hvac air duct leakage test manual

14 downloads 0 Views 2MB Size Report
HVAC AIR DUCT. LEAKAGE TEST MANUAL. 1ST EDITION-1985. SHEET METAL AND AIR CONDITIONING CONTRACTORS'. NATIONAl ASSOCIATION, INe.
HVAC AIR DUCT LEAKAGE TEST MANUAL

1ST EDITION-1985

SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAl ASSOCIATION, INe. 4201 Lafayette Center Orive Chantilly, VA 20151-1209

-

------

~~--

••....

TABLE OF CONTENTS

.._--~-_

TABLE OF CONTENTS FOREWORD

iii

FORMER TASK FORCE MEMBERS AND OTHER CONTRIBUTORS

iv

NOTICE TO USERS OF THIS PUBLlCATION

v

TABLE OF CONTENTS

SECTION 1

SECTION 2

SECTION 3

, vii

INTRODUCTION LEAKAGE APPRAISAL BASIS

1.1

OUCT CONSTRUCTION ANO INSTALLATION STANOAROS

1.1

OUCT SEALlNG COMMENTARY

1.4

RESPONSIBILlTIES OESIGNER

2.1

CONTRACTOR

2.1

GENERAL PROCEDURES

-- --_··---=FESTING OVCm,'iEW--:-~:-:-~

3.1

PRECAUTIONS FOR CONTRACTORS SECTION 4

LEAKAGE CLASSIFICATION LEAKAGE CLASSES OtFINEO

SECTION 5

SECTION 6

3.1

4.1

ASSIGNMENT OF LEAKAGE CLASSES

4.1

EXTENT OF LEAKAGE TESTING REQUIREO

4.1

TEST APPARATUS TEST APPARATUS ANO PROCEOURE ONLlNE

5.1

FLOW CALCULATION FOR ORIFICE METERS

5.4

TEST REPORTS INSTRUCTIONS BLANK TEST FORM

6.1 6.2

SAMPLE COMPLETEO TEST FORM

6.3

SAMPLE LEAKAGE ANALYSIS

B.1

SYSTEM LEAKAGE CLASSIFICATION ANALYSIS

B.1

LEAKAGE ANALYSIS

B.1

APPENDIX A

APPENDIX B

HVAC Air Duct Leakage Test Manual·

1st Edition

vii

APPENDIX

APPENDlX

C SUGGESTEO ANALYSIS OF NON-SMACNA CRITERIA SPECIFICATIONS

C.1

SAMPLE PROJECT

0.1

D

APPENDIX

E through

APPENDlX

I

SPECIFICATION

H

FLOW EQUATION FLOWMETER OVERALL

1.1

ACCURACY

1.1

METER LOSS

METER CAPACITY STANDARD

OERIVATION

1.2

FOR TESTED DUCT SIZE

1.2

AIR

1.3

OTHER LEAK TEST METHODS APPENDIX

"

J FLOW COEFFICIENTS

APPENDIX

K through

APPENDIX

N

J.1

M

FLUID METER INSTRUMENTATION

viii

1.3

REFERENCES

HVAC Air Duct leakaop

Tpc:;t M:mual

J.1

• 1c:;t Frlitinn

.-~~I"·~U',,l

TABLES 1-1

Standard Duct Sealing Requirements

3-1

Applicable

4-1 5-1

Assignment of Leakage Classes Orifice Coefficients

5-2

Flow Rate Versus Pressure Differential for Meters

A-1

Leakage as Percent of Flow in System

Leakage Classes

o' ooo. o

o

o.. oo

o. oo.. oo.. o. ooooo.. o

oo

o

oo.. 1.1

o

4.3

ooo.. oo_ o

oo.. o.. o

o

oo.. o.. o o o

E-1

Leakage Factor (F) in CFM/100 SoF Duct

oo

F-1

Amount of Duct to be Leak Tested (SFD)

ooo. o

G-1 H-1

Duct Surface Area in Square Feet per Linear Foot Areas and Circumferences of Circles

K-1

Air Density Correction

M-1

Properties of Manometric

ooo

o oo

o o

4.3 5.1 5.6

o

A.1

o

E.1 F1

o. _

G.1 H.1

Factor, d

K.1

Liquids

M.1

FIGURES 3-1

lIIustration of Testing

3.3

4-1

Duct Leakage Classification

5-1

Leakage Test Meter Apparatus

with Flange Taps

5.2

4.2

5-2

Leakage Test Meter Apparatus

with Vena Contracta Taps

5.3

5-3

Typical Orifice Flow Curves

5.5

B-1 1-1

Duct System Example Ratio of Over-all Pressure Loss to be Metered Differential Versus Diameter Ratio 13 ........•............................................

