Histamine content

0 downloads 0 Views 506KB Size Report
[21] Usajewicz I., Kostyra H. (1990)' Aminy w żywności (Amines in food). Przęm. Spoż. ... [w:] Mikrobiologia żywności pochodzenia zwierzęcego. (Detailed food ...
Barbara CZERNIEJEWSKA-SURMA

-Surma et al. 1999). Taylor et al.

Piotr ZAPLETAL

histamine content in pork ranged

Orina SURMA

beef

Grzegorz BIENKIEWICZ, Dominika PLUST

concentration is usually higher in pork than in beef (Usajewicz and

Department of Commodity Science and Quality Assessment, West Pomeranian University of Technology in Szczecin Department of Stock Farming, Agricultural University of Cracow Department of Food Technology, West Pomeranian University of Technology in Szczecin Department of Commodity Science and Quality Assessment, West Pomeranian University of Technology in Szczecin

Jerzy BALBJKO

Department of Process Engineering and Theory of Machines, West Pomeranian University of Technology in Szczecin

Histamine content in animal thigh muscles stored at cold temperatures

Introduction

All

types

of food contain amines, which at low

lęvels do not posę a direct threat to human health. They

a positive effect on sensory properties offood products (Eung et al. 1993; Kostyra et can, however, have al. 1993).

Biogenic amines are formed enzymatically through

amino acids decarboxylation or transamination performed by endogenous enzymes present in tissues and by ęnzymes of bacterial origin. Best known biogenic amine is histamine. Histamine contęnt in meat and męat products offęręd on the Polish market ranges from 6.0 to 34.I mg.kg-r. Pork meat contained ca. 617o morę histamine than fresh beef, where its content was the lowest (Czerniejewska-

:

108

that

from 0.3 to 3.6 mg.kg-r and in - from 4.0 to 7.9 mg.kg-r.

This does not support the suggestion that aminę Kostyra 1990).

Studies on poultry and giblets showed that turkey meat shortly aftęr slaughter and cooling contained 10.6 mg.kg 'histamine, while poultry liver contained

almost twicę as much

of

this

component (Taylor et al. 19'78, Smith 1980-81; Czerniejewska-

-Surma

et al.

1999). Ienistea

(1971) suggests that the largest amount of histamine is present in

birds skin, what, according

to

Schmitt et al. (1988), can be the evidence of meat spoilage, as this aminę is not present in skin of fresh poultry carcasses. Histamine content in meat is influenced by meat storage at low temperatues. Nemeth-Szerdahelyi

et al. (1993)

Key words: 9owa kluczowe:

1.

(1978), however, reported

reported

a

trace

amount of histamine in meat obtained from pork carcasses. The amount increased rapidly during long term cold storage, what was probably caused by

microbial spoilage. on the othęr

et al. (1994) a 2l-fold increase in histamine content at the time hand Teodorovic observed

when a significant signs of beef

spoilage occurred.

Similar

increase was reported by Sayem-El-Daher et al. (1984) and was

attributęd to development of microflora causing considerable

rise in histamine content. They observed a strong corręlation betwęęn the number of bacteria in meat and histamine content,

suggesting that analysis of specific

amines concentration could be a Sensitive indicator of meat freshnęss. Daher and Simard (1985) and Teodorovic et al. (1994) did not, however, observed such relation. They suggest that in case of low number of micro-organisms the histamine concentration is not dependent on their number but on the efficiency of decarboxylation processes performed by them. Tęodorovic et a|. (1994) also did not observed the ręlationship between micro_organisms growth phase and effectiveness of processes leading to histamine formation. The aim of this work was to determine histamine content in thigh muscles of animals for slaughter, game and poultry stored at cold temperatures. 2.

Experimental

2.1.

Mateńals Analyzed matęrial includęd cattle and piglets biceps femoris, sub_adult wild boars

quadriceps femoris and broiler chickens thigh muscles. Cattle, pigs and 8-weęk fęmale broiler chickęns muscles węre obtained from processing plant and sub-adult wild boar muscles - from hunting club. Veterinary examination and meat division into primal cuts were performed on the same day.

