abstract and Applied Analysis

Then there exist (𝑒, V) ∈ epi𝐾 (Ξ¦), (Μƒ 𝑒, ΜƒV) ∈ 𝑋 Γ— π‘Œ satisfying the following properties: ‖𝑒 βˆ’ 𝑒̃‖ < 𝑑 (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾)) , β€–V βˆ’ ΜƒVβ€– < 𝑑 (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾)) , σ΅„© σ΅„© σ΅„© σ΅„©σ΅„© 󡄩󡄩𝑒 βˆ’ π‘₯0 σ΅„©σ΅„©σ΅„© < σ΅„©σ΅„©σ΅„©π‘₯0 βˆ’ π‘Žσ΅„©σ΅„©σ΅„© , (0, 0) ∈ {0} Γ— {

𝑒 βˆ‰ 𝑆 (Ξ¦, 𝑏, 𝐾) ,

Vβˆ’π‘ 2 (𝑒 βˆ’ 𝑒̃, V βˆ’ ΜƒV) }+ β€–V βˆ’ 𝑏‖ πœπ‘‘ (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾))

(30) (31)

(32)

+ 𝑁𝑃 (epi𝐾 (Ξ¦) , (𝑒, V)) . Proof. It follows from (29) that there exists 𝑦0 ∈ 𝐾 such that σ΅„© σ΅„© 𝜏 󡄩󡄩󡄩𝑏 βˆ’ Ξ¦ (π‘₯0 ) βˆ’ 𝑦0 σ΅„©σ΅„©σ΅„© < 𝑑 (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾)) .

(33)

Define the function πœ™ by πœ™(π‘₯, 𝑦) := ‖𝑦 βˆ’ 𝑏‖ + 𝛿epi𝐾 (Ξ¦) (π‘₯, 𝑦) for all (π‘₯, 𝑦) ∈ 𝑋 Γ— π‘Œ. Then πœ™ is lower semicontinuous (due to the closedness of epi𝐾 (Ξ¦)) and 𝑑 (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾)) πœ™ (π‘₯0 , Ξ¦ (π‘₯0 ) + 𝑦0 ) < 𝜏 ≀ inf {πœ™ (π‘₯, 𝑦) : (π‘₯, 𝑦) ∈ 𝑋 Γ— π‘Œ}

(34)

This and Lemma 4 imply that there exist (Μƒ 𝑒, ΜƒV), (𝑒, V) ∈ 𝑋 Γ— π‘Œ such that σ΅„©2 σ΅„© σ΅„©2 1/2 σ΅„© (󡄩󡄩󡄩𝑒 βˆ’ π‘₯0 σ΅„©σ΅„©σ΅„© + σ΅„©σ΅„©σ΅„©V βˆ’ Ξ¦ (π‘₯0 ) βˆ’ 𝑦0 σ΅„©σ΅„©σ΅„© ) < 𝑑 (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾)) , (35) 1/2

< 𝑑 (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾)) ,

(36)

𝑒, ΜƒV)β€–2 β€–(𝑒, V) βˆ’ (Μƒ πœπ‘‘ (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾))

πœ™ (𝑒, V) +

σ΅„©2 σ΅„©σ΅„© 𝑒, ΜƒV)σ΅„©σ΅„©σ΅„© σ΅„©(π‘₯, 𝑦) βˆ’ (Μƒ ≀ πœ™ (π‘₯, 𝑦) + σ΅„© πœπ‘‘ (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾))

(37)

(38)

βˆ€ (π‘₯, 𝑦) ∈ 𝑋 Γ— π‘Œ. (42)

It follows from (40) and Lemma 3 that πœ“ is twice continuously differentiable at (𝑒, V) and πœ“σΈ€  (𝑒, V) = {0} Γ— {

Vβˆ’π‘ 2 (𝑒 βˆ’ 𝑒̃, V βˆ’ ΜƒV) }+ . β€–V βˆ’ 𝑏‖ πœπ‘‘ (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾))

(43)

