Explicit Formulas and Combinatorial Identities for

4 downloads 0 Views 133KB Size Report
Explicit Formulas and Combinatorial. Identities for Generalized. Stirling Numbers. Nenad P. Cakic, Beih S. El-Desouky and Gradimir V. Milovanovic. ∗. Abstract.
Explicit Formulas and Combinatorial Identities for Generalized Stirling Numbers Nenad P. Caki´c, Beih S. El-Desouky and Gradimir V. Milovanovi´c∗ Abstract. In this paper, a modified approach to the multiparameter non-central Stirling numbers via differential operators, introduced by El-Desouky, and new explicit formulae of both kinds of these numbers are given. Also, some relations between these numbers and the generalized Hermite and Truesdel polynomials are obtained. Moreover, we investigate some new results for the generalized Stirling-type pair of Hsu and Shiue. Furthermore some interesting special cases, new combinatorial identities and a matrix representation are deduced. Mathematics Subject Classification (2010). Primary 11B73; Secondary 05A10, 05A19. Keywords. Multiparameter non-central Stirling numbers, generalized Stirlingtype numbers, differential operators, generating function, combinatorial identities.

1. Introduction and preliminaries Through this article we use the following notations. The falling and rising factorials are defined, respectively by (x)n = x(x − 1) · · · (x − n + 1),

(x)0 = 1,

hxin = x(x + 1) · · · (x + n − 1),

hxi0 = 1.

and ¯ n and hx; αi ¯ n , associated The generalized falling and rising factorials (x; α) with parameter α¯ = (α0 , α1 , . . . , αn−1 ) where α j , j = 0, 1, . . . , n − 1, is a sequence This paper was supported in part by the Serbian Ministry of Education and Science (Caki´c and Milovanovi´c) and by the Egyptian Ministry of Higher Education (El-Desouky). ∗ Corresponding author.

2

N. P. Caki´c, B. S. El-Desouky and G. V. Milovanovi´c

of real or complex numbers, are defined by n−1

n−1

¯ n = ∏ (x − α j ) (x; α)

and

j=0

¯ n = ∏ (x + α j ), hx; αi j=0

¯ n reduces to respectively. Note that if αi = iα, i = 0, 1, . . . , n − 1, then (x; α) (x|α)n = t(t − α) · · · (x − (n − 1)α). Hsu and Shiue [14] defined generalized Stirling-type pair {S1 (n, k), S2 (n, k)} ≡ {S(n, k; α, β , r), S(n, k; β , α, −r)} by the inverse relations n

(x|α)n =

∑ S1 (n, k)(x − r|β )k

(1.1)

k=0

and

n

(x|β )n =

∑ S2 (n, k)(x + r|α)k ,

(1.2)

k=0

where n is a nonnegative integer and the parameters α, β and r are real or complex numbers, with (α, β , r) 6= (0, 0, 0). For the numbers S(n, k; α, β , r), we have the following recurrence relation S(n + 1, k; α, β , r) = S(n, k − 1; α, β , r) + (kβ − nα + r)S(n, k; α, β , r), where n ≥ k ≥ 1. These numbers have the vertical generating functions (with αβ 6= 0) !k β /α − 1 xn r/α (1 + αx) k! ∑ S(n, k; α, β , r) = (1 + αx) n! β n≥0

(1.3)

(1.4)

and xn k! ∑ S(n, k; β , α, −r) = (1 + β x)−r/β n! n≥0

(1 + β x)α/β − 1 α

!k .

The multiparameter non-central Stirling numbers of the first and second kind, respectively, were introduced by El-Desouky [11] with n

(x)n =

¯ ¯ k α) ∑ s(n, k; α)(x;

(1.5)

k=0

and ¯ n = ∑ S(n, k; α)(x) ¯ (x; α) k.

(1.6)

¯ and S(n, k; α) ¯ satisfy the recurrence relations These numbers s(n, k; α) ¯ = s(n, k − 1; α) ¯ + (αk − n)s(n, k; α) ¯ s(n + 1, k; α)

(1.7)

¯ = S(n, k − 1; α) ¯ + (k − αn )S(n, k; α), ¯ S(n + 1, k; α)

(1.8)

and respectively.

