Floristic Aspects of Forests of the Chapada

0 downloads 0 Views 150KB Size Report
eral Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900. Recife, PE, Brazil ..... 16; Lins-e-Silva & Rodal, Chap. 17; Rodal & Nasci ...
36616_u01.qxd 2/29/08 10:22 AM Page 193

C H A P T E R

6

Floristic Aspects of Forests of the Chapada Diamantina, Bahia, Brazil Ligia Silveira Funch, Maria Jesus Nogueira Rodal, and Roy Richard Funch

Abstract Funch, L. S. (Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Km 03 BR 116, Campus, 44031-460 Feira de Santana, BA, Brazil, [email protected]); M. J. N. Rodal (Departamento de Biologia, Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil, [email protected]); and R. R. Funch (Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Km 03 BR 116, Campus, 44031-460 Feira de Santana, BA, Brazil, [email protected]). Floristic Aspects of

___–1

Forests of the Chapada Diamantina, Bahia, Brazil. Mem. New York Bot. Gard. 100:

___ 0 ___+1

36616_u01.qxd 2/29/08 10:22 AM Page 194

194

The Atlantic Coastal Forest of Northeastern Brazil

000–000. 2008.—The upland forests of northern Brazil, situated between 450 and 1100 m, have a fragmented distribution and occur dispersed throughout the caatinga drylands biome, principally on plateaus and in the highlands. In the state of Bahia, these forests occur especially within the Chapada Diamantina mountain range as gallery forests (seasonal evergreen submontane and montane forests), montane forest (seasonal semideciduous montane forests), tableland forests (seasonal semideciduous submontane forests), and crevice forests (seasonal evergreen montane forests). In order to floristically characterize the forests growing on the eastern border of the Chapada Diamantina range and examine the possibility of the São Francisco River serving as an effective barrier separating these forests from the northern upland forests, six different plant surveys undertaken in the Chapada Diamantina were analyzed using multivariate analysis and compared with the arboreal flora of 16 other floristic surveys in northeastern Brazil. Those surveys have identified a total of 139 arboreal species, distributed among 85 genera and 51 families of phanerogams. The most species-rich families were Myrtaceae, Leguminosae, Euphorbiaceae, Chrysobalanaceae, and Melastomataceae. Clustering techniques and principal component analysis grouped the forests of the Chapada Diamantina and indicated their similarity to the ombrophilous forests of southern Bahia as well those in Pernambuco State to the north.

Resumo Funch, L. S. (Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Km 03 BR 116, Campus, 44031-460 Feira de Santana, BA, Brazil, [email protected]); M. J. N. Rodal, (Departamento de Biologia, Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil, [email protected]); e R. R. Funch (Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Km 03 BR 116, Campus, 44031-460 Feira de Santana, BA, Brazil, [email protected]). Floristic Aspects of Forests of the Chapada Diamantina, Bahia, Brazil. Mem. New York Bot. Gard. 100: 000–000. 2008.— As florestas serranas do nordeste do Brasil, situadas entre 450 e 1100 m, têm uma distribuição fragmentada e ocorrem dispersas através do bioma caatinga, particularmente nos planaltos e chapadas. No estado da Bahia, essas florestas ocorrem especialmente na Chapada Diamantina como matas de galeria (florestas –1___

estacionais montanas e submontanas sempre-verdes), matas de encosta (florestas esta-

0___

cionais montanas semi-deciduais), matas de planalto (florestas estacionais submontanas

+1___

36616_u01.qxd 2/29/08 10:22 AM Page 195

Funch et al.: Floristics Aspects of Forests of the Chapada Diamantina

195

semideciduais) e matas de grotão (florestas estacionais montanas sempre-verdes). Com o objetivo de caracterizar as florestas localizadas na borda leste da Chapada Diamantina e examinar a possibilidade do rio São Francisco constituir uma barreira efetiva separando estas florestas das florestas serranas do nordeste, foram analisados seis levantamentos realizados na Chapada Diamantina e empregadas técnicas de análise multivariada para comparar a flora arbórea dessas florestas com a de 16 listas florísticas de florestas da região nordeste, especialmente do planalto da Borborema. Os trabalhos disponíveis registraram 139 espécies de árvores, distribuídas entre 85 gêneros e 51 famílias de fanerógamas. As famílias com maior riqueza foram Myrtaceae, Leguminosae, Euphorbiaceae, Chrysobalanaceae, e Melastomataceae. As técnicas de agrupamento e analise de componentes principais individualizaram as florestas da Diamantina e indicaram sua maior similaridade com as florestas ombrófilas, tanto da Bahia, ao sul, quanto de Pernambuco, ao norte.

Introduction The Atlantic coastal forest (ACF) occurs all along the Brazilian coast, although it is now greatly fragmented and represents one of the world’s most threatened forest areas. The ACF also penetrates inland into the savanna regions of central Brazil by following major river courses (Oliveira-Filho & Ratter, 2000) or by occupying mountainous areas as islands of forest in the otherwise dry Brazilian northeast. The ACF is composed of both ombrophilous evergreen forest and seasonal forests whose physiognomy and floristic composition vary according to altitude. The high physiognomic-floristic heterogeneity of the ACF is due, in great part, to a complex mix of geo-environmental factors. Many botanists have published syntheses of the flora of the ACF (Siqueira, 1994), however, most of their studies have been concentrated in southeastern Brazil, with the limited exception of the forested areas of southern Bahia. These latter forests have received ample attention due to their high indices of species richness (Thomas et al., 1998). Studies undertaken in the Brazilian northeast have been centered on lowland forest areas (Siqueira et al., 2001) and in the upland forests scattered throughout the caatinga drylands, especially on the Borborema Plateau (north of the São Francisco River), and the Chapada Diamantina (to the south). The highland forests located on the Bor-

___–1

borema Plateau have been relatively well studied floristically (Correia, 1996; Moura,

___ 0 ___+1

36616_u01.qxd 2/29/08 10:22 AM Page 196

196

The Atlantic Coastal Forest of Northeastern Brazil

1997; Ferraz et al., 1998; Sales et al. 1998; Tavares et al., 2000; Nascimento, 2001; Ferraz & Rodal, Chap. 16), whereas those of Chapada Diamantina area have not. Floristic surveys of the Chapada Diamantina were initiated in the 1970s by the Royal Botanic Gardens at Kew and the Centro de Pesquisas do Cacau (CEPEC) and have grown to include a number of Brazilian institutions. Research by these groups has been centered especially on the campo rupestre vegetation that characterizes much of the Chapada (Harley & Simmons, 1986; Stannard, 1995; Guedes & Orge, 1998). Nonetheless, significant areas of forest are found along the eastern flanks of the mountains, along the numerous river courses, on the mountain slopes, and in the deep narrow cracks in the sandstone cliffs (crevice forests). Starting in the late 1990’s, specific floristic studies were undertaken in these forests in order to examine their composition and structure (Funch, L. S. 1997; Stradmannn, 1997, 2000; Ribeiro Filho, 2002). Questions have arisen concerning the nature of the floristic composition of the forests of the Chapada Diamantina and its relation to other forests in the region. Do all of these northeastern upland forests have the same basic floristic composition, or does the São Francisco River serve as an effective barrier to the migration of angiosperm arboreal flora? These questions have biogeographic as well as conservation implications, because these forests are being progressively destroyed by human activities. The poor populations of Brazil’s semiarid regions continue to aggressively exploit these forest habitats in their daily quest for subsistence. Thus, there is an urgent need to gather basic knowledge about these areas to serve as a foundation for public policies of conservation and land use. Our study seeks to characterize the arboreal flora of the forests of the Chapada Diamantina and compare them with those of the Borborema Plateau in order to identify possible floristic relationships between the upland forests in northeastern Brazil.

