Fuzzy Hyperideals in Ordered LA-Semihypergroups - Downloads

0 downloads 0 Views 2MB Size Report
May 17, 2018 - In [30, 31], Davvaz introduced the concept of fuzzy hyper- ideals in a semihypergroup and Hv-semigroup. Recently in [32], Davvaz andΒ ...
Hindawi Discrete Dynamics in Nature and Society Volume 2018, Article ID 9494072, 13 pages https://doi.org/10.1155/2018/9494072

Research Article On (∈, ∈ βˆ¨π‘žπ‘˜)-Fuzzy Hyperideals in Ordered LA-Semihypergroups Muhammad Azhar,1 Naveed Yaqoob ,2 Muhammad Gulistan ,1 and Mohammed M. Khalaf

3

1

Department of Mathematics, Hazara University, Mansehra, KP, Pakistan Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Zulfi, Saudi Arabia 3 High Institute of Engineering and Technology, King Marioutt, P.O. Box 3135, Egypt 2

Correspondence should be addressed to Naveed Yaqoob; [email protected] Received 25 January 2018; Accepted 17 May 2018; Published 8 July 2018 Academic Editor: Rigoberto Medina Copyright Β© 2018 Muhammad Azhar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The concept of (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy hyperideal of an ordered LA-semihypergroup is introduced by the ordered fuzzy points, and related properties are investigated. We study the relations between different (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy hyperideal of an ordered LA-semihypergroup. Furthermore, we study some results on homomorphisms of (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy hyperideals.

1. Introduction Hyperstructures represent a natural extension of classical algebraic structures and they were introduced by the French mathematician Marty [1]. Since then, several authors continued their researches in this direction. Nowadays hyperstructures are widely studied from theoretical point of view and for their applications in many subjects of pure and applied mathematics. In a classical algebraic structure, the composition of two elements is an element, while, in an algebraic hyperstructure, the composition of two elements is a set. Some basic definitions and theorems about hyperstructures can be found in [2, 3]. The concept of a semihypergroup is a generalization of the concept of a semigroup. Many authors studied different aspects of semihypergroups, for instance, Bonansinga and Corsini [4], Corsini [5] Davvaz [6], Davvaz et al. [7], Davvaz and Poursalavati [8], Gutan [9], Hasankhani [10], Hila et al. [11], and Onipchuk [12]. Recently, Hila and Dine [13] introduced the notion of LA-semihypergroups as a generalization of semigroups, semihypergroups, and LA-semihypergroups. Yaqoob, Corsini, and Yousafzai [14] extended the work of Hila and Dine and characterized intraregular left almost semihypergroups by their hyperideals using pure left identities. Other results on LA-semihypergroups can be found in [15, 16]. The concept of ordered semihypergroup was studied by Heidari and Davvaz in [17], where they used a binary

relation β€œβ‰€β€ on semihypergroup (𝐻, ∘) such that the binary relation is a partial order and the structure (𝐻, ∘, ≀) is known as ordered semihypergroup. There are several authors who study the ordering of hyperstructures, for instance, Bakhshi and Borzooei [18], Chvalina [19], Hoskova [20], Kondo and Lekkoksung [21], and Novak [22]. The ordering in LA-semihypergroups was introduced by Yaqoob and Gulistan [23]. In 1965, the concept of fuzzy sets was first proposed by Zadeh [24], which has a wide range of applications in various fields such as computer engineering, artificial intelligence, control engineering, operation research, management science, robotics, and many more. Many papers on fuzzy sets have been published, showing the importance and their applications to set theory, group theory, real analysis, measure theory, and topology etc. There are several authors who applied the concept of fuzzy sets to algebraic hyperstructures. Ameri and others studied fuzzy sets in hypervector spaces [25], Ξ“hyperrings [26], and polygroups [27]. Corsini et al. [28] studied semisipmle semihypergroups in terms of hyperideals and fuzzy hyperideals. Cristea [29] introduced hyperstructures and fuzzy sets endowed with two membership functions. In [30, 31], Davvaz introduced the concept of fuzzy hyperideals in a semihypergroup and Hv-semigroup. Recently in [32], Davvaz and Leoreanu-Fotea studied the structure of fuzzy Ξ“-hyperideals in Ξ“-semihypergroups. Also see [33, 34]. Fuzzy ordered hyperstructures have been considered

2

Discrete Dynamics in Nature and Society

by some researchers, for instance, Pibaljommee et al. [35, 36], Tang et al. [37–40], Tipachot and Pibaljommee [41]. Murali [42] defined the concept of belongingness of a fuzzy point to a fuzzy subset under a natural equivalence on a fuzzy subset. In [43], the idea of quasi-coincidence of a fuzzy point with a fuzzy set is defined. The concept of a (𝛼, 𝛽)-fuzzy subgroup was first considered by Bhakat and Das in [44, 45] by using the β€œbelongs to” relation (∈) and β€œquasi coincident with” relation (π‘ž) between a fuzzy point and a fuzzy subgroup, where 𝛼, 𝛽 ∈ {∈, π‘ž, ∈ βˆ¨π‘ž, ∈ βˆ§π‘ž} and 𝛼 =∈ ΜΈ βˆ§π‘ž. Jun et al. [46] gave the concept of (∈, ∈ βˆ¨π‘ž)-fuzzy ordered semigroups. Moreover, (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy ideals, (∈, ∈ βˆ¨π‘žπ‘˜ ) -fuzzy quasiideals, and (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy bi-ideals of a semigroup are defined in [47]. Azizpour and Talebi characterized semihypergroups by (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy interior hyperideals [48, 49]. Huang [50] provided characterizations of semihyperrings by their (βˆˆπ›Ύ , βˆˆπ›Ύ , βˆ¨π‘žπ›Ώ ) -fuzzy hyperideals. Shabir and Mahmood characterized semihypergroups by (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy hyperideals [51] and also by (βˆˆπ›Ύ , βˆˆπ›Ύ , βˆ¨π‘žπ›Ώ )-fuzzy hyperideals [52]. Motivated by the work of Shabir et al. [47, 51], we applied the concept of (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy sets to LA-semihypergroups. In this paper, we introduce and study several types of (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy hyperideals in an ordered LA-semihypergroup. Further, we study some results on homomorphisms of (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy hyperideals.

In this section, we provide some basic definitions needed for our further work. Let 𝐻 be a nonempty set. Then the map ∘ : 𝐻 Γ— 𝐻 󳨀→ Pβˆ— (𝐻) is called hyperoperation or join operation on the set 𝐻, where Pβˆ— (𝐻) = P(𝐻)\{0} denotes the set of all nonempty subsets of 𝐻. A hypergroupoid is a set 𝐻 together with a (binary) hyperoperation. For any nonempty subsets 𝐴, 𝐡 of 𝐻, we denote ⋃ π‘Žβˆ˜π‘ π‘Žβˆˆπ΄,π‘βˆˆπ΅

Definition 2 (see [23]). If (𝐻, ∘, ≀) is an ordered LAsemihypergroup and 𝐴 βŠ† 𝐻, then (𝐴] is the subset of 𝐻 defined as follows: (𝐴] = {𝑑 ∈ 𝐻 : 𝑑 ≀ π‘Ž, for some π‘Ž ∈ 𝐴} .

(2)

If π‘₯ ∈ 𝐻 and 𝐴 is a nonempty subset of 𝐻, then 𝐴 π‘₯ = {(𝑦, 𝑧) ∈ 𝐻 Γ— 𝐻 | π‘₯ ≀ 𝑦 ∘ 𝑧}. Definition 3 (see [23]). A nonempty subset 𝐴 of an ordered LA-semihypergroup (𝐻, ∘, ≀) is called an LA-subsemihypergroup of 𝐻 if (𝐴 ∘ 𝐴] βŠ† (𝐴]. Definition 4 (see [23]). A nonempty subset 𝐴 of an ordered LA-semihypergroup (𝐻, ∘, ≀) is called a right (resp., left) hyperideal of 𝐻 if (1) 𝐴 ∘ 𝐻 βŠ† 𝐴 (resp., 𝐻 ∘ 𝐴 βŠ† 𝐴), (2) for every π‘Ž ∈ 𝐻, 𝑏 ∈ 𝐴 and π‘Ž ≀ 𝑏 implies π‘Ž ∈ 𝐴. If 𝐴 is both right hyperideal and left hyperideal of 𝐻, then 𝐴 is called a hyperideal (or two sided hyperideal) of 𝐻.

2. Preliminaries and Basic Definitions

𝐴∘𝐡=

ordered LA-semihypergroup if the following conditions are satisfied. (1) (𝐻, ∘) is an LA-semihypergroup. (2) (𝐻, ≀) is a partially ordered set. (3) For every π‘Ž, 𝑏, 𝑐 ∈ 𝐻, π‘Ž ≀ 𝑏 implies π‘Ž ∘ 𝑐 ≀ 𝑏 ∘ 𝑐 and 𝑐 ∘ π‘Ž ≀ 𝑐 ∘ 𝑏, where π‘Ž ∘ 𝑐 ≀ 𝑏 ∘ 𝑐 means that for π‘₯ ∈ π‘Ž ∘ 𝑐 there exist 𝑦 ∈ 𝑏 ∘ 𝑐 such that π‘₯ ≀ 𝑦.

(1)

Instead of {π‘Ž} ∘ 𝐴 and 𝐡 ∘ {π‘Ž}, we write π‘Ž ∘ 𝐴 and 𝐡 ∘ π‘Ž, respectively. Recently, in [13, 14] authors introduced the notion of LAsemihypergroups as a generalization of semigroups, semihypergroups, and LA-semihypergroups. A hypergroupoid (𝐻, ∘) is called an LA-semihypergroup if for every π‘₯, 𝑦, 𝑧 ∈ 𝐻, we have (π‘₯ ∘ 𝑦) ∘ 𝑧 = (𝑧 ∘ 𝑦) ∘ π‘₯. The law (π‘₯ ∘ 𝑦) ∘ 𝑧 = (𝑧 ∘ 𝑦) ∘ π‘₯ is called a left invertive law. An element 𝑒 ∈ 𝐻 is called a left identity (resp., pure left identity) if for all π‘₯ ∈ 𝐻, π‘₯ ∈ 𝑒 ∘ π‘₯ (resp., π‘₯ = 𝑒 ∘ π‘₯). In an LA-semihypergroup, the medial law (π‘₯ ∘ 𝑦) ∘ (𝑧 ∘ 𝑀) = (π‘₯ ∘ 𝑧) ∘ (𝑦 ∘ 𝑀) holds for all π‘₯, 𝑦, 𝑧, 𝑀 ∈ 𝐻. An LA-semihypergroup may or may not contain a left identity and pure left identity. In an LAsemihypergroup 𝐻 with pure left identity, the paramedial law (π‘₯ ∘ 𝑦) ∘ (𝑧 ∘ 𝑀) = (𝑀 ∘ 𝑧) ∘ (𝑦 ∘ π‘₯) holds for all π‘₯, 𝑦, 𝑧, 𝑀 ∈ 𝐻. If an LA-semihypergroup contains a pure left identity, then by using medial law, we get π‘₯∘(π‘¦βˆ˜π‘§) = π‘¦βˆ˜(π‘₯βˆ˜π‘§) for all π‘₯, 𝑦, 𝑧 ∈ 𝐻. Definition 1 (see [23]). Let 𝐻 be a nonempty set and ≀ be an ordered relation on 𝐻. The triplet (𝐻, ∘, ≀) is called an

Definition 5 (see [23]). A nonempty subset 𝐴 of an ordered LA-semihypergroup (𝐻, ∘, ≀) is called an interior hyperideal of 𝐻 if (1) (𝐻 ∘ 𝐴) ∘ 𝐻 βŠ† 𝐴, (2) for every π‘Ž ∈ 𝐻, 𝑏 ∈ 𝐴 and π‘Ž ≀ 𝑏 implies π‘Ž ∈ 𝐴. Definition 6 (see [23]). A nonempty subset 𝐴 of an ordered LA-semihypergroup (𝐻, ∘, ≀) is called a generalized bihyperideal of 𝐻 if (1) (𝐴 ∘ 𝐻) ∘ 𝐴 βŠ† 𝐴, (2) for every π‘Ž ∈ 𝐻, 𝑏 ∈ 𝐴 and π‘Ž ≀ 𝑏 implies π‘Ž ∈ 𝐴. If 𝐴 is both an LA-subsemihypergroup and a generalized bi-hyperideal of 𝐻, then 𝐴 is called a bi-hyperideal of 𝐻. Definition 7. Let (𝐻, ∘, ≀) be an ordered LA-semihypergroup, and π‘Ž ∈ 𝐻. Then π‘Ž is said to be regular element of 𝐻 if there exists an element π‘₯ ∈ 𝐻 such that π‘Ž ≀ (π‘Žβˆ˜π‘₯)βˆ˜π‘Ž, or equivalently π‘Ž ≀ (π‘Ž ∘ 𝐻) ∘ π‘Ž. If every element of 𝐻 is regular then 𝐻 is said to be a regular ordered LA-semihypergroup. Now, we give some fuzzy logic concepts. A fuzzy subset 𝑓 of a universe 𝑋 is a function from 𝑋 into the unit closed interval [0, 1], i.e., 𝑓 : 𝑋 󳨀→ [0, 1] (see [24]). A fuzzy subset 𝑓 in a universe 𝑋 of the form {𝑑 ∈ (0, 1] if 𝑦 = π‘₯ 𝑓 (𝑦) = { (3) 0 if 𝑦 =ΜΈ π‘₯ { is said to be a fuzzy point with support π‘₯ and value 𝑑 and is denoted by π‘₯𝑑 . For a fuzzy point π‘₯𝑑 and a fuzzy set 𝑓 in a set

Discrete Dynamics in Nature and Society

3

𝑋, Pu and Liu [43] introduced the symbol π‘₯𝑑 𝛼𝑓, where 𝛼 ∈ {∈, π‘ž, ∈ βˆ¨π‘ž, ∈ βˆ§π‘ž}, which means that (i) π‘₯𝑑 ∈ 𝑓 if 𝑓(π‘₯) β‰₯ 𝑑, (ii) π‘₯𝑑 π‘žπ‘“ if 𝑓(π‘₯) + 𝑑 > 1, (iii) π‘₯𝑑 ∈ βˆ¨π‘žπ‘“ if π‘₯𝑑 ∈ 𝑓 or π‘₯𝑑 π‘žπ‘“, (iv) π‘₯𝑑 ∈ βˆ§π‘žπ‘“ if π‘₯𝑑 ∈ 𝑓 and π‘₯𝑑 π‘žπ‘“, (v) π‘₯𝑑 𝛼𝑓 if π‘₯𝑑 𝛼𝑓 does not hold. For any two fuzzy subsets 𝑓 and 𝑔 of 𝐻, 𝑓 ≀ 𝑔 means that, for all π‘₯ ∈ 𝐻, 𝑓(π‘₯) ≀ 𝑔(π‘₯). The symbols 𝑓 ∧ 𝑔 and 𝑓 ∨ 𝑔 will mean the following fuzzy subsets: 𝑓 ∧ 𝑔 : 𝐻 󳨀→ [0, 1] | π‘₯ 󳨃󳨀→ (𝑓 ∧ 𝑔) (π‘₯) = 𝑓 (π‘₯) ∧ 𝑔 (π‘₯) = min {𝑓 (π‘₯) , 𝑔 (π‘₯)} 𝑓 ∨ 𝑔 : 𝐻 󳨀→ [0, 1] | π‘₯ 󳨃󳨀→ (𝑓 ∨ 𝑔) (π‘₯)