Explicit Formulas and Identities for Generalized Stirling Numbers

3

The multiparameter non-central Stirling numbers of the first kind have the vertical exponential generating function ¯ ∑ s(n, k; α)

n≥0

xn = n!

k

(1 + x)α j , ∑ j=0 (α j )k

(1.9)

`

where (αk )` =

∏ (αk − α j ), k ≤ `. j=0, j6=k

Also, more generalizations and extensions of Stirling numbers are given in [4] and [20]–[22]. Let δ = xD, D = d/dx. Then we have some well-known and useful relations of this differentiation operator (see [2, 10, 16] and [19]): δ n (xα ) = α n xα , n   n n−k k n (ii) δ (u · v) = ∑ δ u δ v, k=0 k (i)

(iii) F(δ )(xα f (x)) = xα F(δ + α) f (x), (iv) F(δ )(eg(x) f (x)) = eg(x) F(δ + xg0 (x)) f (x). The paper is organized as follows. In Section 2 a modified approach via differential operator to multiparameter non-central Stirling numbers is given. Also, some relations between these numbers and the generalized Hermite and Truesdel polynomials are obtained. Moreover, we show that some of Hsu and Shiue [14] results are investigated using the results obtained by El-Desouky [11] and consequently of this paper. In Section 3, new explicit formulae for those numbers, some special cases and new combinatorial identities are derived. Finally, in Section 4, a computer program is written using Maple and executed for calculating the multiparameter non-central Stirling matrix and some special cases and matrix representation of these numbers is given.

2. A modified approach to multiparameter non-central Stirling numbers Let the differential operator D be defined by D = xα δ x−α , where δ = xD. Using (iii) we get D f (x) = xα δ x−α f (x) = (δ −α) f (x), hence D = δ −α and by induction we get D n = (δ − α)n = xα δ n x−α . Generally, we can take the following. Definition 2.1. Let the differential operator Dn be defined by n−1

Dn = (xαn−1 δ x−αn−1 ) · · · (xα0 δ x−α0 ) = ∏ xαi δ x−αi , n ≥ 1 i=0

and D0 = I, the identity operator. Then we have Dn f (x) = (δ − αn−1 ) · · · (δ − α0 ) f (x), i.e., n−1

¯ n, Dn = (δ − αn−1 ) · · · (δ − α0 ) = ∏ (δ − αi ) = (δ ; α) i=0

4

N. P. Caki´c, B. S. El-Desouky and G. V. Milovanovi´c n−1

n−1

i=0

i=0

∏ xαi δ x−αi = ∏ (δ − αi ).

and so we have the operational formula

This leads us to define the multiparameter non-central Stirling numbers via the differential operator Dn . Therefore, equations (1.5) and (1.6) can be represented, in terms of operational formulae, by n

(δ )n = xn Dn =

n

¯ ¯ k = ∑ s(n, k; α)D ¯ k ; α) ∑ s(n, k; α)(δ k=0

(2.1)

k=0

and ¯ n= Dn = (δ ; α)

n

n

¯ ¯ k Dk , )k = ∑ S(n, k; α)x ∑ S(n, k; α)(δ k=0

(2.2)

k=0

respectively. Similarly, Comtet numbers (see [4] and [20]) can be defined by n

∑ sα¯ (n, k)δ k

¯ n= (δ ; α)

k=0

and n

δn =

¯ k. ∑ Sα¯ (n, k)(δ ; α) k=0

Setting αi = α, then (2.1) and (2.2), respectively, yield (δ )n = xn Dn =

n

n

k=0

k=0

∑ s(n, k; α)(δ − α)k = ∑ s(n, k; α)xα δ k x−α .

(2.3)

and xα δ n x−α = (δ − α)n =

n

n

∑ S(n, k; α)(δ )k =

∑ S(n, k; α)xk Dk ,

k=0

k=0

(2.4)

where s(n, k; α) and S(n, k; α) are the non-central Stirling numbers of the first and second kind [11], respectively. r r Acting with Eq. (2.3) on e−px , then multiplying by e px we obtain r

r

e px xn Dn e−px =

n

r

r

∑ s(n, k; α)e px xα δ k x−α e−px ,

(2.5)

k=0

hence we have, n

xn Hnr (x, 0, p) = (−1)n ∑ s(n, k; α)Tk−α (x, r, p),

(2.6)

k=0

where Hnr (x, α, p) and Tk−α (x, r, p) are the generalized Hermite and Truesdel polynomials, respectively (see [12] and [16]-[18]). Setting r = p = 1 in (2.5) , or (2.6), we get n

(−1)n xn =

∑ s(n, k; α)Tk−α (x). k=0

where

Tn−α (x)

are Truesdel polynomials, see [17].