Study Area The upland forests analyzed in this study occur at altitudes between 450 and 1100 m in the Chapada Diamantina and the Borborema Plateau. The Chapada Diamantina is a significant mountain chain in the very center of the state of Bahia, situated between the São Francisco River (to the west) and the Contas, Paraguaçu, and Itapicuru rivers that flow east directly to the Atlantic Ocean. The Chapada Diamantina is the northern –1___ 0___ +1___

extension of the larger Espinhaço Range (Figure 6-1) and is situated between latitudes

36616_u01.qxd 2/29/08 10:22 AM Page 197

Funch et al.: Floristics Aspects of Forests of the Chapada Diamantina

197

Fig. 6-1. The Espinhaço Mountain Range with inset indicating locations of the Chapada Diamantina in northeastern Brazil and the study area near the town of Lençóis, Bahia (adapted from Giulietti et al.,1997).

40°10' and 40°30' W. The Chapada has an east-west width that varies from 50 to 100 km, with peaks that reach 2000 m and is composed of a number of different types of rocks, principally sandstone, quartzite, conglomerates, and granite. Surveys previously undertaken in the Chapada Diamantina have identified a number of distinct forests there, depending on the local topography and soils. Gallery forests (seasonal evergreen submontane and montane forests) on the central-eastern border of the Chapada (Figure 1) at altitudes between 450 and 800 m have been relatively well studied along the Lençóis, Capivara, Ribeirão, and Mandassaia Rivers (Funch, L. S., 1997; Stradmann, 1997, 2000; Ribeiro Filho, 2002). The mountain rivers in this region are generally perennial, with a normal volume of water of approximately

___–1 ___ 0 ___+1

36616_u01.qxd 2/29/08 10:22 AM Page 198

198

The Atlantic Coastal Forest of Northeastern Brazil

1 m3/sec, although they flood heavily during the rainy season. The drainage is rapid due to the steep slopes, and for most of their courses, the rivers flow over rocky riverbeds composed mostly of sandstones and conglomerates of the Tombador formation (CPRM 1994). There is little accumulation of fine alluvial material. The forests covering the mountains of the Chapada Diamantina were apparently much more extensive in the recent past (Funch, R. R., 1997), but are now restricted due to intensive human activities. The seasonal semideciduous montane forests adjacent to the riverside vegetation along the Lençóis and Capivara rivers (Funch, L. S., 1997 and Stradmann, 2000, respectively) extend to the top of the low mountains up to 800 m (Figure 6-1) on dystrophic stony and sandy soils with little organic material (CPRM, 1994). Fragmented areas of tableland forests occur along the entire eastern border of the Chapada Diamantina at 400–500 m altitude. These seasonal semideciduous montane forests grow on well-drained latosols with little organic material (Funch, unpublished data). The crevice forests (seasonal evergreen montane forests) grow in slender but deep joints found on top of the sandstone mountains that compose the Chapada Diamantina. The crevice forest surveyed in this study (Guedes & Orge, 1998; Funch, unpublished) is approximately 5 to 10 m wide and 30+ m deep and is located in the Serra da Chapadinha. Within these cracks, the soils are litholic and dystrophic, but they are deep, humid, and covered by a thick layer of decomposing organic material. The variation in the floristic composition of these forests is related to local conditions of topography, soils, humidity, and degree of human perturbation. Diamond mining in the Chapada Diamantina was initiated in the mid 1800’s and has been accompanied by severe erosion of the mountain slopes, dredging of the water courses, logging, land clearing for farming, and intensive use of wild fires to suppress the native vegetation (Funch, L. S., 1997). A majority of the upland forests located north of the São Francisco River are located on the Borborema Plateau. This plateau extends through the states of Alagoas, Pernambuco, Paraíba, and Rio Grande do Norte as a complex of massifs and faulted blocks of granite, gneiss, mica schist, and quartzite ( Jacomine et al., 1973). The climate of the Chapada Diamantina is considered mesothermic, type Cwb (tropical semihumid) according to the classification system of Köppen (1936) with a –1___ 0___ +1___

3-mo dry season.

36616_u01.qxd 2/29/08 10:22 AM Page 199

Funch et al.: Floristics Aspects of Forests of the Chapada Diamantina

199

Materials and Methods Characterization of the Forests The characterization of the forests on the eastern slopes of the Chapada Diamantina mountain range was based on floristic surveys of their arboreal components, with limited references to their herbaceous/shrub, epiphytic, and liana components (Funch, L. S., 1997; Stradmann, 1997; Guedes & Orge, 1998; Stradmann, 2000; Ribeiro Filho, 2002; Funch, unpublished data). Botanical material was identified by consulting the current literature as well as specialists and by comparison with herbarium specimens. Voucher specimens were deposited in the herbaria of the Universidade Estadual de Feira de Santana (HUEFS), Feira de Santana, Bahia (Funch, L. S. 1997; Ribeiro Filho, 2002; Funch, unpublished data); the Universidade Federal da Bahia (ALCB), Salvador, Bahia (Stradmann, 1997; Guedes & Orge, 1998; Stradmann, 2000); and the Universidade Estadual de Campinas (UEC), Campinas, São Paulo (Funch, L. S., 1997).

Floristic Similarity In order to compare the various types of forests found on the eastern slopes of the Chapada Diamantina with other forests of northeastern Brazil, similarity analyses were performed using techniques of ordination and classification. Table 6-1 presents characteristics for the 21 sites analyzed: geographical coordinates, vegetation type, land form, altitude, and average annual rainfall. The species names listed in the cited surveys were checked and updated where necessary. The floristic lists of seven surveys from the Chapada Diamantina were compared with 16 lists from 18 different plant surveys undertaken in other forests in Bahia (Mori et al., 1983; Funch, L. S., 1997; Stradmann, 1997, 2000; Ribeiro-Filho, 2002; Funch, unpublished data) and Pernambuco (Correia, 1996; Moura, 1997; Ferraz et al., 1998; Guedes, 1998; Tavares et al., 2000; Nascimento, 2001; Siqueira et al., 2001; Andrade, 2002; Ferraz & Rodal, Chap. 16; Lins-e-Silva & Rodal, Chap. 17; Rodal & Nascimento, unpublished data). In general, these lists are the results of quantitative analyses with the inclusion criterion a dbh ≥5 cm, except for Correia (1996), Moura (1997), and Ferraz et al. (1998), who used trunk diameter at ground level ≥3 cm, and Guedes (1998), who used a dbh ≥1 0 cm. The floristic list of Guedes and Orge (1998) considered only arboreal species.