So applying Lemma 2 to (41) leads us to the inclusions (0, 0) ∈ {0} Γ— {

2 (𝑒 βˆ’ 𝑒̃, V βˆ’ ΜƒV) Vβˆ’π‘ }+ β€–V βˆ’ 𝑏‖ πœπ‘‘ (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾))

+ πœ•π‘ƒ 𝛿epi𝐾 (Ξ¦) (𝑒, V) Vβˆ’π‘ 2 (𝑒 βˆ’ 𝑒̃, V βˆ’ ΜƒV) = {0} Γ— { }+ β€–V βˆ’ 𝑏‖ πœπ‘‘ (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾))

(44)

which justifies (32) and thus completes the proof of the proposition. With the preparation that we have done, the proof of our main result is now straightforward. Theorem 6. Let 𝑋, π‘Œ be Hilbert spaces with 𝐾 βŠ‚ π‘Œ being a closed convex cone. Let Ξ¦ : 𝑋 β†’ π‘Œβˆ™ be a function such that its 𝐾-epigraph is closed. Let π‘Ž ∈ 𝑆(Ξ¦, 𝑏, 𝐾) and πœ‚, π‘Ÿ ∈ (0, +∞) be such that βˆ€π‘₯ ∈ 𝐡 (π‘Ž, π‘Ÿ) \ 𝑆 (Ξ¦, 𝑏, 𝐾) .

(45)

π‘Ÿ βˆ€π‘₯ ∈ 𝐡 (π‘Ž, ) . 2

(46)

Then, one has 𝑑 (π‘₯, 𝑆 (Ξ¦, 𝑏, 𝐾))

Proof. The proof proceeds by contradiction. Namely, suppose to the contrary that (46) is not true; then, there exists π‘₯0 ∈ 𝐡(π‘Ž, π‘Ÿ/2) such that 2 𝑑 (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾)) > (2 + ) 𝑑 (𝑏, Ξ¦ (π‘₯0 ) + 𝐾) , πœ‚

which also implies that (39)

and thus verifies (31), while (37) together with (π‘Ž, 𝑏) ∈ epi𝐾 (Ξ¦) gives us (𝑒, V) ∈ dom(πœ™) = epi𝐾 (Ξ¦) and so Ξ¦(𝑒) ≀𝐾 V. It follows from this and (39) that V =ΜΈ 𝑏.

σ΅„©2 σ΅„©σ΅„© 𝑒, ΜƒV)σ΅„©σ΅„©σ΅„© σ΅„©(π‘₯, 𝑦) βˆ’ (Μƒ σ΅„© σ΅„© πœ“ (π‘₯, 𝑦) := 󡄩󡄩󡄩𝑦 βˆ’ 𝑏󡄩󡄩󡄩 + σ΅„© πœπ‘‘ (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾))

2 ≀ (2 + ) 𝑑 (𝑏, Ξ¦ (π‘₯) + 𝐾) πœ‚

From (36), it is easy to verify that (30) holds. Applying (35) and π‘Ž ∈ 𝑆(Ξ¦, 𝑏, 𝐾) leads us to the following:

𝑒 βˆ‰ 𝑆 (Ξ¦, 𝑏, 𝐾) ,

(41)

where

𝑃 Ξ¦ (π‘₯)) πœ‚ ≀ 𝑑 (0, πœ•πΎ

βˆ€ (π‘₯, 𝑦) ∈ 𝑋 Γ— π‘Œ.

σ΅„© σ΅„© σ΅„© σ΅„©σ΅„© 󡄩󡄩𝑒 βˆ’ π‘₯0 σ΅„©σ΅„©σ΅„© < 𝑑 (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾)) ≀ σ΅„©σ΅„©σ΅„©π‘₯0 βˆ’ π‘Žσ΅„©σ΅„©σ΅„© ,

(0, 0) ∈ πœ•π‘ƒ (πœ“ + 𝛿epi𝐾 (Ξ¦) ) (𝑒, V) ,

+ 𝑁𝑃 (epi𝐾 (Ξ¦) , (𝑒, V)) ,

𝑑 (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾)) + . 𝜏

(‖𝑒 βˆ’ 𝑒̃‖2 + β€–V βˆ’ ΜƒVβ€–2 )

