Ext Abs.indb

8 downloads 0 Views 1MB Size Report
Alpine Permafrost Distribution at Massif Scale: Assessment of Mean Surface Temperatures During the Winter. Equilibrium Period Thanks to Topoclimatic and ...
NICOP 2008 Ninth International Conference on Permafrost Extended Abstracts Kane and Hinkel, Editors

NICOP 2008

Ninth International Conference on Permafrost

Extended Abstracts Edited by Douglas L. Kane and Kenneth M. Hinkel

Ninth International Conference on Permafrost

Ninth International Conference on Permafrost University of Alaska Fairbanks June 29–July 3, 2008

Ninth International Conference on Permafrost Extended Abstracts Edited by Douglas L. Kane and Kenneth M. Hinkel

Institute of Northern Engineering University of Alaska Fairbanks 2008

Ninth International Conference on Permafrost Extended Abstracts Edited by Douglas L. Kane and Kenneth M. Hinkel © 2008 Institute of Northern Engineering University of Alaska Fairbanks All rights reserved. Printed in the United States of America

Cover Photo: Low-Centered Polygons, North Slope, Alaska © 2007 Steven Kazlowski / AlaskaStock.com Production Editors: Thomas Alton and Fran Pedersen UAF is an Afirmative Action / Equal Opportunity employer and educational institution.

Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xvii NICOP Sponsors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Deep Permafrost Studies at the Lupin Mine: Hydrogeological and Geochemical Information for Nuclear Waste Disposal . . . 1 L. Ahonen, T. Ruskeeniemi, R. Stotler, S. Frape, K. Lehto, I. Puigdomenech, M. Hobbs, and P. Degnan Effect of Fire on Pond Dynamics in Regions of Discontinuous Permafrost: A State of Change Following the Fires of 2004 and 2005? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 G. Altmann, D. Verbyla, K. Yoshikawa, and J. Fox Cryological Status of Russian Soils: Cartographic Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 T.V. Ananko, D.E. Konyushkov, and E.M. Naumov Acoustical Surveys of Methane Plumes Using the Quantitative Echo Sounder in the Japan Sea . . . . . . . . . . . . . . . . . . . . . . . . 7 C. Aoyama, R. Matsumoto, M. Hiromatsu, and G. Snyder Permafrost Delineation Near Fairbanks, Alaska, Using Geophysical Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 B.N. Astley and A.J. Delaney Preparatory Work for a Permanent Geoelectrical Measurement Station for Permafrost Monitoring at the Hoher Sonnblick, Austria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 M. Avian, A. Kellerer-Pirklbauer, A. Römer, and R. Supper A Provisional Soil Map of the Transantarctic Mountains, Antarctica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 M.R. Balks, M. McLeod, and J.G. Bockheim Martian Permafrost Depths from Orbital Neutron and Temperature Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 J.L. Bandield and W.C. Feldman Time Series Analyses of Active Microwave Satellite Data for Monitoring of Hydrology at High Latitudes . . . . . . . . . . . . . . 17 A. Bartsch Impact of Permafrost Degradation on Carbon and Nitrogen Stocks Related to Pedogenesis and Ecosystem Functioning . . . . 19 F. Baumann, J-S. He, P. Kühn, and T. Scholten DC Resistivity Soundings Across a Pebbly Rock Glacier, Kapp Linné, Svalbard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 I. Berthling and H. Juliussen Modeling Thermal and Moisture Regimes of Permafrost with New Deep Soil Coniguration in CLASS . . . . . . . . . . . . . . . . 23 J-P. Blanchette, L. Sushama, and R. Laprise A Provisional Permafrost Map of the Transantarctic Mountains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 J.G. Bockheim, M. McLeod, and M.R. Balks Alpine Permafrost Distribution at Massif Scale: Assessment of Mean Surface Temperatures During the Winter Equilibrium Period Thanks to Topoclimatic and Geomorphological Data (Combeynot Massif, French Alps) . . . . . . . . . . . . . 27 X. Bodin, P. Schoeneich, and M. Fort Cryogenic Formations of the Caucasus and the Signiicance of Their Impact on the Natural Phenomena of the Region. . . . . 29 I.V. Bondyrev Modeling Potential Climatic Change Impacts on Mountain Permafrost Distribution, Wolf Creek, Yukon, Canada . . . . . . . . . 31 P.P. Bonnaventure and A.G. Lewkowicz v

vi A Hypothesis: A Condition of Growth of Thick Ice Wedges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 A. Brouchkov Modeled Continual Surface Water Storage Change of the Yukon River Basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 R. Bryan, L.D. Hinzman, and R.C. Busey Freeze/Thaw Properties of Tundra Soils, with Applications to Traficability on the North Slope, Alaska . . . . . . . . . . . . . . . . 37 C.F. Bryant, R.F. Paetzold, and M.R. Lilly Discontinuous Permafrost Distribution and Groundwater Flow at a Contaminated Site in Fairbanks, Alaska . . . . . . . . . . . . . 39 A.E. Carlson and D.L. Barnes Thermal Regime Within an Arctic Waste Rock Pile: Observations and Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 J.W. Cassie and L.U. Arenson Seasonal and Interannual Variability of Active Layer Development in Permafrost Wetland Systems . . . . . . . . . . . . . . . . . . . . 43 C.M. Chiu and L.C. Bowling Twelve-Year Thaw Progression Data from Zackenberg, Northeast Greenland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 H.H. Christiansen and C. Sigsgård Continued Permafrost Warming in Northwest Alaska as Detected by the DOI/GTN-P Borehole Array . . . . . . . . . . . . . . . . . . 47 G.D. Clow Landsliding Following Forest Fire on Permafrost Slopes, Klondike Area, Yukon, Canada. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 J. Coates and A.G. Lewkowicz A Permafrost Model Incorporating Dynamic Variable Soil Depth and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 R. Coppell and S. Venevsky Seasonal Sources of Soil Respiration from High Arctic Landscapes Dominated by Polar Stripes . . . . . . . . . . . . . . . . . . . . . . 53 C.I. Czimczik, S.E. Trumbore, and J. Welker Greenland Permafrost Temperature Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 R.P. Daanen, V.E. Romanovsky, S.S. Marchenko, J.H. Christensen, M. Stendel, and T. Ingeman-Nielsen The Importance of Snow Cover Evolution in Rock Glacier Temperature Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 M. DallAmico, S. Endrizzi, R. Rigon, and S. Gruber The Account of Long-Term Air Temperature Changes for Building Design in Permafrost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 I.V. Davidova and L.N. Khroustalev The Combined Isotopic Analysis of Late Quaternary Ice Wedges and Texture Ice at the Lena-Anabar Lowland, Northern Siberia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 A. Dereviagin, H. Meyer, A. Chizhov, and D. Magens Adaptating and Managing Nunavik’s Transportation Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 G. Doré, A. Guimond, and G. Grondin Human Experience of Cryospheric Change in Nunavut, Canada: Preliminary Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 N. Doubleday, S. Donaldson, T. Vlasova, A. Kushwaha, and M. Ip HiRISE Observations of Fractured Mounds in the Martian Mid-Latitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 C.M. Dundas and A.S. McEwen A Soil Freeze-Thaw Model Through the Soil Water Characteristic Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 S. Endrizzi, R. Rigon, and M. DallAmico