(4)

= 𝑓 (π‘₯) ∨ 𝑔 (π‘₯) = max {𝑓 (π‘₯) , 𝑔 (π‘₯)} for all π‘₯ ∈ 𝐻. The product of any fuzzy subsets 𝑓 and 𝑔 of 𝐻 is defined by 𝑓 βˆ— 𝑔 : 𝐻 󳨀→ [0, 1] | π‘₯ 󳨃󳨀→ (𝑓 βˆ— 𝑔) (π‘₯) { ⋁ {𝑓 (𝑦) ∧ 𝑔 (𝑧)} , if 𝐴 π‘₯ =ΜΈ 0 = {(𝑦,𝑧)∈𝐴 π‘₯ if 𝐴 π‘₯ = 0. {0

(5)

For 0 =ΜΈ 𝐴 βŠ† 𝐻, the characteristic function 𝑓𝐴 of 𝐴 is a fuzzy subset of 𝐻, defined by {1 𝑓𝐴 = { 0 {

if π‘₯ ∈ 𝐴,

Definition 11 (see [54]). Let (𝐻, ∘, ≀) be an ordered LAsemihypergroup. A fuzzy subset 𝑓 : 𝐻 󳨀→ [0, 1] is called a fuzzy interior hyperideal of 𝐻 if (1) ⋀𝑧≀(π‘Žβˆ˜π‘)βˆ˜π‘ 𝑓(𝑧) β‰₯ 𝑓(𝑏), (2) π‘Ž ≀ 𝑏 implies 𝑓(π‘Ž) β‰₯ 𝑓(𝑏), for every π‘Ž, 𝑏 ∈ 𝐻.

3. (∈ , ∈ βˆ¨π‘žπ‘˜ )-Fuzzy Hyperideals In what follows, let 𝐻 denote an ordered LA-semihypergroup, π‘˜ ∈ [0, 1) and 𝑑, π‘Ÿ ∈ (0, 1] unless otherwise is specified. Note that for a fuzzy point π‘₯𝑑 and a fuzzy subset 𝑓, π‘₯𝑑 ∈ 𝑓 means that 𝑓(π‘₯) β‰₯ 𝑑, while π‘₯𝑑 π‘žπ‘˜ 𝑓 means that 𝑓(π‘₯) + 𝑑 + π‘˜ > 1. Notice that (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy hyperideals are particular types of (𝛼, 𝛽)-fuzzy hyperideals. Definition 12. A fuzzy subset 𝑓 of 𝐻 is called an (∈, ∈ βˆ¨π‘žπ‘˜ )fuzzy LA-subsemihypergroup of 𝐻 if for all π‘₯, 𝑦, 𝑧 ∈ 𝐻 and 𝑑 ∈ (0, 1], the following conditions hold: (i) π‘₯ ≀ 𝑦, 𝑦𝑑 ∈ 𝑓 󳨐⇒ π‘₯𝑑 ∈ βˆ¨π‘žπ‘˜ 𝑓, (ii) π‘₯𝑑 , 𝑦𝑒 ∈ 𝑓 󳨐⇒ 𝑧min{𝑑,𝑒} ∈ βˆ¨π‘žπ‘˜ 𝑓, for each 𝑧 ∈ π‘₯ ∘ 𝑦. Definition 13. A fuzzy subset 𝑓 of 𝐻 is called an (∈, ∈ βˆ¨π‘žπ‘˜ )fuzzy left hyperideal of 𝐻 if for all π‘₯, 𝑦, 𝑧 ∈ 𝐻 and 𝑑 ∈ (0, 1], the following conditions hold. (i) π‘₯ ≀ 𝑦, 𝑦𝑑 ∈ 𝑓 󳨐⇒ π‘₯𝑑 ∈ βˆ¨π‘žπ‘˜ 𝑓, (ii) 𝑦𝑑 ∈ 𝑓 󳨐⇒ 𝑧𝑑 ∈ βˆ¨π‘žπ‘˜ 𝑓, for each 𝑧 ∈ π‘₯ ∘ 𝑦. Definition 14. A fuzzy subset 𝑓 of 𝐻 is called an (∈, ∈ βˆ¨π‘žπ‘˜ )fuzzy right hyperideal of 𝐻 if for all π‘₯, 𝑦, 𝑧 ∈ 𝐻 and 𝑑 ∈ (0, 1], the following conditions hold. (i) π‘₯ ≀ 𝑦, 𝑦𝑑 ∈ 𝑓 󳨐⇒ π‘₯𝑑 ∈ βˆ¨π‘žπ‘˜ 𝑓, (ii) π‘₯𝑑 ∈ 𝑓 󳨐⇒ 𝑧𝑑 ∈ βˆ¨π‘žπ‘˜ 𝑓, for each 𝑧 ∈ π‘₯ ∘ 𝑦.

(6)

A fuzzy subset 𝑓 of 𝐻 is called an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy hyperideal of 𝐻 if it is a left hyperideal and a right hyperideal of 𝐻.

For any fuzzy subset 𝑓 of 𝐻 and for any 𝑑 ∈ (0, 1], the set π‘ˆ(𝑓; 𝑑) = {π‘₯ ∈ 𝐻 : 𝑓(π‘₯) β‰₯ 𝑑} is called a level subset of 𝑓.

Definition 15. Consider a set 𝐻 = {π‘Ž, 𝑏, 𝑐, 𝑑} with the following hyperoperation β€œβˆ˜β€ and the order β€œβ‰€β€:

if π‘₯ βˆ‰ 𝐴.

Definition 8 (see [53]). Let (𝐻, ∘, ≀) be an ordered LAsemihypergroup. A fuzzy subset 𝑓 : 𝐻 󳨀→ [0, 1] is called fuzzy LA-subsemihypergroup of 𝐻 if the following assertion are satisfied. (i) β‹€π‘§β‰€π‘Žβˆ˜π‘ 𝑓(𝑧) β‰₯ min{𝑓(π‘Ž), 𝑓(𝑏)}, (ii) if π‘Ž ≀ 𝑏 implies 𝑓(π‘Ž) β‰₯ 𝑓(𝑏), for every π‘Ž, 𝑏 ∈ 𝐻. Definition 9 (see [53]). Let (𝐻, ∘, ≀) be an ordered LAsemihypergroup. A fuzzy subset 𝑓 : 𝐻 󳨀→ [0, 1] is called a fuzzy right (resp., left) hyperideal of 𝐻 if (1) β‹€π‘§β‰€π‘Žβˆ˜π‘ 𝑓(𝑧) β‰₯ 𝑓(π‘Ž) (resp., β‹€π‘§β‰€π‘Žβˆ˜π‘ 𝑓(𝑧) β‰₯ 𝑓(𝑏)), (2) π‘Ž ≀ 𝑏 implies 𝑓(π‘Ž) β‰₯ 𝑓(𝑏), for every π‘Ž, 𝑏 ∈ 𝐻.

∘ π‘Ž 𝑏 𝑐 𝑑 π‘Ž π‘Ž {π‘Ž, 𝑑} {π‘Ž, 𝑑} 𝑑 𝑏 {π‘Ž, 𝑑} {𝑏, 𝑐} {𝑏, 𝑐} 𝑑 𝑏 𝑑 𝑐 {π‘Ž, 𝑑} 𝑏 𝑑 𝑑 𝑑 𝑑 𝑑

(7)

≀fl {(π‘Ž, π‘Ž) , (π‘Ž, 𝑏) , (π‘Ž, 𝑐) , (𝑏, 𝑏) , (𝑐, 𝑐) , (𝑑, π‘Ž) , (𝑑, 𝑏) , (𝑑, 𝑐) , (𝑑, 𝑑)} .

We give the covering relation β€œβ‰Ίβ€ and the figure of 𝐻 as follows: β‰Ί= {(π‘Ž, 𝑏) , (π‘Ž, 𝑐) , (𝑑, π‘Ž)} .

If 𝑓 is both fuzzy right hyperideal and fuzzy left hyperideal of 𝐻, then 𝑓 is called a fuzzy hyperideal of 𝐻. Definition 10 (see [54]). Let (𝐻, ∘, ≀) be an ordered LAsemihypergroup. A fuzzy subset 𝑓 : 𝐻 󳨀→ [0, 1] is called a fuzzy bi-hyperideal of 𝐻 if (1) ⋀𝑧≀(π‘Žβˆ˜π‘)βˆ˜π‘ 𝑓(𝑧) β‰₯ min{𝑓(π‘Ž), 𝑓(𝑐)}, (2) π‘Ž ≀ 𝑏 implies 𝑓(π‘Ž) β‰₯ 𝑓(𝑏), for every π‘Ž, 𝑏 ∈ 𝐻.

(8)

4

Discrete Dynamics in Nature and Society

Then (𝐻, ∘, ≀) is an ordered LA-semihypergroup. Now let 𝑓 be a fuzzy subset of 𝐻 such that 0.6 { { { { 𝑓 : 𝐻 󳨀→ [0, 1] | π‘₯ 󳨃󳨀→ 𝑓 (π‘₯) = {0.4 { { { {0.9

if π‘₯ = π‘Ž if π‘₯ ∈ {𝑏, 𝑐}

(9)

if π‘₯ = 𝑑.

Let 𝑑 = 0.4 and π‘˜ ∈ [0, 1). Then by routine calculations it is clear that 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy hyperideal of 𝐻. Definition 16. A fuzzy subset 𝑓 of 𝐻 is called an (∈, ∈ βˆ¨π‘žπ‘˜ )fuzzy interior hyperideal of 𝐻 if for all π‘₯, 𝑦, 𝑧, 𝑀 ∈ 𝐻 and 𝑑 ∈ (0, 1], the following conditions hold: (i) π‘₯ ≀ 𝑦, 𝑦𝑑 ∈ 𝑓 󳨐⇒ π‘₯𝑑 ∈ βˆ¨π‘žπ‘˜ 𝑓, (ii) 𝑦𝑑 ∈ 𝑓 󳨐⇒ 𝑀𝑑 ∈ βˆ¨π‘žπ‘˜ 𝑓, for each 𝑀 ∈ (π‘₯ ∘ 𝑦) ∘ 𝑧. Example 17. Consider a set 𝐻 = {π‘Ž, 𝑏, 𝑐, 𝑑} with the following hyperoperation β€œβˆ˜β€ and the order β€œβ‰€β€: ∘ π‘Ž π‘Ž π‘Ž

𝑏 π‘Ž

𝑐 π‘Ž

𝑑 π‘Ž

𝑒 π‘Ž

𝑏 π‘Ž

𝑏

𝑐

{π‘Ž, 𝑑}

𝑒

𝑐 π‘Ž

𝑒

{𝑐, 𝑒} {π‘Ž, 𝑑}

𝑒

𝑑 π‘Ž {π‘Ž, 𝑑} {π‘Ž, 𝑑} 𝑒 π‘Ž

𝑐

𝑐

𝑑

(10)

{π‘Ž, 𝑑}

{π‘Ž, 𝑑} {𝑐, 𝑒}

≀fl {(π‘Ž, π‘Ž) , (π‘Ž, 𝑏) , (π‘Ž, 𝑐) , (π‘Ž, 𝑑) , (π‘Ž, 𝑒) , (𝑏, 𝑏) , (𝑐, 𝑐) , (𝑑, 𝑐) , (𝑑, 𝑑) , (𝑑, 𝑒) , (𝑒, 𝑒)} .

We give the covering relation β€œβ‰Ίβ€ and the figure of 𝐻 as follows: β‰Ί= {(π‘Ž, 𝑏) , (π‘Ž, 𝑑) , (𝑑, 𝑐) , (𝑑, 𝑒)} .

(11)

Then (𝐻, ∘, ≀) is an ordered LA-semihypergroup. Now let 𝑓 be a fuzzy subset of 𝐻 such that {0.8 { { { { { {0.4 𝑓 : 𝐻 󳨀→ [0, 1] | π‘₯ 󳨃󳨀→ 𝑓 (π‘₯) = { { { 0.5 { { { { {0.7

if π‘₯ = π‘Ž if π‘₯ = 𝑏 if π‘₯ ∈ {𝑐, 𝑒}

(12)

if π‘₯ = 𝑑.

Let 𝑑 = 0.3 and π‘˜ ∈ [0, 1). Then by routine calculations it is clear that 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy interior hyperideal of 𝐻.

Definition 18. A fuzzy subset 𝑓 of 𝐻 is called an (∈, ∈ βˆ¨π‘žπ‘˜ ) -fuzzy bi-hyperideal of 𝐻 if for all π‘₯, 𝑦, 𝑧, 𝑀 ∈ 𝐻 and 𝑑 ∈ (0, 1], the following conditions hold: (i) π‘₯ ≀ 𝑦, 𝑦𝑑 ∈ 𝑓 󳨐⇒ π‘₯𝑑 ∈ βˆ¨π‘žπ‘˜ 𝑓, (ii) π‘₯𝑑 , 𝑦𝑒 ∈ 𝑓 󳨐⇒ 𝑧min{𝑑,𝑒} ∈ βˆ¨π‘žπ‘˜ 𝑓, for each 𝑧 ∈ π‘₯ ∘ 𝑦. (iii) π‘₯𝑑 , 𝑧𝑒 ∈ 𝑓 󳨐⇒ 𝑀min{𝑑,𝑒} ∈ βˆ¨π‘žπ‘˜ 𝑓, for each 𝑀 ∈ (π‘₯ ∘ 𝑦) ∘ 𝑧. A fuzzy subset 𝑓 of 𝐻 is called an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy generalized bi-hyperideal of 𝐻 if it satisfies (i) and (iii) conditions of Definition 18. Theorem 19. Let 𝐴 be an LA-subsemihypergroup (resp., left hyperideal, right hyperideal, hyperideal, interior hyperideal, and bi-hyperideal) of 𝐻 and 𝑓 a fuzzy subset of 𝐻 defined by {β‰₯ 𝑓 (π‘₯) = { {0

1βˆ’π‘˜ 2

𝑖𝑓 π‘₯ ∈ 𝐴 π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’.