Furthermore, (37) implies that

(40)

(47)

and consequently it follows from Proposition 5 that there 𝑒, ΜƒV) ∈ 𝑋 Γ— π‘Œ such that (30), (31), exist (𝑒, V) ∈ epi𝐾 (Ξ¦), (Μƒ and (32) hold. Then, one has σ΅„© σ΅„© σ΅„© σ΅„© ‖𝑒 βˆ’ π‘Žβ€– ≀ 󡄩󡄩󡄩𝑒 βˆ’ π‘₯0 σ΅„©σ΅„©σ΅„© + σ΅„©σ΅„©σ΅„©π‘₯0 βˆ’ π‘Žσ΅„©σ΅„©σ΅„©

σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© σ΅„© < σ΅„©σ΅„©σ΅„©π‘₯0 βˆ’ π‘Žσ΅„©σ΅„©σ΅„© + σ΅„©σ΅„©σ΅„©π‘₯0 βˆ’ π‘Žσ΅„©σ΅„©σ΅„© = 2 σ΅„©σ΅„©σ΅„©π‘₯0 βˆ’ π‘Žσ΅„©σ΅„©σ΅„© < π‘Ÿ,

(48)

Abstract and Applied Analysis

5 Noting that VσΈ€  βˆ’ Ξ¦(𝑒) ∈ 𝐾 and 𝐾 is a cone, one has

which implies 𝑒 ∈ 𝐡 (π‘Ž, π‘Ÿ) \ 𝑆 (Ξ¦, 𝑏, 𝐾) .

(49)

Since (𝑒, V) ∈ epi𝐾 (Ξ¦), we can take 𝑧 ∈ 𝐾 such that V = Ξ¦(𝑒) + 𝑧. Then, by Lemma 1, one has 𝑁𝑃 (epi𝐾 (Ξ¦) , (𝑒, Ξ¦ (𝑒) + 𝑧)) βŠ‚ 𝑁𝑃 (epi𝐾 (Ξ¦) , (𝑒, Ξ¦ (𝑒))) . (50)

⟨

which means that Vβˆ’π‘ V βˆ’ ΜƒV + ∈ 𝐾+ . β€–V βˆ’ 𝑏‖ (1 + 1/πœ‚) 𝑑 (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾))

It follows from (32) and (50) that (βˆ’

Vβˆ’π‘ V βˆ’ ΜƒV βˆ’ ) β€–V βˆ’ 𝑏‖ (1 + 1/πœ‚) 𝑑 (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾))

π‘₯βˆ— := (βˆ’ (51)

Noting that (𝑒, Ξ¦(𝑒)) + {0} Γ— 𝐾 βŠ‚ epi𝐾 (Ξ¦), this implies that ((V βˆ’ 𝑏)/β€–V βˆ’ 𝑏‖) + ((V βˆ’ ΜƒV)/(1 + 1/πœ‚)𝑑(π‘₯0 , 𝑆(Ξ¦, 𝑏, 𝐾))) ∈ 𝐾+ . Indeed, due to the definition of proximal normal cone, there exists 𝜎 ∈ (0, +∞) such that

+ π‘§βˆ— := (

𝑒 βˆ’ 𝑒̃ , ⟨(βˆ’ (1 + 1/πœ‚) 𝑑 (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾))

(57)

V βˆ’ ΜƒV ) (1 + 1/πœ‚) 𝑑 (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾))

σ΅„©σ΅„© σ΅„© Vβˆ’π‘ Γ— σ΅„©σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© β€–V βˆ’ 𝑏‖

(52)

σ΅„©σ΅„©βˆ’1 V βˆ’ ΜƒV σ΅„©σ΅„© σ΅„©σ΅„© . + (1 + 1/πœ‚) 𝑑 (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾)) σ΅„©σ΅„©σ΅„©