vii Mapping and Modeling the Distribution of Permafrost in the Nordic Countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 B. Etzelmüller, H. Farbrot, O. Humlum, H. Christiansen, H. Juliussen, K. Isaksen, T.V. Schuler, R.S. Ødegård, and H. Ridefelt First Results of Ground Surface Temperature Modeling in Finnmark, Northern Norway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 H. Farbrot, B. Etzelmüller, K. Isaksen, T.V. Schuler, O.E. Tveito, and H.H. Christiansen Historical Changes in the Seasonally Frozen Ground Regions of the Russian Arctic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 O.W. Frauenfeld, T. Zhang, A.J. Etringer, R.G. Barry, and D. Gilichinsky Rock Glaciers in the Kåfjord Area, Troms, Northern Norway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 R. Frauenfelder, J. Tolgensbakk, H. Farbrot, and T.R. Lauknes Snowpack Evolution on Permafrost, Non-Permafrost Soils, and Glaciers in the Monte Rosa Massif (Northwest Alps, Italy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 M. Freppaz, M. Maggioni, S. Gandino, and E. Zanini Climate Change in Permafrost Regions in North America . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 M.K.Gavrilova Maximizing Construction Season in a Subarctic Environment, Fort Wainwright, Alaska . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Q. Gehring and F.J. Wuttig Pleistocene Sand-Wedge, Composite-Wedge, and Complex-Wedge Growth in Flanders, Belgium . . . . . . . . . . . . . . . . . . . . . 85 G. Ghysels, I. Heyse, J.-P. Buylaert, A.S. Murray, D. Vandenberghe, F. De Corte, and P. Van den haute Response of Arctic and Subarctic Soils in a Changing Earth (RASCHER) – Project of IPY: Methodology, Activity, Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 S.V. Goryachkin, J.M. Kimble, N.B. Badmaev, M. Drewnik, D.G. Fedorov-Davydov, S.A. Iglovski, E.M. Lapteva, G.M. Mazhitova, N.S. Mergelov, V.E. Ostroumov, and E-M. Pfeiffer Monitoring of the Floodplain Talik Downstream from the Ust’-Srednekan Reservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 S.A. Guly and V.M. Mikhailov Retrogressive Thaw Slump Impacts on Inconnu Spawning Habitat in the Selawik River, Alaska . . . . . . . . . . . . . . . . . . . . . . 91 R. Hander, K. Yoshikawa, and N. Olson Climatic Change and Permafrost Stability in the Eastern Canadian Cordillera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 S.A. Harris Idealized Modeling of the Impact of Atmospheric Forcing Variables on Mountain Permafrost Degradation . . . . . . . . . . . . . . 95 C. Hauck and N. Salzmann A Method for the Analysis of the Thermal Permafrost Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 M.A. Hidalgo, J.J. Blanco, M. Ramos, D. Tomé, and G. Vieira Ground Truth Observations of the Interior of a Rock Glacier as Validation for Geophysical Monitoring Datasets . . . . . . . . . 99 C. Hilbich, I. Roer, and C. Hauck Internal Structure of Rock Glacier Murtèl Delineated by Electrical Resistivity Tomography and Forward/Inverse Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 C. Hilbich Permafrost Degradation Beneath a Heat-Producing Coal Waste Rock Pile, Svalbard (78°N) . . . . . . . . . . . . . . . . . . . . . . . . . 103 J. Hollesen and B. Elberling Patterns in Soil Carbon Distribution in the Usa Basin (Russia): Linking Soil Properties to Environmental Variables in Constrained Gradient Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 G. Hugelius and P. Kuhry