(13)

Then (i) 𝑓 is a (π‘ž, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LA-subsemihypergroup (resp., left hyperideal, right hyperideal, hyperideal, interior hyperideal, and bi-hyperideal) of 𝐻, (ii) 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LA-subsemihypergroup (resp., left hyperideal, right hyperideal, hyperideal, interior hyperideal, and bi-hyperideal) of 𝐻. Proof. (i) Consider that 𝐴 is an LA-subsemihypergroup of 𝐻. Let π‘₯, 𝑦 ∈ 𝐻, π‘₯ ≀ 𝑦 and 𝑑 ∈ (0, 1] be such that 𝑦𝑑 π‘žπ‘“. Then 𝑦 ∈ 𝐴, 𝑓(𝑦) + 𝑑 > 1. Since 𝐴 is an LA-subsemihypergroup of 𝐻 and π‘₯ ≀ 𝑦 ∈ 𝐴, we have π‘₯ ∈ 𝐴. Thus 𝑓(π‘₯) β‰₯ (1 βˆ’ π‘˜)/2. If 𝑑 ≀ (1βˆ’π‘˜)/2, then 𝑓(π‘₯) β‰₯ 𝑑 and so π‘₯𝑑 ∈ 𝑓. If 𝑑 > (1βˆ’π‘˜)/2, then 𝑓(π‘₯)+𝑑+π‘˜ > (1βˆ’π‘˜)/2+(1βˆ’π‘˜)/2+π‘˜ = 1 and so π‘₯𝑑 π‘žπ‘˜ 𝑓. Therefore π‘₯𝑑 ∈ βˆ¨π‘žπ‘˜ 𝑓. Let π‘₯, 𝑦, 𝑧 ∈ 𝐻 and 𝑑, π‘Ÿ ∈ (0, 1] be such that π‘₯𝑑 π‘žπ‘“ and π‘¦π‘Ÿ π‘žπ‘“. Then π‘₯, 𝑦 ∈ 𝐴, 𝑓(π‘₯)+𝑑 > 1 and 𝑓(π‘₯)+π‘Ÿ > 1. Since 𝐴 is an LA-subsemihypergroup of 𝐻, we have π‘₯βˆ˜π‘¦ βŠ† 𝐴. Thus for every 𝑧 ∈ π‘₯ ∘ 𝑦, 𝑓(𝑧) β‰₯ (1 βˆ’ π‘˜)/2. If min{𝑑, π‘Ÿ} ≀ (1 βˆ’ π‘˜)/2, then 𝑓(𝑧) β‰₯ min{𝑑, π‘Ÿ} and so 𝑧min{𝑑,π‘Ÿ} ∈ 𝑓. If min{𝑑, π‘Ÿ} > (1 βˆ’ π‘˜)/2, then 𝑓(𝑧) + min{𝑑, π‘Ÿ} + π‘˜ > (1 βˆ’ π‘˜)/2 + (1 βˆ’ π‘˜)/2 + π‘˜ = 1 and so 𝑧min{𝑑,π‘Ÿ} π‘žπ‘˜ 𝑓. Therefore 𝑧min{𝑑,π‘Ÿ} ∈ βˆ¨π‘žπ‘˜ 𝑓, for all 𝑧 ∈ π‘₯ ∘ 𝑦. (ii) Let π‘₯, 𝑦 ∈ 𝐻, π‘₯ ≀ 𝑦 and 𝑑 ∈ (0, 1] be such that 𝑦𝑑 ∈ 𝑓. Then 𝑓(𝑦) β‰₯ 𝑑 and 𝑦 ∈ 𝐴. Since π‘₯ ≀ 𝑦 ∈ 𝐴, we have π‘₯ ∈ 𝐴. Thus 𝑓(π‘₯) β‰₯ (1 βˆ’ π‘˜)/2. If 𝑑 ≀ (1 βˆ’ π‘˜)/2, then 𝑓(π‘₯) β‰₯ 𝑑 and so π‘₯𝑑 ∈ 𝑓. If 𝑑 > (1 βˆ’ π‘˜)/2, then 𝑓(π‘₯) + 𝑑 + π‘˜ > (1 βˆ’ π‘˜)/2 + (1 βˆ’ π‘˜)/2 + π‘˜ = 1 and so π‘₯𝑑 π‘žπ‘˜ 𝑓. Therefore π‘₯𝑑 ∈ βˆ¨π‘žπ‘˜ 𝑓. Let π‘₯, 𝑦, 𝑧 ∈ 𝐻 and 𝑑, π‘Ÿ ∈ (0, 1] be such that π‘₯𝑑 ∈ 𝑓 and π‘¦π‘Ÿ ∈ 𝑓. Then 𝑓(π‘₯) β‰₯ 𝑑 > 0 and 𝑓(𝑦) β‰₯ π‘Ÿ > 0. Thus 𝑓(π‘₯) β‰₯ (1 βˆ’ π‘˜)/2 and 𝑓(𝑦) β‰₯ (1 βˆ’ π‘˜)/2, this implies that π‘₯, 𝑦 ∈ 𝐴. Since 𝐴 is an LA-subsemihypergroup of 𝐻, we have π‘₯ ∘ 𝑦 βŠ† 𝐴. Thus for every 𝑧 ∈ π‘₯ ∘ 𝑦, 𝑓(𝑧) β‰₯ (1 βˆ’ π‘˜)/2. If min{𝑑, π‘Ÿ} ≀ (1 βˆ’ π‘˜)/2, then 𝑓(𝑧) β‰₯ min{𝑑, π‘Ÿ} and so 𝑧min{𝑑,π‘Ÿ} ∈ 𝑓. If min{𝑑, π‘Ÿ} > (1 βˆ’ π‘˜)/2, then 𝑓(𝑧) + min{𝑑, π‘Ÿ} + π‘˜ > (1 βˆ’ π‘˜)/2 + (1 βˆ’ π‘˜)/2 + π‘˜ = 1 and so 𝑧min{𝑑,π‘Ÿ} π‘žπ‘˜ 𝑓. Therefore 𝑧min{𝑑,π‘Ÿ} ∈ βˆ¨π‘žπ‘˜ 𝑓, for all 𝑧 ∈ π‘₯ ∘ 𝑦. The cases for left hyperideal, right hyperideal, hyperideal, interior hyperideal and bi-hyperideal can be seen in a similar way. Corollary 20. If a nonempty subset 𝐴 of 𝐻 is an LAsubsemihypergroup (resp., left hyperideal, right hyperideal,

Discrete Dynamics in Nature and Society

5

hyperideal, interior hyperideal, and bi-hyperideal) of 𝐻, then the characteristic function of 𝐴 is a (π‘ž, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LAsubsemihypergroup (resp., left hyperideal, right hyperideal, hyperideal, interior hyperideal, and bi-hyperideal) of 𝐻. Corollary 21. A nonempty subset 𝐴 of 𝐻 is an LAsubsemihypergroup (resp., left hyperideal, right hyperideal, hyperideal, interior hyperideal, and bi-hyperideal) of 𝐻 if and only if 𝑓𝐴 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LA-subsemihypergroup (resp., left hyperideal, right hyperideal, hyperideal, interior hyperideal, bi- and hyperideal) of 𝐻. If we take π‘˜ = 0 in Theorem 19, then we have the following corollary. Corollary 22. Let 𝐴 be an LA-subsemihypergroup (resp., left hyperideal, right hyperideal, hyperideal, interior hyperideal, and bi-hyperideal) of 𝐻 and 𝑓 a fuzzy subset of 𝐻 defined by {β‰₯ 0.5 𝑓 (π‘₯) = { 0 {

𝑖𝑓 π‘₯ ∈ 𝐴 π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’.

Now, assume that β‹€π‘§βˆˆπ‘₯βˆ˜π‘¦ 𝑓(𝑧) β‰₯ min{𝑓(π‘₯), 𝑓(𝑦), (1 βˆ’ π‘˜)/2} for all π‘₯, 𝑦, 𝑧 ∈ 𝐻. Let π‘₯𝑑 ∈ 𝑓 and π‘¦π‘Ÿ ∈ 𝑓 for all 𝑑, π‘Ÿ ∈ (0, 1]. Then 𝑓(π‘₯) β‰₯ 𝑑 and 𝑓(𝑦) β‰₯ π‘Ÿ. Thus β‹€π‘§βˆˆπ‘₯βˆ˜π‘¦ 𝑓(𝑧) β‰₯ min{𝑓(π‘₯), 𝑓(𝑦), (1 βˆ’ π‘˜)/2} β‰₯ min{𝑑, π‘Ÿ, (1 βˆ’ π‘˜)/2}. Now if min{𝑑, π‘Ÿ} > (1βˆ’π‘˜)/2, then β‹€π‘§βˆˆπ‘₯βˆ˜π‘¦ 𝑓(𝑧) β‰₯ (1βˆ’π‘˜)/2. So for every 𝑧 ∈ π‘₯ ∘ 𝑦, 𝑓(𝑧) + min{𝑑, π‘Ÿ} + π‘˜ > (1 βˆ’ π‘˜)/2 + (1 βˆ’ π‘˜)/2 + π‘˜ = 1, which implies that 𝑧min{𝑑,π‘Ÿ} π‘žπ‘˜ 𝑓. If min{𝑑, π‘Ÿ} < (1 βˆ’ π‘˜)/2, then β‹€π‘§βˆˆπ‘₯βˆ˜π‘¦ 𝑓(𝑧) β‰₯ min{𝑑, π‘Ÿ}. So for every 𝑧 ∈ π‘₯ ∘ 𝑦, 𝑧min{𝑑,π‘Ÿ} ∈ 𝑓. Thus 𝑧min{𝑑,π‘Ÿ} π‘žπ‘˜ 𝑓. Therefore 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LAsubsemihypergroup of 𝐻. Theorem 24. Let 𝑓 be a fuzzy subset of 𝐻. Then, 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy left (resp., right) hyperideal of 𝐻 if and only if (i) π‘₯ ≀ 𝑦 󳨐⇒ 𝑓(π‘₯) β‰₯ min{𝑓(𝑦), (1 βˆ’ π‘˜)/2}, for all π‘₯, 𝑦 ∈ 𝐻. (ii) β‹€π‘§βˆˆπ‘₯βˆ˜π‘¦ 𝑓(𝑧) β‰₯ min{𝑓(𝑦), (1 βˆ’ π‘˜)/2} (resp., β‹€π‘§βˆˆπ‘₯βˆ˜π‘¦ 𝑓(𝑧) β‰₯ min{𝑓(π‘₯), (1 βˆ’ π‘˜)/2}), for all π‘₯, 𝑦, 𝑧 ∈ 𝐻. Proof. The proof is similar to the proof of Theorem 23.

(14)

Then (i) 𝑓 is a (π‘ž, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LA-subsemihypergroup (resp., left hyperideal, right hyperideal, hyperideal, interior hyperideal, and bi-hyperideal) of 𝐻, (ii) 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LA-subsemihypergroup (resp., left hyperideal, right hyperideal, hyperideal, interior hyperideal, and bi-hyperideal) of 𝐻. Theorem 23. Let 𝑓 be a fuzzy subset of 𝐻. Then, 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LA-subsemihypergroup of 𝐻 if and only if (i) π‘₯ ≀ 𝑦 󳨐⇒ 𝑓(π‘₯) β‰₯ min{𝑓(𝑦), (1 βˆ’ π‘˜)/2}, for all π‘₯, 𝑦 ∈ 𝐻; (ii) β‹€π‘§βˆˆπ‘₯βˆ˜π‘¦ 𝑓(𝑧) β‰₯ min{𝑓(π‘₯), 𝑓(𝑦), (1 βˆ’ π‘˜)/2}, for all π‘₯, 𝑦, 𝑧 ∈ 𝐻. Proof. Assume that 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LA-subsemihypergroup of 𝐻. Let π‘₯, 𝑦 ∈ 𝐻 be such that π‘₯ ≀ 𝑦. If 𝑓(𝑦) = 0, then 𝑓(π‘₯) β‰₯ min{𝑓(𝑦), (1 βˆ’ π‘˜)/2}. Let 𝑓(𝑦) =ΜΈ 0 and assume on the contrary that 𝑓(π‘₯) < min{𝑓(𝑦), (1 βˆ’ π‘˜)/2}. Choose 𝑑 ∈ (0, 1] such that 𝑓(π‘₯) < 𝑑 ≀ min{𝑓(𝑦), (1 βˆ’ π‘˜)/2}. If 𝑓(𝑦) < (1 βˆ’ π‘˜)/2, then 𝑓(π‘₯) < 𝑑 < 𝑓(𝑦), so 𝑦𝑑 ∈ 𝑓, but 𝑓(π‘₯) + 𝑑 + π‘˜ < (1 βˆ’ π‘˜)/2 + (1 βˆ’ π‘˜)/2 + π‘˜ = 1. This implies that π‘₯𝑑 π‘žπ‘˜ 𝑓, therefore π‘₯𝑑 ∈ βˆ¨π‘žπ‘˜ 𝑓, which is a contradiction. Hence 𝑓(π‘₯) β‰₯ min{𝑓(𝑦), (1 βˆ’ π‘˜)/2}, for all π‘₯, 𝑦 ∈ 𝐻. Suppose on the contrary that there exist π‘₯, 𝑦, 𝑧 ∈ 𝐻 such that β‹€π‘§βˆˆπ‘₯βˆ˜π‘¦ 𝑓(𝑧) < min{𝑓(π‘₯), 𝑓(𝑦), (1 βˆ’ π‘˜)/2}. Then there exists 𝑧 ∈ π‘₯ ∘ 𝑦 such that 𝑓(𝑧) < min{𝑓(π‘₯), 𝑓(𝑦), (1 βˆ’ π‘˜)/2}. Choose 𝑑 ∈ (0, 1] such that 𝑓(𝑧) < 𝑑 < min{𝑓(π‘₯), 𝑓(𝑦), (1 βˆ’ π‘˜)/2}. Then 𝑓(π‘₯) > 𝑑 and 𝑓(𝑦) > 𝑑 implies that π‘₯𝑑 ∈ 𝑓 and 𝑦𝑑 ∈ 𝑓, but 𝑓(𝑧) < 𝑑 and 𝑓(𝑧) + 𝑑 + π‘˜ < (1 βˆ’ π‘˜)/2 + (1 βˆ’ π‘˜)/2 + π‘˜ = 1. So 𝑧𝑑 ∈ βˆ¨π‘žπ‘˜ 𝑓, which is a contradiction. Hence β‹€π‘§βˆˆπ‘₯βˆ˜π‘¦ 𝑓(𝑧) β‰₯ min{𝑓(π‘₯), 𝑓(𝑦), (1 βˆ’ π‘˜)/2}. Conversely, let 𝑦𝑑 ∈ 𝑓 for 𝑑 ∈ (0, 1]. Then 𝑓(𝑦) β‰₯ 𝑑. Now 𝑓(π‘₯) β‰₯ min{𝑓(𝑦), (1 βˆ’ π‘˜)/2} β‰₯ min{𝑑, (1 βˆ’ π‘˜)/2}. If 𝑑 > (1 βˆ’ π‘˜)/2, then 𝑓(π‘₯) β‰₯ (1 βˆ’ π‘˜)/2 and 𝑓(π‘₯) + 𝑑 + π‘˜ > (1 βˆ’ π‘˜)/2 + (1 βˆ’ π‘˜)/2 + π‘˜ = 1, it follows that π‘₯𝑑 π‘žπ‘˜ 𝑓. If 𝑑 ≀ (1 βˆ’ π‘˜)/2, then 𝑓(π‘₯) β‰₯ 𝑑 and so π‘₯𝑑 ∈ 𝑓. Thus π‘₯𝑑 ∈ βˆ¨π‘žπ‘˜ 𝑓.