___–1 ___ 0 ___+1

–1___

0___

+1___ Siqueira et al. (2001) Mori et al. (1983) Andrade (2002)

3. Cabo de Santo Agostinho, PE (8° 15'S – 35° 02'W)

4. Buerarema, BA (14° 50' S – 39° 20' W)

5. São Lourenço da Mata, PE (8° 02'S – 35° 07' W)

Nascimento (2001) Tavares et al. (2000) Correia (1996) Moura (1997) Rodal & Nascimento (unpublished data)

7. Brejo da Madre de Deus, PE (8° 11'S – 36° 24'W)

8. Caruaru, PE (8° 17'S – 35° 58'W)

9. Pesqueira, PE (8° 22'S – 36° 42'W)

10. Jataúba, PE (8° 10'S – 36° 40'W)

11. Floresta, PE (8°36'S – 38° 04' W)

Ferraz (2002)

Lins e Silva & Rodal (this volume)

2. Recife, PE (8° 03'S – 34° 56'W)

6. São Vicente Férrer, PE (7° 38'S – 35° 50'W)

Guedes (1998)

SURVEY REFERENCE

1. Recife, PE (8° 03'S – 34° 56'W)

MUNICIPALITY, STATE COORDINATES

MSF

MSF

MSF

MOF

MSF

MOF

LSF

LOF

LOF

LOF

LOF

VEGETATION

Low mountains

Borborema plateau

Borborema plateau

Eastern slope of the Borborema plateau

Borborema plateau

Eastern slope of the Borborema plateau

Transition coastal plain — Borborema plateau

Coastal plain

Coastal plain

Coastal plain

Coastal plain

LAND FORM

800

1020–1120

860–880

900

900

600

120

20–80

20–80

50

50–100

ALTITUDE (M)

900

764

885

1020

900

1103

1301

1300

2143

2243

2243

RAINFALL (MM/YR)

200

Montane seasonal forest = MSF; Montane ombrophilous forest = MOF.

(PE), Brazil. Vegetation types: Lowland ombrophilus forest = LOF; Lowland seasonal forest = LSF; Submontane seasonal forest = SMSF;

Geographic, vegetational, physical, and climatic characteristics of the areas analyzed in 21 floristic surveys in Bahia (BA) and Pernambuco

TA B L E 6 - 1

36616_u01.qxd 2/29/08 10:22 AM Page 200

The Atlantic Coastal Forest of Northeastern Brazil

Ferraz et al. (1998) Ferraz et al. (1998) Funch(1997a)

Funch (1997a)

Guedes & Orge (1998)

Stradman (1998)

Stradman (2000)

Stradman (2000)

Ribeiro-Filho (2002)

Funch (unpublished data)

12. Triunfo I, PE (7° 49'S – 38° 02'W)

13. Triunfo II, PE (7° 52'S – 38° 17'W)

14. Lençóis, BA (12° 33'S – 41° 24'W)

15. Lençóis, BA (12° 33'S – 41° 24'W)

16. Lençóis, BA (12° 27'S – 41° 25'W)

17. Lençóis, BA (12° 35'S – 41° 23'W)

18. Lençóis, BA (12° 37'S – 41° 22'W)

19. Lençóis, BA (12° 37'S – 41° 22'W)

20. Lençóis, BA (12° 33'S – 41° 25'W)

21. Lençóis, BA (12° 30'S – 41° 21'W)

SMSF

SMSF

SMSF

SMSF

SMSF

MOF

SMSF

SMSF

MSF

MSF

Eastern slope of the Chapada Diamantina/ tableland

Eastern slope of the Chapada Diamantina — Mandassaia River/river

Eastern slope of the Chapada Diamantina — Capivara River/valley

Eastern slope of the Chapada Diamantina — Capivara River/river

Eastern slope of the Chapada Diamantina – Ribeirão River/river

Eastern slope of the Chapada Diamantina, Serra da Chapadinha/ crevice

Eastern slope of the Chapada Diamantina — Lençóis River/valley

Eastern slope of the Chapada Diamantina — Lençóis River/river

Western slope of the Borborema plateau

Western slope of the Borborema plateau

400

800

600–700

400–500

800

1000

600–700

450–500

1100

900

1200

1200

1200

1200

1200

1200

1200

1200

1260

1066

36616_u01.qxd 2/29/08 10:22 AM Page 201

Funch et al.: Floristics Aspects of Forests of the Chapada Diamantina 201

___–1

___ 0

___+1

36616_u01.qxd 2/29/08 10:22 AM Page 202

202

The Atlantic Coastal Forest of Northeastern Brazil

Woody vines were excluded from the surveys of Correia (1996), Moura (1997), and Ferraz et al. (1998). The elaboration of a presence/absence matrix of species served as the basis for grouping analysis, indicator species, and principal component analysis (PCA), using PC-ORD software (McCune & Mefford 1999). In the grouping analyses, the similarity index of Jaccard was used as well as the linked-group medium technique (Valentim, 2000).

Results Characterization of the Forests Appendix 6-1 lists the 139 arboreal species, distributed among 85 genera and 51 families, which have been identified so far on the eastern edge of the Chapada Diamantina.

Gallery Forests Many of these species are found in the gallery forests, which are the most intensively studied there. Within the gallery forests surveyed (Funch, L. S., 1997; Stradmann, 1997, 2000; Ribeiro Filho, 2002), 110 species have been identified, comprising 78 genera and 39 families. These forests occupy a relatively narrow strip of land (rarely more than 25 m wide) along the riverbanks where the sandy soils are constantly humid. The most frequent species there are those most frequently found in Brazilian gallery forests, including Tapirira guianensis and T. obtusa, Calophyllum brasiliense, Alchornea triplinervia, Richeria grandis var. grandis, and Balizia pedicellaris (Funch, L. S., 1997). These forests are predominantly evergreen, with nondeciduous species such as Tapirira guianensis, Richeria grandis var. grandis, and Balizia pedicellaris, as well as episodic nondeciduous species such as Clusia nemorosa, Bonnetia stricta, and Vochysia pyramidalis, which have a discontinuous production of new leaves but no defined period of leaf fall (Funch et al., 2002). In general, the gallery forests show a marked continuous canopy at 8.5–10 m. The most common canopy species are Tapirira guianensis, Clusia nemorosa, Alchornea triplinervia, Balizia pedicellaris, Richeria grandis var. grandis, and Vochysia pyramidalis. Emergent individuals, such as Hymenolobium janeirense var. stipulatum, can reach 20 m (Funch, L. S., 1997). –1___

The subcanopy is discontinuous and varies in height from 3.5 to 8 m. It contains

0___

species of Myrcia, Eugenia, Miconia, and Maytenus, as well as Humiria balsamifera, Bonnetia