viii Total Storage and Landscape Distribution of Soil Carbon in the Central Canadian Arctic Using Different Upscaling Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 G. Hugelius, P. Kuhry, C. Tarnocai, and T. Virtanen Liquid Water Destabilizes Frozen Debris Slope at the Melting Point: A Case Study of a Rock Glacier in the Swiss Alps. . . 109 A. Ikeda and N. Matsuoka TSP NORWAY – Thermal Monitoring of Mountain Permafrost in Northern Norway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 K. Isaksen, H. Farbrot, B. Etzelmüller, H.H. Christiansen, L.H. Blikra, K. Midttømme, and J.S. Rønning Mapping the Mountain Permafrost in Areas Surrounding Ulaanbaatar City . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Y. Jambaljav, A. Dashtseren, D. Battogtokh, D. Dorjgotov, Y. Iijima, M. Ishikawa, Y. Zhang, T. Kadota, and T. Ohata Historic Change in Permafrost Distribution in Northern British Columbia and Southern Yukon . . . . . . . . . . . . . . . . . . . . . . 115 M. James, A.G. Lewkowicz, S.L. Smith, and P. Lipovsky Improve the Active Layer Temperature Proile Estimation by the Data Assimilation Method . . . . . . . . . . . . . . . . . . . . . . . . 117 R. Jin and X. Li Long-Term Winter Seismic Vehicle Impacts in Permafrost Terrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 J.C. Jorgenson Permafrost Characteristics of Alaska . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 T. Jorgenson, K. Yoshikawa, M. Kanevskiy, Y. Shur, V. Romanovsky, S. Marchenko, G. Grosse, J. Brown, and B. Jones Comparison of Thermal Regimes in Tundra Virgin and Post-Agricultural Soils of the European Northeast . . . . . . . . . . . . . 123 D. Kaverin Massive Ground Ice in the Norilsk Basin: Evidence of Segregation Origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 O.A. Kazansky and M.Y. Kushchev Vegetation of Northern West Siberia and Its Response to Human-Induced Disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 L. Kazantseva Surface Ice and Snow Disappearance in Alpine Cirques and Its Possible Signiicance for Rock Glacier Formation: Some Observations from Central Austria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 A. Kellerer-Pirklbauer Temperatures in Alpine Rock Walls During the Warm Winter 2006–2007 in Austria and Its Signiicance for Mountain Permafrost: Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 A. Kellerer-Pirklbauer, M. Avian, G.K. Lieb, and M. Rieckh Content and Composition of Organic Matter in Quaternary Deposits on the Laptev Sea Coast . . . . . . . . . . . . . . . . . . . . . . . 133 A.L. Kholodov, L. Schirrmeister, H. Meyer, Ch. Knoblauch, and K. Fahl Environmental Controls for the Coastal Processes on Yugorsky Peninsula, Kara Sea, Russia . . . . . . . . . . . . . . . . . . . . . . . . 135 A. Khomutov Carbon Dynamics of the Permafrost Regime, North Slope of Alaska . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Y. Kim, K. Kushida, M. Shibuya, and H. Enomoto Impacts of Climate Warming and Facilities on Rock Temperatures at a Tunnel in High Alpine Continuous Permafrost: Results of Long-Term Monitoring at Kleinmatterhorn, Swiss Alps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 L. King, C.C. Maag, and C. Baumann Differential Estimates of Organic Carbon Pools in Permafrost-Affected Soils of Russia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 D.E. Konyushkov, D.I. Rukhovich, N.V. Kalinina, and E.A. Dolinina

ix Satellite Observations of Frozen Ground, Snowmelt (1989–2007), and Hydrological Responses at a Discontinuous Permafrost Aquifer (Fort Wainwright, Alaska) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 S.E. Kopczynski and J.M. Ramage Low-Frequency Sounding During the Gas Line Engineering Investigations in the Area of the Transition Through Baidaratskaya Bay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 A.V. Koshurnikov, Yu.D. Zykov, and Yu.V. Kulehsov Thixotropic Wedges or Frost Cracks: A Review from the Pannonian Basin (Hungary, Europe) . . . . . . . . . . . . . . . . . . . . . . . 147 J. Kovács, S.Á. Fábián, G. Varga, I.P. Kovács, and G. Varga Potential Inclusion of Vegetation Indices in Mountain Permafrost Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 M. Kremer, A.G. Lewkowicz, M. Sawada, P.P. Bonnaventure, and M. Ednie Thermal Conditions in Martian Permafrost: Past and Present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 M.A. Kreslavsky Collapse of the Bérard Rock Glacier (Southern French Alps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 J-M. Krysiecki, X. Bodin, and P. Schoeneich Studies of the Freezing Soil Process at the Railway Contact System Supports to Provide Safe Transportation and Operation of Facilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 S.A. Kudryavtsev and D.G. Tsvigunov Temporal Variability in Plant Cover and Carbon Balance of Permafrost-Affected Tundra Ecosystems . . . . . . . . . . . . . . . . . 157 P. Kuhry Temperatures of Upper Permafrost in Northern West Siberia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 A.N. Kurchatova, A.V. Boytsov, A.B. Osokin, and G.K. Smolov Two-Dimensional Geoelectrical Monitoring in an Alpine Frozen Moraine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 C. Lambiel and L. Baron Impacts of Small-Scale Surface Variations on the Energy Balance of Polygonal Tundra on Samoylov Island, Lena River Delta, Siberia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 M. Langer, J. Boike, K. Piel, and G. Stoof Non-Summer CO2 Measurements Indicate Tundra Ecosystem Annual Net Source of Carbon Double Net Summer Sink . . . 165 C. Laskowski, G. Burba, and W. Oechel Accelerated Arctic Land Warming and Permafrost Degradation During Rapid Sea Ice Loss . . . . . . . . . . . . . . . . . . . . . . . . . 167 D.M. Lawrence, A.G. Slater, R.A. Tomas, M.M. Holland, and C. Deser The Sensitivity of a Model Projection of Near-Surface Permafrost Degradation to Soil Column Depth and Representation of Soil Organic Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 D.M. Lawrence, A.G. Slater, V. Romanovsky, and D. Nicolsky The Inluence of Snowdrift on the Geothermal Field of Permafrost: Results from Three-Dimensional Numerical Simulations at a Local Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 A-M. LeBlanc, R. Fortier, M. Allard, and R. Therrien Spatial Variation in CO2 Release from Arctic Tundra as a Result of Permafrost Thawing and Thermokarst Development . . 173 H. Lee, E.A.G. Schuur, and J.G. Vogel Soil Structural Change Effects on Greenhouse Gas Production and Carbon Loss in Thawing Soils. . . . . . . . . . . . . . . . . . . . 175 G.A. Lehrsch and R.S. Dungan