Theorem 25. Let 𝑓 be a fuzzy subset of 𝐻. Then, 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ ) -fuzzy interior hyperideal of 𝐻 if and only if (i) π‘₯ ≀ 𝑦 󳨐⇒ 𝑓(π‘₯) β‰₯ min{𝑓(𝑦), (1 βˆ’ π‘˜)/2}, for all π‘₯, 𝑦 ∈ 𝐻. (ii) β‹€π‘€βˆˆ(π‘₯βˆ˜π‘¦)βˆ˜π‘§ 𝑓(𝑑) β‰₯ min{𝑓(𝑦), (1 βˆ’ π‘˜)/2}, for all π‘₯, 𝑦, 𝑧, 𝑀 ∈ 𝐻. Proof. The proof is similar to the proof of the Theorem 23. Theorem 26. Let 𝑓 be a fuzzy subset of 𝐻. Then, 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy bi-hyperideal of 𝐻 if and only if (i) π‘₯ ≀ 𝑦 󳨐⇒ 𝑓(π‘₯) β‰₯ min{𝑓(𝑦), (1 βˆ’ π‘˜)/2}, for all π‘₯, 𝑦 ∈ 𝐻. (ii) β‹€π‘§βˆˆπ‘₯βˆ˜π‘¦ 𝑓(𝑧) β‰₯ min{𝑓(π‘₯), 𝑓(𝑦), (1 βˆ’ π‘˜)/2}, for all π‘₯, 𝑦, 𝑧 ∈ 𝐻. (ii) β‹€π‘€βˆˆ(π‘₯βˆ˜π‘¦)βˆ˜π‘§ 𝑓(𝑑) β‰₯ min{𝑓(π‘₯), 𝑓(𝑧), (1 βˆ’ π‘˜)/2}, for all π‘₯, 𝑦, 𝑧, 𝑑 ∈ 𝐻. Proof. The proof is similar to the proof of Theorem 23. A fuzzy subset 𝑓 of 𝐻 is called an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy generalized bi-hyperideal of 𝐻 if it satisfies (i) and (iii) conditions of Theorem 26. Theorem 27. A fuzzy subset 𝑓 of an ordered LA-semihypergroup 𝐻 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LA-subsemihypergroup (resp., left hyperideal, right hyperideal, hyperideal, interior hyperideal, and bi-hyperideal) of 𝐻 if and only if π‘ˆ(𝑓; 𝑑)(=ΜΈ 0) is an LA-subsemihypergroup (resp., left hyperideal, right hyperideal, hyperideal, interior hyperideal, and bi-hyperideal) of 𝐻 for all 𝑑 ∈ (0, (1 βˆ’ π‘˜)/2]. Proof. Assume that 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LA-subsemihypergroup of 𝐻. Let π‘₯, 𝑦, 𝑧 ∈ 𝐻 be such that π‘₯ ≀ 𝑦 ∈ π‘ˆ(𝑓; 𝑑) where 𝑑 ∈ (0, (1 βˆ’ π‘˜)/2]. Then 𝑓(𝑦) β‰₯ 𝑑 and by Theorem 23, 𝑓(π‘₯) β‰₯ min{𝑓(𝑦), (1βˆ’π‘˜)/2} β‰₯ min{𝑑, (1βˆ’π‘˜)/2} = 𝑑. It follows that π‘₯ ∈ π‘ˆ(𝑓; 𝑑). Let π‘₯, 𝑦 ∈ π‘ˆ(𝑓; 𝑑) where 𝑑 ∈ (0, (1 βˆ’ π‘˜)/2]. Then 𝑓(π‘₯) β‰₯ 𝑑 and 𝑓(𝑦) β‰₯ 𝑑. It follows from Theorem 23

6

Discrete Dynamics in Nature and Society

that β‹€π‘§βˆˆπ‘₯βˆ˜π‘¦ 𝑓(𝑧) β‰₯ min{𝑓(π‘₯), 𝑓(𝑦), (1 βˆ’ π‘˜)/2} β‰₯ min{𝑑, 𝑑, (1 βˆ’ π‘˜)/2} = 𝑑. Thus for every 𝑧 ∈ π‘₯ ∘ 𝑦, 𝑓(𝑧) β‰₯ 𝑑 and so 𝑧 ∈ π‘ˆ(𝑓; 𝑑), that is π‘₯ ∘ 𝑦 βŠ† π‘ˆ(𝑓; 𝑑). Hence π‘ˆ(𝑓; 𝑑) is an LAsubsemihypergroup of 𝐻. Conversely, assume that π‘ˆ(𝑓; 𝑑)(=ΜΈ 0) is an LAsubsemihypergroup of 𝐻 for all 𝑑 ∈ (0, (1βˆ’π‘˜)/2]. If there exist π‘₯, 𝑦 ∈ 𝐻 with π‘₯ ≀ 𝑦 such that 𝑓(π‘₯) < min{𝑓(𝑦), (1 βˆ’ π‘˜)/2}. Then 𝑓(π‘₯) < 𝑑 < min{𝑓(𝑦), (1 βˆ’ π‘˜)/2} for some 𝑑 ∈ (0, (1 βˆ’ π‘˜)/ 2]. Then, 𝑦 ∈ π‘ˆ(𝑓; 𝑑) but π‘₯ βˆ‰ π‘ˆ(𝑓; 𝑑), a contradiction. Thus 𝑓(π‘₯) β‰₯ min{𝑓(𝑦), (1 βˆ’ π‘˜)/2} for all π‘₯, 𝑦 ∈ 𝐻 with π‘₯ ≀ 𝑦. Now, suppose that there exist π‘₯, 𝑦 ∈ 𝐻 such that β‹€π‘§βˆˆπ‘₯βˆ˜π‘¦ 𝑓(𝑧) < min{𝑓(π‘₯), 𝑓(𝑦), (1βˆ’π‘˜)/2}. Thus there exist 𝑧 ∈ π‘₯βˆ˜π‘¦ such that 𝑓(𝑧) < min{𝑓(π‘₯), 𝑓(𝑦), (1 βˆ’ π‘˜)/2}. Choose 𝑑 ∈ (0, (1 βˆ’ π‘˜)/2] such that 𝑓(𝑧) < 𝑑 < min{𝑓(π‘₯), 𝑓(𝑦), (1 βˆ’ π‘˜)/2}. Then π‘₯, 𝑦 ∈ π‘ˆ(𝑓; 𝑑) but 𝑧 βˆ‰ π‘ˆ(𝑓; 𝑑) i.e., π‘₯ ∘ 𝑦 βŠ†ΜΈ π‘ˆ(𝑓; 𝑑), which is a contradiction. Hence β‹€π‘§βˆˆπ‘₯βˆ˜π‘¦ 𝑓(𝑧) β‰₯ min{𝑓(π‘₯), 𝑓(𝑦), (1 βˆ’ π‘˜)/2} and so 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LA-subsemihypergroup of 𝐻. Corollary 28. A fuzzy subset 𝑓 of an ordered LA-semihypergroup 𝐻 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LA-subsemihypergroup (resp., left hyperideal, right hyperideal, hyperideal, interior hyperideal, bi-hyperideal) of 𝐻 if and only if π‘ˆ(𝑓; 𝑑)(=ΜΈ 0) is an LA-subsemihypergroup (resp., left hyperideal, right hyperideal, hyperideal, interior hyperideal, bi-hyperideal) of 𝐻 for all 𝑑 ∈ (0, 0.5]. Example 29. Consider a set 𝐻 = {π‘Ž, 𝑏, 𝑐, 𝑑} with the following hyperoperation β€œβˆ˜β€ and the order β€œβ‰€β€: ∘ π‘Ž 𝑏 π‘Ž π‘Ž π‘Ž

𝑐 π‘Ž

𝑑 π‘Ž

𝑏 π‘Ž 𝑏

𝑐

𝑑

and 𝐻 { { { { { { {{π‘Ž, 𝑐, 𝑑} π‘ˆ (𝑓; 𝑑) = { { { {π‘Ž} { { { { {0

if 0 < 𝑑 ≀ 0.2 if 0.2 < 𝑑 ≀ 0.6 if 0.6 < 𝑑 ≀ 0.8 if 0.8 < 𝑑 ≀ 1.

Then by Theorem 27, 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LA-subsemihypergroup of 𝐻 for π‘˜ ∈ [0, 1). Lemma 30. The intersection of any family of (∈, ∈ βˆ¨π‘žπ‘˜ )fuzzy LA-subsemihypergroups (resp., left hyperideals, right hyperideals, interior hyperideals, bi-hyperideals, generalized bi-hyperideals) of 𝐻 is an LA-subsemihypergroup (resp., left hyperideal, right hyperideal, interior hyperideal, bi-hyperideal, generalized bi-hyperideal) of 𝐻. Proof. Let {𝑓𝑖 }π‘–βˆˆπΌ be a family of (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy left hyperideals of 𝐻 and π‘₯, 𝑦 ∈ 𝐻. Then β‹€ { ∧ 𝑓𝑖 (𝑧)} = ∧ { β‹€ 𝑓𝑖 (𝑧)} .

π‘§βˆˆπ‘₯βˆ˜π‘¦

π‘–βˆˆπΌ

π‘–βˆˆπΌ

Since 𝑓𝑖 is a (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy left hyperideals of 𝐻. Thus β‹€ { ∧ 𝑓𝑖 (𝑧)} β‰₯ ∧ {𝑓𝑖 (𝑦) ∧

π‘§βˆˆπ‘₯βˆ˜π‘¦

π‘–βˆˆπΌ

π‘–βˆˆπΌ

(15)

𝑑 π‘Ž 𝑐 {𝑐, 𝑑} {𝑐, 𝑑}

(19)

π‘§βˆˆπ‘₯βˆ˜π‘¦

1βˆ’π‘˜ } 2

= ( ∧ 𝑓𝑖 (𝑦)) ∧

1βˆ’π‘˜ 2

= ( ∧ 𝑓𝑖 ) (𝑦) ∧

1βˆ’π‘˜ . 2

π‘–βˆˆπΌ

𝑐 π‘Ž 𝑑 {𝑐, 𝑑} {𝑐, 𝑑}

(18)

π‘–βˆˆπΌ

(20)

Hence βˆ§π‘–βˆˆπΌ 𝑓𝑖 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy left hyperideal of 𝐻. The other cases can be seen in a similar way.

≀fl {(π‘Ž, π‘Ž) , (π‘Ž, 𝑏) , (π‘Ž, 𝑐) , (π‘Ž, 𝑑) , (𝑏, 𝑏) , (𝑐, 𝑐) , (𝑑, 𝑑)} . We give the covering relation β€œβ‰Ίβ€ and the figure of 𝐻 as follows: β‰Ί= {(π‘Ž, 𝑏) , (π‘Ž, 𝑐) , (π‘Ž, 𝑑)} .

Lemma 31. The union of any family of (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LA-subsemihypergroups (resp., left hyperideals, right hyperideals, interior hyperideals, bi-hyperideals) of an ordered LAsemihypergroup 𝐻 is an LA-subsemihypergroup (resp., left hyperideal, right hyperideal, interior hyperideal, bi-hyperideal) of 𝐻.

(16) Proof. The proof is similar to the proof of the Lemma 30.

Then (𝐻, ∘, ≀) is an ordered LA-semihypergroup. Here, {π‘Ž}, {𝑏}, {π‘Ž, 𝑏}, {π‘Ž, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑} and {𝑐, 𝑑} are LA-subsemihypergroups of 𝐻. Now let 𝑓 be a fuzzy subset of 𝐻 such that 0.8 { { { { { { {0.2 𝑓 : 𝐻 󳨀→ [0, 1] | π‘₯ 󳨃󳨀→ 𝑓 (π‘₯) = { { { 0.6 { { { { {0.7

if π‘₯ = π‘Ž if π‘₯ = 𝑏 if π‘₯ = 𝑐 if π‘₯ = 𝑑

Proposition 32. Let 𝐻 be an ordered LA-semihypergroup with pure left identity 𝑒. Then every (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy right hyperideal of 𝐻 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy left hyperideal of 𝐻. Proof. Let 𝑓 be an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy right hyperideal of 𝐻. For π‘₯, 𝑦, 𝑧 ∈ 𝐻, we have β‹€ 𝑓 (𝑧) =

(17)

π‘§βˆˆπ‘₯βˆ˜π‘¦

β‹€ 𝑓 (𝑧) = π‘§βˆˆ(π‘’βˆ˜π‘₯)βˆ˜π‘¦

β‹€ 𝑓 (𝑧) π‘§βˆˆ(π‘¦βˆ˜π‘₯)βˆ˜π‘’

β‰₯ min { β‹€ 𝑓 (𝑀) , π‘€βˆˆπ‘¦βˆ˜π‘₯

1βˆ’π‘˜ } 2

Discrete Dynamics in Nature and Society

7

β‰₯ min {𝑓 (𝑦) ,

1βˆ’π‘˜ 1βˆ’π‘˜ , } 2 2

= min {𝑓 (𝑦) ,

1βˆ’π‘˜ }. 2

This implies that β‹€ 𝑓 (𝑧) β‰₯ min {𝑓 (π‘₯) , 𝑓 (𝑦) ,

π‘§βˆˆπ‘₯βˆ˜π‘¦

1βˆ’π‘˜ }. 2

(26)

(21) Thus 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy left hyperideal of 𝐻. Proposition 33. Let 𝐻 be an ordered LA-semihypergroup with pure left identity 𝑒. Then 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy right hyperideal of 𝐻 if and only if it is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy interior hyperideal of 𝐻.