+1___

36616_u01.qxd 2/29/08 10:22 AM Page 203

Funch et al.: Floristics Aspects of Forests of the Chapada Diamantina

203

stricta, Byrsonima sericea, and Heisteria perianthomega. Geonoma aff. brevispatha Barbosa Rodrigues (Arecaceae) is common in the herbaceous/shrub understory, as well as large numbers of juvenile individuals of the species that occupy the higher canopy layers. Climbers are very noticeable and include species from families such as Apocynaceae, Asteraceae, Bignoniaceae, Leguminosae, and Malpighiaceae. Epiphytes and hemiparasites are not common, although represented by Anthurium affine Schott and Philodendron imbe Schott (Araceae), Tillandsia usneoides L. (Bromeliaceae), Psittacanthus dichrous Mart. (Loranthaceae), and Phoradendron sp. (Viscaceae) (Funch, L. S.,1997). Along the river margins or even along the rocky riverbed itself where some sandy soil has accumulated, Utricularia spp. (Lentibulariaceae), Drosera montana A. St.-Hil. (Droseraceae), Paepalanthus tortilis (Bong.) Koern. and P. spathulatus Koern. (Eriocaulaceae), Xyris spp. (Xyridaceae), Apteria aphylla (Nutt.) Barnhart ex Small (Burmanniaceae), Voyria aphylla ( Jacq.) Pers. (Gentianaceae), and Calliandra bracteosa Benth. and C. parvifolia (Hook. & Arn.) Speg. (Leguminosae) are often found. On rock outcrops along the river valley, species common to the adjacent campos rupestres vegetation are found, such as Cuphea sessilifolia Mart. (Lythraceae), Periandra mediterranea (Vell.) Taub. (Leguminosae), Irlbachia purpurascens (Aubl.) Maas (Gentianaceae), Aspilia foliosa (Gardn.) Bak. and Paralychnophora bicolor (Mart. ex DC.) MacLeish (Asteraceae), Cambessedesia cambessedesioides (Wurd.) A. B. Martins and Begonia grisea A. DC. (Begoniaceae), Spigelia pulchella Mart. (Loganiaceae) and Stachytarpheta coriacea Schrad. (Verbenaceae), Sobralia sp. nov. (Orchidaceae), and Vellozia spp. (Velloziaceae) (Funch, L. S., 1997). The families with the greatest species richness in these forests were Myrtaceae (15 species), Leguminosae (13), Euphorbiaceae (7), Melastomataceae (7), and Chrysobalanaceae (5). Among these, the Chrysobalanaceae stands out because it is rarely listed among the richest families in surveys outside the Amazon area. It is also interesting to note that the majority of the species of Chrysobalanaceae observed in the gallery forests of the Chapada Diamantina (Hirtella glandulosa. Licania kunthiana, and Parinari excelsa) are widely distributed.

Montane Forests Unless disturbed by human intervention, forest vegetation extends up the boulderstrewn sides of the river valleys, becoming gradually drier with increasing altitude, until it reaches the rocky crests of the mountains. We identified 66 arboreal species belonging to 41 genera and 35 families (Funch, L. S.,1997; Stradmann, 2000), in these

___–1

forest areas.

___ 0 ___+1

36616_u01.qxd 2/29/08 10:22 AM Page 204

204

The Atlantic Coastal Forest of Northeastern Brazil

Although predominantly evergreen, these montane forests demonstrate a more pronounced degree of deciduousness than the gallery forests due to the greater representation of a group of deciduous or semideciduous trees, such as Simarouba amara, Diospyros sericea, Bowdichia virgilioides, Maprounea guianensis, Zanthoxylum rhoifolium, Emmotum nitens, and Aspidosperma discolor. These contribute to moderate peaks of leaf fall during the dry season, from August to October (Funch et al., 2002). These montane forests show a horizontal stratification similar to that seen in the gallery forest. The canopy is formed principally by Simarouba amara, Diospyros sericea, Bowdichia virgilioides, Maprounea guianensis, and Emmotum nitens, with emergents such as Aspidosperma discolor, and the subcanopy by species such as Siparuna guianensis, Vismia guianensis, Casearia arborea, and Antonia ovata. The understory has few herbaceous plants or shrubs, although species such as Bauhinia sp. nov. (Leguminosae) are found, as well as large numbers of juvenile individuals of the species that occupy the canopy and subcanopy layers. Climbers belonging to the families Bignoniaceae, Leguminosae, Malpighiaceae, and Sapindaceae are common, whereas epiphytes and hemiparasites are rare (Funch, L. S., 1997). The most important families were Leguminosae (11 species), Myrtaceae (6), Apocynaceae (4), Chrysobalanaceae (4), and Euphorbiaceae (4). Many species found in the montane forests were also encountered in the gallery forests.

Tableland Forests These forests occupy most of the eastern border of the Chapada Diamantina mountains, growing on latosols at 400–500 m, and are seasonally semideciduous. These are the most devastated forests in the region, due to lumbering, harvesting for charcoal production, and clearing for pastures. Some of the most predominant trees are Copaifera langsdorffii, Pogonophora schomburgkiana, Protium heptaphyllu, Aspidosperma discolor, Pouteria ramiflora, Micropholis gardneriana, and Schoepfia obliquifolia, all species that are semideciduous. The canopy of this forest is taller than that of the other forests in the region, reaching from 10 to 20 m, and is formed principally by Copaifera langsdorffii, Pogonophora schomburgkiana, Protium heptaphyllum, Aspidosperma discolor, and Pouteria ramiflora. The subcanopy forms approximately 6–8 m above the forest floor and is composed of individuals of species such as Micropholis gardneriana, Schoepfia obliquifolia, Myrcia detergens, and Pouteria torta. Species of Rubiaceae and Melastomataceae are especially common –1___

in the understory, together with large numbers of juvenile individuals of the species

0___

that occupy the canopy and subcanopy. Among the climbers, Ruellia affinis (Schrad.)

+1___

36616_u01.qxd 2/29/08 10:22 AM Page 205

Funch et al.: Floristics Aspects of Forests of the Chapada Diamantina

205

Lind. (Acanthaceae), Coccoloba confusa How (Polygonaceae), Bauhinia sp. (Leguminosae), and Phryganocidia corimbosa (Vent.) Bur. & K. Schum. (Bignoniaceae) stand out. Epiphytes and hemiparasites are rare. Until now, only 45 arboreal species belonging to 41 genera and 25 families had been identified in the tableland forests of the Chapada Diamantina. The most important families were Leguminosae (6 species), Myrtaceae (6), Euphorbiaceae (4), and Sapotaceae (3). The exclusive presence of the family Lecythidaceae in these forests is notable, and the type specimen of the species Eschweilera tetrapetala was collected there (Funch, unpublished data).