Explicit Formulas and Identities for Generalized Stirling Numbers

5

r

Similarly, acting with Eq. (2.4) on e−px , we obtain the inverse relations n

Tn−α (x, r, p) = (−1)n ∑ S(n, k; α)xk (−1)k Hkr (x, 0, p) k=0

and Tk−α (x) =

n

∑ s(n, k; α)(−1)k xk . k=0

Next, we derive some new results for Hsu and Shiue numbers [14]. Theorem 2.2. For the special case αi = −(r − iα)/β , i = 0, 1, . . . , n − 1, we have ¯ = β k−n S2 (n, k) s(n, k; α)

(2.7)

Proof. From equation (1.2) we get n

β n (t/β ) ((t/β ) − 1) · · · ((t/β ) − (n − 1)) =

∑ S2 (n, k)(t + r|α)k . k=0

Setting t/β = x, we have n

β n x(x−1) · · · (x−(n−1)) = ∑ S2 (n, k)(β x+r)(β x+r −α) · · · (β x+r −(k −1)α), k=0

hence n

(x)n =

∑ β k−n S2 (n, k) (x + r/β ) (x + (r − α)/β ) · · · (x + (r − (k − 1)α)/β ) . k=0

Comparing this equation with (1.5) yields (2.7).



¯ = β k−n S1 (n, k) if αi = (iα − r)/β . Also, it can be shown that S(n, k; α) Furthermore, we show that the generating function (1.4), see [14], of HsuShiue numbers can be investigated from the generating function (1.9), see [11], where αi = (r + iβ )/α, i = 0, 1, . . . , n − 1. Theorem 2.3. For the special case αi = (r + iβ )/α, i = 0, 1, . . . , n − 1, the generating function (1.9) is reduced to the generating function (1.4) and ¯ S1 (n, k) = α n−k s(n, k; α). Proof. If we start from (1.9) zn

k

(1 + z)α j j=0 (α j )k

¯ = ∑ s(n, k; α) n! ∑

n≥0

6

N. P. Caki´c, B. S. El-Desouky and G. V. Milovanovi´c

and setting α j = r/α + jβ /α, j = 0, 1, . . . , k, we get r

k

RHS =



k

j=0

∏ j=0,i6= j

(1 + z) =  k β α

r α

β

(1 + z) α + j α     = β β r r + j − + i α α α α

r

β

(1 + z) α + j α ∑  k k j=0 β ∏ ( j − i) α k

i=0,i6= j

k

(1 + z)



j αβ

k

j=0

(1 + z) =  k β α

( j − i)



r α

β

k

(1 + z) j α ∑ (−1)k− j (k − j)! j! j=0

i=0,i6= j

1 (1 + z) =  k k! β

r α

r   k β k 1 (1 + z) α  k− j j αβ ∑ j (−1) (1 + z) = k!  β k (1 + z) α − 1 , j=0

k

α

α

where we used the identity, k



( j − i) = (−1)k− j (k − j)! j!.

i=0,i6= j

Thus, putting z = αt in (1.9) we get α nt n 1 ¯ = α k (1 + αt)r/α ∑ s(n, k; α) n! k! n≥0

(1 + αt)β /α − 1 β

!k ,

hence by virtue of (1.4) we have tn 1 tn ¯ = (1 + αt)r/α ∑ S1 (n, k) n! = ∑ α n−k s(n, k; α) n! k! n≥0 n≥0

(1 + αt)β /α − 1 β

!k ,

where αi = (iβ + r)/α. In fact, this equation shows that ¯ S1 (n, k) = α n−k s(n, k; α), where αi = (iβ + r)/α, i = 0, 1, . . . , n − 1. This completes the proof.



Now, setting αi = (iα − r)/β , i = 0, 1, . . . , n − 1 in (2.2) we get the following new operational formula for Hsu-Shiue numbers: n−1

∏ x(iα−r)/β δ x−(iα−r)/β = i=0

n

∑ β k−n S1 (n, k)(δ )k .