x Relation of Active Layer Depth to Vegetation on the Central Yamal Peninsula, Russia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 M.O. Leibman, H.E. Epstein, A.V. Khomutov, N.G. Moskalenko, and D.A. Walker Rock Glacier Response to Post-Little Ice Age Warming: Spruce Creek Rock Glacier, Ten Mile Range, Colorado, USA . . . 179 E.M. Leonard, S.G. Weaver, J.A. Bradbury, E.E. Langbecker, and J.A. Wollenberg Mapping the Permafrost in China Using Remotely Sensed Land Surface Temperature Data . . . . . . . . . . . . . . . . . . . . . . . . . 181 X. Li, S. Wang, R. Jin, and Y. Ran The Effect of Spatially Distributed Snow Cover on Soil Temperatures: A Field and Modeling Study . . . . . . . . . . . . . . . . . . 183 A. Liljedahl, L. Hinzman, S. Marchenko, and S. Berezovskaya The Omnsbreen Glacier: Possible Aggrading Permafrost, Southern Central Norway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 K.S. Lilleøren and O. Humlum A Permafrost and Building Foundation Monitoring System to Help Design Adaptable Foundation Structures in a Changing Climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 M.R. Lilly, R.F. Paetzold, and D. Reichardt The Role of Permafrost in the 2002 Ten Mile Creek Debris Torrent, Yukon, Canada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 P. Lipovsky, C. Huscroft, A. Lewkowicz, and B. Etzelmüller Carbon Gas Fluxes from Contrasting Boreal Lakes During Intensive Rain Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 J. López Bellido and A. Ojala The Sensitivity of SiBCASA-Simulated Carbon Fluxes and Biomass to North American Interannual Climate Variations . . 193 L. Lu, K. Schaefer, T. Zhang, and I. Baker Permafrost Characteristics and Climate Change Consequences at Stockhorn and Gornergrat (Swiss Alps) . . . . . . . . . . . . . . 195 C.C. Maag, O. Wild, L. King, M. Baum, S. Klein, and C. Hilbich The Microtopography of Periglacial Landforms on Mars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 N. Mangold Coastal Erosion Since 1950 Along the Southeast Chukchi Sea, Alaska, Based on Both GIS and Field Measurements . . . . . 199 W.F. Manley, J.W. Jordan, L.R. Lestak, O.K. Mason, E.G. Parrish, and D.M. Sanzone Importance of Changes in Moisture for Geomorphic Responses to Rapid Climatic Warming in the Western Brooks Range and the Arctic Foothills, Northern Alaska: Lessons from the Past . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 D. Mann, P. Groves, and M. Kunz Toward a Permafrost Map of Central Asia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 S. Marchenko, N. Sharkhuu, X. Li, M. Ishikawa, J. Brown, V. Romanovsky, and D. Drodzov Methane Ebullition During Field-Simulated Lake Expansion and Permafrost Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . 205 O. Mazéas, J. von Fischer, and R. Rhew A Provisional 1:50,000 Scale Soil Map of Wright Valley, Antarctica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 M. McLeod, J.G. Bockheim, and M.R. Balks Improving the Parameterization of Snow Processes to Model the Implications of Shrub-Tundra Expansion on Soil Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 C. Menard, R. Essery, and D. Clark Pyrogenic Dynamics of Cryosols and Carbon Pools in Open Forests of Northeast Eurasia . . . . . . . . . . . . . . . . . . . . . . . . . . 211 N.S. Mergelov

xi NORPERM: The Norwegian TSP Permafrost Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 K. Midttømme, G. Strand, H. Juliussen, and H.H. Christiansen Potential Subsidence from Thawing of Near-Surface Ground Ice, Outer Mackenzie Delta Area, Northwest Territories, Canada. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 P.D. Morse, C.R. Burn, and S.V. Kokelj Vegetation and Permafrost Long-Term Monitoring in the West Siberia Subarctic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 N.G. Moskalenko, O.E. Ponomareva, G.V. Matyshak, P.T. Orehov, L.A. Kazantseva, and E.V. Ustinova The Inluence of Shrubs on Soil Temperatures in Alpine Tundra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 I.H. Myers-Smith and D.S. Hik Estimation of the Extent of Near-Surface Permafrost in the Mackenzie Delta, Northwest Territories, Using Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 T.-N. Nguyen, C.R. Burn, D.J. King, and S.L. Smith Employing a Coupled Permafrost Water Balance Model to Study Possible Changes in Permafrost . . . . . . . . . . . . . . . . . . . . 223 D.J. Nicolsky, V.E. Romanovsky, and M.A. Rawlins Inluence of a Hydrothermal Soil Regime on the Radial Increment of Larch and Pine in Central Yakutia . . . . . . . . . . . . . . . 225 A.N. Nikolaev The Effect of Soil Moisture and Ice Content on the Thermal Conductivity of Organic Soil Horizons Underlain By Discontinuous Permafrost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 J.A. O’Donnell, V.E. Romanovsky, J.W. Harden, K. Yoshikawa, and A.D. McGuire Irreversible Damage? Human Activity, Cumulative Impacts, and Recovery Rates of the Antarctic Soil Environment . . . . . 229 T.A. O’Neill and M.R. Balks The Role of Sea Ice in Coastal and Bottom Dynamics in the Baidaratskaya Bay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 S.A. Ogorodov Soliluction Phases During the Late Holocene in Sierra Nevada (Southern Spain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 M. Oliva and L. Schulte Block Fields, Block Slopes, and Rock Glaciers: A Polygenetic Block Accumulation on the Schafstein (Rhoen Mountains, Germany) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Ch. Opp Occurrence of Permafrost and Ground Frost Phenomena in Mongolia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 Ch. Opp Reaction of Northern Taiga Ecosystems on Human-Induced Degradation of Permafrost in West Siberia . . . . . . . . . . . . . . . 239 P.T. Orekhov Geocryology (Permafrost) Course at the University of Alaska Fairbanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 T.E. Osterkamp Potential Use of Rock Glaciers as Mountain Permafrost Indicators in Yukon Territory, Canada . . . . . . . . . . . . . . . . . . . . . . 243 A. Page, A. Lewkowicz, P. Lipovsky, and J. Bond Soil Carbon Distribution in the Alaska Arctic Coastal Plain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 E. Pullman, M.T. Jorgenson, and Y. Shur The 2007 “Anaktuvuk River” Tundra Fire on the Arctic Slope of Alaska: A New Phenomenon?. . . . . . . . . . . . . . . . . . . . . . 247 C. Racine and R. Jandt