All samples was obtained from plants located in Westpomeranian region. Muscles were manually prepared and delivered to the laboratory in plastic containęrs covered with lids ca. Ż4h after the slaughter. Muscle samples were collected three times from the same supplier during the samę season - autumn. 2.2. Methods

Thę muscles were analyzed directly after delivery to the laboratory and during storage for 12 days at 3+1oC.

Protein, fat, water and ash contents were determined according to AOAC (1984) and histamine content was tested using colorimetric method according to PN-87-A-86784. Results presented in tables and figures arę arithmetic męan values from nine parallel repetitions. Statistical analysis was performed using Statistica 5.0. Statistical significance was calculated using post-hoc analysis and the verification was performed with p = 0.05. pearson correlation analysis was also performed. 3. Results and discussion Chemical composition of analyzed thigh muscles of the animals are presented in Table

1.

Table 1. Chemical composition of thigh muscles with respect to the animal species Tabela 1. Skład chemiczny mięśni udowych w zależności od gatunku zwierzęcia Sample type

Protein,

Vo

Fat,

Vo

Watery



Cattle biceps femoris

20.86^tr.2'7

3.88br1.28

'l3.41brl.L9

Pig biceps femoris

20.32^tŻ.40

5.9lbr1.16

72.61"b!.1.23

Sub-adult wild boar quadriceps femoris

ŻŻ'13bł1.22

2.07^xl.30

73.lŻbłt'ŻO

Thigh muscle of broiler chicken

22.87błl.21

3.08br1.35

70.89u+1 .31

Data in the same columns denoted with the same letters do not differ significantly, p < 0.5, n = 9. Dane w kolumnach oznaczone tymi samymi literami nie różnią się istotnie, p < 0,5, n = 9.

109

;:iiii::.i:il:,;:a..E Histamine contęnt

i

in thigh muscles of various animal species

the slaughter ranges from 4.48 to 7.08 mg'kg t. Differences the particular muscles węre statistically significant (Table 2)'

analyzed ca 24h after in histamine content between

The largest amount of histamine was detęrmined in fresh cattle biceps femoris' which containęd almost 4 times more histamine than sub-adult wild boar muscles. Intermediate contęnts of analyzed aminę were obsęrved in chickens and piglets muscles. Differencęs in histamine contents between the particular muscles can result from thęir different susceptibility to activity of microflora and also from various histidine contęnt, histological Structure and chemical composition (Dzierżyńska-Cybulko and Duda 1981; Łoś-Kuczeraęt al. 1990; Kijowski 1993).

Zalewski (1985) considers the largest amount of histamine in cattle muscles as a possible result of microbial contamination of animal blood during slaughter. Smolińska and Szmańko (1975) justify inconsiderable histamine content in sub-adult wild boar quadriceps femoris by lower amount of fręe amino acids, what can be causęd by slight microbial contamination of game (Daczkowska-Kozon et al. 2006). It was determinęd that Storage time at cold temperatures had an influence on histamine concentration in musclęs of various animal species. Changes in histamine content were dependent on animal species. Aftęr 3 days of cold storage the highest increasę (almost 2-fold) in histamine content was observed in muscles of sub-adult wild boar and pigs. In cattlę muscles, however, the decrease of the amine content was noted. Table

2.