B.3

J-1

Flow Coefficients K for Square/Edged Orífice Plates and Vena Contracta Taps in Smooth Pipe

J-1

Flow Coefficients K for Square/Edged and Flange Taps in Smooth Pipe

L-1

Gas Expansion

~$.~l;

Test Manual·

J.1

Orific3 Plates _.. oo

Factor, Y, Versus Acoustic Ratio, t.p/kP

HVAC Air Duct Leakage

1.3

1st Edition

o 1

.......••.......•..•...

J.1 _ oL.1

IX

SECTION 1

INTRODUCTION

1.1 This document

identifies certain leakage limits for ducts and outlines procedures for testing ducts for conformity with air leakage limits that are set forth in a desígner's project specification. This document is not an endorsement 01' routine use 01'

duct surface leakage factor can be identified by the lowing relationship.

testíng. Leakage testing IS generalIy an unjustified major expense that is unnecessary when proper methods 01' assembly and sealing are used. Visual inspection for application 01' such proper methods will ordinarily suffice for 01' reasonably tight construction. verification Under any circumstances reasonable allowances for leakage must be adopted because no duct is absolutely airtighl.

where F is a Jeak rale per unil al' duct surface area (typícalIy cfmll 00 s. f.) CL is a constant

P is static pressure (typically in inches water gage) N is an exponent (most typically it is 0.65 but in some cases it is 0.5 to 0.9)

1.2 The sealing provisions contained in the SMACNA

HVAC Duct Construction Standards-Metal and Flexible, 1995 second edition. are reproduced here for convenient understanding of use of prescriptive measures. Consult the SMACNA Fibrous Glass Duct Construction Standards for fibrous glass duct assembly. Closures of joints and seams in fibrous glass ducts rely on taped adhesive systems to make connections, in contrast with metal ducts which use mechanicallocks for connection and use sealants for supplementalleakage

b.

The new SMACNA Leakage Classifications are based on this leakage factor relationship. Whether the designer uses the rates identified or prefers other constants, it is practical to evaluate leakage by this method.

1.4

OUCT CONSTRUCTION ANO INSTALLATION STANOAROS

S 1.0

General Requirements

S 1.1

These construction and installation specifications and illustrations include:

control.

1.3 Duct leakage reduces the air quantities at terminal points unless the total air quantity is adjusted to compensate. Leakage should be considered a transmission loss in duct systems. The farther air is conveyed the greater the loss will be. Key variables that affect the amount of leakage are: a.

1'0]-

Static pressure, not velocity pressure. (The higher the pressure the more leakage wiII occur.) The amount 01' duct (the more duct the more opportunity for leakage there will be).

c.

The openings in the duct surface (the major contributors are joints and seams although access doors. rod penetrations and' fastener penetratíons also contri bu te ).

d.

Workmanship (poor \\orkmanship undermines the best construction standanJs).

It is practical to relate leakage to dUClsurface arca. AIlhough rales 01' loss rer 1'001 01' seam. per diameler 01' hole ar per dimension of crack can be evaluated. dUCl surface area is lhe simplesl parameler by which lo evaluate syslem Ieakage. Furlhermore. research (in Europe and independenlly in lhe Uniled Slates) has led to the conclusion lhal wilhin aceeptable tolerances. a

S 1.2

su

a.

single-prescription

method requirements.

b.

optional altematives,

c.

perfomlance requirements for specific items that are ditlerent in detail from the generalized ilIustrations.