(2.8)

k=0

Remark 2.4. Note that equations (2.2) and (2.8) for αi = 0, i = 0, 1, . . . , n − 1 and α = 0, β = 1 and r = 0, respectively, are reduced to the well known operational representation of the ordinary Stirling numbers of the second kind n

δn =

∑ S(n, k)xk Dk . k=0

Explicit Formulas and Identities for Generalized Stirling Numbers

7

3. New explicit formulae and combinatorial identities We derive new explicit formulae for both kinds of the multiparametar non-central Stirling numbers. ¯ have the following new explicit formula Theorem 3.1. The numbers S(n, k; α),      −α0 1 − α 1 − i0 n − 1 − αn−1 − i0 − · · · − in−2 ¯ = ∑ S(n, k; α) ··· , i0 i1 in−1 I =n−k n−1

where i j ∈ {0, 1}, j ∈ {0, 1, . . . , n − 1}, and In−1 := i0 + i1 + · · · + in−1 . Proof. The statement for k = 0 gives that ¯ = (−1)n α0 α1 · · · αn−1 , S(n, 0; α) ¯ (see [11]). which agrees with the definition of S(n, k; α) Also, if in−1 ∈ {0, 1}, we have that    −α0 1 − α 1 − i0 ··· ∑ i0 i1 In−2 =(n−1)−(k−1)   n − 2 − αn−2 − i0 − · · · − in−3 × in−2    −α0 1 − α1 − i0 + ··· ∑ [n − 1 − αn−1 − (n − k − 1)] i0 i1 In−2 =(n−1)−k   n − 2 − αn−2 − i0 − · · · − in−3 × , in−2

¯ = S(n, k; α)

i.e., ¯ = S(n − 1, k − 1; α) ¯ + (k − αn−1 )S(n − 1, k; α). ¯ S(n, k; α) Therefore, by (1.8) and induction we get the desired result.



Remark 3.2. We used α0 = 0 ⇔ i0 = 0. Theorem 3.3. The multiparameter non-central Stirling numbers of the first kind have the following new explicit expression      i1 + αi1 i2 + αi1 +i2 − 1 in + αi1 +···+in − n + 1 ¯ = s(n, k; α) · · · . ∑ 1 − i1 1 − i2 1 − in i +···+in =k 1

i j ∈{0,1}

(3.1) Proof. For k = 0 we have ¯ = α0 (α0 − 1) · · · (α0 − n + 1) = (α0 )n s(n, 0; α)

8

N. P. Caki´c, B. S. El-Desouky and G. V. Milovanovi´c

and if in ∈ {0, 1}, we have     i1 + αi1 in−1 + αi1 +···+in−1 − n + 2 ¯ = s(n, k; α) ··· ∑ 1 − i1 1 − in−1 i1 +···+in−1 =k−1     i1 + αi1 in−1 + αi1 +···+in−1 − n + 2 + αi1 +···+in−1 − n + 1 ∑ 1 − in−1 1 − i1 i +···+i =k 1

n−1

¯ + (αk − n + 1)s(n − 1, k; α), ¯ = s(n − 1, k − 1; α) where i1 + · · · + in−1 = k. By virtue of (1.7), this completes the proof.



It is worth noting that setting αi = (r + iβ )/α, i ∈ {0, 1, . . . , n − 1} in the recurrence relation (1.7) for multiparameter non-central Stirling numbers of the first kind, we can get the recurrence relation (1.3), and hence ¯ = α k−n S1 (n, k). s(n, k; α) Furthermore, Corcino, Hsu and Tan [9] mentioned that the multiparameter non-central Stirling numbers are related with the generalized Stirling-type pair of ¯ and S(n, k; α, 1, 0) = S(n, k; α) ¯ Hsu-Shiue (see also [23]) by S(n, k; 1, α, 0) = s(n, k; α) for special case αi = iα, i = 0, 1, . . . , n − 1. Corollary 3.4. A new explicit expression for generalized Stirling numbers (HsuShiue numbers type (1.3)) is given by    r/β 1 + (r − α)/β − i0 n−k S(n, k; α, β , r) = β ··· ∑ i0 i1 I =n−k n−1 i j ∈{0,1}

  n − 1 + (r − (n − 1)α)/β − i0 − · · · − in−2 ··· in−1 or in the modified form S(n, k; α, β , r) =