xii Ice Wedge Thermal Regime in Northern Victoria Land, Antarctica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 R. Rafi and S. Sega Soil Thermal and UV Radiation Monitoring on a Maritime Antarctic Permafrost Area by Means of REMS (Rover Environmental Monitoring Station-Mars Science Laboratory) Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 M. Ramos, J. Gómez, E. Sebastian, J. Martín, C. Armiens, J.J. Blanco, M.A. de Pablo, and D. Tomé Characterizing Polar Landscapes from Multispectral and Hyperspectral Imagery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 J.L. Rich, B. Csatho, E. Merényi, B. Bue, C-L. Ping, and L. Everett Contribution of Terrestrial Laser Scanning for Studying the Creep of Mountain Permafrost . . . . . . . . . . . . . . . . . . . . . . . . . 255 F. Riff, C. Lambiel, and T. Oppikofer Extensive Secondary Chaos Formation in Chryse Chaos and Simud Valles, Mars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 J.A.P. Rodriguez, K.L. Tanaka, J.S. Kargel, D. Crown, and D.C. Berman Development of Soil Databases on the Territory of Permafrost-Affected Regions in Russia . . . . . . . . . . . . . . . . . . . . . . . . . 259 D.I. Rukhovich, N.I. Belousova, P.V. Koroleva, E.V. Vil’chevskaya, and L.G. Kolesnikova Helical Piles for Power Transmission Lines: Case Study in Northern Manitoba, Canada . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 M. Sakr Mountain Permafrost Parameters Simulated by Regional Climate Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 N. Salzmann, C. Hauck, and L.O. Mearns Permafrost Dynamics and Landscape Changes in a Subarctic Peat Plateau, Northern Sweden . . . . . . . . . . . . . . . . . . . . . . . 265 A.B.K. Sannel and P. Kuhry Variable Peat Accumulation Rates in Stable Subarctic Peat Plateaus, West-Central Canada. . . . . . . . . . . . . . . . . . . . . . . . . . 267 A.B.K. Sannel and P. Kuhry C Age of Fossil Wood Remains Buried by an Inactive Rock Glacier, Upper Ticino Area (Southern Swiss Alps) . . . . . . . . 269 C. Scapozza, C. Lambiel, E. Reynard, M. Antognini, and P. Schoeneich

14

Interactions Between Permafrost and the Carbon Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 K. Schaefer, T. Zhang, L. Lu, and I. Baker Surface Offsets and N-Factors Across Altitudinal Tree Line, Wolf Creek Area, Yukon Territory, Canada . . . . . . . . . . . . . . . 273 E.A. Schultz and A.G. Lewkowicz The Contribution of Old Carbon to Respiration from Alaskan Tundra Following Permafrost Thaw . . . . . . . . . . . . . . . . . . . 275 E.A.G. Schuur, J.G. Vogel, K.G. Crummer, H. Lee, and K. Dutta Interactions Between Human Disturbance, Demographics of Betula fruticosa Pall., and Permafrost in the Vitimskoye Upland, East Siberia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 I.R. Sekulich Rock Glacier Distribution in the Absaroka/Beartooth Wilderness, Montana, USA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 Z.M. Seligman and A.E. Klene Dynamics of the Cryosphere of Northern Tien Shan as a Reaction to Climate Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 I.V. Severskiy and E.V. Severskiy Phase Changes of Water as a Basis of the Water and Energy Exchange Function of the Cryosphere . . . . . . . . . . . . . . . . . . . 283 V.V. Shepelev

xiii Near-Surface Stress and Displacement Measurements from Vehicle Passage Over Frozen Ground . . . . . . . . . . . . . . . . . . . . 285 S. Shoop Formation of Frost Boils and Earth Hummocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 Y. Shur, T. Jorgenson, M. Kanevskiy, and C-L. Ping The Role of Lakes in Carbon Transfers from Permafrost to the Atmosphere: Eight Mile Lake, Alaska . . . . . . . . . . . . . . . . . 289 J.O. Sickman, G. Von Kiparski, E.A.G. Schuur, J.G. Vogel, and W. Vicars Recent Сlimatic Сhanges in Yakutia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 Yu.B. Skachkov Permafrost, Parameters, Climate Change, and Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 A.G. Slater and D.M. Lawrence Thermal State of Permafrost in Canada: A Contribution to the International Polar Year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 S.L. Smith, A.G. Lewkowicz, and C.R. Burn Tides as a Possible Reason for Massive Ice Beds Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 S.A. Sokratov and G.A. Rzhanitsyn Preservation of the Alaska Highway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 E. Stephani, D. Fortier, Y. Shur, G. Doré, and B. Stanley Speciic Features of Dynamic Modeling of Processes in the South Siberian Permafrost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 V.A. Stetjukha Understanding the Filling Process in Ice Wedges Using Crystallography, Isotopes, and Molar Gas Ratios . . . . . . . . . . . . . . 303 M. St-Jean, I.D. Clark, B. Lauriol, and P. Middlestead Snowmelt in an Arctic Catchment: Application of the Hydrological Model WATFLOOD in a Small Arctic Basin with Different Land Cover Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 A. Strutzke and Ch. Opp Recent Rise of Water Level in Lake Hovsgol in the Permafrost Zone of Northern Mongolia: Trends and Causal Factors . . 307 K. Takeda, H. Fushimi, and T. Kira Effects of Increased Snow Depth on Ecosystem CO2 Fluxes in Arctic Tundra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 L. Taneva, P.F. Sullivan, B. Sveinbjornsson, and J.M. Welker Modeling Permafrost Evolution and Impact on Hydrogeology at the Meuse/Haute-Marne Sedimentary Site (Northeast France) During the Last 120,000 Years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 V. Teles, E. Mouche, C. Grenier, D. Regnier, J. Brulhet, and H. Benaberrahmane Effect of a Snow Fence on the Shallow Ground Thermal Regime, Baker Lake, Nunavut, Canada. . . . . . . . . . . . . . . . . . . . . 313 J.L. Throop, S.L. Smith, and A.G. Lewkowicz Examining the Temporal Variation in Headwater Drainage Networks and Potential for Thermokarst Using Remote Sensing in the Imnavait Basin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 E.D. Trochim, D.L. Kane, and A. Prakash Detection of Degraded Mountain Permafrost with the Help of GPR Proiling at Mesón San Juan, Mendoza, Argentina . . . 317 D. Trombotto Liaudat, J. Menezes Travassos, and G. Chaves Stael Pleistocene and Holocene Periglacial Forms in the Cantabrian Mountains (Northwest Spain) . . . . . . . . . . . . . . . . . . . . . . . . 319 D. Trombotto Liaudat and V. Alonso