and

These standards are not meant to excl ude any products or methods that can be demonslrated to be equivalent in performance for the application. Substitutíons based on sponsor demonstrated adeqllacy and approval of the regulating allthority are recognized. These requirements presume that the designers ha\'e prcpared contracl drawings showing lhe size and localion 01' dllclwork. including pellllissible fitting configuralions. \Vhere area change. direclion change. divided tlo\\'. or uniled tlO\\' fittings olher Ihan lhose illuslrated her(' are s!1\lwn on lhe contraet drawings. are 11111 of proprielary manunlcture, and ar~ dcfin~d \\Lth friclion loss coellicienls in either lhe S\IACNJ\ lit :IC D/lct SnNII/ Dc-

sign manual or the ASHRAE Fundamentals Handbook chapter on duct design, such fittings shall be t~1bricated with materials. assembly techniques. and sealing provisions given here. Sl4

hardware and accessory items and select them to be consistent with the duct c1assification and services. S 1.8

Unless otherwise specified steel sheet and strip used for duct and connectors shall be G-60 coated galvanized steel of lockfonning grade confonning to ASTM A653 and A924 standards. Minimum yield strength for steel sheet and reinforcements is 30.000 psi (207 kPa).

S L9

Where sealing is required in Table 1-/ or in other tables or illustrations in this manual, it means the following:

EACH DLTT S'{STEM SHALL BE CONSTRUCTED FOR THE SPECIFIC DUCT PRESSURE CLASSIFICATIONS SHOWN ON THE CONTRACT DRAWINGS. WHERE NO PRESSURE CLASSES ARE SPECIFIED BY THE DESIGNER, THE 1" WATER GAGE (250 Pa) PRESSURE CLASS IS THE BASIS OF COMPLIANCE WITH THESE STANDARDS, REGARDLESS OF VELOCITY IN THE DUCT. EXCEPT WHEN THE DUCT IS VARIABLE VOLUME: ALL VARIABLE VOLUME DUCT UPSTREAM

a.

The use of adhesives. gaskets, tape systems, or combinations ofthese to close openings in the surface ofthe ductwork and field- erected plenums and casings through which air leakage would occur or the use of continuous welds.

b.

The prudent selection and application of sealing methods by fabricators and installers, giving due consideration to the designated pressure c1ass, pressure mode (positive or negative), chemical compatibility ofthe closure system, potential movement of mating parts. workmanship, amount and type of handling, cleanliness of surfaces, product shelf life, curing time, and manufacturer-identified exposure limitations.

c.

That these provisions apply to duct connections to equipment and to apparatus but are not for equipment and apparatus.

OF VAV BOXES HAS A 2" WG (500 Pa) BASIS OF COMPLIANCE WHEN THE DESIGNER DOES NOT GIVE A PRESSURE CLASS. Sl.5

No specification or illustration in this manual obliges a contractor to supply any volume control dampers, fire dampers, smoke dampers, or fittings that are not shown on contract drawings.

S 1.6

Where dimensions. sizes, and arrangements ofelements of duct assembly and support systems are not provided in these standards the contractor shall select configurations suitable for the service.

SI.7

The contractor shall follow the application recommendations of the manufacturer of all

1?

LJ\/A_

•.

-

All Transversc andStatic Pressure A/I Transverse joints,joints longitudinal Applicable Transverse joints 2"4" only wgwg(500 and Pa) up (1000 Pa) Sealing Requirements SEAL CLASS 3" \Vg (750 Pa) classConstruction that is upstream Class of the V A V boxes shall meet Seal Class C. and 'lí" wg (125 Pa) construction

Table 1-1 Standard d.

That where distinctions

Duct Sealing Requirements

are made bet\',:een

seams and joints, a seam is defined as joining of t\Vo longitudinally (in the direction of airflow) oriented edges of duct surface material occurring between two joints. Helical (spiral) lock seams are exempt from sealant requirements. AII other duct wall connections are

be underground

below the water table;

9.

be submerged in líquid;

10. withstand continulJus vibration visible to the naked eye; 11. be totally leakfree within an encapsulating vapor barrier; and

deemed to be joints. Joints include but are not Iimited to girthjoints, branch and subbranch intersections, so-called duct collar tap-ins, fitting subsections, louver and air terminal connections to ducts, access door and access panel frames and jambs, and duct, plenum, and casing abutments to building structures e.