Thus 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LA-subsemihypergroup of 𝐻. Now for any π‘₯, 𝑦, 𝑧 ∈ 𝐻, β‹€ 𝑓 (π‘Ž) = π‘Žβˆˆ(π‘₯βˆ˜π‘¦)βˆ˜π‘§

Proof. Let 𝑓 be an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy right hyperideal of 𝐻. For π‘₯, 𝑦, 𝑧 ∈ 𝐻, we have β‹€ 𝑓 (π‘Ž) β‰₯ min { β‹€ 𝑓 (𝑀) , π‘€βˆˆπ‘₯βˆ˜π‘¦

π‘Žβˆˆ(π‘₯βˆ˜π‘¦)βˆ˜π‘§

π‘‘βˆˆπ‘₯βˆ˜π‘¦

1βˆ’π‘˜ }. 2

Proof. Let 𝑓 be an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy left hyperideal of 𝐻. Then for every 𝑧 ∈ 𝐻, there exist π‘₯, 𝑦 ∈ 𝐻 such that 1βˆ’π‘˜ }. 2

(24)

Let 𝑒 be a pure left identity in 𝐻. So, π‘§βˆˆπ‘₯βˆ˜π‘¦

β‹€ 𝑓 (𝑧) β‰₯ min {𝑓 (π‘₯) , π‘§βˆˆ(π‘’βˆ˜π‘₯)βˆ˜π‘¦

1βˆ’π‘˜ }. 2

(25)

𝑓 (π‘Ž)

β‹€ π‘Žβˆˆ(π‘’βˆ˜(π‘§βˆ˜π‘¦))∘π‘₯

1βˆ’π‘˜ } 2

{ 1 βˆ’ π‘˜} = min { β‹€ 𝑓 (𝑑) , 2 } {π‘‘βˆˆ(π‘’βˆ˜π‘§)βˆ˜π‘¦ }

(23)

Proposition 34. Let 𝑓 be an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy left hyperideal of an ordered LA-semihypergroup 𝐻 with pure left identity 𝑒. If 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy interior hyperideal of 𝐻, then it is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy bi-hyperideal of 𝐻.

β‹€ 𝑓 (𝑧) =

β‹€ 𝑓 (π‘Ž) = π‘Žβˆˆ(π‘§βˆ˜π‘¦)∘π‘₯

π‘‘βˆˆπ‘§βˆ˜π‘¦

This shows that 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy right hyperideal of 𝐻. This completes the proof.

π‘§βˆˆπ‘₯βˆ˜π‘¦

1βˆ’π‘˜ }. 2

β‰₯ min { β‹€ 𝑓 (𝑑) ,

which implies that 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy interior hyperideal. Conversely, for any π‘₯ and 𝑦 in 𝐻 we have

β‹€ 𝑓 (𝑧) β‰₯ min {𝑓 (𝑦) ,

= min {𝑓 (π‘₯) ,

β‹€ 𝑓 (π‘Ž) = π‘Žβˆˆ(π‘₯βˆ˜π‘¦)βˆ˜π‘§

1βˆ’π‘˜ = min {𝑓 (𝑦) , }, 2

π‘Žβˆˆ(π‘’βˆ˜π‘₯)βˆ˜π‘¦

1βˆ’π‘˜ 1βˆ’π‘˜ , } 2 2

(27)

Also

1βˆ’π‘˜ 1βˆ’π‘˜ 1βˆ’π‘˜ β‰₯ min {𝑓 (𝑦) , , , } 2 2 2

π‘Žβˆˆπ‘₯βˆ˜π‘¦

β‰₯ min {𝑓 (π‘₯) ,

(22)

1βˆ’π‘˜ 1βˆ’π‘˜ β‰₯ min { β‹€ 𝑓 (𝑠) , , } 2 2 π‘ βˆˆπ‘¦βˆ˜π‘₯

β‹€ 𝑓 (π‘Ž) β‰₯ min {𝑓 (π‘₯) ,

1βˆ’π‘˜ } 2

{ 1 βˆ’ π‘˜} = min { β‹€ 𝑓 (𝑑) , 2 } {π‘‘βˆˆ(π‘’βˆ˜π‘₯)βˆ˜π‘¦ }

{ 1 βˆ’ π‘˜} = min { β‹€ 𝑓 (𝑀) , 2 } {π‘€βˆˆ(π‘’βˆ˜π‘₯)βˆ˜π‘¦ }

β‹€ 𝑓 (π‘Ž) =

𝑓 (π‘Ž)

β‹€ π‘Žβˆˆ(π‘’βˆ˜(π‘₯βˆ˜π‘¦))βˆ˜π‘§

β‰₯ min { β‹€ 𝑓 (𝑑) ,

1βˆ’π‘˜ } 2

{ 1 βˆ’ π‘˜} = min { β‹€ 𝑓 (𝑀) , 2 } {π‘€βˆˆ(π‘¦βˆ˜π‘₯)βˆ˜π‘’ }

𝑓 (π‘Ž) =

β‹€ π‘Žβˆˆ(π‘₯∘(π‘’βˆ˜π‘¦))βˆ˜π‘§

β‰₯ min {𝑓 (𝑧) ,

1βˆ’π‘˜ 1βˆ’π‘˜ , } 2 2

= min {𝑓 (𝑧) ,

1βˆ’π‘˜ }. 2

(28)

Hence we get β‹€ 𝑓 (π‘Ž) β‰₯ min {𝑓 (π‘₯) , 𝑓 (𝑧) , π‘Žβˆˆ(π‘₯βˆ˜π‘¦)βˆ˜π‘§

1βˆ’π‘˜ }. 2

(29)

This shows that 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy bi-hyperideal of 𝐻. Proposition 35. Let 𝐻 be an ordered LA-semihypergroup with pure left identity. If 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy subset of 𝐻 and 𝑔 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy left hyperideal of 𝐻, then 𝑓 βˆ— 𝑔 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy left hyperideal of 𝐻.

8

Discrete Dynamics in Nature and Society

Proof. Let π‘₯, 𝑦 ∈ 𝐻 such that π‘₯ ≀ 𝑦. Let (π‘Ž, 𝑏) ∈ 𝐴 𝑦 then 𝑦 ≀ π‘Ž ∘ 𝑏. Since π‘₯ ≀ 𝑦, so π‘₯ ≀ π‘Ž ∘ 𝑏 implies (π‘Ž, 𝑏) ∈ 𝐴 π‘₯ . Hence 𝐴 𝑦 βŠ† 𝐴 π‘₯ . Now (𝑓 βˆ— 𝑔) (𝑦) =

(𝑓 βˆͺπ‘˜ 𝑔) (π‘₯) = min {𝑓 (π‘₯) , 𝑔 (π‘₯) ,

βˆ€π‘₯ ∈ 𝐻. (34)

⋁ min {𝑓 (π‘Ž) , 𝑔 (𝑏)} (π‘Ž,𝑏)∈𝐴 𝑦

=

Denote by F(𝐻) the family of all fuzzy subsets in 𝐻. {𝑓 (π‘Ž) , 𝑔 (𝑏)}

⋁

(30)

(π‘Ž,𝑏)∈𝐴 𝑦 βŠ†π΄ π‘₯

≀

⋁ {𝑓 (π‘Ž) , 𝑔 (𝑏)} = (𝑓 βˆ— 𝑔) (π‘₯) .

Thus (𝑓 βˆ— 𝑔)(π‘₯) β‰₯ (𝑓 βˆ— 𝑔)(𝑦). Let π‘₯, 𝑦 ∈ 𝐻. Then

((𝑓 βˆ—π‘˜ 𝑔) βˆ—π‘˜ β„Ž) (π‘₯) = 0 = ((β„Ž βˆ—π‘˜ 𝑔) βˆ—π‘˜ 𝑓) (π‘₯) .

1βˆ’π‘˜ min {(𝑓 βˆ— 𝑔) (𝑦) , } 2

min {𝑓 (𝑝) , 𝑔 (π‘ž) ,

(𝑝,π‘ž)∈𝐴 𝑦

(31)

1βˆ’π‘˜ }. 2

≀

((𝑓 βˆ—π‘˜ 𝑔) βˆ—π‘˜ β„Ž) (π‘₯) =

=

If 𝑦 ∈ 𝑝 ∘ π‘ž, then π‘₯ ∘ 𝑦 βŠ† π‘₯ ∘ (𝑝 ∘ π‘ž) = 𝑝 ∘ (π‘₯ ∘ π‘ž). Now for each 𝑧 ∈ π‘₯ ∘ 𝑦, there exist π‘Ž ∈ π‘₯ ∘ π‘ž such that 𝑧 ∈ 𝑝 ∘ π‘Ž. Since 𝑔 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy left hyperideal of 𝐻, β‹€π‘Žβˆˆπ‘₯βˆ˜π‘ž 𝑔(π‘Ž) β‰₯ min{𝑔(π‘ž), (1 βˆ’ π‘˜)/2}, that is 𝑔(π‘Ž) β‰₯ min{𝑔(π‘ž), (1 βˆ’ π‘˜)/2}. Thus min {(𝑓 βˆ— 𝑔) (𝑦) ,

1βˆ’π‘˜ } 2

=

(32)

for every 𝑧 ∈ π‘₯ ∘ 𝑦 βŠ† 𝑝 ∘ π‘Ž. So β‹€π‘§βˆˆπ‘₯βˆ˜π‘¦ (𝑓 βˆ— 𝑔)(𝑧) β‰₯ min{(𝑓 βˆ— 𝑔)(𝑦), (1 βˆ’ π‘˜)/2}. Thus 𝑓 βˆ— 𝑔 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy left hyperideal of 𝐻. Definition 36. Let 𝑓 and 𝑔 be any two fuzzy subsets of 𝐻. We define the product 𝑓 βˆ—π‘˜ 𝑔 by (𝑓 βˆ—π‘˜ 𝑔) (π‘₯) 1βˆ’π‘˜ { } 𝑖𝑓 𝐴 π‘₯ =ΜΈ 0 (33) { ⋁ min {𝑓 (𝑦) , 𝑔 (𝑧) , 2 = {(𝑦,𝑧)∈𝐴 π‘₯ { 𝑖𝑓 𝐴 π‘₯ = 0. {0 Definition 37. The symbols π‘“π‘˜ , 𝑓 βˆ©π‘˜ 𝑔 and 𝑓 βˆͺπ‘˜ 𝑔 mean the following fuzzy subsets of 𝐻: 1βˆ’π‘˜ }, 2

(𝑓 βˆ©π‘˜ 𝑔) (π‘₯) = min {𝑓 (π‘₯) , 𝑔 (π‘₯) ,

βˆ€π‘₯ ∈ 𝐻,

1βˆ’π‘˜ }, 2

{(𝑓 βˆ—π‘˜ 𝑔) (𝑦) ∧ β„Ž (𝑧) ∧

=

{ 1βˆ’π‘˜ 1βˆ’π‘˜ } { ⋁ {{𝑓 (𝑝) ∧ 𝑔 (π‘ž) ∧ 2 } ∧ β„Ž (𝑧) ∧ 2 }} (𝑦,𝑧)∈𝐴 π‘₯ (𝑝,π‘ž)∈𝐴 𝑦 { } ⋁

{𝑓 (𝑝) ∧ 𝑔 (π‘ž) ∧ β„Ž (𝑧) ∧

1βˆ’π‘˜ 1βˆ’π‘˜ ∧ } 2 2

⋁

{β„Ž (𝑧) ∧ 𝑔 (π‘ž) ∧ 𝑓 (𝑝) ∧

1βˆ’π‘˜ 1βˆ’π‘˜ ∧ } 2 2

π‘₯≀(π‘§βˆ˜π‘ž)βˆ˜π‘

=

1βˆ’π‘˜ } 2

⋁

(36)

{ 1βˆ’π‘˜ 1βˆ’π‘˜ } { ⋁ (β„Ž (𝑧) ∧ 𝑔 (π‘ž) ∧ 𝑓 (𝑝) ∧ 2 ∧ 2 )} (𝑀,𝑝)∈𝐴 π‘₯ (𝑧,π‘ž)∈𝐴 𝑀 { } ⋁

⋁ (𝑀,𝑝)∈𝐴 π‘₯

(𝑝,π‘Ž)∈𝐴 𝑧

⋁ (𝑦,𝑧)∈𝐴 π‘₯

π‘₯≀(π‘βˆ˜π‘ž)βˆ˜π‘§

=

⋁ min {𝑓 (𝑝) , 𝑔 (π‘Ž)} = (𝑓 βˆ— 𝑔) (𝑧)

π‘“π‘˜ (π‘₯) = min {𝑓 (π‘₯) ,

(35)

Let 𝐴 π‘₯ =ΜΈ 0. Then there exist 𝑦 and 𝑧 in 𝐻 such that (𝑦, 𝑧) ∈ 𝐴 π‘₯ . Therefore by using left invertive law, we have

{ 1 βˆ’ π‘˜} = min {( ⋁ min {𝑓 (𝑝) , 𝑔 (π‘ž)}) , 2 } { (𝑝,π‘ž)∈𝐴 𝑦 } ⋁

Theorem 38. Let 𝐻 be an ordered LA-semihypergroup. Then the set (F(𝐻), βˆ—π‘˜ , βŠ†) is an ordered LA-semihypergroup. Proof. Clearly F(𝐻) is closed. Let 𝑓, 𝑔 and β„Ž be in F(𝐻) and let π‘₯ be any element of 𝐻 such that it is not expressible as product of two elements in 𝐻. Then we have

(π‘Ž,𝑏)∈𝐴 π‘₯

=

1βˆ’π‘˜ }, 2

{(β„Ž βˆ—π‘˜ 𝑔) (𝑀) ∧ 𝑓 (𝑝) ∧

1βˆ’π‘˜ } = ((β„Ž βˆ—π‘˜ 𝑔) βˆ—π‘˜ 𝑓) (π‘₯) . 2

Hence (F(𝐻), βˆ—π‘˜ ) is an ordered LA-semihypergroup. Assume that 𝑓 βŠ† 𝑔 and let 𝐴 π‘₯ = 0 for any π‘₯ ∈ 𝐻; then (𝑓 βˆ—π‘˜ β„Ž) (π‘₯) = 0 = (𝑔 βˆ—π‘˜ β„Ž) (π‘₯) 󳨐⇒ 𝑓 βˆ—π‘˜ β„Ž βŠ† 𝑔 βˆ—π‘˜ β„Ž.

Similarly we can show that 𝑓 βˆ—π‘˜ β„Ž βŠ‡ 𝑔 βˆ—π‘˜ β„Ž. Let 𝐴 π‘₯ =ΜΈ 0. Then there exist 𝑦 and 𝑧 in 𝐻 such that (𝑦, 𝑧) ∈ 𝐴 π‘₯ , therefore (𝑓 βˆ—π‘˜ β„Ž) (π‘₯) = ≀

⋁

{𝑓 (𝑦) ∧ β„Ž (𝑧) ∧

1βˆ’π‘˜ } 2

{𝑔 (𝑦) ∧ β„Ž (𝑧) ∧

1βˆ’π‘˜ } 2

(𝑦,𝑧)∈𝐴 π‘₯

⋁ (𝑦,𝑧)∈𝐴 π‘₯

(38)

= (𝑔 βˆ—π‘˜ β„Ž) (π‘₯) , Similarly we can show that 𝑓 βˆ—π‘˜ β„Ž βŠ‡ 𝑔 βˆ—π‘˜ β„Ž. It is easy to see that F(𝐻) is a poset. Thus (F(𝐻), βˆ—, βŠ†) is an ordered LAsemihypergroup. Theorem 39. Let 𝐻 be an ordered LA-semihypergroup. Then the property (𝑓 βˆ—π‘˜ 𝑔) βˆ—π‘˜ (β„Ž βˆ—π‘˜ π‘˜) = (𝑓 βˆ—π‘˜ β„Ž) βˆ—π‘˜ (𝑔 βˆ—π‘˜ π‘˜)

βˆ€π‘₯ ∈ 𝐻,

(37)

holds in F(𝐻), for all 𝑓, 𝑔, β„Ž and π‘˜ in F(𝐻).