Crevice Forests These forests are found in deep crevices in the tops of the sandstone cliffs (1000+ m) that make up the bulk of the Chapada Diamantina range. The crevices are thin fissures ( joints) at the tops of hard sandstone plateaus that are typically just a few meters wide but tens of meters deep. As a consequence of their protection from sunlight and drought, these environments are constantly humid, shaded for almost all of the day, and protected from the frequent fires that can afflict the mountain slopes. The crevice forests in the Serra da Chapadinha are predominantly evergreen and contain many species restricted to humid environments, such as Hedyosmum brasiliense, Clethra scabra, Cabralea canjerana subsp. canjerana, Podocarpus sellowii, Urera baccifera, and Drimys brasiliensis. In the crevice forests surveyed, 38 arboreal species were identified, belonging to 35 genera and 30 families. The family Myrtaceae is well represented in these forests with a large number of species, notably Calyptranthes pulchella. These forests have an upper canopy of approximately 7–12 m, formed by species such as Calyptranthes pulchella, Tapirira guianensis, Casearia commersoniana, and Guapira obtusata, as well as emergents that can reach up to 20+ m, such as Cabralea canjerana subsp. canjerana. The subcanopy (3.5–6 m) is composed of species such as Ilex amara, Alibertia myrciifolia, and Myrcia reticulosa. The herbaceous/shrub understory is rich in species of Bromeliaceae (Aechmea aquilega (Salisbury) Griseb., Orthophytum burle-marxii L. B. Sm. & Regel, and Vriesea friburgensis Mez var. paludosa (L. B. Sm.) L. B. Sm.); Eriocaulaceae (Paepalanthus negletus Koern., P. pulvinatus N. E. Br., and P. ramosus (Wikstr.) Kunth.); Piperaceae (Peperomia obtusifolia (L.) A. Dietr., P. sincorana A. DC., and Piper tectoniifolium Kunth.); Orchidaceae (Cattleya elongata Barb. Rodr., Epidendrum orchidiflorum Salzm. ex Lindl., and Pleurothallis sp.); and Verbenaceae (Lippia alnifolia

___–1

Schauer, L. gracilis Schauer, and Stachytarpheta crassifolia Schrad.), as well as pteridophytes

___ 0 ___+1

36616_u01.qxd 2/29/08 10:22 AM Page 206

206

The Atlantic Coastal Forest of Northeastern Brazil

such as Trichomanes kraussii Hook. & Grév. and T. pillosum Raddi. (Hymenophyllaceae); Campyloneurum phyllitidis (L.) Presl. and Polypodium triseriale Sw. (Polypodiaceae); and Rumohra adiantiformis (Forst.) Ching. (Dryopteridaceae). Epiphytes are very common, such as Anthurium affine Schott, A. scandens (Aubl.) Engler, Philodendron insigne Schott, and P. pachyphyllum Krause (Araceae) and Tillandsia stricta Soland. and T. usneoides L. (Bromeliaceae). Hemiparasites such as Psittacanthus dichrous Mart. and Struthanthus flexicaulis Mart. (Loranthaceae) also are common (Guedes & Orge, 1998; Funch, unpublished data).

Floristic Similarity Grouping analysis, based on 539 species present in 21 floristic lists of northeastern Brazilian forests (Figure 6-2), indicated three basic groups. The first group (A) included

–1___ 0___ +1___

Fig. 6-2. Dendrogram of similarity (Jaccard —UPGMA) among 21 floristic lists of forests in northeastern Brazil obtained from a presence/absence list of species. Cophenetic correlation coefficient = 0.86. A. Seasonal montane and submontane forests on the eastern slopes of the Chapada Diamantina, Bahia: 13 = Funch, unpublished data; 14/15 = Stradmann, 2000; 16/18 = Funch, 1997; 17 = Stradmann, 1997; 19 = Ribeiro Filho, 2002; 20 = Guedes & Orge, 1998). B. Seasonal montane forests of the Borborema Plateau/Pernambuco: 4 = Correia, 1996; 5 = Moura, 1997; 6 = Nascimento, 2001; western escarpment of the Borborema Plateau, Pernambuco: 1/2 = Ferraz et al., 1998; transition, western escarpment—coastal plain, Pernambuco: 7 = Andrade, 2002; low mountain forests, Pernambuco: 3 = Rodal & Nascimento, unpublished data). C. Ombrophilous montane forests of the Borborema Plateau, Pernambuco: 8 =Tavares et al., 2000; 9 = Ferraz, 2002; lowland forests, Pernambuco: 10 = Lins-e-Silva & Rodal, Chap. 17; 11 = Siqueira et al., 2001; 12 = Guedes, 1998; low mountain forests, Bahia: 21= Mori et al., 1983.

36616_u01.qxd 2/29/08 10:22 AM Page 207

Funch et al.: Floristics Aspects of Forests of the Chapada Diamantina

207

forests situated on the eastern slopes of the Chapada Diamantina (Funch, L. S., 1997; Stradmann, 1997; Guedes & Orge, 1998; Stradmann, 2000; Ribeiro-Filho, 2002; Funch, unpublished data). The second group (B) included the lowland (>100 m) humid forests (Mori et al., 1983; Guedes, 1998; Siqueira et al., 2001; Lins-e-Silva & Rodal, Chap. 17) and the forests on the eastern slopes of the Borborema Plateau (Tavares et al., 2000; Ferraz, 2002). The third group (C) included forests located in the semiarid mountains (900 m) on the western slopes and interior areas of the Borborema Plateau (700–1100 m) (Correia, 1996; Moura, 1997; Ferraz et al., 1998; Nascimento, 2001; Rodal & Nascimento, unpublished) and in the transition zone between the eastern slopes of the Borborema Plateau and the coastal plains (Andrade, 2002). Although their levels of similarity were relatively low (approximately 20%), the forests of the Chapada Diamantina showed first-level affinities with the humid forests of the Borborema Plateau and the lowland forests of Pernambuco (Guedes, 1998; Siqueira et al., 2001; Lins-e-Silva & Rodal, Chap. 17) and Bahia (Mori et al., 1983) and second-level affinities with the drier forests of the Borborema Plateau. The results of PCA (Figure 6-3) indicated the same associations as did the grouping analysis. The first axis separates the Diamantina forests, and the second axis segregates the montane broadleaf forests from the lowland ombrophilous forests.

Discussion The families that show the greatest species richness in the forests analyzed on the eastern slopes of the Chapada Diamantina mountains were Myrtaceae, Leguminosae, Euphorbiaceae, Melastomataceae, and Chrysobalanaceae (53 species, representing 37% of the total). In general, these same families stand out in the majority of the floristic surveys in various Brazilian forest formations (Mathes, 1980; Absy et al., 1986; Peixoto & Gentry, 1990; Carvalho et al., 1995; Sales et al., 1998). The family Myrtaceae has been sited for its floristic richness in many ecosystems, such as gallery forests (Gibbs & Leitão Filho, 1978; Bertoni & Martins, 1987; Rodrigues, 1991; Felfili & Silva Jr., 1992; Rozza & Ribeiro, 1992; Oliveira Filho et al., 1994; Salis et al., 1994); campos rupestres (Pirani et al., 1994); semideciduous forests (Matthes, 1980; Rodrigues et al., 1989; Soares-Silva & Barroso, 1992); tableland forests (Peixoto & Gentry, 1990); restinga (Oliveira Filho & Carvalho, 1993); and forests in southern Bahia (Mori et al., 1983; Thomas et al., 1998). Floristic surveys of

___–1

Myrtaceae in the Chapada Diamantina recorded 31 species for the region of the Pico