8.

12. create c10sure in portions of the building structure used as ducts, such as ceiling plenums, shafts, or pressurized compartments;

Unless otherwise specified by the designer, that sealing requirements do not contain provisions to:

f.

The requírements to seal apply to both positive and negatíve pressure modes of operation

l.

resist chemical attack;

g.

2.

be dielectrically

3.

be waterprooC weatherproof, violet ray resistant;

ExtemalIy insulated ducts located outside of buildings shall be sealed before being insulated, as though they were inside. If air leak sites in ducts located outside ofbuildings are exposed to weather. they shall receive exterior duct sealant. An exterior duct sealant is de-

4.

isolated; or ultra-

withstand temperatures higher 120°F (48°C) or lower than

than 40°F

(4.rc): 5.

contain alomic radiation or scrvc in othcr safely-related

construction:

6.

be clcclrically

groundcd:

7.

maintain leakage inlegrity at prcssures in c.\ccss ofthcir duct c1assitication:

·.s.~_4' HVAC Air Duct Leakage Test Manual·

fined as a sealant that is marketed specificalIy as forming a positive air- and watertight sea!. bonding well to the metal involved, remaining flexible \Vith metal movement, and having a scrvice tcmperature range of -30°F (-34°C) to 175°F (79°C). Ifexposed to direct sunlight, it shall also be ultraviolet ray- and ozone-resistant or shall. after curing, be painted with a compatible coating that provides such resistance. The tenn sealant is not limited to adhesives or mastics but includes tapes and combinations of open-weave fabric or absorbent strips and mastics.

First Edition

1.3

1.5

DUCT SEALlNG

COMMENTARY

Ducts must be sufficiently airtight to ensure economical and quiet performance of the system. It must be recognized that airtightness in ducts cannot, and need not, be absolute (as it must be in a water piping system). Codes narmally require that ducts be reasonably airtighl. Concems far energy conservation, humidity control, space temperature control, room air movement, ventilation, maintenance, etc., necessitate regulating leakage by prescriptive measures in construction standards. Leakage is largely a function of static pressure and the amount of leakage in a system is significantly related to system size. Adequate airtightness can normally be ensured by a) selecting a static pressure construction class suitable for the operating condition, and b) sealing the ductwork properly.

The designer is responsible for determining the pressure class or c1asses required for duct construction and for evaluating the amount of sealing necessary to achieve system performance objectives. It is recomII1ended that al! duct constructed for the 1" (250 Pa) and W' (125 Pa) pressure class meet Seal Class C. However, because designers sometimes deem leakage in unsealed ducts not to have adverse effeets, the sealing ofal! duets in the 1" (250 Pa) and Yí" (125 Pa) pressure class is not required by this eonstruetion manual. Designers occasionally exempt the following from sealing requirements: small systems, residential oeeupaneies, duets loeated directly in the zones they serve, duets that have short runs from volume control boxes to diffusers, certain retum air ceiling plenum applieations, etc. When Seal Class C is to apply to all 1" (250 Pa) and Yí" (125 Pa) pressure class duet, the designer must require this in the project specification. The designer should review !he HVAC Air DI/e! Leakage Tes! Mal1l/al for estimated and practical leakage allowances.

Seven pressure classes exist (Y2"Wg [125 PaJ, 1" [250 PaJ, 2" [500 PaJ. 3" [750 PaJ. 4" [1000 PaJ, 6" [1500 Pa] and 10" [2500 Pan. Ifthe designer does not designate pressure class for duct construction on the contract drawings. the basis al' compliance \\'ith the SMACNA HVAC DI/cr COIlstrucrioll Stlllldard, is as follows: 2"wg [500 PaJ wg fÓr al! dllCts bet\\"Ccnthe slIpply fan and variable volume control boxes and ¡lIwg [250 PaJ for al! other dllctS ofany application.

Some sealants can ath'ersely atlect the release fllnction ofbreakaway connections to tire dampers: conslllt the dampcr manufacturer fÓr instal!ation restrictions.