σ΅„©2 σ΅„© ≀ πœŽσ΅„©σ΅„©σ΅„©σ΅„©(𝑒󸀠 , VσΈ€  ) βˆ’ (𝑒, Ξ¦ (𝑒))σ΅„©σ΅„©σ΅„©σ΅„© for all (𝑒󸀠 , VσΈ€  ) ∈ epi𝐾 (Ξ¦). Namely,

𝑃 Ξ¦(𝑒). Then (π‘₯βˆ— βˆ’π‘§βˆ— ) ∈ 𝑁𝑃 (epi𝐾 (Ξ¦), (𝑒, Ξ¦(𝑒))) and so π‘₯βˆ— ∈ πœ•πΎ Combining this with (30) implies that

𝑒 βˆ’ 𝑒̃ , 𝑒󸀠 βˆ’ π‘’βŸ© (1 + 1/πœ‚) 𝑑 (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾))

Vβˆ’π‘ V βˆ’ ΜƒV βˆ’βŸ¨ + , β€–V βˆ’ 𝑏‖ (1 + 1/πœ‚) 𝑑 (π‘₯0 , 𝑆 (Ξ¦, 𝑏, 𝐾))

𝑃 Ξ¦ (𝑒)) 𝑑 (0, πœ•πΎ

σ΅„© σ΅„© β©½ σ΅„©σ΅„©σ΅„©π‘₯βˆ— σ΅„©σ΅„©σ΅„© ≀ (53)
0 such that, be such that 0 βˆ‰ πœ•πΎ for any 𝑏 ∈ Ξ¦(𝐡(π‘Ž, 𝛾)) + 𝐾, the corresponding conic inequality (CIE) has a local error bound at each π‘₯ ∈ 𝐡(π‘Ž, 𝛾) ∩ 𝑆(Ξ¦, 𝑏, 𝐾). Proof. By Theorem 6, it suffices to show that there exist π‘Ÿ, πœ‚ > 𝑃 Ξ¦(π‘₯)) β‰₯ πœ‚ for all π‘₯ ∈ 𝐡(π‘Ž, π‘Ÿ). If it is not the 0 such that 𝑑(0, πœ•πΎ case, we can find a sequence {π‘₯𝑛 } in 𝑋 converging to π‘Ž and satisfying 1 𝑃 Ξ¦ (π‘₯𝑛 )) < 𝑑 (0, πœ•πΎ 𝑛

βˆ€π‘› ∈ N.

(π‘₯π‘›βˆ— , βˆ’π‘¦π‘›βˆ— )

(63)

∈ 𝑁𝑃 (epi𝐾 (Ξ¦) , (π‘₯𝑛 , Ξ¦ (π‘₯𝑛 ))) .

Without loss of generality, we assume that {π‘¦π‘›βˆ— } converges to π‘¦βˆ— ∈ 𝐾+ with the weakβˆ— topology (taking a subsequence if necessary). Taking the continuity assumption of Ξ¦ into consideration, it follows from (63) that (0, βˆ’π‘¦βˆ— ) ∈ 𝑁𝑀 (epi𝐾 (Ξ¦) , (π‘Ž, Ξ¦ (π‘Ž))) .

(64)

We claim that π‘¦βˆ— =ΜΈ 0. Granting this, one has (0, βˆ’π‘¦βˆ— /β€–π‘¦βˆ— β€–) ∈ 𝑁𝑀(epi𝐾 (Ξ¦), (π‘Ž, Ξ¦(π‘Ž))), which contradicts the assumption 𝑀 Ξ¦(π‘Ž). It remains to show that π‘¦βˆ— =ΜΈ 0. Since that 0 βˆ‰ πœ•πΎ int(𝐾) =ΜΈ 0, there exist π‘˜ ∈ 𝐾 and 𝛿 > 0 such that π‘˜ + π›Ώπ΅π‘Œ βŠ‚ 𝐾. Hence, 0 ≀ inf {βŸ¨π‘¦π‘›βˆ— , π‘¦βŸ© : 𝑦 ∈ π‘˜ + π›Ώπ΅π‘Œ } σ΅„© σ΅„© = βŸ¨π‘¦π‘›βˆ— , π‘˜βŸ© βˆ’ 𝛿 σ΅„©σ΅„©σ΅„©π‘¦π‘›βˆ— σ΅„©σ΅„©σ΅„© = βŸ¨π‘¦π‘›βˆ— , π‘˜βŸ© βˆ’ 𝛿,