___ 0 ___+1

36616_u01.qxd 2/29/08 10:22 AM Page 208

208

–1___ 0___ +1___

The Atlantic Coastal Forest of Northeastern Brazil

Fig. 6-3. Ordination diagram obtained by principal component analysis (covariance matrix) from 21 floristic lists of forests in northeastern Brazil. A. Seasonal montane and submontane forests on the eastern slopes of the Chapada Diamantina, Bahia: 13 = Funch, unpublished data; 14/15 = Stradmann, 2000; 16/18 = Funch, 1997; 17 = Stradmann, 1997; 19 = Ribeiro Filho, 2002; 20 = Guedes & Orge, 1998). B. Seasonal montane forests of the Borborema Plateau, Pernambuco: 4 = Correia, 1996; 5 = Moura, 1997; 6––ascimento, 2001; western escarpment of the Borborema Plateau, Pernambuco: 1/2 = Ferraz et al., 1998; transition, western escarpment –– coastal plain/Pernambuco: 7 = Andrade, 2002; low mountains forests, Pernambuco: 3 = Rodal & Nascimento, unpublished data. C. Ombrophilous montane forests of the Borborema Plateau, Pernambuco: 8 = Tavares et al., 2000; 9 = Ferraz, 2002); lowland forests, Pernambuco: 10 = Lins-e-Silva & Rodal, Chap. 17; 11 = Siqueira et al., 2001; 12 = Guedes, 1998; lowland forests, Bahia: 21- Mori et al., 1983.

36616_u01.qxd 2/29/08 10:22 AM Page 209

Funch et al.: Floristics Aspects of Forests of the Chapada Diamantina

209

das Almas (Lughadha, 1995); 34 species for the Morro do Pai Inácio and Serra da Chapadinha (Barroso & Funch, 1998); and 53 species for the Chapada Diamantina National Park (Funch & Barroso, 1998). Of all the families with the greatest species richness, only Melastomataceae (8 species) and Myrtaceae (19) are represented in large part by small subcanopy trees (3–8 m tall). The majority of the species-rich families predominate in the upper canopy of the forests analyzed. Most families and species encountered in forests surveys in the Chapada Diamantina are present in all the forest types. Nevertheless, some plants are associated only with permanently humid environments, such as the gallery forest or the crevice forests, and include Annonaceae (Anaxagorea dolichocarpa and Guateria sellowiana); Bonnetiaceae (Bonnetia stricta); Elaeocarpaceae (Sloanea guianensis); Marcgraviaceae (Norantea adamantium); Meliaceae (Guarea macrophylla subsp. tuberculata); and Myrsinaceae (Myrsine guianensis and M. umbellata), as well as Theaceae (Gordonia fruticosa, Ternstroemia alnifolia, and T. candolleana). Additionally, some taxa are found only in the crevice forests, such as Clethraceae (Clethra scabra), Chloranthaceae (Hedyosmum brasiliense), Podocarpaceae (Podocarpus sellowi), and Winteraceae (Drimys brasiliensis). A significant portion of the species are typical of the mesophyllous semideciduous montane and tableland forests, although they are often found in the gallery forests as well, such as Simarouba amara, Maprounea guianensis, Pogonophora schomburgkiana, Aspidosperma discolor, Himatanthus lancifolius, Hirtella glandulosa, Diospyros sericea, Copaifera langsdorffii, Pouteria ramiflora, and Bowdichia virgilioides. As would be expected, these plants have different abundance patterns in the different forests surveyed (Funch, L. S., 1997; Stradmann, 1997, 2000; Ribeiro Filho, 2002; Funch, unpublished data). The greater abundance of these species in the montane and tableland forests lends a conspicuous deciduous aspect to these communities. A marked exception to this pattern can be seen with Eschweilera tetrapetala (Lecythidaceae), which is apparently restricted to the dystrophic oxysols of the plateaus east of the Chapada Diamantina. Similar to the patterns of distribution encountered for the flora of the campos rupestres and gallery forests (Giulietti & Pirani, 1988; Harley, 1995; Funch, L. S., 1997), many of the species encountered in the forests of the Chapada Diamantina have an extremely wide geographic distribution. These plants occur in diverse forest formations from Central America or the northern South America to southeastern Brazil or northeastern Argentina, and include species such as Hirtella glandulosa, Aspidosperma discolor, Tapirira guianensis, Richeria grandis var. grandis, Protium heptaphyllum, Calyptranthes lucida,

___–1

Eugenia florida, Myrcia rostrata, Myrciaria floribunda, Calophyllum brasiliense, Alchornea

___ 0 ___+1

36616_u01.qxd 2/29/08 10:22 AM Page 210

210

The Atlantic Coastal Forest of Northeastern Brazil

triplinervia, and Copaifera langsdorffii. Other species with a more limited geographic distribution were also encountered in the Chapada, such as Norantea adamantium, with a disjunct between the gallery forests of the Serra do Espinhaço and the campos rupestres of Goiás State; Myrcia blanchetiana, M. cymosa, and M. detergens, known only from the forests of the Serra do Espinhaço; Bonnetia stricta, which is disjunct between the crevice forests of the Serra do Espinhaço and the restingas of eastern Brazil; and Hedyosmum brasiliense, Drymys brasiliensis, and Clethra scabra, which occur in forests above 1000 m, including the crevice forests of the Serra do Espinhaço as well as northern South America. Taken together, the grouping and principal component analyses indicate that the forests of the Chapada Diamantina represent an individualized group among the various forests analyzed by having a greater floristic affinity with humid forests, independent of their altitudes. In spite of the fact that the Chapada Diamantina lies in the midst of the caatinga drylands, a vegetation characteristic of the driest and hottest climate in northeastern Brazil, a number of factors related to altitude, orography, continental effects, and climatic patterns bringing in moist air masses from the east all have important effects on local climatic conditions. As a result, the Chapada Diamantina represents a mesothermic enclave in an otherwise hot and dry region. Likewise, the arboreal flora shows significant floristic similarities to the humid lowland forests along the coast (Mori et al., 1983; Guedes, 1998; Siqueira et al., 2001; Lins-e-Silva & Rodal, Chap. 17), as well as the forests along the eastern border of the Borborema Plateau (Tavares et al. 2000; Ferraz & Rodal, Chap. 16). Rodal (2002) observed that the forests situated in the interior (western) regions of the Borborema Plateau are considerably drier that the eastern forests (500 mm/yr and 1200 mm/yr of rainfall, respectively; SUDENE, 1990). This continental effect greatly influences the regional vegetation (Cox & Moore, 1993), which includes species such as Albizia polycephala (Benth.) Killip (Mimosaceae), Capparis flexuosa (L.) L. (Capparaceae), Casearia mariquitensis H.B.K. (Flacourticaceae), Ceiba glaziovii (Kuntze) K. Schum. (Bombacaceae), Cereus jamacaru DC. (Cactaceae), Cordia trichotoma (Vell.) Arrab. ex Steud. (Boraginaceae), Maytenus obtusifolia Mart. (Celastraceae), and Machaerium angustifolium Vog. (Leguminosae). Analyses of the plant survey data from the Chapada Diamantina and other northeastern Brazilian forests strongly suggest that the floristic differences between the forests of the Chapada Diamantina and the highland regions to the north are not re–1___

lated to the geographic barrier of the São Francisco River, but have more to do with

0___

the climatic differences between these regions.