1.4

1.5.1

Leakage Tests

There is no need to verify leakage control by field testing when adequate methods of assembly and sealing are used. Leakage tests are an added expense in system installation. It is not recommended that dllct systel1ls constructed to 3" (750 Pa) wg class or 10wer be tested because this is generally not cost effcctive. For duct systel1ls constructed to 4" (l 000 Pa) wg class and higher, the designer must detennine ifany justification for testing exists. If it does, the contract docul1lents must clearly designate the portions of the system(s) to be tested and the appropriate test methods. ASHRAE energy conservation standards series 90 text on leakage control generally requires tests only for pressures in excess of 3" (750 Pa). The H r:4 C A ir DI/e! Leakage Tes! Aful1l/al provides practical and detailed procedures for conducting leakage tests. Apparent differences ofabout delivery and sum of airflo\V nals do not necessarily mean leakage. Potential accuracy should be evaluated.

ten percent between fan measurements at temlipoor sealing and excess of flow measurements

Otherwise, open access doors, unmade conneetions, missing end caps, or other oversights contribute to such discrepancies. When air terminals are at great distances from fans (over 500 feet [l 52m n, more effective sealing is probably required to avoid diminished system performance. Schools, shopping centers, airports, and other buildings may use exposed ductwork. Selecting sealing systems for such ducts may involve more attention to the tinal appearance ofthe duct system than with ducts in concealed spaces. Certain types ofpaint may form reliable seals, particularly for small cracks and holes. F urther research and confimlatíon is needed in thís area. Longstanding industry acceptancc 01' so-ealled 10\\' pressllre duct systems withollt sealants may ha\e lctl sorne eontraetors (and designersl with líttlc ur no expericnce \\ith sealing. The contractor SllOlIld carefllll; sL'ieet cllllstrllction dctails consistent \\íth scaling rel) lIiremcnts. the di rcction 01' the a ir pressllrc. a nd fam iliar sealing methods. The cost ofrestoring systcrns not receí\'ing the reqllired sealing or not bcing properly sealcd C;lll greatly cxceed the modest cos! of a propcr applicatioll. Contractors lIsing slip amI dri\e conncction systerns mllst control conncc(or length and notch tkpth Otl rectangular dllet ends to t~lcilitate scaling.

HVAC Air Duct Leakage Test Manual·

First Edition

~-

-SMA~NA

Failure to do so wil] compromise seal etTectiveness. Round duct joints are nonnally easier to seal than other types. However, with proper attention to joint selection. Vlorkmanship, and sealant application, almost any joint can achieve low leakage. The mere presence al' sealant at a connectíon, however, does not ensure low leakage. Applying sealant in a spiral lockseam can result in pOOl' seam closure and Jcss satisfactory control. No single sealant is the best for all applications. Selecting the most appropriate sealant depends primarily on the basic joint design and on application conditions such as joint position. clearances, direction 01' air pressure in service, ete. The Jisting 01' eertain duet produets by reeognized test laboratories may be based on the use of a partieular joint sealing produet. Sueh a eomponent listing only refleets laboratory test performanee and does not neeessarily mean that the c\osure method ean routinely be sueeessful for the contraetor 01' that it will withstand in-serviee operation of the system on a long-term baSIS.

1.5.2

Liquids

Many manufaeturers produee liquid sealants speeifically for ducts. They have the consisteney of heavy syrup and ean be applied either by brush 01' with a cartridge gun or powered pump. Liquid sealants normally eontain 30 to 60 pereent volatile solvents: therefore, they shrink considerably when drying. They are reeommended tor sJip-type joints where the sealant fills a small spaee between the overlapping picees of metal. Where metal elearanees exeeed)!¡6 ineh ( 1.6 mm), several applieations may be neeessary to fill the voids eaused by shrinkage 01' runout 01' the sealant. These sealants are normally brushed on to round slip joints and pumped into rectangular slip joints.

1.5.3

Mastics

Heavy mastic sealants are more suitable as tíllets. in grooves. 01' between tlanges. Mastics must have excellent adhesion and elasticity. Although not marketed specilically for duct\Vark. high quality curtain wall sealanh have been uscd for this applíeation. Oilbasc caulking ami glazíng compounds ShOllld nO! be llsed.

here to the metal duringjoint assemb!y. The ehoiee 01' open cell 01' closed cell rubber gaskets depends on the amount and frequ~ney ofcompression tic memory.

