Flexible IR-HARQ Scheme for Polar-Coded Modulation

0 downloads 0 Views 323KB Size Report
(n,k,N) QUP-polar code (N is a power of two):. The first N − n bits of the (k,N) regular mother code are punctured (not transmitted). ▷ For GA construction:.
Institute for Communications Engineering Department of Electrical and Computer Engineering Technical University of Munich

Flexible IR-HARQ Scheme for Polar-Coded Modulation Peihong Yuan, Fabian Steiner, Tobias Prinz, Georg Böcherer {peihong.yuan, fabian.steiner, tobias.prinz}@tum.de, [email protected]

Incremental Redundancy Hybrid Automated Repeat Request (IR-HARQ) n1

n2

nt

IR-HARQ I In the t-th transmission, nt bits are transmitted.

1st Transmission

···

2nd Transmission

···

t-th Transmission

I After the t-th transmission, an (n1 + n2 + · · · + nt , k) code is decoded. • Turbo codes in LTE: I Low rate mother code (≈ 1/3) I Punctured with different patterns for several transmissions

1st decoding 2nd decoding

• LDPC codes in 5G: I Protograph-based high rate mother code I Raptor-like extension for several transmissions

t-th decoding

Preliminaries

Proposed Scheme

Polar Coding and Construction I We use the non bit-reversal representation" of 1 c = uF⊗ log2 N , where F = 1

polar # codes [1]: 0 1

I− = 1 − J I

+

=J

[J −1 (1 − I1 )]2 + [J −1 (1 − I2 )]2

q

[J −1 (I1 )]2

+

[J −1 (I2 )]2

+

U1 U2

I Density evolution with Gaussian approximation (GA) [2]: q

I Based on dynamically frozen bits [10]

F⊗ log2 N





X1 X2

I Length flexible

Y1 Y2

I



=I(U1 ; Y1 Y2 )

I

+

=I(U2 ; Y1 Y2 |U1 )

ntmax

Itmax .. .

I Capacity achieving under design constraint (nesting property): P (1) nt = t−1 q=1 nq ,

.. .

I2

I1 =I(X1 ; Y1 )

I Equivalent to [9] for nt is a power of two P and nt = t−1 q=1 nq , t = 2, 3, . . .

n2

(2) I + [t] ≤ I [t − 1] , t = 2, 3, . . .

n1

where I [t] denotes the design MI of the t-th transmission

I2 =I(X2 ; Y2 ) I1

I Extendable to MLPC Quasi-Uniform Puncturing (QUP) Algorithm [3] Design the t-th transmission (t 6= 1)

I (n, k, N) QUP-polar code (N is a power of two): The first N − n bits of the (k, N) regular mother code are punctured (not transmitted).





ˆi = ˆ i−1 = U i−1 for the (n1 + n2 + · · · + nt+1 , k) code via GA 1 Calculate Pr U 6 Ui |U 1 1

I For GA construction: set Ii = I(Xi ; Yi ) = 0, i = 1, . . . , N − n

2 Freeze the bits which are not in the information set of the (n1 + n2 + · · · + nt , k) code A0t

I The first N − n bits in u are frozen.

3 Put the k most reliable bits of the (n1 + n2 + · · · + nt+1 , k) code in the information set At 4 Dynamically frozen constraint is given by uA0t \At = uAt \A0t

Multilevel Polar Coding (MLPC) Comparison with “normal” QUP-Polar Codes I AWGN channel with constellation: Y = X + N, where Xi ∈ {±1, ±3, . . . , ± (2m − 1)} , Ni ∼ N (0, σ 2 )

Y → demapper for level 1 I SC decoding .. .

k1

I Set partitioning (SP) labeling [4] I

n (kj , m )

polar code for level j,

Pj

1 kj

= k, j = 1, 2, . . . , m

Y → demapper for level 2

I k = 3000, tmax = 4

10−2

I

: proposed scheme n1 = 4200, n2 = n3 = n4 = 600

I

: “normal” QUP-polar n = {4200, 4800, 5400, 6000}

10−3

I MI demapper GA construction (MI-DGA) [5] I List decoding [6] for MLPC: All survived path are passed into the demapper for next level [5].

10

−1

BLER

2m -ASK

.. .

k2

10−4

10

11

12 13 14 SNR in dB (biAWGN)

Y → demapper for level 3

I Extendable to 22m -QAM constellations

.. .

15

16

Comparison with LTE/5G solutions (tmax = 4) proposed

10−1 BLER

Related Works for Polar Coded IR-HARQ

3rd

10−2

4th

• 16 bits CRC outer code g(x ) = x 16 + x 12 + x 5 + 1

− Huge performance loss in the finite length regime

Polar Extension [9] + More polarized than [7, 8] − Length not flexible: P Nt = t−1 q=1 Nq , t = 2, 3, . . .

10−4 −6

+

−4

−2

0

2

• biAWGN

SNR in dB (biAWGN)

2nd

I k = 128 (include CRC) I n14 = (250, 250, 200, 140)

10−1 BLER

+ Length flexible

most unreliable infomation bits

Polar Codes with Incremental Freezing [7, 8] F⊗ log2 N2

F⊗ log2 N1

1st

• 8-ASK 10−2

I k = 896 (include CRC) I n14 = (1200, 600, 1200, 900)

10−3 10−4

2

4

6

8 10 12 SNR in dB (8-ASK)

14

16

Bibliography [1]

E. Arıkan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[2]

S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check codes for modulation and detection,” IEEE Trans. Commun., vol. 52, no. 4, pp. 670–678, May 2004.

[3]

K. Niu, K. Chen, and J.-R. Lin, “Beyond turbo codes: Rate-compatible punctured polar codes,” IEEE Int. Conf. Commun. (ICC), pp. 3423–3427, Jun. 2013.

[4]

M. Seidl, A. Schenk, C. Stierstorfer, and J. B. Huber, “Polar-coded modulation,” IEEE Trans. Commun., vol. 61, no. 10, pp. 4108–4119, Sep. 2013.

[5]

G. Böcherer, T. Prinz, P. Yuan, and F. Steiner, “Efficient polar code construction for higher-order modulation,” IEEE Wireless Commun. Netw. Conf. (WCNC), Mar. 2017.

[6]

I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf. Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.

[7]

B. Li, D. Tse, K. Chen, and H. Shen, “Capacity-achieving rateless polar codes,” IEEE Int. Symp. Inf. Theory (ISIT), pp. 46–50, Jul. 2016.

[8]

S.-N. Hong, D. Hui, and I. Marić, “Capacity-achieving rate-compatible polar codes,” IEEE Int. Symp. Inf. Theory (ISIT), pp. 41–45, Jul. 2016.

[9]

L. Ma, J. Xiong, Y. Wei, and M. Jiang, “An incremental redundancy HARQ scheme for polar code,” arXiv preprint arXiv:1708.09679, 2017.

[10] P. Trifonov and V. Miloslavskaya, “Polar subcodes,” IEEE J. Sel. Areas Commun., vol. 34, no. 2, pp. 254–266, Feb. 2016.

LTE-turbo

2nd

10−3

+ Capacity achieving (nesting property [7])

5G-LDPC

1st

• Avoid “heavily” punctured codes: (N + w , k, 2N) QUP, w  N