xiv Permafrost Response to Dynamics of External Heat Exchange: Comparison of Observed and Modeled Data (Nadym-Pur-Taz Region) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 J. Ukhova, A. Osokin, D. Sergeev, and J. Stanilovskaya Application of DC Resistivity Tomography in the Alpine Area of the Southern Carpathians (Romania) . . . . . . . . . . . . . . . . 323 P. Urdea, F. Ardelean, A. Onaca, M. Ardelean, and M. Törok-Oance Repeated Mapping of the Northern Taiga Ecosystems in West Siberia, Disturbed by Pipeline Construction . . . . . . . . . . . . . 325 E.V. Ustinova Forcing Factors of Permafrost Retreat: A Comparison Between LGM and Present-Day Permafrost Extent in Eurasia . . . . . 327 J. Vandenberghe, A. Velichko, and A. Gorbunov Application of Georadar in the Cryosphere for the Study of Engineering Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 S. Velikin and R. Czhan A Role of Description of Thaw/Freeze Processes in the Permafrost Zone for Quantifying Fire Weather . . . . . . . . . . . . . . . . 331 S. Venevsky and A. Rubtsov Hydrogen and Oxygen Isotope Studies from an Ice Wedge in Svalbard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 H. Vittinghus, H.H. Christiansen, H. Meyer, and B. Elberling Vegetation Change and Thermokarst Development: Effects on Ecosystem Carbon Exchange in Upland Tussock Tundra . . 335 J.G. Vogel, H. Lee, C. Trucco, E.A.G. Schuur, and J. Sickman Preliminary Analysis of Anthropogenic Landscape Fragmentation: Tazovsky Peninsula, Russia . . . . . . . . . . . . . . . . . . . . . . 337 J.S. Wallace and A.E. Klene Engineering Effect on the Thermal Status of Shallow Ground in Permafrost Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 Z. Wen, Y. Sheng, W. Ma, Q. Wu, and B. Huang Long-Term Monitoring of Sensible and Latent Heat Fluxes Using Eddy Covariance at a High Arctic Permafrost Site in Svalbard, Norway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 S. Westermann, J. Boike, K. Piel, and J. Lüers Scientiic Opportunities and Environmental Impacts Related to Ski Run Construction, Zermatt, Swiss Alps . . . . . . . . . . . . 343 O. Wild, I. Roer, S. Gruber, B. May, and D. Wagenbach The Effect of Climate and Permafrost on Tree Line Dynamics in Northwest Russia: A Preliminary Analysis . . . . . . . . . . . . 345 M. Wilmking, S. Kenter, and J. Ibendorf Bathymetric Mapping of Lakes in the Western Arctic Coastal Plain, Alaska. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 B. Winston, K. Hinkel, and R. Beck Digitizing Regional Permafrost Maps for Central and Eastern Asian Permafrost Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 349 L. Wu, X. Li, and J. Brown Challenges of Infrastructure Growth on a University Campus in Discontinuous Permafrost . . . . . . . . . . . . . . . . . . . . . . . . . 351 F. Wuttig Modeling and Monitoring Ecosystem Performance of Boreal Forests in the Yukon River Basin . . . . . . . . . . . . . . . . . . . . . . 353 B.K. Wylie, L. Zhang, N. Bliss, L. Ji, L. Tieszen, and W.M. Jolly Impact of Frozen Ground Change on Streamlow Hydrology Over the Lena Watershed in Siberia: Preliminary Analysis . . 355 D. Yang, I. Majhi, D. Kane, and T. Zhang

xv Simulating the Effects of Wildire on Permafrost and Soil Carbon Dynamics of Black Spruce Over the Yukon River Basin Using a Terrestrial Ecosystem Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 S. Yi, A.D. McGuire, and J. Harden Non-Linear Analysis of the Thermal Characteristics of Permafrost Embankment with Crushed-Rock Revetment and Insulation on Qinghai-Tibet Plateau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 M. Zhang, S. Li, S. Zhang, and Y. Dong Interannual Variability of the Near-Surface Soil Freeze-Thaw Cycle Detected from Passive Microwave Remote Sensing Data in the Northern Hemisphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 T. Zhang and R. Armstrong Current State and Dynamics of Permafrost in the Siberian Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 M.N. Zheleznyak, V.T. Balobaev, and V.G. Rusakov The Biocomplexity Manipulation Experiment: Effect of Water Table Drop on CH4 and CO2 Fluxes in the Alaskan Arctic at the Barrow Environmental Observatory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 D. Zona and W.C. Oechel The Oil Pollution Inluence of Frozen Soils on Their Geophysical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 Yu.D. Zykov, A.V. Koshurnikov, I.V. Anisimova, and T.E. Mironova Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

xvi

Preface One of the looming challenges in organizing an international conference on permafrost is determining the timetable. What should be the deadline for abstract and paper submittals? Early in the process we agreed that we wanted the proceedings published before the conference, and this challenge has become more taxing as the size of the conference has increased. We made a concerted effort to compress the timetable so that papers published in the proceedings were to be submitted only eight and one-half months before the conference. Still, there are those who want to report on their latest research at the permafrost conference. In the recent past, the International Permafrost Association (IPA) introduced the concept of extended abstracts (two pages in this case) that were published in a separate document. The idea was that the collection would represent the latest in permafrost research. It is clear that some researchers, inding the English

language challenging, opted instead to submit the shorter extended abstract in lieu of the six-page manuscript. We have one hundred eighty-four extended abstracts that will be presented at the Ninth International Conference on Permafrost; this can be compared with the three hundred iftyeight papers published in the proceedings. As in the past, the extended abstracts were not reviewed, and except for some minor changes (formatting, deletion of an abstract in the extended abstract, etc.), they are published as they were submitted. As with the proceedings and abstract volumes, we appreciate all the assistance we received from Thomas Alton and Fran Pedersen in producing this volume. We hope that you ind these extended abstracts and accompanying poster presentations informative.