1.5.5

Tapes

Nothing in this standard is intended to unconditionally prohibit the use of pressure scnsitive tapes. Several such closures are Jisted as components of systems complying with UL Standard 181 tests. There are no industry recognized perfonnanee standards that set forth peel adhesion. shear adhesion, tensi1e strength. temperature limits. aeeelerated aging. ete., which are quality control eharaeteristies speeifically eorrelated with metal duct construetion serviee. However. the Glass Duct COllstruCtiOIl 5101/SMACNA FihroliS dan!s illustrate the elosure of a fibrous duct to metal duct with a tape system. The variety of advertised produets is very broad. Some test results for tapes are published in the product direetories of the Pressure Sensitive Tape Council located in Chicago. IL. The shelf life of tapes may be difficult to identif).'. It may be only six months or one year. Although initial adhesion may appear satisfactory, the aging eharacteristies of these tapes in serviee is questionable. They tend to lose adhesion progressively at edges or from exposures to air pressure. flexure, the drying effects at the holes or eracks being sealed, ete. The tape's adhesi\'p may be ehemically incompatible with the substrate, as is apparently the ease with certain non metal flexible ducts. Application over uncured sealant may ha ve failures related to the release ofvolatile solvents. Sea air may have ditTerent etlects on mbber. acrylic. silicone-based (or other) adhesives. Tapes of a gum-like consistency with one 01' t\\"(l removable waxed liners have become popular 1'01' some applications. They are generally known as the peel and seal variety and have been used betwecn tlangcs and on the exterior 01' ducts. Such tapes are typically 01' thicknesses sC\'eral times that of tapes traditionally known as the pressure sensitive type. Some may have mesh reinfon:ement. Others may have metal 01' nonmetal baekíng \1fl oné surface.

1.5.6 1.5.4

and ..on the elas-

Heat Applied Materials

Gaskets

Durable matcrials sllch as soft elastolllcr blltvl

01'

cx-

trudcd forms of sealants should be used in t1angéd joínts. For case of applicatíon. gaskets ShOllld have adhesi\'c backing 01' otherwise be tacky cnollgh to ad-

llo! mel! and thermally activaled scalants are Icss \\'idely knO\\"Ilhut are used rÓr duct\\ork. Thc hot mclt !ypc ís nOllllally a shop applíeatíon. Thcrmally aetí\ated typcs use heal [O éilher shrink-lít CIOSllrL'Sor 10 cxpand comp\lunds \\ithin joint systems.

~••J"'r.II", H\f~r ~ir nuct Leakaae Tli!stManual· First Edition

1.5

1.5.7

Mastic and Embedded Fabric

There are several eombinations of woven fabries (fibrous glass mesh, gauze, eanvas, ete.) and sealing eompounds (ineluding lagging adhesive) that appear better suited for ereating and maintaining effeetive seals than sealant alone. Glass fabrie and Mastie

more. SMACNA is not able to comprehensively define their eharaeteristies at this time; however, authorities are eneouraged 10 monitor their development progress and consider their use.

1.5.10 Shelf Life

(GFM) used for fibrous glass duet appears to adhere \Vell to galvanized steel.

The shelf life of al! sealant products may be one year or less; often it is only six months. The installer is eautioned to verify that the shelflife has not been exceed-

1.5.8

ed.

Surface Preparation

Surfaees to reeeive sealant should be clean, meaning free from oil, dust, dirt, rust, moisture, iee erystals, and other substanees that inhibit or prevent bonding. Solvent cleaning is an additional cxpense. Surfaee primers are now available, but their additional cost may not result in measurable long-tem1 benefits.