(65)

π‘€βˆ—

and so 𝛿 ≀ βŸ¨π‘¦π‘›βˆ— , π‘˜βŸ©. Since π‘¦π‘›βˆ— 󳨀󳨀→ π‘¦βˆ— , 𝛿 ≀ βŸ¨π‘¦βˆ— , π‘˜βŸ©. This shows that π‘¦βˆ— =ΜΈ 0, which completes the proof. It is important to note that int(𝐾) =ΜΈ 0 plays an important role in the validity of Theorem 9, as the following example shows. Hence the assumption of int(𝐾) =ΜΈ 0 in Theorem 9 is not superfluous. Example 10 (failure of having a local error bound). Let 𝑋 = π‘Œ = β„“2 , 𝐾 = β„“+2 , π‘Ž = 𝑏 = 0, and Ξ¦(π‘₯) = (π‘₯1 /2, π‘₯2 /22 , . . . , π‘₯𝑛 /2𝑛 , . . .) for all π‘₯ ∈ β„“2 . Then Ξ¦ is 𝑀 Ξ¦(π‘Ž) and 𝑆(Ξ¦, 𝑏, 𝐾) = β„“βˆ’2 . continuous, 0 βˆ‰ πœ•πΎ It is well known and easy to check that int(𝐾) = int(β„“+2 ) = 0. Take a sequence {𝑒𝑛 } in β„“2 , where 1 𝑒𝑛 = (0, . . . , 0, , 0, . . .) . ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 𝑛

(66)

𝑛

Then {𝑒𝑛 } converges to π‘Ž = 0 ∈ 𝑆(Ξ¦, 𝑏, 𝐾) and Ξ¦(𝑒𝑛 ) = (0, . . . , 0, 1/2𝑛 β‹… 𝑛, 0, . . .). ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 𝑛

𝑑 (𝑏, Ξ¦ (𝑒𝑛 ) + 𝐾) = 𝑑 (βˆ’Ξ¦ (𝑒𝑛 ) , 𝐾) = 𝑑 (βˆ’Ξ¦ (𝑒𝑛 ) , β„“+2 ) σ΅„© σ΅„© = inf2 σ΅„©σ΅„©σ΅„©βˆ’Ξ¦ (𝑒𝑛 ) βˆ’ 𝑦󡄩󡄩󡄩 π‘¦βˆˆβ„“ +

σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© 1 σ΅„©σ΅„© σ΅„© = inf2 σ΅„©σ΅„©σ΅„©(0, . . . , 0, βˆ’ 𝑛 , 0, . . .) βˆ’ 𝑦󡄩󡄩󡄩󡄩 ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 2 β‹… 𝑛 π‘¦βˆˆβ„“+ σ΅„© σ΅„©σ΅„© σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© 𝑛 =

(62)

σ΅„©σ΅„© βˆ— σ΅„©σ΅„© 1 σ΅„©σ΅„©π‘₯𝑛 σ΅„©σ΅„© < , 𝑛

σ΅„©σ΅„© βˆ— σ΅„©σ΅„© 󡄩󡄩𝑦𝑛 σ΅„©σ΅„© = 1,

1 ⋅𝑛

2𝑛

(67)

Abstract and Applied Analysis

7

and that 𝑑 (𝑒𝑛 , 𝑆 (Ξ¦, 𝑏, 𝐾)) = 𝑑 (𝑒𝑛 , β„“βˆ’2 ) σ΅„© σ΅„© = inf2 󡄩󡄩󡄩𝑒𝑛 βˆ’ π‘₯σ΅„©σ΅„©σ΅„© π‘₯βˆˆβ„“ βˆ’

σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© 1 σ΅„© σ΅„©σ΅„© = inf2 σ΅„©σ΅„©σ΅„©(0, . . . , 0, , 0, . . .) βˆ’ π‘₯σ΅„©σ΅„©σ΅„©σ΅„© ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 𝑛 π‘₯βˆˆβ„“βˆ’ σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© 𝑛 σ΅„©σ΅„© σ΅„© =

(68)

1 , 𝑛

it follows that 𝑛𝑑 (𝑏, Ξ¦ (𝑒𝑛 ) + 𝐾) =

1 1 < = 𝑑 (𝑒𝑛 , 𝑆 (Ξ¦, 𝑏, 𝐾)) 2𝑛 𝑛

βˆ€π‘› ∈ N.

(69)

Hence the conic inequality (CIE) does not have a local error bound at π‘Ž. This situation occurs, of course, because int(𝐾) is empty.

Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments This research was supported by the National Natural Science Foundation of China (Grant nos. 11371312 and 11261067) and IRTSTYN.

References [1] A. J. Hoffman, β€œOn approximate solutions of systems of linear inequalities,” Journal of Research of the National Bureau of Standards, vol. 49, pp. 263–265, 1952. [2] D. AzΒ΄e and J. N. Corvellec, β€œCharacterizations of error bounds for lower semicontinuous functions on metric spaces,” ESAIM. Control, Optimisation and Calculus of Variations, vol. 10, no. 3, pp. 409–425, 2004. [3] A. D. Ioffe, β€œMetric regularity and subdifferential calculus,” Russian Mathematical Surveys, vol. 55, no. 3, pp. 501–558, 2000. [4] A. S. Lewis and J. S. Pang, β€œError bounds for convex inequality systems,” in Generalized Convexity, Generalized Monotonicity: Recent Results, J. P. Crouzeix, J. E. Martinez-Legaz, and M. Volle, Eds., vol. 27 of Nonconvex Optimization and Its Applications, pp. 75–110, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998. [5] K. F. Ng and X. Y. Zheng, β€œError bounds for lower semicontinuous functions in normed spaces,” SIAM Journal on Optimization, vol. 12, no. 1, pp. 1–17, 2001. [6] H. van Ngai and M. ThΒ΄era, β€œError bounds for systems of lower semicontinuous functions in Asplund spaces,” Mathematical Programming, vol. 116, no. 1-2, pp. 397–427, 2009. [7] J. S. Pang, β€œError bounds in mathematical programming,” Mathematical Programming B, vol. 79, no. 1–3, pp. 299–332, 1997.

[8] Z. Wu and J. J. Ye, β€œOn error bounds for lower semicontinuous functions,” Mathematical Programming, vol. 92, no. 2, pp. 301– 314, 2002. [9] C. Zalinescu, β€œWeak sharp minima, well-behaving functions and global error bounds for convex inequalities in Banach spaces,” in Proceedings of the 12th Baikal International Conference on Optimization Methods and Their Applications, pp. 272– 284, Irkutsk, Russia, 2001. [10] A. D. Ioffe, β€œRegular points of Lipschitz functions,” Transactions of the American Mathematical Society, vol. 251, pp. 61–69, 1979. [11] X. Y. Zheng and K. F. Ng, β€œMetric subregularity and calmness for nonconvex generalized equations in Banach spaces,” SIAM Journal on Optimization, vol. 20, no. 5, pp. 2119–2136, 2010. [12] X. Y. Zheng and K. F. Ng, β€œError bound for conic inequality,” Vietnam Journal of Mathematics. In press. [13] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, NY, USA, 1983. [14] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York, NY, USA, 1998. [15] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I/II, Springer, Berlin, Germany, 2006. [16] W. Schirotzek, Nonsmooth Analysis, Springer, Berlin, Germany, 2007. [17] F. H. Clarke, Yu. S. Ledyaev, and P. R. Wolenski, β€œProximal analysis and minimization principles,” Journal of Mathematical Analysis and Applications, vol. 196, no. 2, pp. 722–735, 1995.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014