— Douglas L. Kane and Kenneth M. Hinkel

xvii

NICOP Sponsors Universities University of Alaska International Polar Year (Gold plus) University of Alaska President’s Fund (Gold) Alaska University Transportation Center (Gold) University of Alaska Fairbanks Institute of Northern Engineering (Silver) University of Alaska Fairbanks International Arctic Research Center (Silver) University of Alaska Fairbanks Experimental Program to Stimulate Competitive Research (EPSCoR) (Bronze) University of Alaska Young Researchers’ Network/UA IPY Outreach (Contributor plus) University of Colorado-National Snow and Ice Data Center (Contributor) Government Agencies Alaska Division of Geological and Geophysical Surveys, Fairbanks (Gold) U.S. National Science Foundation (Silver) U.S. Geological Survey (Silver) U.S. Army Cold Regions Research and Engineering Laboratory (Bronze) U.S. Department of Energy (Bronze) U.S. Arctic Research Commission (Brass) U.S. Bureau of Land Management (Brass) Denali Commission (Brass) North Slope Science Initiative (Brass) U.S. Minerals Management Service (Contributor plus) Norwegian Thermal State of Permafrost IPY Project (Sustaining) Corporate and Non-Governmental Organizations Arctic Foundations, Inc., Anchorage (Gold) Alyeska Pipeline Company, Anchorage (Silver) International Permafrost Association (Bronze plus) Arctic Slope Regional Corp. (Bronze plus) BP Foundation (Bronze) Geo-Watersheds Scientiic, Fairbanks (Bronze) Duane Miller & Associates, Anchorage (Bronze) CH2MHILL Energy & Power, Anchorage (Brass) ConocoPhillips Alaska (Brass) EBA Engineering Consultants Ltd., Canada (Brass) Golder Associates, Anchorage (Brass) Michael Baker Jr, Inc., Anchorage (Brass) Shannon & Wilson, Inc. Seattle (Brass) PND Engineers, Inc, Anchorage (Contributor plus) RA Kreig & Associates, Anchorage (Contributor plus) BeadedStream, LLC, Anchorage (Contributor) DOWL LLC, Anchorage (Contributor) Kinross Fort Knox Gold Mine (Contributor) Hawk Consultants, LLC, Anchorage (Contributor) Houston Advanced Research Center (HARC) (Contributor)

Fairbanks Gold Mining, Inc., Fairbanks (Contributor) Northern Engineering & Scientiic, Anchorage (Contributor) Northern Geotechnical Engineering, Inc., Anchorage (Contributor) R&M Consultants, Inc., Anchorage (Contributor) Tryck Nyman Hayes, Inc., Anchorage (Contributor) Resource Data, Inc., Anchorage (Sustaining) URS Corporation, Anchorage (Sustaining) Usibelli Foundation (Sustaining) Harley H. Hightower, FAIA, Anchorage (Sustaining) ICOP Donor Circle (Contributor) Jerry and Celia Brown Edwin Clarke Hugh M. French Don W. Hayley C.W. “Bill” Lovell J. Ross Mackay (Honorary Member) Michael C. Metz Frederick E. Nelson Jim and Florence Rooney Ronald S. Sletten Sarah M. Springman Rupert “Bucky” Tart Ted B. Trueblood H. Jesse Walker John Zarling Individuals Joe Malen In-Kind Sponsors Elsevier Rite in the Rain Fairbanks Convention and Visitors Bureau American Water Resources Association UAF Toolik Lake Field Research Station Pogo Mine U.S. Army CRREL U.S. Geological Survey Permafrost Young Researchers Network Mountain Studies Institute University of Cincinnati University of Colorado at Boulder Kinross Fort Knox Gold Mine Institute of Arctic and Alpine Research BP Exploration (Alaska), Inc. University of Alaska Fairbanks ABR, Inc. U.S. National Park Service Geo-Watersheds Scientiic

xviii

xix UAF International Arctic Research Center UAF Institute of Northern Engineering University of Alaska IPY Ofice Alaska Division of Geological & Geophysical Surveys Barrow Arctic Science Consortium Conoco Phillips Alaska

Response of Arctic and Subarctic Soils in a Changing Earth (RASCHER) – Project of IPY: Methodology, Activity, Results Sergey V. Goryachkin Institute of Geography, Russian Academy of Science, Moscow, Russia John M. Kimble Soil Consultant, Addison, NY, USA Nimazhap B. Badmaev Institute of General & Experimental Biology, Russian Academy of Science, Siberian Branch, Ulan-Ude, Russia Marek Drewnik Jagiellonian University of Krakow, Krakow, Poland Dmitri G. Fedorov-Davydov Institute of Physico-Chemical & Biological Problems of Soil Science, Russian Academy of Science, Puschino, Russia Stanislav A. Iglovski Institute of Ecological Problems of the North, Russian Academy of Science, Ural Branch, Arkhangelsk, Russia Elena M. Lapteva Institute of Biology, Komi Scientiic Centre, Russian Academy of Science, Syktyvkar, Russia Galina M. Mazhitova Institute of Biology, Komi Scientiic Centre, Russian Academy of Science, Syktyvkar, Russia Nikita S. Mergelov Institute of Geography, Russian Academy of Science, Moscow, Russia Vladimir E. Ostroumov Institute of Physico-Chemical & Biological Problems of Soil Science, Russian Academy of Science, Puschino, Russia Eva-Maria Pfeiffer Institute for Soil Science, Hamburg University, Hamburg, Germany of the biotic complex of tundra soils (microbiota, microfauna, and mesofauna) as well as the selective role of negative temperatures on the structure of soil microbiocenoses and the inluence of cryogenesis on adaptive functions of soil microorganisms are studied both in the ield and in a laboratory, using traditional and new (DNA analysis) methods. For study of the character of polar soil microbocenoses, samples from permafrost-affected soil —Cryozem of the tundra ecosystem of the Lower Kolyma—have been collected and analyzed. The obtained data of the analysis of DNA show that the microbial population of these soils concerns in 14 groups that characterize this soil as the one with high biodiversity comparable with soils of more southern latitudes. For the inventory study of the soil mesofauna, soil samples in the Vorkuta tundra (northeast of Europe) on soil catena from top to the bottom part of a slope have been collected. Invertebrates have been allocated only from the samples of various layers of the organic horizon. In Barber’s traps, there have been caught representatives of ive groups (Coleoptera, Hymenoptera, Lepidoptera, Homoptera, Diptera) from a class of insects and species of a class of Aranei. Representatives of Coleoptera are related to the top and middle part of a slope, while those of Diptera are found at the middle and bottom parts of the studied slope. Larvae of Diptera have mainly been met in soil samples of the middle part of a slope. In soil microfauna alongside with Collembola, there also have been identiied ticks: Gamasidae and Oribatei. The last ones have been found at all sites of the slope mainly in the warmest top