(39)

Discrete Dynamics in Nature and Society

9

Proof. The proof is straightforward. Theorem 40. If an ordered LA-semihypergroup 𝐻 has a pure left identity, then the following properties hold in F(𝐻). (i) (𝑓 βˆ—π‘˜ 𝑔)βˆ—π‘˜ (β„Ž βˆ—π‘˜ π‘˜) = (π‘˜ βˆ—π‘˜ β„Ž) βˆ—π‘˜ (𝑔 βˆ—π‘˜ 𝑓), (ii) 𝑓 βˆ—π‘˜ (𝑔 βˆ—π‘˜ β„Ž) = 𝑔 βˆ—π‘˜ (𝑓 βˆ—π‘˜ β„Ž), for all 𝑓, 𝑔, β„Ž and π‘˜ in F(𝐻). Proof. The proof is straightforward. Proposition 41. Let 𝑓 be an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy right hyperideal of 𝐻 and 𝑔 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy left hyperideal of 𝐻. Then 𝑓 βˆ—π‘˜ 𝑔 βŠ† 𝑓 βˆ©π‘˜ 𝑔. Proof. Let 𝑓 be an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy right hyperideal of 𝐻 and 𝑔 an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy left hyperideal of 𝐻. Let 𝑧 ∈ 𝐻 and suppose that there exist π‘₯, 𝑦 ∈ 𝐻 such that 𝑧 ∈ π‘₯ ∘ 𝑦. Then (𝑓 βˆ—π‘˜ 𝑔) (𝑧) = =

⋁ (π‘₯,𝑦)∈𝐴 𝑧

≀

⋁ (π‘₯,𝑦)∈𝐴 𝑧

min {𝑓 (π‘₯) , 𝑔 (𝑦) ,

⋁ (π‘₯,𝑦)∈𝐴 𝑧

1βˆ’π‘˜ } 2

Proposition 43. For a fuzzy subset 𝑓 of 𝐻, the following conditions are true for all π‘₯, 𝑦 ∈ 𝐻. (i) If 𝑓 is a fuzzy LA-subsemihypergroup of 𝐻, then 𝑓 βˆ—π‘˜ 𝑓 βŠ† π‘“π‘˜ and π‘₯ ≀ 𝑦 󳨐⇒ π‘“π‘˜ (π‘₯) β‰₯ π‘“π‘˜ (𝑦), (ii) If 𝑓 is a fuzzy left hyperideal of 𝐻, then H βˆ—π‘˜ 𝑓 βŠ† π‘“π‘˜ and π‘₯ ≀ 𝑦 󳨐⇒ π‘“π‘˜ (π‘₯) β‰₯ π‘“π‘˜ (𝑦), (iii) If 𝑓 is a fuzzy right hyperideal of 𝐻, then 𝑓 βˆ—π‘˜ H βŠ† π‘“π‘˜ and π‘₯ ≀ 𝑦 󳨐⇒ π‘“π‘˜ (π‘₯) β‰₯ π‘“π‘˜ (𝑦), (iv) If 𝑓 is a fuzzy interior hyperideal of 𝐻, then (H βˆ—π‘˜ 𝑓)βˆ—π‘˜ H βŠ† π‘“π‘˜ and π‘₯ ≀ 𝑦 󳨐⇒ π‘“π‘˜ (π‘₯) β‰₯ π‘“π‘˜ (𝑦), (v) If 𝑓 is a fuzzy generalized bi-hyperideal of 𝐻, then (𝑓 βˆ—π‘˜ H)βˆ—π‘˜ 𝑓 βŠ† π‘“π‘˜ and π‘₯ ≀ 𝑦 󳨐⇒ π‘“π‘˜ (π‘₯) β‰₯ π‘“π‘˜ (𝑦), (vi) If 𝑓 is a fuzzy bi-hyperideal of 𝐻, then 𝑓 βˆ—π‘˜ 𝑓 ≀ π‘“π‘˜ , (𝑓 βˆ—π‘˜ H)βˆ—π‘˜ 𝑓 βŠ† π‘“π‘˜ and π‘₯ ≀ 𝑦 󳨐⇒ π‘“π‘˜ (π‘₯) β‰₯ π‘“π‘˜ (𝑦). Proof. (i) Let 𝑓 be a fuzzy LA-subsemihypergroup of 𝐻. If 𝐴 π‘₯ = {(𝑦, 𝑧) ∈ 𝐻 Γ— 𝐻 : π‘₯ ∈ 𝑦 ∘ 𝑧} = 0, then (𝑓 βˆ—π‘˜ 𝑓) (π‘₯) = 0 ≀ π‘“π‘˜ (π‘₯) . If 𝐴 π‘₯ =ΜΈ 0, then

1βˆ’π‘˜ 1βˆ’π‘˜ 1βˆ’π‘˜ min {𝑓 (π‘₯) , 𝑔 (𝑦) , , , } 2 2 2

(𝑓 βˆ—π‘˜ 𝑓) (π‘₯) = min {(𝑓 βˆ— 𝑓) (π‘₯) ,

(40) 1βˆ’π‘˜ min { β‹€ 𝑓 (π‘₯) , β‹€ 𝑔 (𝑦) , } 2 π‘§βˆˆπ‘₯βˆ˜π‘¦ π‘§βˆˆπ‘₯βˆ˜π‘¦

= min {𝑓 (π‘₯) , 𝑔 (𝑦) ,

π‘₯βˆˆπ‘¦βˆ˜π‘§

1βˆ’π‘˜ } = 𝑓 βˆ©π‘˜ 𝑔. 2

≀ min { ⋁ β‹€ 𝑓 (π‘₯) , π‘₯βˆˆπ‘¦βˆ˜π‘§ π‘₯βˆˆπ‘¦βˆ˜π‘§

Lemma 42. Let 𝑓 be an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LA-subsemihypergroup (resp., left hyperideal, right hyperideal, hyperideal, interior hyperideal, bi-hyperideal, generalized bi-hyperideal) of 𝐻. Then π‘“π‘˜ is a fuzzy LA-subsemihypergroup (resp., left hyperideal, right hyperideal, hyperideal, interior hyperideal, bihyperideal, generalized bi-hyperideal) of 𝐻. Proof. Let 𝑓 be an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy right hyperideal of 𝐻. Then for all π‘₯, 𝑦, 𝑧 ∈ 𝐻, we have π‘₯ ≀ 𝑦 󳨐⇒ 𝑓(π‘₯) β‰₯ min{𝑓(𝑦), (1 βˆ’ π‘˜)/2} and β‹€π‘§βˆˆπ‘₯βˆ˜π‘¦ 𝑓(𝑧) β‰₯ min{𝑓(π‘₯), (1 βˆ’ π‘˜)/2}. This implies that 1βˆ’π‘˜ 1βˆ’π‘˜ } β‰₯ min {𝑓 (𝑦) , }. 2 2

(41)

So π‘₯ ≀ 𝑦 󳨐⇒ π‘“π‘˜ (π‘₯) β‰₯ π‘“π‘˜ (𝑦). Also min { β‹€ 𝑓 (𝑧) , π‘§βˆˆπ‘₯βˆ˜π‘¦

1βˆ’π‘˜ 1βˆ’π‘˜ } β‰₯ min {𝑓 (π‘₯) , }. 2 2

(42)

So β‹€π‘§βˆˆπ‘₯βˆ˜π‘¦ π‘“π‘˜ (𝑧) β‰₯ π‘“π‘˜ (π‘₯). Thus π‘“π‘˜ is a fuzzy right hyperideal of 𝐻. Other cases can be seen in a similar way. For an ordered LA-semihypergroups 𝐻, the fuzzy subset H is defined as follows: H : 𝐻 󳨀→ [0, 1] | π‘₯ 󳨃󳨀→ H (π‘₯) fl 1.

1βˆ’π‘˜ } 2

= min { ⋁ min {𝑓 (𝑦) , 𝑓 (𝑧)} ,

Let us suppose that there do not exist any π‘₯, 𝑦 ∈ 𝐻 such that 𝑧 ∈ π‘₯ ∘ 𝑦. Then, (𝑓 βˆ—π‘˜ 𝑔)(𝑧) = 0 ≀ 𝑓 βˆ©π‘˜ 𝑔. Hence 𝑓 βˆ—π‘˜ 𝑔 βŠ† 𝑓 βˆ©π‘˜ 𝑔.

min {𝑓 (π‘₯) ,

(44)

(43)

1βˆ’π‘˜ } 2

1βˆ’π‘˜ } 2

(45)

(𝑓 is a fuzzy LA-subsemihypergroup) = min {𝑓 (π‘₯) ,

1βˆ’π‘˜ } 2

= π‘“π‘˜ (π‘₯) .

Thus 𝑓 βˆ—π‘˜ 𝑓 βŠ† π‘“π‘˜ . For π‘₯ ≀ 𝑦 󳨐⇒ 𝑓(π‘₯) β‰₯ 𝑓(𝑦), we have min{𝑓(π‘₯), (1 βˆ’ π‘˜)/2} β‰₯ min{𝑓(𝑦), (1 βˆ’ π‘˜)/2}. This implies π‘“π‘˜ (π‘₯) β‰₯ π‘“π‘˜ (𝑦). The proofs of (ii) to (vi) can be seen in a similar way. Proposition 44. Let 𝐻 be an ordered LA-semihypergroup with pure left identity. Then for any (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy left hyperideal 𝑓, which is idempotent in C(𝐻), the following properties hold: (i) π‘“π‘˜ is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy interior hyperideal; (ii) π‘“π‘˜ is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy bi-hyperideal. Proof. Let 𝑓 be an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy left hyperideal of 𝐻 and 𝑓 βˆ—π‘˜ 𝑓 = π‘“π‘˜ . (i) We have (H βˆ—π‘˜ 𝑓) βˆ—π‘˜ H βŠ† π‘“π‘˜ βˆ—π‘˜ H = (𝑓 βˆ—π‘˜ 𝑓) βˆ—π‘˜ H = (H βˆ—π‘˜ 𝑓) βˆ—π‘˜ 𝑓 βŠ† π‘“π‘˜ βˆ—π‘˜ 𝑓 = 𝑓 βˆ—π‘˜ 𝑓 (46) = π‘“π‘˜ . This implies that π‘“π‘˜ is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy interior hyperideal 𝐻.

10

Discrete Dynamics in Nature and Society Since 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy right hyperideal, for every 𝑀 ∈ π‘₯ ∘ 𝑦 βŠ† (𝑦 ∘ π‘₯) ∘ ((𝑦 ∘ 𝑏) ∘ (π‘₯ ∘ π‘Ž)), we have

(ii) We have (𝑓 βˆ—π‘˜ H) βˆ—π‘˜ 𝑓 = (𝑓 βˆ—π‘˜ H) βˆ—π‘˜ π‘“π‘˜

𝑓 (𝑀)

β‹€ π‘€βˆˆπ‘₯βˆ˜π‘¦βŠ†(π‘¦βˆ˜π‘₯)∘((π‘¦βˆ˜π‘)∘(π‘₯βˆ˜π‘Ž))

= (𝑓 βˆ—π‘˜ H) βˆ—π‘˜ (𝑓 βˆ—π‘˜ 𝑓) (47)

1βˆ’π‘˜ } = β‹€ π‘“π‘˜ (𝑠) . β‰₯ min { β‹€ 𝑓 (𝑠) , 2 π‘ βˆˆπ‘¦βˆ˜π‘₯ π‘ βˆˆπ‘¦βˆ˜π‘₯

= (𝑓 βˆ—π‘˜ 𝑓) βˆ—π‘˜ (H βˆ—π‘˜ 𝑓) βŠ† π‘“π‘˜ βˆ—π‘˜ π‘“π‘˜ = π‘“π‘˜ .

(50)

Again by using the medial and paramedial laws, we get

This implies that π‘“π‘˜ is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy bi-hyperideal of 𝐻.

𝑦 ∘ π‘₯ βŠ† ((𝑦 ∘ 𝑏) ∘ 𝑦) ∘ ((π‘₯ ∘ π‘Ž) ∘ π‘₯)

Theorem 45. Let 𝐻 be a regular ordered LA-semihypergroup. Then (𝑓 βˆ—π‘˜ H)βˆ—π‘˜ 𝑓 = π‘“π‘˜ for every (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy generalized bi-hyperideal 𝑓 of 𝐻.

Since 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy right hyperideal, for every 𝑑 ∈ 𝑦 ∘ π‘₯ βŠ† (π‘₯ ∘ 𝑦) ∘ ((π‘₯ ∘ π‘Ž) ∘ (𝑦 ∘ 𝑏)), we have

Proof. Let us suppose that 𝐻 is a regular ordered LAsemihypergroup and let 𝑓 be an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy generalized bi-hyperideal of 𝐻. Let π‘Ž ∈ 𝐻 and so π‘Ž ∈ (π‘Ž ∘ π‘₯) ∘ π‘Ž for some π‘₯ ∈ 𝐻. Thus we have ((𝑓 βˆ—π‘˜ H) βˆ—π‘˜ 𝑓) (π‘Ž) = min {((𝑓*H) βˆ— 𝑓) (π‘Ž) ,

1βˆ’π‘˜ } 2

β‰₯ min {min { ⋁ (𝑓*H) (𝑑) , 𝑓 (π‘Ž)} ,

1βˆ’π‘˜ } 2

π‘Žβˆˆπ‘¦βˆ˜π‘§

π‘‘βˆˆπ‘Žβˆ˜π‘₯

(52)

= β‹€ π‘“π‘˜ (𝑝) . π‘βˆˆπ‘₯βˆ˜π‘¦

Proof. Let 𝑓 be an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy left hyperideal of 𝐻. Let π‘₯, 𝑦, 𝑧 ∈ 𝐻. We have 𝑓 (𝑀) =

β‹€ π‘€βˆˆ(π‘₯βˆ˜π‘¦)βˆ˜π‘§

β‰₯ min {min { ⋁ min {𝑓 (𝑝) , H (π‘ž)} , 𝑓 (π‘Ž)} , π‘Žβˆ˜π‘₯=π‘βˆ˜π‘ž

1βˆ’π‘˜ 1βˆ’π‘˜ } β‰₯ min {min {𝑓 (π‘Ž) , 1, 𝑓 (π‘Ž)} , } 2 2 1βˆ’π‘˜ } = π‘“π‘˜ (π‘Ž) . 2

Therefore, π‘“π‘˜ βŠ† (𝑓 βˆ—π‘˜ H)βˆ—π‘˜ 𝑓. Since (𝑓 βˆ—π‘˜ H)βˆ—π‘˜ 𝑓 βŠ† π‘“π‘˜ , by Proposition 43(v), we have (𝑓 βˆ—π‘˜ H)βˆ—π‘˜ 𝑓 = π‘“π‘˜ for every (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy generalized bi-hyperideal 𝑓 of 𝐻. Proposition 46. If 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy right hyperideal of a regular ordered LA-semihypergroup 𝐻 with pure left identity 𝑒, then π‘“π‘˜ (π‘₯ ∘ 𝑦) = π‘“π‘˜ (𝑦 ∘ π‘₯) holds for all π‘₯, 𝑦 ∈ 𝐻. Proof. Let 𝑓 be an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy right hyperideal of a regular ordered LA-semihypergroup 𝐻 with pure left identity 𝑒. Let π‘₯, 𝑦 ∈ 𝐻. Since 𝐻 is regular, π‘₯ ∈ (π‘₯ ∘ π‘Ž) ∘ π‘₯ and 𝑦 ∈ (𝑦 ∘ 𝑏) ∘ 𝑦 for some π‘Ž, 𝑏 ∈ 𝐻. Now by using the medial and paramedial laws, we get π‘₯ ∘ 𝑦 βŠ† ((π‘₯ ∘ π‘Ž) ∘ π‘₯) ∘ ((𝑦 ∘ 𝑏) ∘ 𝑦) (49) = (𝑦 ∘ π‘₯) ∘ ((𝑦 ∘ 𝑏) ∘ (π‘₯ ∘ π‘Ž)) .