    r r + β − α − β i0 r + 2(β − α) − β (i0 + i1 ) ··· ∑ i0 i1 i2 =n−k

In−1 i j ∈{0,1}

···

  r + (n − 1)(β − α) − β (i0 + i1 + · · · + in−2 ) , in−1

where we use i0 = 0 ⇔ r = 0. Proof. The proof of this result follows directly from Theorem 3.1. Namely, by setting αi = (iα − r)/β , i = 0, 1, . . . , n − 1, we get the statement.  The previous corollary implies new explicit expressions for the usual Stirling numbers of the second and first kind      1 2 − i1 n − 1 − i1 − · · · − in−2 S(n, k; 0, 1, 0) = S(n, k) = ··· ∑ i2 in−1 i +···+i =n−k i1 1

n−1

i j ∈{0,1}

Explicit Formulas and Identities for Generalized Stirling Numbers

9

and S(n, k; 1, 0, 0) = s(n, k) =



     −(n − 1) −1 −2 ··· in−1 i2 i1 =n−k



     n − 2 + in−1 1 + i2 i1 , ··· in−1 i2 =n−k i1

i1 +···+in−1 i j ∈{0,1}

= (−1)n−k

i1 +···+in−1 i j ∈{0,1}

respectively. Remark 3.5. From the above corollary we obtain the explicit formula for the numbers Fα,γ (n, k) (see [7]), defined by the triangular recurrence relation Fα,γ (n + 1, k) = Fα,γ (n, k − 1) + (γ − nα)Fα,γ (n, k), where Fα,γ (0, 0) = 1 and Fα,γ (n, k) = 0 when n < 0, k < 0 and n < k. Namely, for β = 0 and r = γ, the modified form of S(n, k, α, β , r) in Corollary 3.4 reduces to      γ γ −α γ − (n − 1)α Fα,γ (n, k) = S(n, k; α, 0, γ) = ∑ ··· . i1 in−1 I =n−k i0 n−1 i j ∈{0,1}

Note that some properties and identities on S(n, k; α, β , r) cannot be obtained for β = 0, which is a reason why the explicit formula, i.e., the modified form (from Corollary 3.4), is very convenient to use. D E n Corcino et al. [8] defined the (r, β )-Stirling numbers, denoted by usk β ,r ing the following recurrence relation       n n n+1 . + (kβ + r) = k β ,r k − 1 β ,r k β ,r D E n = S(n, k, 0, β , r). Thus, we can obtain an k β ,r explicit formula for (r, β )-Stirling numbers from Corollary 3.4  n = S(n, k; 0, β , r) k β ,r      r/β 1 + r/β − i0 n − 1 + r/β − i0 − · · · − in−2 = ∑ ··· . i0 i1 in−1 I =n−k It is easy to conclude that

n−1 i j ∈{0,1}

Moreover, El-Desouky [11, Theorem 2.1] derived the following explicit for¯ mula for s(n, k; α) n

¯ = s(n, k; α)

n!

1

k

α jr

∑ (−1)n−r r! ∑ i1 · · · ir ∑ (α j )

r=k

j=0

,

(3.2)

k

where, in the second sum, the summation extends over all ordered n-tuples of integers (i1 , i2 , . . . ir ) satisfying the condition i1 + i2 + · · · + ir = n and i j ≥ 0, j = 1, 2, . . . , r.

10

N. P. Caki´c, B. S. El-Desouky and G. V. Milovanovi´c From (3.1) and (3.2), we obtain the following new combinatorial identity      in + αi1 +···+in − n + 1 i2 + αi1 +i2 − 1 i1 + αi1 · · · ∑ 1 − in 1 − i2 1 − i1 i +···+in =n−k 1

i j ∈{0,1} n

=

∑ (−1)n−r r=k

k α jr n! 1 ∑ (α j ) . r! ∑ i1 · · · ir j=0 k

Remark 3.6. Now, it is worth noting that all special cases, (i)–(xi), derived in [14], are special cases of the multiparameter non-central Stirling numbers. Corcino, Hsu and Tan [9] proved that n! α n S (n, k) = k! β k 1

k k− j

∑ (−1)

j=0

   k (β /α) j + (r/a) . j n

(3.3)

From (3.3) and Corollary 3.4, we have the combinatorial identity      n!α n k (β /α) j + (r/a) r/β k− j k n (−1) = β × ∑ ∑ k! j=0 j n i0 I =n−k n−1 i j ∈{0,1}

×

    1 + (r − α)/β − i0 n − 1 + (r − (n − 1)α)/β − i0 − · · · − in−2 ··· . i1 in−1

Hongquan Yu [23, Theorem 4 and Corollary 5] proved that S(p + l, k; β , α, 0) ≡ 0