1.5.9

Sealant Strength

No sealant system is recognized as a substitute for mechanical attaehments. Structural grade adhesive systems are being developed to replace spot welded and soldered connections of metals. They have lap shear strengths of 1000 to 5000 psi (6895 to 34475 kPa) or Reprintedfrompages

.h

1.5.11 Safety Considerations Sealant systems may be flammable in the wet, partialIy cured, or eured state. USE LlQUIDS AND MASTICS IN WELL VENTILATED AREAS AND OBSERVE PRINTED PRECAUTIONS OF MANUFACTURERS. The contractor should earefully consider the effects of loss of seal and fire potential when welding on or near sealed connections. NFPA Standard 90A requires adhesives to have a flame spread rating not over 25 and a smoke developed rating not over 50.

1.8 - 1.11 SMACNA HVAC Duct Constnictiol7 Srandards - lnd Ed.. 1995

...",/\("' I\ir

n.."".1 •..••..•1..•.•..•._ •...•T ...........•.• ,,-

---

S31J.1118ISNOdS3~

l NOI!~3S

SECTION 2

,

The duct system designer should: a.

Match the fan to the system pressurc losses.

b.

Designatc the pressure class or classes for constmctíon of cach duct system, as appropriate and cost effective, and clearly identi fy these inlhe contra el dOClIIllenl.

c.

d.

•1

e.

Evaluate the leakage potential for ducts conforming to SMACNA or other standard s and supplement the requirements therein \Vith deletions and additions as may be pmdent and economical, giving due attention to the location ofthe ducts, the type of service, the equipment, dampers and accessories in the system, the tolerances on air balance and the performance objectives. He must account for leakage in equipment such as fans, coils, volume regulating boxes, etc., independently of duct leakage. Prudently specify the amount and manner of leakage testing (iftesting is deemed justified) and clearly indicate the acceptance criteria. Reconcile all significant inconsistencies between his performance specifications and his prescription specifications before releasing contract documents for construction.

f.

Avoid ambiguity created by references to non-specific editions of SMACNA or other documents he has specified.

g.

Have his contract documents reflect a clear scope of work known by hím to conform to applicable codes and regulations, including those addressing energy conservatíon.

RESPONSIBILlTIES h.

Require adequate submittals and recordkeeping to insurc that \York in progress confonl1s to the contract documcnts in a timely manner.

2.2 The ductwork installer should: a.

Comply \Vith the contract documcnts.

b.

Provide all required preconstnlction ter-installation submittals.

c.

Report discovery of conflicts ties, etc., in a timely manner.

d.

Schedule any required leakage tests in a timely manner, with appropriate notice to authoritieso

e.

Seal duct where and as specified.

f.

Examine the leakage criteria, the specified duct construction classes, and the testing and balancing specifications for consistency!

g.

Select duct constmction options and sealing methods that are appropriate and compatible, giving due consideration to the size of the system.

h.

Control workmanship.

!.

Acquire ture and ods and pecially inherent

J.

Demonstrate that following prescnptlve measures for constmction precludes the need for leak testing .

and af-

and ambigui-

inLfeased understanding of the naamount of leakage and of the methcosts of sealing and leak testing. esthe amount of preparation time in demonstrating a successful test.

S3~na3~O~dlV~3N3~ ENOI.l~3S

SECTION 3

, ~

GENERALPROCEDURES

3.1 Conventional ]eak testing is based on pOSltlve pressure mode analysis. It involves inserting temporary plugs (plates, sheets, balloons, bags, etc.) in openings in a section of duct and connecting a blower and a flowmeter lO the specimen in such a manner that pressurizing the specimen will cause all air escaping from the specimen to pass through the flowmeter.

3.9 Remove temporary blanks and seals. 3.10 Precautions a.

Verify that an adequate and matched electric power source is available for the test apparatus.

b.

Detennine that the capacity of the test apparatus is suitable for the amount of duct to be tested.

c.

Consider acquiring experience with leakage rates in the type of construction used before formaIly conducting field tests. This is especially advisable ifthe contractor has little experience with testing, is attempting to meet allowable rates much lower than normal, is including equipment in the test or is dealing with unfamiliar duct construction.

d.

Isolate equipment (fans, in-line flanged coils, volume regulating boxes, etc.) from tested ductwork. The system designer should ha ve independently accounted for leakage in equipment.

e.

Anticipate difficulty with any test of ductwork that has no prescription for sealing yet is required to meet an allowable leakage level.

f.