Histamine content in animals thigh muscles during cold temperature storage w mięśniach udowychzwierzątprzechowywanych w warunkach chłodniczych

TabelaŻ. Zautartośćhistaminy

Storage period [days]

Sample type

12

Cattle biceps femoris Pig biceps femoris Sub-adult wild boar quadriceps femoris Thigh muscle of broiler

chicken

'7.08"!I.0Ż

7.16^{.96

7.62^tL07

7.37^{.92

t0.22btt.7r

10.06bt1.35

6.02b{.93

8.14'10.99

II'Ż9"Ń.98

8.95b+0.85

8.55"{.79

1.94^{.81

7'1.9'td!1.41

15.32b_ł_1'55

l3.lodt1.35

IŻ'36"+l.3'1

13.31"+1.31

l2;77',t1.29

4.48^{.U

7.65"r0.50

8.73b$.57

20.5rdt1.23

16.48dt0.97

23.6Id+0.16

Samples of particular muscles analyzed on the same day of storage, denoted with the same letters, do not differ

significantly, p < 0.05, n = 9. Dane dotyczące poszczególnych rodzajów mięśni analizowane tego samego dnia przechowywania oznaczone tą samą literą nie różnią się istotnie, P ś0.05' n = 9.

From the sixth day of storage almost 5-fold increase in histamine concentration was determined in sub-adult wild boar muscles, as comparęd to initial sample. According to Smolińska and Szmańko (1975), free histidine appęars in later stages of venison ripening, what could contribute to the highest histamine contęnt obsęrvęd betwęen 6th and l}th day of storage. In stored pigs biceps femoris, on the other hand, a gradual decrease in histamine content was obsęrved, with the meat showing signs of spoilage (sour taste and smęll, dark brown colour). It could be assumęd that decreased amount of histaminę resulted from growth of microorganisms using histamine as a source of energy (Dapkevicius et aI.2000). Similar tendency duńng pork storage was obsęrved by Kanioua et al. (2001).

110

ffi

Histamine content in thigh muscles of chickens was on similar level during the 6day storage. From the 9th day its amount increased by ca. 50Vo in comparison with initial sample. Different changes in histamine concentration was noted for cold stored samples of cattle biceps femoris' A decrease in histamine content was observęd throughout the storage peńod. After 12 days the amount of histamine decręased by ca.Ż57o, as compared to initial sample. It was probably caused by a large number of bacteria which entered the bloodstream after cattle siunning and used low molecular weight products of protein degradation and possibly histaminę aS energy source. Pęrformed analyses show differencęs in histamine content depending on animal species. The rate of histamine accumulation in muscles varied considerably. Thę fastest increase in histamine content was observed in muscles of sub-adult wild boars (the slope of the regression line, calculatęd on the basis of 54 data series, was 1.56). No simple correlation b" determined betwęen the storage time at cold temperatures and histamine content in

"ould pigs biceps femoris. 4. Conclusions

content in thigh muscles depended on animal species and ranged from 4.48 to l7.91 mg.kg-'. The highest amount of histamine was present in cattle biceps femońs and the lowęst - in sub-adult wild boar quadriceps fęmoris. Ż. Thę influencę of cold Storage period on histamine content was observed in muscles of various animal species. The changes in histamine concentration were dependent on animal species. 3. LŻ-day Storagę of animal thigh muscles caused the increase in histamine contęnt, except cattle biceps femońs, where the decrease in histamine content was observed. 4. Histamine concentration did not exceęd acceptable limits in any of the examined type

1. Histaminę

of animal muscle. 5. References

lll p] t3]

I4l t5]

t6]

l7l t8] t9]

Associarion of Official Analytical Chemists. (1984), Official methods of analysis. [b.w]:

431443.

B., Kołakowska A., Baranowska K. (1999)'