(mod p),

(3.4)

where p is a prime number, k and l are integers such that l + 1 < k < p and S(p, k; α, β , r) ≡ 0

(mod p),

(3.5)

where α, β and r are integers and p is a prime, 1 < k < p. By virtue of (3.4), (3.5) and Corollary 3.4, we obtain the combinatorial identities    1 − β /α 2(1 − β /α) − i1 p+l−k ··· α ∑ i1 i2 i +···+i =p+l−k 1

p+l−1

i j ∈{0,1}

  (p + l − 1)(1 − β /α) − i1 − · · · − i p+l−2 × ≡0 i p+l−1

(mod p), l + 1 < k < p,

and β

p−k

   r/β 1 + (r − α)/β − i0 ··· ∑ i0 i1 =p−k

I p−1 i j ∈{0,1}

  p − 1 + (r − (p − 1)α)/β − i0 − · · · − i p−2 × ≡0 i p−1

(mod p), 1 < k < p.

The degenerate weighted Stirling numbers, denoted by S(n, k, λ |θ ), are the pair hθ , 1, λ i (see [13]).

Explicit Formulas and Identities for Generalized Stirling Numbers Howard [13] derived the following explicit formula   1 k k+l k S(n, k, λ |θ ) = ∑ (−1) (λ + l|θ )n . k! l=0 l

11

(3.6)

Next, we find new explicit formulae for the following special cases of Stirling numbers. Corollary 3.7. The degenerate weighted Stirling numbers S(n, k, λ |θ ) have the following explicit formula     λ λ − θ + 1 − i0 λ + 2(1 − θ ) − i0 − i1 S(n, k, λ |θ ) = ∑ ··· i1 i2 I =n−k, i0 n−1 i j ∈{0,1}

×

  λ + (n − 1)(1 − θ ) − (i0 + i1 + i2 + · · · + in−2 ) . (3.7) in−1

Proof. The proof follows by setting α = θ , β = 1 and r = λ in the modified form of Corollary 3.4.  From (3.6) and (3.7) we have the new combinatorial identity     λ λ − θ + 1 − i0 λ + 2(1 − θ ) − i0 − i1 ··· ∑ i1 i2 I =n−k i0 n−1 i j ∈{0,1}

  λ + (n − 1)(1 − θ ) − (i0 + i1 + · · · + in−2 ) × in−1   k k 1 (λ + l|θ )n . = ∑ (−1)k+l k! l=0 l Also, setting λ = 0 in (3.7) (see [13, Lemma 2.1]), we have a new explicit formula for degenerate Stirling numbers    (1 − θ ) 2(1 − θ ) − i1 S(n, k|θ ) = ··· ∑ i1 i2 i +···+i =n−k 1

n−1

i j ∈{0,1}

  (n − 1)(1 − θ ) − (i1 + i2 + · · · + in−2 ) × . in−1 In the special case θ = λ = 0 we obtain the identity      1 2 − i1 (n − 1) − (i1 + i2 + · · · + in−2 ) · · · ∑ i2 in−1 i +···+i =n−k i1 1

n−1

i j ∈{0,1}

  1 k k+l k n = ∑ (−1) l . k! l=0 l From (1.1) we get n

α n (t/α) ((t/α) − 1) · · · ((t/α) − (n − 1)) =

∑ S1 (n, k)(t − r|β )k . k=0

12

N. P. Caki´c, B. S. El-Desouky and G. V. Milovanovi´c

Setting t/α = x, n

α n x(x − 1) · · · (x − (n −1))= ∑ S1 (n, k)(αx − r)(αx − r − β ) · · · (αx − r − (k −1)β ), k=0

hence n

(x)n =

∑ α k−n S1 (n, k)(x − (r/α)|(β /α))k .

(3.8)

k=0

From (1.1) and (3.8), we obtain α k−n S1 (n, k) = S(n, k; 1, r/α, β /α), whence S(n, k; α, β , r) = α n−k S(n, k; 1, β /α, r/α).

(3.9)

Similarly, we can prove that S(n, k; α, β , r) = β n−k S(n, k; α/β , 1, r/β ).

(3.10)

Indeed (3.9) and (3.10) (see [1]) can be investigated from (1.4). Using (3.10), as well as the fact that the degenerate weighted Stirling numbers S(n, k, λ |θ ) are the pair hθ , 1, λ i, then the numbers S(n, k; α, β , r) can be represented in terms of S(n, k, λ |θ ) where S(n, k; α, β , r) = β n−k S(n, k, (r/β )|(α/β )).

