Evolution by gene duplication of Medicago truncatula

0 downloads 0 Views 535KB Size Report
Delphinum ajacis. Trochodendron aralioides. PnPI-1 (AF052855). PnPI-2 (AF052856). PapsPI-1 (EF071994). PapspI-2 (EF071995). ScPI (AF130871) ... Page 8 ...
Evolution

by

gene

duplication

of

Medicago

truncatula

PISTILLATA-like

transcription factors. Roque E. et al.

SUPPLEMENTARY DATA

Fig. S1. Southern blot analysis of the Medicago truncatula PI-like genes. MtPI and MtNGL9 are present in the Medicago genome as single copies.

Fig. S2. Molecular characterization of the Tnt1 insertions in the MtNGL9 locus. A. Schematic diagram of the genomic structure of the MtNGL9 gene. In NF14948 lines (mtngl9-1), Tnt1 was inserted 360 bp downstream of the ATG codon, at the second exon. In NF12316 lines (mtngl9-2). Tnt1 was inserted 183 bp downstream of the ATG codon, at the end of the first exon. B. Genotyping of mtngl9-1 mutant using NGL9-F/Tnt1-R (upper) and NGL9-291/NGL9612G (lower) primer pairs. Homozygous plants are indicated in circled numbers. C. Genotyping of mtngl9-2 mutant using NGL9-F/Tnt1-R (upper) and NGL9-F/NGL9-590G (lower) primer pairs. Homozygous plants are indicated in circled numbers. D. RT-PCR results show no detectable MtNGL9 expression in four homozygous mutant plants. MWM: molecular weight markers; WT: wild-type control.

Fig. S3. qRT-PCR expression analyses of loss-of-function plants. A. mRNA levels of the Bfunction genes in floral buds of mtpi-2. B. mRNA levels of the B-function genes in floral buds of mtngl9-1 and mtngl9-2. The height of the bars for a given gene indicates relative differences in expression levels in floral buds. The expression value of all B-function genes in WT was set to 1.00. Expression levels were plotted relative to this value.

Fig. S4. Analyses of 35S:MtPI and 35S:MtNGL9 plants. A. Transcript abundance of MtPI in 35S::MtPI plants. The expression value of MtPI in plant number 7 was set to 1.00. Expression levels were plotted relative to this value. Numbers indicate the transgenic line. Underlined number indicates plants classified as medium phenotype, and the remaining plants showed the strong phenotype. B. Transcript abundance of MtNGL9 in 35S::MtNGL9 plants. The expression value of MtPI in plant number 19 was set to 1.00. The number of the transgenic line is indicated. Underlined number indicates plants classified as weak phenotype, and the remaining plants showed the medium phenotype. C. Relative proportion of phenotypes observed in plants overexpressing MtPI (No of transgenic plants= 17) or MtNGL9 (No of transgenic plants= 33).

Fig. S5. RT-PCR expression analyses in pi-1/pi-1; 35S:MtPI and pi-1/pi-1; 35S:MtNGL9 complementation lines. A. Expression of MtPI in pi-1/pi-1; 35S:MtPI lines. B. Expression of MtNGL9 in pi-1/pi-1; 35S:MtNGL9 lines. C. Comparative expression level of MtPI and MtNGL9 in their respective complementation lines. Levels were quantified by measuring the intensity of individual bands using ImageJ densitometry software, and expressed relative to UBIQUITIN signal, as a measure of transcript relative abundance in the different samples. The numbers of the transgenic lines are indicated.

Fig. S6. Analyses of the pi-1 complementation by MtPI and MtNGL9. A. Genotyping of some individuals of the complementation lines by MtPI. B. Genotyping of some individuals of the complementation lines by MtNGL9. Genomic PCR product (729 bp) was digested by BseGI. pi-1/PI; 35::MtPI or pi-1/PI; 35S::MtNGL9 background resulting in three fragments: 729, 451 and 278 bp. Two fragments (278 and 451 bp) were obtained in the case of wild-type plants (PI/PI; 35S::MtPI or PI/PI; 35S::MtNGL9. BseGI does not cut the 729 bp PCR fragment in pi-1/pi-1; 35::MtPI or pi-1/pi-1; 35::MtNGL9 background (underlined numbers).