RASCHER (Response of Arctic and Subarctic Soils in a Changing Earth) is the International Polar Year (IPY) project which involves over 20 specialists from different countries. It addresses how climate variability and change can affect the soil systems of the Polar Regions and their sustainability with a changing climate. To provide accurate projections of the impact of climate change requires improved knowledge of its components and their linkages. Soil has both very inert and changeable parameters which are altered differently because of climate change. RASCHER mainly focuses on the study of temporal change of labile soil characteristics (temperature, carbon luxes and other gas luxes, microbiota, and microfauna) and of more stable soil characteristics (mineral composition, organic matter content and quality, morphological features, taxonomical status) in different kinds of frontiers (treeline, tundra-bog border, southern border of permafrost, contact zone, and the permafrost table in a proile), which are expected to be changed irst due to climate change. The ield studies are carried out in the different regions of the Arctic and Subarctic and also in high mountainous landscapes of temperate regions. Their aim is to make a “snapshot” of the current status of soil characteristics in 2007–08. It allows comparison of the inventory data gained in the IPY with results of studies to be carried out at the same locations 30–40 years later, and assessing if any climate-induced change of soil biota will take place. The variability of soil characteristics is taken into account. The role of thermal factor in composition and functioning 87

NiNth iNterNatioNal CoNfereNCe oN Permafrost to intense geomorphic processes (rock falls, rock slides, debris and grain lows, soliluction, geliluction, and others). The soils studied have been localized in the alpine zone (1800–2200 m a.s.l.), where the most intensive geomorphic processes occur (cryo-nivale zone). The soils studied are shallow and contain a considerable amount of clast. They are subjected to the podzolization process, and they can be characterized by thick humus horizons. Slow geomorphic processes (soliluction, soil creep) modify the upper part of the soil proile, comprised of humus horizons and eluvial horizons. The inluence of these processes depends on the participation of the phenomena associated with the freeze-thaw action concerning the ground ice. Along with the increased importance of frost action in the movement of regolith, the degree of soil modiication increases. The most profound transformation of the soil cover occurs in the case of geliluction. Within the forms, which developed as a result of secular processes (protuberances, bench terraces, lobes), the soils are modiied, although without leading to essential changes in their properties. The soil affected by geliluction have the properties and morphology of Fluvisols. Catastrophic processes (rock slides, debris and grain lows) cause strong transformation of soil cover and uniformity of soil mass. Further development of soil depends on the geomorphic position; it is different within erosion zones and different within accumulation zones; so the soils above the upper timberline in the Tatra Mountains are young forms. In relatively stable areas or those subjected to only moderate geomorphic processes, they often display the features of polygenesis associated with changing climatic and geomorphic conditions. The other part of the frontier studies is the detailed analysis of soil process at the interface of the soil and permafrost tables. It concerns the study of the biochemical and geochemical barrier on this interface and the study of the process of cryogenic lateral transportation at the contact zone of the soil and the permafrost table. This interface is the zone of high concentration of organic matter and other compounds, including pollutants. These detailed physicochemical studies allow for a determination of the fate of these materials as affected by permafrost thawing due to climate change or anthropogenic impact. The important feature of the cryogenic structure of the transitional layer is the zone of concentration of labile substances which are situated in the zone of the segregative ice. In depressions of the permafrost surface, there are local zones of accumulation of labile substances—cryogenic geochemical traps. The chemical analysis showed that the general salinity and composition of soluble substances concentrated in these traps differ from the composition of intrasoil ice. The differences observed can be explained by cryogenic transformation of suprapermafrost water and selective penetrability of the cryogenic geochemical barrier. Local accumulation of labile substances in geochemical permafrost traps is the essential part of geochemical balance. If the soil thawing depth increases, then the elements concentrated in permafrost geochemical traps could escape into the surface-water low.

part of soil litters. Gamasidae and Collembola in the top and middle part of the slope have been met in the whole mass of peaty horizons, while in the wettest bottom part of the slope, they are mostly at the top part of the organic horizons. The general number of Collembola in tundra permafrost-affected soils is low. On the average in the top part of the organic horizon, it is nearby 15,300 sp./m2, and in the bottom part – 1,130 sp./m2. At the same time the number of Collembola depends on the part of the slope. The wettest bottom part of a slope is characterized by a maximum of Collembola which are concentrated in the top part of a litter, while the maximum quantity of Gamasidae (2,800 sp./m2) and Oribatei (8,400 sp./m2) is related to the middle part of the slope. The frontier studies concern the non-stability of the soil thermic regimes, shrinking of isolated patches and the northward retreat of permafrost-affected soils, and the assessments of possible soil change related to vegetation transformation on the base of soil studies (carbon luxes, humus quality, mineral composition, etc.) in different types of ecotones (forest-tundra, tundra-bog, meadow-tundra). In the Vorkuta tundra, the constant deepening of the permafrost table was observed. Leveling of the permafrost surface revealed that the ground subsidence due to thaw was 18 cm per 7 years, thus the subsidence rate is 2.5 cm/year. The average increment (396 measurements per year) of the soil layer reached 20 cm, and if adjusted to the subsidence is 38 cm per 7 years. Thus, the average thickness of the permafrost involved annually into soil formation is 5.5 cm. In the tundra of the Lower Kolyma River, the general tendency for decrease of the permafrost table was also revealed, but the process seems to be more complicated and has more luctuations. It is the result of the inluence of 2 factors: (1) lower permafrost temperature at the Eurasian Northeast, and (2) various processes with negative feedbacks resulting in thaw mitigation. At the southern part of the Cryolithozone, in Buryatia, in 1907–08 in undisturbed Gelic Chernozems, the permafrost table was identiied at a depth of 1.5–1.6 m; in the 1960s, 2.0–2.1 m; at present time, 2.5–2.75 m. In loamy Gelic Luvisols, the permafrost at the beginning of the previous century was found at a depth of 1.2–1.3 m; in 1960–70s, 1.5–1.6 m; at present time, 2.2–2.5 m. The analysis of archives and personal data revealed a shift of the southern permafrost boundary in the region northward from Arkhangelsk since 1933 to 2000. During 67 years, the southern border of the sporadic permafrost has moved northward 20–30 km. The monitoring of the “forest-bog” ecotone in the subarctic zone of the Arkhangelsk region has been conducted. Besides the well-known phenomenon of northern soils bogging, it revealed the ecotone sustainability based on negative feedbacks. The study of soil and geomorphic processes has been conducted in formerly permafrost-affected Tatra Mountains, which are the highest part of the Central European Carpathians (2655 m a.s.l.). The Tatra Mountains are not glaciated, and nowadays, the presence of permafrost has not been found. However, these mountains are subjected 88