π‘βˆˆπ‘₯βˆ˜π‘¦

π‘‘βˆˆπ‘¦βˆ˜π‘₯βŠ†(π‘₯βˆ˜π‘¦)∘((π‘₯βˆ˜π‘Ž)∘(π‘¦βˆ˜π‘))

1βˆ’π‘˜ } 2

Theorem 47. Let 𝐻 be a regular ordered LA-semihypergroup with pure left identity 𝑒. Then 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy left hyperideal of 𝐻 if and only if 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy bihyperideal of 𝐻.

(48)

= min {𝑓 (π‘Ž) ,

𝑓 (𝑑) β‰₯ min { β‹€ 𝑓 (𝑝) ,

β‹€

(51)

This shows that π‘“π‘˜ (π‘₯βˆ˜π‘¦) = π‘“π‘˜ (π‘¦βˆ˜π‘₯) holds for all π‘₯, 𝑦 ∈ 𝐻.

1βˆ’π‘˜ } 2

= min { ⋁ min {(𝑓*H) (𝑦) , 𝑓 (𝑧)} ,

= (π‘₯ ∘ 𝑦) ∘ ((π‘₯ ∘ π‘Ž) ∘ (𝑦 ∘ 𝑏)) .

β‹€

𝑓 (𝑀) β‰₯ min {𝑓 (π‘₯) ,

π‘€βˆˆ(π‘§βˆ˜π‘¦)∘π‘₯

1βˆ’π‘˜ } 2

(53) 1βˆ’π‘˜ β‰₯ min {𝑓 (π‘₯) , 𝑓 (𝑧) , }. 2 This shows that 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy generalized bihyperideal of 𝐻, and clearly 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LAsubsemihypergroup. Therefore 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy bihyperideal of 𝐻. Conversely, assume that 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy bihyperideal of 𝐻. Let π‘₯, 𝑦 ∈ 𝐻. Since 𝐻 is regular, by the left invertive law and medial law, we have π‘₯ ∘ 𝑦 βŠ† π‘₯ ∘ ((𝑦 ∘ 𝑧) ∘ 𝑦) = (𝑦 ∘ 𝑧) ∘ (π‘₯ ∘ 𝑦) = ((π‘₯ ∘ 𝑦) ∘ 𝑧) ∘ 𝑦 = ((π‘₯ ∘ 𝑦) ∘ (𝑒 ∘ 𝑧)) ∘ 𝑦

(54)

= ((π‘₯ ∘ 𝑒) ∘ (𝑦 ∘ 𝑧)) ∘ 𝑦 = (𝑦 ∘ ((π‘₯ ∘ 𝑒) ∘ 𝑧)) ∘ 𝑦. Thus for every 𝑀 ∈ π‘₯ ∘ 𝑦 βŠ† (𝑦 ∘ ((π‘₯ ∘ 𝑒) ∘ 𝑧)) ∘ 𝑦, we have β‹€ 𝑓 (𝑀) β‰₯

π‘€βˆˆπ‘₯βˆ˜π‘¦

β‹€

𝑓 (𝑠)

π‘ βˆˆ(π‘¦βˆ˜((π‘₯βˆ˜π‘’)βˆ˜π‘§))βˆ˜π‘¦

β‰₯ min {𝑓 (𝑦) , 𝑓 (𝑦) ,

1βˆ’π‘˜ } 2

1βˆ’π‘˜ }. 2 Hence 𝑓 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy left hyperideal of 𝐻. = min {𝑓 (𝑦) ,

(55)

Discrete Dynamics in Nature and Society

11

4. Homomorphism Let (𝐻1 , ∘1 , ≀1 ) and (𝐻2 , ∘2 , ≀2 ) be two ordered LA-semihypergroups and πœ“ a mapping from 𝐻1 into 𝐻2 . πœ“ is called isotone if π‘₯, 𝑦 ∈ 𝐻1 , π‘₯ ≀1 𝑦 implies πœ“(π‘₯) ≀2 πœ“(𝑦). πœ“ is said to be inverse isotone if π‘₯, 𝑦 ∈ 𝐻1 , πœ“(π‘₯) ≀2 πœ“(𝑦) implies π‘₯ ≀1 𝑦 [each inverse isotone mapping is 1-1]. πœ“ is called a homomorphism if it is isotone and satisfies πœ“(π‘₯ ∘1 𝑦) = πœ“(π‘₯) ∘2 πœ“(𝑦), for all π‘₯, 𝑦 ∈ 𝐻1 . Moreover, πœ“ is said to be isomorphism if it is onto homomorphism and inverse isotone. Definition 48. Let (𝐻1 , ∘1 , ≀1 ) and (𝐻2 , ∘2 , ≀2 ) be two ordered LA-semihypergroups and πœ“ a mapping from 𝐻1 into 𝐻2 . Let 𝑓1 and 𝑓2 be fuzzy subsets of 𝐻1 and 𝐻2 , respectively. Then the image πœ“(𝑓1 ) of 𝑓1 is defined by πœ“ (𝑓1 ) : 𝐻2 󳨀→ [0, 1] | 𝑦2 ⋁

{ 󳨀→ {𝑦1 βˆˆπœ“βˆ’1 (𝑦2 ) {0

such that πœ“(π‘₯1 ) = π‘₯2 , πœ“(𝑦1 ) = 𝑦2 and πœ“(𝑧1 ) = 𝑧2 . Now, we have β‹€ πœ“ (𝑓) (𝑧2 ) =

𝑧2 ∈π‘₯2 ∘2 𝑦2

β‰₯ =

if πœ“βˆ’1 (𝑦2 ) =ΜΈ 0

=

=

βˆ’1

πœ“ (𝑓2 ) : 𝐻1 󳨀→ [0, 1] | 𝑦1 󳨀→ 𝑓2 (πœ“ (𝑦1 )) .

β‹€

(57)

Theorem 49. Let (𝐻1 , ∘1 , ≀1 ) and (𝐻2 , ∘2 , ≀2 ) be two ordered LA-semihypergroups and πœ“ a mapping from 𝐻1 onto 𝐻2 . Let 𝑓 and 𝑔 be (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LA-subsemihypergroup (resp., left hyperideal, right hyperideal, hyperideal, interior hyperideal, bi-hyperideal) of 𝐻1 and 𝐻2 , respectively. Then (i) πœ“(𝑓) is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LA-subsemihypergroup (resp., left hyperideal, right hyperideal, hyperideal, interior hyperideal, bi-hyperideal) of 𝐻2 , provided πœ“ is inverse isotone. (ii) πœ“βˆ’1 (𝑔) is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LA-subsemihypergroup (resp., left hyperideal, right hyperideal, hyperideal, interior hyperideal, bi-hyperideal) of 𝐻1 . (iii) The mapping 𝑓 󳨀→ πœ“(𝑓) defines a one-to-one correspondence between the set of all (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LA-subsemihypergroups (resp., left hyperideals, right hyperideals, hyperideals, interior hyperideals, bi-hyperideals) of 𝐻1 and the set of all (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy LA-subsemihypergroups (resp., left hyperideals, right hyperideals, hyperideals, interior hyperideals, bi-hyperideals) of 𝐻2 , provided πœ“ is inverse isotone. Proof. The proof is straightforward. Theorem 50. Let πœ“ : (𝐻1 , ∘1 , ≀1 ) 󳨀→ (𝐻2 , ∘2 , ≀2 ) be a surjective homomorphism from an ordered LA-semihypergroup 𝐻1 to an ordered LA-semihypergroup 𝐻2 . If 𝐻1 contains a pure left identity 𝑒, then (i) the image of (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy interior hyperideal of 𝐻1 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy right hyperideal of 𝐻2 , provided πœ“ is inverse isotone. (ii) the preimage of an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy right hyperideal of 𝐻2 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy interior hyperideal of 𝐻1 . Proof. (i) Let 𝑓 be an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy interior hyperideal of 𝐻1 and let π‘₯2 , 𝑦2 , 𝑧2 ∈ 𝐻2 . Then there exist π‘₯1 , 𝑦1 , 𝑧1 ∈ 𝐻1

𝑓 (𝑧1 )

β‹€ 𝑓 (𝑧1 )

(58)

𝑧1 ∈π‘₯1 ∘1 𝑦1

β‹€ 𝑧1 ∈(π‘’βˆ˜1 π‘₯1 )∘1 𝑦1

And the inverse image πœ“βˆ’1 (𝑓2 ) of 𝑓2 is defined by

𝑓 (𝑧1 )

β‹€

πœ“(𝑧1 )βˆˆπœ“(π‘₯1 ∘1 𝑦1 )

(56)

otherwise.

β‹€ 𝑓 (𝑧1 )

𝑧2 ∈π‘₯2 ∘2 𝑦2

πœ“(𝑧1 )βˆˆπœ“(π‘₯1 )∘2 πœ“(𝑦1 )

= 𝑓1 (𝑦1 )

{ } { ⋁ 𝑓 (𝑑)} 𝑧2 ∈π‘₯2 ∘2 𝑦2 π‘‘βˆˆπœ“βˆ’1 (𝑧2 ) { } β‹€

𝑓 (𝑧1 )

β‰₯ min {𝑓 (π‘₯1 ) ,

1βˆ’π‘˜ } 2

{ 1 βˆ’ π‘˜} β‰₯ min { ⋁ 𝑓 (π‘₯1 ) , 2 } βˆ’1 } {π‘₯1 βˆˆπœ“ (π‘₯2 ) β‰₯ min {πœ“ (𝑓) (π‘₯2 ) ,

1βˆ’π‘˜ }. 2

Let π‘₯2 ≀2 𝑦2 . Since πœ“ is inverse isotone, there exist unique π‘₯1 , 𝑦1 ∈ 𝐻1 such that πœ“(π‘₯1 ) = π‘₯2 , πœ“(𝑦1 ) = 𝑦2 and π‘₯1 ≀1 𝑦1 . Thus we have πœ“ (𝑓) (π‘₯2 ) =

⋁ 𝑓 (𝑑) = 𝑓 (π‘₯1 )

π‘‘βˆˆπœ“βˆ’1 (π‘₯2 )

β‰₯ min {𝑓 (𝑦1 ) ,

1βˆ’π‘˜ } 2

{ 1 βˆ’ π‘˜} = min { ⋁ 𝑓 (𝑑) , 2 } βˆ’1 } {π‘‘βˆˆπœ“ (𝑦2 ) = min {πœ“ (𝑓) (𝑦2 ) ,

(59)

1βˆ’π‘˜ }. 2

This shows that the image of an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy interior hyperideal of 𝐻1 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy right hyperideal of 𝐻2 . The proof of (ii) can be seen in a similar way. In the following example we show that in an ordered LAsemihypergroup 𝐻1 without pure left identity, the image of an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy subset 𝑓 under πœ“ can be or cannot be an (∈, ∈ βˆ¨π‘žπ‘˜ ) -fuzzy right hyperideal of 𝐻2 .

12

Discrete Dynamics in Nature and Society

Example 51. Let 𝐻1 = {π‘₯, 𝑦, 𝑧, 𝑀} and 𝐻2 = {π‘Ž, 𝑏, 𝑐} be two ordered LA-semihypergroups defined by the following hyperoperations β€œβˆ˜1 , ∘2 ” and the orders β€œβ‰€1 , ≀2 ”: ∘1 π‘₯ π‘₯ π‘₯

𝑦 π‘₯

𝑧 π‘₯

𝑀 π‘₯

𝑀 π‘₯

𝑦

𝑧

{π‘₯, 𝑧}

{π‘₯, 𝑧}

𝑦

≀1 fl {(π‘Ž, π‘Ž) , (π‘Ž, 𝑏) , (π‘Ž, 𝑐) , (π‘Ž, 𝑑) , (𝑏, 𝑏) , (𝑐, 𝑐) , (𝑑, 𝑑)} ∘2 π‘Ž

π‘Ž 𝑏

𝑏 𝑏

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References (60)

𝑐 𝑐

𝑏 {π‘Ž, 𝑏} {π‘Ž, 𝑏} 𝑐 𝑐

𝑐

𝑐

𝑐

≀2 fl {(π‘Ž, π‘Ž) , (π‘Ž, 𝑏) , (π‘Ž, 𝑐) , (π‘Ž, 𝑑) , (𝑏, 𝑏) , (𝑐, 𝑐) , (𝑑, 𝑑)} .

We define a homomorphism πœ“ : (𝐻1 , ∘1 , ≀1 ) 󳨀→ (𝐻2 , ∘2 , ≀2 ) by 𝑐 if π‘Ÿ ∈ {π‘₯, 𝑧} { { { { πœ“ : 𝐻1 󳨀→ 𝐻2 | π‘Ÿ 󳨀→ πœ“ (π‘Ÿ) fl {𝑏 if π‘Ÿ = 𝑦 { { { {π‘Ž if π‘Ÿ = 𝑀.

No data were used to support this study.