Classification

Taxa

GYMNOSPERMS Coniferales Pinaceae

Picea abies

Cupressaceae

Pinus radiata Cryptomeria japonica

Gnetaceae

Gnetum gnemon

ANGIOSPERMS Nymphaceae

Nuphar japonica Nuphar advena Euryale ferox

MAGNOLIIDS Magnoliaceae

Liriodendrum tulipifera Magnolia praecocissima

PI-homologues

DAL13-1 (AF158539) DAL13-2 (AF158541) PrDGL (AF120097) CryMADS2 (AF097747) CryMADS1 (AF097746) GnegGGM2 (AJ132201) GnegGGM13 (AJ132219) GnegGGM15 (AJ251555) Nj PI-1 (AB158359) NjPI-2 (AB158360) Nu.ad.PI (AY337736) EfPI (AB158350) LtPI (AF052864) MpMADS8 (AB050650)

Laurales Calycanthaceae Lauraceae Piperales Piperaceae

MONOCOTS Poales Poaceae

Calycanthus floridus Persea americana

CfPI-1 (AF230708) CfPI-2 (AF230709) Pe.am.PI (AY337738)

Peperomia hirta Piper magnificum

PhiPI (AF052865) PmPI-1 (AF052866) PmPI-2 (AF052867)

Oryza sativa

OsMADS2 (L37526) OsMADS4 (L37527) nmads1 (AF095645) ZMM16 (AJ292959) ZMM18 (AJ292960) ZMM29 (AJ292961)

Zea mays Liliales Liliaceae Phalaenopsis equestris

PeMADS6 (AY678299)

Sagittaria montevidensis

SmPI (AF230712)

Ranunculales

Papaver nadicaule

Papaveraceae

Papaver somniferum

PnPI-1 (AF052855) PnPI-2 (AF052856) PapsPI-1 (EF071994) PapspI-2 (EF071995) ScPI (AF130871) AkqPI (AY162837) RbPI-1 (AF052859) RbPI-2 (AF052860)

Alismatales Alismataceae EUDICOTS (early divergent eudicots)

Sanguinaria canadiensis Akebia kinata Ranunculus bulbosus Ranunculus ficaria Ranunculaceae Delphinum ajacis Trochodendron aralioides

RfPI-1 (AF052858) RfPI-2 (AF130872) DaPI (AF052862) Tr.ar. PI-1 (EF436259) Tr.ar. PI-2 (EF436260)

CORE EUDICOTS Caryophyllales Caryophyllaceae

Silene latifolia

SLM3 (X89108)

Saxifragales Saxifragaceae

Ribes sanguineum

Ri.sa. PI (AY337742)

Euforbiáceas Euphorbiaceae

Ricinus communis

Ri.co. PI (XM_002520262)

Vitales Vitaceae

Vitis Vinifera

Trochodendraceae

Gymnosperm B-class genes

ROSIDS

VvPI (DQ059750.1)

Myrtales Myrtaceae

Eucalyptus grandis

Eurosid I Cucurbitales Cucurbitaceae

Cucumis sativus

Fabales Fabaceae

Medicago sativa

EGM2 (AF029976)

CUM26 (AF043255)

Lotus japonicus

MsNGL9 (AF335473) MsPI (KJ470631) MtPI (FJ403468) MtNGL9 (FJ403469) PsPI (AY842791) PsNGL9 (KJ470632) LjPIa (AY770398) LjPIb (AY770399)

Glycine max

GmPI1 (BT089901) GmPI2 (BT090476)

Medicago trunctula Pisum sativum

Malvales Malvaceae GhMADS12 (FJ409869) Rosales Rosaceae

Gossypium hirsutum

EurosidsII

Malus domestica Rosa rugosa

MdPI (AJ291490) MASAKO BP (AB038462) AtPI (D30807)

Brassicales Brassicaceae

Arabidopsis Thaliana

ASTERIDS Cornales Hydrangeaceae

Hydrangea macrophylla HmPI (AF230711)

EuasteridsI Antirrhinum majus Lamiales Plantaginaceae Solanales Solanaceae

AmGLO (X68831) Nicotiana tabacum Petunia hybrida NtGLO (X67959) PhGLO1 (M91190) PhGLO2 (X69947)

Euasterids II Asterales Asteraceae

Gerbera hybrida Chrysanthemun morifolium Helliantus annuus

GGLO1(AJ009726) CDM86 (AY173061) He.an.PI (AY157725)

Table S1. Sequences from different plant species used in the elaboration of the phylogenetic tree with their respective GenBank accession numbers.

Model

Log-likelihood (l)

Parameter estimates

Amino acids

G&Y

-10937.758

ω = 0.147

-

FRM

-10773.329

-

-

BSMN

-10837.050

ω0 = 0.144, P0= 0.79; ω1 = 1,

-

P1= 0.21 BSM

-10836.367

ω0 = 0.144, P0= 0.68; ω1 = 1,

Leu9,

Ser47,

P1= 0.18, ω2 = 3.71, P2= 0.11

Ser14,

Arg40,

Ala74.

Table

S2.

Maximum-likelihood

duplicated

M.

truncatula

signatures

of

adaptive

test

of

PISTILATA-like evolution

adaptive

evolution

transcription

after

gene

To

factors.

duplication,

in

we

the identify

conducted

four models, all implemented in the program PAML package version 4.7 (Yang, 2007): (a) G&Y model estimates entire

and

estimates

one

neutral

model

which

this

than

in

BSM 1,

selection. estimated.

phylogenetic ω

branch-site

evolution (d)

non-synonymous-to-synonymous

alignment

model), the

the

(0