Występowanie Zywność, Jakość. Technologia. histaminy w żywności.(occurence of histamine in ford). 4 (21):63-'72. Daczkowska_Kozon E., Koronkiewicz A', Markiewicz K. (2006)' Zwierzyna łowna - potencjalne źródło...(Game - a potential source..). Mag. Przem. Mięsnego, 4' 48-50. Dahir N.S., Simard R.E. (1985), Putrefactive amines changes in relation to microbial counts of ground beef during storage. J. Food Protec., 48: 5zt-58' Dapkevicńs M.L.N.E', Nout M.J.R., Rombouts F.M., Houben J.H., Wymenga W. (2000), Biogenic amine formation and degradation by potential fish silage starter microorganisms. Inter. J. Food Microbiol., 57,10'7-114. Dzierżyńska-Cybulko B., Duda Z. (I98I), Surowce tzeźne, [w:] Technologia mięsa. Red' W. PęzacŁj. WNT, Warszawa, pp. 90_193. Eung H.L., Jeong s.L., Kwang T.S. (1993), Processing of vinegar pickled sardine. J. Korean Agric. Chem. Soc., 36, 346-35I. Ięnistea c. (tglt), Bacterial production and destruction of histamine in foods and food poisoning caused by histamine. Nahrung' 15' 109-113. kaniou i., Samouris G., Mouratidou T.' Elefthęriadou A., Zantopoulos N. (2001)' Determination of biogenic amines in fręsh unpacked and vacuum-packed beef during Storagę at 4oC' J. Food Chem., 14,5I5_5I9.

Czerniejewska_Surma

111

j;:Pi__:!,

?sl3

-:]i.:śai::

[10] Kijowski J. (1993)' WłaŚciwościfunkcjonalne mięsa drobiowego (Functional properties of poultry meat). Pol. Drobiar., 11, 7-10. [11] Kostyra E., Usajewicz I., Kostyra H., Senderowska I. (1993), Aminy biogenne w sęrach (Biogenic aminęs in cheeses). Przęm. Mlecz., '7, I'76-18I. [12] Łoś-Kuczera M., Iwanow K., Jelińska M., Kłys W., Kunachowicz H., Nadolna I., okolska G., Rutkowska U., Wojtasik A. (1990)' Mięso i przetwory, [w:] Produkty spożywcze. Skład i wartość odżywcza]. (Meat and meat products. In: Food Products.

Ingredients and Nutritional Value.) Wydawnictwo Instytutu Zywności i Żywienia,

Warszawa, pp.34-72. [13] Nemeth-Szerdahelyi E., Freudenreich P., Fischer K. (1993), Untersuchungen tiber den Gehalt biogener Amine in Schweinefleisch. Fleischwirtschaft, 7 3, 7 891 90. [14] PN-87-A-86'784. Surowce i przetwory z ryb i innych zwierząt wodnych. Oznaczanię zawartości histaminy. (Raw and processed fish and seafood. Dętęrmination of histamine content.)

J. (1984)' Changes in the aminę content of ground beef during storage and processing. Lebensm. Wiss. Technol., I7 ,319-323.

[15] Sayem-El-Daher N., Simard R.E., Fllion

[16] Schmitt R.E., Haas J., Amado R. (1988)' Bestimmung von biogenen Aminęn mit RP-HPLC zur Erfassung des mikrobiellen Verderbs von Schlachtgefliiget. Lebensm. Unters. Forsch.' l81, 121_1Ż4. [17] Smith T.H' (1980-81), Amines in food. J. Food Chem., 6,169-Ż00. [18] Smołińska T., Szmańko T. (1975), Zmiany niektórych cech morfologicznych i składu aminokwasowęgo w mięsie dziczyzny płowej pod wpływem niskich tempęratur (Changes of sevęral morphological characteristics and amino acids composition in deer meat undęr low temperatures). Zeszyty Naukowe Akademii Rolniczej we Wrocławiu,

rr1, tt9-r21.

[19] Taylora S.L., Lieber E.R., Leatherwood M. (1978)' A simpłified method for histamine analysis of foods. J. Food Sci., 43, 24'7-250. Teodorovic V., Buncic S., Smiljanic D. (1994), A study of factors influencing histamine [20] and production in meat. Fleischwirtschaft,l4, l7O-I72. [21] Usajewicz I., Kostyra H. (1990)' Aminy w żywności(Amines in food). Przęm. Spoż.' 47 (6),12',7-130. [2Ż] ZalewsŁ,;l s'J' (1985)' Szczegółowa mikrobiologia żywności'Mięso i jego przetwory, [w:] Mikrobiologia żywnościpochodzenia zwierzęcego. (Detailed food microbiology.