+1___

36616_u01.qxd 2/29/08 10:22 AM Page 211

Funch et al.: Floristics Aspects of Forests of the Chapada Diamantina

211

Literature Cited Absy, M. L., G. T. Prance & E. M. Barbosa. 1986. Inventário florístico de floresta natural na área da estrada Cuiabá-Porto Velho (BR-364). Acta Amaz 16 (Suppl.): 85–122. Andrade, K.V.S.A. 2002. Fisionomia e estrutura do componente arbóreo de um remanescente de floresta estacional semi-decidual de terras baixas da Estação Ecológica do Tapacurá. Master’s Thesis.Universidade Federal Rural de Pernambuco, Recife. Barroso, G. M. & L. S. Funch. 1998. Myrtaceae. Pp. 46. In: M. L. S. Guedes & M. D. R. Orge, eds. Checklist das Espécies Vasculares do Morro do Pai Inácio (Palmeiras) e Serra da Chapadinha (Lençóis), Chapada Diamantina, Bahia - Brasil. Instituto de Biologia da Universidade Federal da Bahia, Salvador. Bertoni, J. E. A. & F. R. Martins. 1987. Composição florística de uma floresta ripária na Reserva Estadual de Porto Ferreira, SP. Acta Bot. Bras. 1(1): 17–26. Carvalho, D. A., A. T. Oliveira-Filho, E. A. Vilela & M. L. Gavilanes. 1995. Estrutura fitossociológica de mata ripária do alto Rio Grande (Bom Sucesso, estado de Minas Gerais). Rev. Bras. Bot. 18(1): 39–50. Companhia de Pesquisa de Recursos Minerais (CPRM). 1994. Parque Nacional da Chapada Diamantina - BA. Informações Básicas para a Gestão Territorial: Diagnóstico do Meio Físico e da Vegetação. CPRM/Instituto Brasileiro do Meio Ambiente, Salvador. Correia, M. S. 1996. Estrutura da vegetação da mata serrana de um brejo de altitude de Pesqueira - PE. Master’s Thesis. Universidade Federal de Pernambuco, Recife. Cox, C. B. & P. D. Moore. 1993. Biogeography: An Ecological and Evolutionary Approach. 5th ed. Blackwell Scientific Publications, Oxford. Felfili, J. M. & M. C. Silva Jr. 1992. Floristic composition phytosociology and comparision of cerrado and gallery forests at Fazenda Água Limpa, Federal District, Brazil. Pp.393–416. In: P. A. Furley, J. Proctor & J. A. Ratter (eds.). Nature and Dynamics of Forest-Savanna Boundaries. Chapman and Hall, London. Ferraz, E. M. N. 2002. Panorama da floresta atlântica no estado de Pernambuco. Pp. 23–26. In: E. L. Araújo et al. (orgs.). Biodiversidade, Conservação e Uso Sustentável da Flora do Brasil. Sociedade Botânica do Brasil, Recife. ———, M. J. N. Rodal, E. V. S. B. Sampaio, & R. de C. A. Pereira. 1998. Composição florística em trechos de vegetação de caatinga e brejo de altitude na região do Vale do Pajeú, Pernambuco. Rev. Bras. Bot. 21(1): 7–15. Funch, L. S., 1997. Composição florística e fenologia de mata ciliar e mata de encosta adjacentes ao rio Lençóis, Lençóis, Bahia. PhD Dissertation. Universidade Estadual de Campinas, São Paulo.

___–1 ___ 0 ___+1

36616_u01.qxd 2/29/08 10:22 AM Page 212

212

–1___ 0___ +1___

The Atlantic Coastal Forest of Northeastern Brazil

——— & G. M. Barroso. 1998. Estudos florísticos no Parque Nacional da Chapada Diamantina (Bahia): A família Myrtaceae. Pp. 68–69. In: Resumos. XLIX Congresso Nacional de Botânica, Universidade Federal da Bahia, Salvador. ———, R. R. Funch & G.M. Barroso. 2002. Phenology of gallery and montane forest in the Chapada Diamantina, Bahia, Brazil. Biotropica 34(1): 40–50. Funch, R. R. 1997. Um Guia para o Visitante da Chapada Diamantina: O Circuito do Diamante. Secretaria de Cultura e Turismo, Salvador, Bahia. Gibbs, P. E. & H. F. Leitão Filho. 1978. Floristic composition of an area of gallery forest near Mogi-Guaçu, State of São Paulo, S. E. Brazil. Rev. Bras. Bot. 1: 151–156. Giulietti, A. M. & J. R. Pirani. 1988. Patterns of geographic distribution of some plant species from the Espinhaço range, Minas Gerais and Bahia, Brazil. Pp. 39–69. In: R. Heyer & P. E. Vanzolini (eds.). Proceedings of the Workshop on Neotropical Distribution Patterns. Academia Brasileira de Ciências, Rio de Janeiro. ———, ———, & R.M. Harley. 1997. Espinhaço range region, eastern Brazil. Pp. 397–404. In: S.D. Davis, V.H. Heywood, O. Herrera-MacBryde, J. Villa-Lobos & A.C. Hamilton (eds.). Centers of Plant Diversity. A Guide and Strategy for Their Conservation. Vol. 3. The Americas. WWW/International Union for Conservation of Nature, Cambridge. Guedes, M. L. S., 1998. A vegetação fanerogâmica da Reserva Ecológica de Dois Irmãos. Pp. 157–172. In: I. C. Machado, A. V. Lopes & K. C. Porto (eds.). Reserva Ecológica de Dois Irmãos: Estudos em um Remanescente de Mata Atlântica em Área Urbana (Recife – Pernambuco – Brasil). Editora Universitária, Universidade Federal de Pernambuco, Recife. ——— & M. D. R. Orge. 1998. Checklist das Espécies Vasculares do Morro do Pai Inácio (Palmeiras) e Serra da Chapadinha (Lençóis), Chapada Diamantina, Bahia Brasil. Salvador, Bahia. Harley, R. 1995. Introduction. Pp. 1–42. In: B. L. Stannard (ed.). Flora of the Pico das Almas, Chapada Diamantina, Bahia, Brazil. Royal Botanic Gardens, Kew. ——— & N. A. Simmons. 1986. Florula de Mucugê, Chapada Diamantina-Bahia, Brazil. Royal Botanic Gardens, Kew. Jacomine, P. T., A. C. Cavalcanti, N. Burgos, S. C. P. Pessoa & C. O. Silveira. 1973. Levantamento Exploratório-Reconhecimento de Solos do Estado de Pernambuco. Vol. 1, Bol. Téc. 26, Pedologia 14. Divisão de Pesquisa Pedológica, Recife. Köppen, W. 1936. Das geographische System der Klimate. Chap. 3. In: W. Köppen & W. Geiger (eds.). Handbuch der Klimatologie, Vol. 1, Tiel C. G. Bronträger, Berlin. Lughadha, E. N. 1995. Myrtaceae. Pp.492–517. In: B. L. Stannard (ed.). Flora of the Pico das Almas, Chapada Diamantina, Bahia, Brazil. Royal Botanic Gardens, Kew. Mathes, L. A. F. 1980. Composição florística, estrutura e fenologia de uma floresta residual do planalto paulista: Bosque dos Jequitibás (Campinas, SP). Master’s Thesis. Universidade Estadual de Campinas.

