Folien zu Kapitel 1

16 downloads 265 Views 4MB Size Report
H. Frauenfelder, E. M. Henley, Teilchen und Kerne: Die Welt der subatomaren Physik, S. 428. P. A. Tipler, R. A. Llewellyn, Modern Physics, Fifth Edition S. 605 ...
P. A. Tipler, R. A. Llewellyn, Modern Physics, Fifth Edition S. 605

H. Frauenfelder, E. M. Henley, Teilchen und Kerne: Die Welt der subatomaren Physik, S. 428

K. Bethge, U. E. Schröder, Elementarteilchen und ihre Wechselwirkungen, S. 10

LPlanck 

G c3

H. Frauenfelder, E. M. Henley, Teilchen und Kerne: Die Welt der subatomaren Physik, S. 2

EPlanck

10-10 1K

H. Frauenfelder, E. M. Henley, Teilchen und Kerne: Die Welt der subatomaren Physik, S. 2

c 5   ~ 1028 eV G

K. Bethge, G. Walter, B. Wiedemann, Kernphysik – Eine Einführung, S. 216

H. Frauenfelder, E. M. Henley, Teilchen und Kerne: Die Welt der subatomaren Physik, S. 514

K. Stierstadt, Physik der Materie, S. 9

Quanten - Korrelationen 1

  r1, r2   1  r1  2  r2 

   r1, r2   1  r1  2  r2  2

2

2

unkorreliert

2 z. B.

  r1, r2  1  r1   2  r2  r1  Korrelation der Wskamplitude ( kann integrieren ! )

3

Wsk  

rechts    Wsk  Wsk  r1, r2   Wsk  r1  Wsk  r2  links

klassische Korrelation

Fermionen

  r1 , r2     r2 , r1 

Bosonen

  r1 , r2     r2 , r1 

Vertauschung

S  12 , 32 , 52 ,  halbzahlig

S  0,1, 2,  ganzzahlig

  r1 , r1     r1 , r1 

  r1 , r1   0

   r1 , r1   0

( Durchdringen erlaubt )

Pauli - Prinzip

e , p , n ,  e , ,

Photon  , W  , Z ,

3

H , 4 He, 87 Rb, 52Cr ,





0

He, 6 Li, 53Cr

C60 , O2

G. Otter, R. Honecker, Atome – Moleküle – Kerne: Band II, Molekül- und Kernphysik, S. 377

P. A. Tipler, R. A. Llewellyn, Modern Physics, Fifth Edition S. 589

Geometric Requirements of Electron Spin. Electrons cannot spin separately from the space of which they are structured and connected. If they spin freely as discrete particles, the connected space would twist itself up; that is, the coordinate lines of space would stretch and wrap around one another. The structure of space would be torn or ripped; or, one part of space must slide past another section of space. This concept is illogical and meaningless. This is why spin is purely a quantum wave property of matter.

Quarks, leptons & gauge fields By Kerson Huang

Rauch et. al.: Z. Physik B 29, 281-284 (1978)

Fermionen

Bosonen

Ψ(!r1 , !r2 ) = −Ψ(!r2 , !r1 )

Ψ(!r1 , !r2 ) = +Ψ(!r2 , !r1 )

1 3 5 S = , , , ... 2 2 2

S = 0, 1, 2, 3, ...

Ψ(!r1 , !r1 ) = 0

Ψ(!r1 , !r1 ) != 0

e− , p+ , n, µ, ... 3

6

53

He, Li,

Cr

±

P hoton, W , Z, ... 4 He,7 Li,52 Cr

Atoms as waves temperature 1000 K 1K 1 mK 1 µK 1 nK

h λ dB = mv Room temperature L He Dilution fridge Laser cooling Evaporative cooling

wavelength

e z i s

c i th -10 m g 0.15 10 m to n e a l e 4.5 10-10 m ~ v a w -8 1.5 10 m t h ig l -7 4.5 10 m ~

15 µm

Nobelpreis 2001

BEC

Cornell

Ketterle

Wieman

Distinguishable T shirts

Non degenerate states for 3 distinguishable T shirts in 3 shelfs 3! permutations

degenerate state for 3 distinguishable T shirts in lowest shelf

Indistinguishable T shirts

Non degenerate states for 3 indistinguishable T shirts in 3 shelfs

degenerate state for 3 indistinguishable T shirts in lowest shelf

Indistinguishibility reduces number of non-degenerate states and increases weight of degenerate ones by N!

Effect only important if # non-deg. states is comparable or smaller than N! M quantum states and N particles If M ~N non deg states ~N!

Phase space density ~1

M!/(M-N)! non-deg. states BEC