Meat and meat products, [in:] Microbiology of Food of Animal Origin.

Red.

S.J. Zalewski. Wydawnictwa Naukowo-Techniczne, Warszawa, Ż87 _37 3.

I{ISTAMINE CONTENT IN ANIMAL THIGHMUSCLES STOREDAT COLD

TEMPBRATURES Summary

Introduction. Biogenic amines are formed enzymatically through amino acids decarboxylation or transamination performed by endogenous ęnzymes present in tissues and by enzymes of bacterial origin. The aim of this paper was to determine histamine content in selected animal thigh muscles and their changes during cold storage. Material and methods. Nutritional value and histamine content were determined in thigh muscles of various animals, such as pigs, cattle, game and poultry. Protein, fat, water and ash contents werę determined according to AoAC (l984) and histamine content was tested using colorimetric method according to PN-87-A-86784. Results and conclusion. Histamine content in thigh muscles depended on animal species 1. and ranged from 4.48 to I7.9'7 mg.kg The highest histamine content was observed in cattle TT2 ffi

biceps femoris, and almost four timęs lower content in sub-adult wild boar quadńceps fernorislZ-day cold temperature Storage period causęd the increase in histamine content in examined muscles, except cattle biceps femoris, where the decrease in histamine content was observed.

Barbara CZERNIEJEWSKA-SURMA ZakJadTowaroznawstwa

Piotr ZAPLETAL

i oceny Jakości, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Katedra Hodowli Bydła, Uniwersytet Rolniczy w Krakowie

Orina SURMA

Katedra Technologii Żywności,Zachodniopomorski

Uniwersytet Technologiczny w Szczecinie

Grzegorz BIENKIEWICZ, Dominika PLUST

Zakład Towaroznawstwa i oceny Jakości, Zachodniopomorski

Jerzy

BALEJKO

Uniwersytet Technologiczny w Szczecinie

Zakładlnżynieii Procesowej i Maszynoznawstwa, Zachodniopomorski Uniwers}tet Technologiczny w Szczecinie

ZAWARToŚĆ HIsrłuINY W MIĘŚNIACH UDoWYCH ZWIF,RZĄT PRZBCHoWYWANYCH w TEMPERATURACH CHŁoDNICZYCH Streszczenie

Wstęp. Aminy biogenne tworzone są w procesach enzymatycznychprzez dekarboksylację lub transaminację aminokwasów w wyniku działalnościendogennych enzymów obecnych w tkankach lub enzymów pochodzenia bakteryjnego. Cęlem niniejszej pracy było określenie

Zawartości histaminy w wybranych mięśniachudowych zwierząti zmian zawartości tej aminy biogennej podczas ich przechowywania w warunkach chłodniczych.

Materiał i metody. WartośćodŻywcza i za:wartość histaminy oznaczatę były w wybranych mięśniachudowych zwierząt takich, jak: trzoda chlewna, bydło, dztczyzna i drób. Zawartośćbiałka, tłuszczu, wody i popiołu zostałaoznaczona zgodnie z AoAC (1984)' natomiast zawartość histaminy metodą kolorymetryczną według PN-87-A-86784. Wyniki i wnioski. Zawartośćhistaminy zalężała od gatunku zwierzęcia i mieściłasię 1. w zakresie od 4,48 do l'7,9'7 mg.kg Najwyższą zawartościąhistaminy cechowały się mięśnie biceps femoris bydła, które zawierały prawie cztęty razy więcej histaminy niŻ mięśnie quadriceps femoris przelatków. l2-dniowę przechowywanie chłodnicze powodowało wzrost zawartości histaminy w badanych mięśniach,poza mięśniami biceps femoris bydła, w których nastąpił spadek zawartości badanej aminy.

Dr inż. Dominika PLUST

West Pomeranian University of Technology in Szczecin, Department of Commodity Science and Quality Assessment,

Papleża Pawła VI nr 3, 7 1-459 Szczecin, Poland e-mail : dominika.plust

@

zut.edu.pl

113

%