36616_u01.qxd 2/29/08 10:22 AM Page 213

Funch et al.: Floristics Aspects of Forests of the Chapada Diamantina

213

McCune, B. & M. J. Mefford. 1999. PC-ORD. Multivariate analysis of ecological data. Version 4.0. MJN Software, Gleneden Beach, OR. Mori, S. A., B. M. Boom, A. M. Carvalho & T. S. Santos. 1983. Southern Bahian moist forests. Bot. Rev. 49 (2): 155–232. Moura, F. de B. P. 1997. Fitossociologia de uma mata serrana semidecídua no brejo de Jataúba, Pernambuco, Brasil. Master’s Thesis. Universidade Federal de Pernambuco, Recife. Nascimento, L.M. de 2001. Caracterização fisionômoco-estrutural de um fragmento de floresta montana no nordeste do Brasil. Master’s Thesis. Universidade Federal de Pernambuco, Recife. Oliveira-Filho, A. T. & D. A. Carvalho. 1993. Florística e fisionomia da vegetação do extremo norte da Paraíba. Rev. Bras.Bot. 16(1): 115–130. ——— & J. A. Ratter. 2000. Padrões florísticos das matas ciliares da região do cerrado e a evolução das paisagens do Brasil central durante o quaternário tardio. Pp. 73–90. In: R. R. Rodrigues & H. F. Leitão-Filho (eds.). Matas Ciliares: Conservação e Recuperação. Editora Universidade de São Paulo. ———, J. R. S. Scolforo & J. M. Mello. 1994. Composição florística e estrutura comunitária de um remanescente de floresta semidecídua montana em Lavras, MG. Rev. Bras. Bot. 17(2): 167–182. Peixoto, A. L. & A. Gentry. 1990. Diversidade e composição florística da mata de tabuleiro na Reserva Florestal de Linhares (ES, Brasil). Rev. Bras. Bot.13: 19–25. Pirani, J. R., A. M. Giulietti, R. Mello-Silva & M. Meguro. 1994. Checklist and patterns of geographic distribution of the vegetation of Serra do Ambrósio, Minas Gerais, Brazil. Rev. Bras. Bot. 17(2): 133–148. Ribeiro Filho, A. A. 2002. Composição florística e estrutura fitossociológica da mata ciliar do Rio Mandassaia, Lençóis, Bahia, comparada com outras matas ciliares da Bacia Santo Antônio na Chapada Diamantina. Master’s Thesis. Universidade Estadual de Feira de Santana, Bahia. Rodal, M. J. N. 2002. Montane forests in Northeast Brazil: A phytogeographical approach. Bot. Jahrb. Syst., Pflanzengesch. Pflanzengeog. 124(1): 3–12. Rodrigues, R. R., 1991. Análise de um remanescente de vegetação natural às margens do rio Passa Cinco, Ipeúna, SP. PhD Dissertation. Universidade Estadual de Campinas, São Paulo. ———, L. P. C. Morellato, C. A. Joly & H. F. Leitão-Filho. 1989. Estudo florístico e fitossociológico em um gradiente altitudinal de mata estacional mesófila semidecídua, na Serra do Japi, Jundiaí, SP. Rev. Bras. Bot. 12: 71–84. Rozza, A. F. & C. A. Ribeiro. 1990. Recomposição da mata ciliar de um trecho do ribeirão Piracicamirim—Piracicaba, SP. Resumos do VII Congress Sociedade Botânica de São Paulo, Campinas. Sales, M. F., S. J. Mayo & M. J. N. Rodal. 1998. Plantas Vasculares das Florestas Serranas de Pernambuco. Um Checklist da Flora Ameaçada dos Brejos de

___–1 ___ 0 ___+1

36616_u01.qxd 2/29/08 10:22 AM Page 214

214

The Atlantic Coastal Forest of Northeastern Brazil

Altitude. Imprensa Universitária, Universidade Federal Rural de Pernambuco, Recife. Salis, S. M., J. Y. Tamashiro & C. A. Joly. 1994. Florística e fitossociologia do estrato arbóreo de um remanescente de mata ciliar do rio Jacaré-Pepira, Brotas, SP. Rev. Bras. Bot. 17(2): 93–104. Siqueira, D. R. de. 1994. Análise florística e ordenação de espécies arbóreas da Mata Atlântica através de dados binários. Master’s Thesis. Universidade Estadual de Campinas, São Paulo. ———, M. J. N. Rodal, A. C. B Lins e Silva & A. L. de Melo. 2001. Physiognomy, structure and floristics in an area of Atlantic forest in northeast Brazil. Pp. 315–331. In: G. Gottsberger & S. Lied (eds.). Proceedings of Life Forms and Strategies in Tropical Forests. Ulmer Verlag, Stuttgart. Soares-Silva, L. H. & G. M. Barroso. 1992. Fitossociologia do estrato arbóreo da floresta na porção norte do Parque Estadual Mata dos Godoy, Londrina, PR, Brasil. Pp. 101–112. In: Anais VIII Congress Sociedade Botânica de São Paulo. Stannard, B. L. 1995. Flora of the Pico das Almas, Chapada Diamantina, Bahia, Brazil. Royal Botanic Gardens, Kew. Stradmann, M. T. S. 1997. Composição florística de um trecho da mata ciliar da trilha do bodão e estudo quantitativo do estrato arbustivo-arbóreo, Rio Ribeirão, Parque Nacional da Chapada Diamantina, Bahia, Brasil. Trabalho de Conclusão do Curso de Recursos Ambientais. Universidade Federal da Bahia, Salvador. ———. 2000. Composição florística da mata ciliar da foz do rio Capivara e análise quantitativa do estrato arbustivo-arbóreo, Parque Nacional Chapada da Diamantina. Master’s Thesis. Universidade Federal da Bahia, Salvador. SUDENE. 1990. Dados Pluviométricos Mensais do Nordeste. Estado de Pernambuco. Pluviométria 6. Superintendência do Desenvolvimento do Nordeste, Recife. Tavares, M. C. G., M. J. N. Rodal & A. L. de Melo. 2000. Fitossociologia do componente arbóreo de um trecho de Floresta Ombrófila Montana do Parque Ecológico João Vasconcelos Sobrinho, Caruaru, Pernambuco. Naturalia 25: 17–32 Thomas, W. W, A. M. Carvalho, A. M. Amorim, J. Garrison & A. L. Arbelaez. 1998. Plant endemism in two forests in southern Bahia, Brazil. Biodivers. Cons. 7: 311–322. Valentim, J. L. 2000. Ecologia numérica: Uma introdução a análise multivariada de dados. Editora Interciência, Rio de Janeiro. Veloso, H. P., A. L. R. Rangel Filho & J. C. A. Lima. 1991. Classificação da Vegetação Brasileira, Adapta a um Sistema Universal. Fundação Instituto Brasileira de Geografia e Estatística, Rio de Janeiro.

–1___ 0___ +1___