Conflicts of Interest

𝑦 π‘₯ {𝑦, 𝑀} {π‘₯, 𝑧} {𝑦, 𝑀} 𝑧 π‘₯ {π‘₯, 𝑧}

Data Availability

(61)

We take a fuzzy subset 𝑓 of 𝐻1 as 𝑓(π‘₯) = 0.1, 𝑓(𝑦) = 0.6, 𝑓(𝑧) = 0.7 and 𝑓(𝑀) = 0.5. By routine calculation one can see that the image of 𝑓 under πœ“ is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy right hyperideal of 𝐻2 for π‘˜ ∈ [0, 1), but 𝑓 is not an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy interior hyperideal of 𝐻1 . Theorem 52. Let πœ“ : (𝐻1 , ∘1 , ≀1 ) 󳨀→ (𝐻2 , ∘2 , ≀2 ) be a homomorphism from an ordered LA-semihypergroup 𝐻1 to an ordered LA-semihypergroup 𝐻2 . If 𝐻1 contains a pure left identity 𝑒, then the preimage of every (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy interior hyperideal of 𝐻2 is an (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy generalized bi-hyperideal of 𝐻1 , provided πœ“ is inverse isotone. Proof. The proof is similar to the proof of Theorem 50(i).

5. Conclusions Fuzzification of algebraic hyperstructures plays an important role in mathematics with wide range of applications in many disciplines such as computer sciences, chemistry, engineering, and medical diagnosis. In this paper, we have introduced the concept of (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy hyperideals in ordered LAsemihypergroup and investigated their related properties. We hope that this work would offer foundation for further study of the theory on ordered LA-semihypergroup and fuzzy ordered LA-semihypergroup. The obtained results probably can be applied in various fields such as computer sciences, control engineering, coding theory, theoretical physics, and chemistry. In our future research, we will consider the characterization of intraregular ordered LA-semihypergroup in terms of (∈, ∈ βˆ¨π‘žπ‘˜ )-fuzzy hyperideals.

[1] F. Marty, β€œSur une generalization de la notion de group,” in Proceedings of the 8th Congress of Mathematics, pp. 45–49, Stockholm, Sweden, 1934. [2] P. Corsini, Prolegomena of Hypergroup Theory, Aviain editore, Tricesimo, Italy, 2nd edition, 1993. [3] T. Vougiouklis, Hyperstructures and Their Representations, vol. 115, Hadronic Press, Palm Harbor, Fla, USA, 1994. [4] P. Bonansinga and P. Corsini, β€œOn semihypergroup and hypergroup homomorphisms,” Bollettino dell Unione Matematica Italiana. Sezione B, vol. 1, no. 2, pp. 717–727, 1982. [5] P. Corsini, β€œSur les semi-hypergroupes,” Atti della Societ`a Peloritana di Scienze Fisiche Matematiche e Naturali, vol. 26, no. 4, pp. 363–372, 1980 (French). [6] B. Davvaz, β€œSome results on congruences on semihypergroups,” Bulletin of the Malaysian Mathematical Sciences Society. Second Series, vol. 23, no. 1, pp. 53–58, 2000. [7] B. Davvaz, W. A. Dudek, and S. Mirvakili, β€œNeutral elements, fundamental relations and n-ary hypersemigroups,” International Journal of Algebra and Computation, vol. 19, no. 4, pp. 567–583, 2009. [8] B. Davvaz and N. S. Poursalavati, β€œSemihypergroups and Shypersystems,” Pure Mathematics and Applications, vol. 11, no. 1, pp. 43–49, 2000. [9] C. Gutan, β€œSimplifiable semihypergroups,” in Algebraic Hyperstructures and Applications (Xanthi, 1990), pp. 103–111, World Scientific Publishing, Teaneck, NJ, USA, 1991. [10] A. Hasankhani, β€œIdeals in a semihypergroup and Green’s relations,” Ratio Mathematica, no. 13, pp. 29–36 (2000), 1999. [11] K. Hila, B. Davvaz, and K. Naka, β€œOn quasi-hyperideals in semihypergroups,” Communications in Algebra, vol. 39, no. 11, pp. 4183–4194, 2011. [12] S. V. Onipchuk, β€œRegular semihypergroups,” Russian Academy of Sciences. Sbornik Mathematics, vol. 183, no. 6, pp. 43–54, 1992. [13] K. Hila and J. Dine, β€œOn hyperideals in left almost semihypergroups,” ISRN Algebra, Article ID 953124, pp. 1–8, 2011. [14] N. Yaqoob, P. Corsini, and F. Yousafzai, β€œOn intra-regular left almost semihypergroups with pure left identity,” Journal of Mathematics, vol. 2013, Article ID 510790, pp. 1–10, 2013. [15] F. Yousafzai and P. Corsini, β€œSome charactrization problems in LA-semihypergroups,” Journal of Algebra, Number Theory: Advances and Applications, vol. 10, no. 12, pp. 41–55, 2013. [16] F. Yousafzai, K. Hila, P. Corsini, and A. Zeb, β€œExistence of nonassociative algebraic hyper-structures and related problems,” Afrika Matematika, vol. 26, no. 5-6, pp. 981–995, 2015. [17] D. Heidari and B. Davvaz, β€œOn ordered hyperstructures,” Politehnica University of Bucharest. Scientific Bulletin. Series A. Applied Mathematics and Physics, vol. 73, no. 2, pp. 85–96, 2011. [18] M. Bakhshi and R. A. Borzooei, β€œOrdered polygroups,” Ratio Mathematica, vol. 24, pp. 31–40, 2013.

Discrete Dynamics in Nature and Society [19] J. Chvalina, β€œCommutative hypergroups in the sense of Marty and ordered sets,” in Proceedings of the Summer School on General Algebra and Ordered Sets, pp. 19–30, Olomouc (Czech Republic), 1994. [20] S. Hoskova, β€œUpper order hypergroups as a reflective subcategory of subquasi-order hypergroups,” Italian Journal of Pure and Applied Mathematics, no. 20, pp. 215–222, 2006. [21] M. Kondo and N. Lekkoksung, β€œOn intra-regular ordered Ξ“semihypergroups,” International Journal of Mathematical Analysis, vol. 7, no. 25-28, pp. 1379–1386, 2013. [22] M. Novak, β€œEL-hyperstructures,” Ratio Mathematica, vol. 23, pp. 65–80, 2012. [23] N. Yaqoob and M. Gulistan, β€œPartially ordered left almost semihypergroups,” Journal of the Egyptian Mathematical Society, vol. 23, no. 2, pp. 231–235, 2015. [24] L. A. Zadeh, β€œFuzzy sets,” Information and Computation, vol. 8, pp. 338–353, 1965. [25] R. Ameri, β€œFuzzy hypervector spaces over valued fields,” Iranian Journal of Fuzzy Systems, vol. 2, no. 1, pp. 37–47, 80, 2005. [26] R. Ameri, H. Hedayati, and A. Molaee, β€œOn fuzzy hyperideals of Ξ“-hyperrings,” Iranian Journal of Fuzzy Systems, vol. 6, no. 2, pp. 47–59, 2009. [27] R. Ameri and H. Hedayati, β€œFuzzy isomorphism and quotient of fuzzy subpolygroups,” Quasigroups and Related Systems, vol. 13, no. 2, pp. 175–184, 2005. [28] P. Corsini, M. Shabir, and T. Mahmood, β€œSemisimple semihypergroups in terms of hyperideals and fuzzy hyperideals,” Iranian Journal of Fuzzy Systems, vol. 8, no. 1, pp. 95–111, 168, 2011. [29] I. Cristea, β€œHyperstructures and fuzzy sets endowed with two membership functions,” Fuzzy Sets and Systems, vol. 160, no. 8, pp. 1114–1124, 2009. [30] B. Davvaz, β€œFuzzy hyperideals in semihypergroups,” Italian Journal of Pure and Applied Mathematics, no. 8, pp. 67–74, 2000. [31] B. Davvaz, β€œExtensions of fuzzy hyperideals in H V-semigroups,” Soft Computing, vol. 11, no. 9, pp. 829–837, 2007. [32] B. Davvaz and V. Leoreanu-Fotea, β€œStructures of fuzzy Ξ“-hyperideals of Ξ“-semihypergroups,” Journal of Multiple-Valued Logic and Soft Computing, vol. 19, no. 5-6, pp. 519–535, 2012. [33] A. Khan, M. Farooq, M. Izhar, and B. Davvaz, β€œFuzzy hyperideals of left almost semihypergroups,” International Journal of Analysis and Applications, vol. 15, no. 2, pp. 155–171, 2017. [34] J. Zhan, β€œOn properties of fuzzy hyperideals in hypernear-rings with t-norms,” Journal of Applied Mathematics & Computing, vol. 20, no. 1-2, pp. 255–277, 2006. [35] B. Pibaljommee, K. Wannatong, and B. Davvaz, β€œAn investigation on fuzzy hyperideals of ordered semihypergroups,” Quasigroups and Related Systems, vol. 23, no. 2, pp. 297–308, 2015. [36] B. Pibaljommee and B. Davvaz, β€œCharacterizations of (fuzzy) bihyperideals in ordered semihypergroups,” Journal of Intelligent & Fuzzy Systems, vol. 28, no. 5, pp. 2141–2148, 2015. [37] J. Tang, A. Khan, and Y. Luo, β€œCharacterizations of semisimple ordered semihypergroups in terms of fuzzy hyperideals,” Journal of Intelligent & Fuzzy Systems, vol. 30, no. 3, pp. 1735–1753, 2016. [38] J. Tang, B. Davvaz, and X. Xie, β€œA study on (fuzzy) quasi-𝛾hyperideals in ordered 𝛾-semihypergroups,” Journal of Intelligent & Fuzzy Systems, vol. 32, no. 6, pp. 3821–3838, 2017.

13 [39] J. Tang, B. Davvaz, and Y. Luo, β€œA study on fuzzy interior hyperideals in ordered semihypergroups,” Italian Journal of Pure and Applied Mathematics, no. 36, pp. 125–146, 2016. [40] J. Tang, B. Davvaz, and Y. Luo, β€œHyperfilters and fuzzy hyperfilters of ordered semihypergroups,” Journal of Intelligent & Fuzzy Systems, vol. 29, no. 1, pp. 75–84, 2015. [41] N. Tipachot and B. Pibaljommee, β€œFuzzy interior hyperideals in ordered semihypergroups,” Italian Journal of Pure and Applied Mathematics, no. 36, pp. 859–870, 2016. [42] V. Murali, β€œFuzzy points of equivalent fuzzy subsets,” Information Sciences, vol. 158, pp. 277–288, 2004. [43] P. M. Pu and Y. M. Liu, β€œFuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence,” Journal of Mathematical Analysis and Applications, vol. 76, no. 2, pp. 571– 599, 1980. [44] S. K. Bhakat and P. Das, β€œOn the definition of a fuzzy subgroup,” Fuzzy Sets and Systems, vol. 51, no. 2, pp. 235–241, 1992. [45] S. K. Bhakat and P. Das, β€œ(∈,∈ ∨q)-fuzzy subgroup,” Fuzzy Sets and Systems, vol. 80, no. 3, pp. 359–368, 1996. [46] Y. B. Jun, A. Khan, and M. Shabir, β€œOrdered semigroups characterized by their (∈,∈ ∨q)-fuzzy bi-ideals,” Bulletin of the Malaysian Mathematical Sciences Society. Second Series, vol. 32, no. 3, pp. 391–408, 2009. [47] M. Shabir, Y. B. Jun, and Y. Nawaz, β€œSemigroups characterized by (∈,∈ ∨qπ‘˜ )-fuzzy ideals,” Computers & Mathematics with Applications, vol. 60, no. 5, pp. 1473–1493, 2010. [48] S. Azizpour and Y. Talebi, β€œCharacterizations of interior hyperideals of semihypergroups towards fuzzy points,” in Proceedings of the 46th Annual Iranian Mathematics Conference, pp. 1–4, 2015. [49] S. Azizpour and Y. Talebi, β€œSome results on union of (∈,∈ ∨qπ‘˜ )fuzzy interior hyperideals of semihypergroups,” in Proceedings of the 4th Iranian Joint Congress on Fuzzy and Intelligent Systems, CFIS 2015, pp. 1–4, September 2015. [50] X. Huang, Y. Yin, and J. Zhan, β€œCharacterizations of semihyperrings by their (βˆˆπ›Ύ ,βˆˆπ›Ύ ,∨q𝛿 )-fuzzy hyperideals,” Journal of Applied Mathematics, Art. ID 348203, 13 pages, 2013. [51] M. Shabir and T. Mahmood, β€œSemihypergroups characterized by (∈,∈ ∨qπ‘˜ )-fuzzy hyperideals,” Journal of Intelligent & Fuzzy Systems, vol. 28, no. 6, pp. 2667–2678, 2015. [52] M. Shabir and T. Mahmood, β€œSemihypergroups characterized by (βˆˆπ›Ύ ,βˆˆπ›Ύ ,∨q𝛿 )-fuzzy hyperideals,” Journal of Intelligent & Fuzzy Systems, vol. 28, no. 6, pp. 2667–2678, 2015. [53] M. Azhar, M. Gulistan, N. Yaqoob, and S. Kadry, β€œOn fuzzy ordered LA-semihypergroups,” International Journal of Analysis and Applications, vol. 16, no. 2, pp. 276–289, 2018. [54] M. Azhar and M. Gulistan, β€œOn fuzzy hyperideals in ordered LA-semihypergroups,” Discrete Dynamics in Nature and Society, In press.

Advances in

Operations Research Hindawi www.hindawi.com

Volume 2018

Advances in

Decision Sciences Hindawi www.hindawi.com

Volume 2018

Journal of

Applied Mathematics Hindawi www.hindawi.com

Volume 2018

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com www.hindawi.com

Volume 2018 2013

Journal of

Probability and Statistics Hindawi www.hindawi.com

Volume 2018

International Journal of Mathematics and Mathematical Sciences

Journal of

Optimization Hindawi www.hindawi.com

Hindawi www.hindawi.com

Volume 2018

Volume 2018

Submit your manuscripts at www.hindawi.com International Journal of

Engineering Mathematics Hindawi www.hindawi.com

International Journal of

Analysis

Journal of

Complex Analysis Hindawi www.hindawi.com

Volume 2018

International Journal of

Stochastic Analysis Hindawi www.hindawi.com

Hindawi www.hindawi.com

Volume 2018

Volume 2018

Advances in

Numerical Analysis Hindawi www.hindawi.com

Volume 2018

Journal of

Hindawi www.hindawi.com

Volume 2018

Journal of

Mathematics Hindawi www.hindawi.com

Mathematical Problems in Engineering

Function Spaces Volume 2018

Hindawi www.hindawi.com

Volume 2018

International Journal of

Differential Equations Hindawi www.hindawi.com

Volume 2018

Abstract and Applied Analysis Hindawi www.hindawi.com

Volume 2018

Discrete Dynamics in Nature and Society Hindawi www.hindawi.com

Volume 2018

Advances in

Mathematical Physics Volume 2018

Hindawi www.hindawi.com

Volume 2018