(3.11)

Remark 3.8. In fact, (3.11) agrees with Corollary 3.4. Furthermore, Munagi [15] defined Sb (n, k), the B-Stirling numbers of the second kind, by Sb (n, k) = Sb (n − 1, k − 1) + (k + b − 1)Sb (n − 1, k), Sb (n, 0) = δn,0 , Sb

(n, 1) = bn−1 ,

n ≥ k,

where δi, j is the Kronecker delta.

Corollary 3.9. The B-Stirling numbers of the second kind, Sb (n, k), have the following new explicit formula Sb (n + 1, k + 1) = S(n, k; 0, 1, b)     b b + 1 − i0 b + 2 − (i0 + i1 ) = ∑ ··· i1 i2 I =n−k i0 n−1 i j ∈{0,1}

  b + n − 1 − (i0 + i1 + · · · + in−2 ) × , (3.12) in−1 where b ≥ 0 and we use i0 = 0 ⇔ b = 0. Proof. The proof follows by setting αi = −b, i = 0, 1, . . . , n − 1, in Theorem 3.1 (or setting α = 0, β = 1 and r = b in Corollary 3.4).  This show that the B-Stirling numbers of the second kind is a special case of the multiparameter non-central Stirling numbers and consequently of Hsu-Shiue numbers.

Explicit Formulas and Identities for Generalized Stirling Numbers

13

From (3.12) and [15, Corollary 6.2] we obtain the new combinatorial identity      b b + 1 − i0 b + n − 1 − (i0 + i1 + · · · + in−2 ) · · · ∑ i0 i1 in−1 =n−k

In−1 i j ∈{0,1}

k

=

(−1)k− j (b + j)n ∑ j!(k − j)! . j=0

4. The matrix representation Let s, S; s(α), S(α) and S1 , S2 be (n + 1) × (n + 1) lower triangular matrices, where s and S are the matrices whose entries are the Stirling numbers of the first and second kinds (i.e., s = [si j ]i, j≥0 and S = [Si j ]i, j≥0 ); s(α) and S(α) are the matrices whose entries are the multiparameter non-central Stirling numbers of the first and second kinds (i.e., s(α) = [s(α)i j ]i, j≥0 and S(α) = [S(α)i j ]i, j≥0 ) and S1 , S2 are the matrices whose entries are the generalized Stirling-type pair of Hsu and Shiue (i.e., S1 = [Si1j ]i, j≥0 and S2 = [Si2j ]i, j≥0 ), respectively. The multiparameter non-central Stirling numbers of the first and second kinds, Eqs. (2.1) and (2.2), can be represented in a matrix form as e δ˜ = s(α)D

and

e = S(α)δ˜ , D

e = (D0 , D1 , . . . , Dn )T . respectively, where δ˜ = ((δ )0 , (δ )1 , . . . , (δ )n )T and D A computer program is written using Maple and executed for calculating the multiparameter non-central Stirling matrix of the first kind s(α) (and S(α) = s−1 (α) of the second kind) and the generalized Stirling-type pair of Hsu and Shiue as a special case when αi = (r + iβ )/α. For example if 0 ≤ n ≤ 3, then 

0 1 α0 + α1 − 1 α0 α1 − 3α0 + α02 − 3α1 + α12 + 2



0 1 2r + β − α 3r2 − 6rα + 3β r + β 2 − 3β α + 2α 2

1  α 0 s(α) =   α0 (α0 − 1) α0 (α0 − 1)(α0 − 2)

0 0 1 α0 + α1 + α2 − 3

 0 0  0 1

and 1  r 1  S = r(r − α) r(r − α)(r − 2α)

0 0 1 3r + 3β − 3α

 0 0  . 0  1

Remark 4.1. Note that there are some missing terms in [23, Table 1]. Similarly, the degenerate weighted Stirling matrix S(λ |θ ), the degenerate Stirling matrix S(θ ) and the Stirling matrix of the second kind S are given by 

1  λ S(λ |θ ) =   λ (λ − θ ) λ (λ − θ )(r − 2θ )

0 1 2λ + 1 − θ 3λ 2 − 6λ θ + 3λ + 1 − 3θ + 2θ 2

0 0 1 3λ + 3 − 3θ

 0 0  , 0  1

14

N. P. Caki´c, B. S. El-Desouky and G. V. Milovanovi´c



1  0 S(θ ) =   0 0

0 1 1−θ (1 − θ )(1 − 2θ )

0 0 1 3(1 − θ )

 0 0  , 0  1

and 

1  0 S=  0 0

0 1 1 1

0 0 1 3

 0 0  , 0  1

respectively, as special cases. Acknowledgements. The authors would like to thank the anonymous referee for helpful comments and suggestions.

References [1] D. Branson, Stirling numbers and Bell numbers: their role in combinatorics and probability. Math. Sci. 25 (2000), 1–31. [2] Whei-Ching C. Chan, Kung-Yu Chen and H. M. Srivastava, Certain classes of generating functions for the Jacobi and related hypergeometric polynomials. Comput. Math. Appl. 44 (2002), 1539-1556. [3] Wenchang Chu and Chuanam Wei, Set partitions with restrictions. Discrete Math. 308 (2008), 3163–3168. [4] L. Comtet, Nombres de Stirling generaux et fonctions symetriques. C. R. Acad. Sci. Paris. (Ser. A) 275 (1972), 747–750. [5] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions. D. Reidel Publishing Company, Dordrecht, Holand, 1974. [6] R. B. Corcino, Some theorems on generalized Stirling numbers. Ars Combin. 60 (2001) 273–286. [7] R. B. Corcino and M. Herrera, Limit of the differences of the generalized factorial, its q- and p, q-analogue. Util. Math. 72 (2007), 33–49. [8] R. B. Corcino, C. B. Corcino and R. Aldema, Asymptotic normality of the (r, β )-Stirling numbers. Ars Combin. 81 (2006), 81–96. [9] R. B. Corcino, L. C. Hsu and E. L. Tan, A q-analogue of generalized Stirling numbers. Fibonacci Quart. 44 (2) (2006), 154–156. [10] G. Dattoli, M. X. He, and P. E. Ricci, Eigenfunctions of Laguerre-type operators and generalized inevolution problems. Math. Comput. Modelling 42 (2005), 1263–1268. [11] B. S. El-Desouky, The multiparameter non-central Stirling numbers. Fibonacci Quart. 32 (3) (1994), 218–225. [12] H. W. Gould and A. T. Hopper, Operational formulas connected with two generalizations of Hermite polynomials. Duke Math. J. 29 (1962), 51–63. [13] F. T. Howard, Degenerate weighted Stirling numbers. Discrete Math. 57 (1985), 45–58. [14] L. C. Hsu and P. J-Sh. Shiue, A unified approach to generalized Stirling numbers. Adv. in Appl. Math. 20 (1998), 366–384. [15] A. O. Munagi, Labeled factorization of integers. Electron. J. Combin. 16 (2009), R50.

Explicit Formulas and Identities for Generalized Stirling Numbers

15

[16] P. N. Shrivastava, On the polynomials of Truesdel type. Publ. Inst. Math. (Beograd) (N.S.) 9 (23) (1969), 43–46. [17] R. P. Singh, On generalized Truesdel polynomials. Riv. Mat. Univ. Parma, (2) 8 (1967), 345–353. [18] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions. Ellis Horwood Limited, Chichester, 1984. [19] O. V. Viskov and H. M. Srivastava, New approaches to certain identities involving differential operators. J. Math. Anal. Appl. 186 (1994), 1–10. [20] C. G. Wagner, Generalized Stirling and Lah numbers. Discrete Math. 160 (1996), 199– 218. [21] C. G. Wagner, Partition statistics and q-Bell numbers (q = −1). J. Integer Seq. 7 (2004), Article 04.1.1. [22] H. S. Wilf, Generatingfunctionology. Academic Press Inc., New York, 1994. [23] H. Yu, A generalization of Stirling numbers. Fibonacci Quart. 36 (3) (1998), 252–258. Nenad P. Caki´c Department of Mathematics Faculty of Electrical Engineering University of Belgrade P.O. Box 35-54 11120 Belgrade Serbia e-mail: [email protected] Beih S. El-Desouky Department of Mathematics Faculty of Science Mansoura University 35516 Mansoura Egypt e-mail: b [email protected] Gradimir V. Milovanovi´c∗1 Mathematical Institute Serbian Academy of Science and Arts Kneza Mihaila 36 P.O. 367 11001 Belgrade Serbia e-mail: [email protected]

1∗ Corresponding

author.