Do not overpressurize sure control or pressure behavior is unfamiliar; tus with flow restricted up pressure.

g.

Do not test uncured seals.

h.

Prepare carefuIly when testing in cold weather. Lo\\' temperature influences the effectiveness of sealants and gaskets.

1.

Instruct installers to use special care when assembIíng ducts that will be relatively inaccessible for repair.

J.

Condllct reqllired tests before externa] inslllation is applied and before ducts are conccaled by building enclosures.

k.

Do not overlook doors.

L

Do not leave test apparatlls unattended.

3.2 Select a test pressure not in excess of the pressure class rating of the duct. 3.3 Calculate the allowable or allocated leakage using leakage factors related to the duct surface area. 3.4 Select a limited

section

of duct for which the

estimated leakage will not exceed the capacity of the test apparatus. 3.5 Connect

the blower and flowmeter

section and provide temporary ends of the ductwork.

to the duct

seals at all open

3.6 To prevent overpressurizing ofthe ducts, start the blower with the variable inlet damper closed. Controlling pressure carefully, pressurize the duct section to the required level. 3.7 Read the flowmeter and compare the leakage in cfm per square foot with the allowable rate determined in step 3.3. If it meets the allowable rate proceed to step 3.8. If it does not meet the allowable rate follow steps 3.7a through 3.7c. a.

b.

,

c.

Inspect the pressurized duct (and all connections between the flowmeter and the duct) for all sensible leaks. A smoke bomb test may be used to identify actual leak sources. Ifnecessary apply a soap solution to locate small leaks. Depressurize: repair all audible and other significant leaks. Ifthe first pressurization failed to deveIop the required test pressure level and significant leak sites were not discovered, consider the foIlowing alternatives: Divide the specimen being tested into smaller segments or use larger test apparatus. Allow repaired seals to cure and retest until the leakage rate is acceptable.

3.8 Comnlete

test renorts

ano

ir reollirf'd

oht'lin

J1'fniJ"~

ducts. Provide presrelief iftest apparatus e.g., start test apparaand gradually build

leakage potential

n~¡ni,... h" ;nf~rn"'~nn

r'It.¡•••..••11 •.•••"' •.•••h·

at access

•..••.•••,1

h...,

3.2

n.

Avoid excessíve blanking, consistent with industry practíce, by testing prior to insta] lation of collars for room air terminals.

o.

Take testing seriously; work sequence, work duration and costs can be significantly affected.

)

11'

j

-i

,)

)

,

11'

)

-i

>

J

-i

')

:

,¡,

,)

n

J

)

n

H

_

1[

llJ

DO NOT OVERPRESSURIZE

WARNING:

CONVENIENT PLACE BLANK OFF AT~

(TYPICAL)

TEMPORARY CAP S

"'

THE DUCT

DUCT TEST PRESSURE MANOMETER

H II

I •• Ir

MANOMETER

TEMPORARY CAPS SEALED SECURELY

ORIFICE DIFFERENTIAL

~í 11 II1

le·

AVOID LEAKS IN DUCTING FROM ORIFICE TO TEST DUCT.

I ',e

NOI.L"~I=lISS"l~ 3~")I"31 P NOI.l~3S

,

SECTION 4

~

4.1 Leakage classification identifies a pennissible leakage rate in cl'm per 100 square feet ol' duct surl'ace according to the relationship Cl = F .;(p)065 as defined in section 1.3.

·w'

F is the leakage rate in cfmJl 00 s.f. of duct surface (It varies with static pressure). Pis the static pressure. Values for (P) 0.65 are given in Appendix E. When P = 1, Cl = F. Cl is the leakage c1ass and is a constant. 4.2 Leakage classifications 3, 6, 12, 24 and 48 are shown in Figure 1 for pressures up to 10" wg They are associated with duct type, seal c1asses, and construction pressure cIasses in Table 4-1. Table 4-1 is the basis of evaluating duct confonning to the SMACNA duct construction standards unless a specifier gives other limits. 4.3 If, at the specified test pressure, the leakage factor (F), by test, is lower than or equal to that associated with the specified leakagt; class, the duct is in compliance. Alternatively, ifthe leakage constant (Cd detennined fram tests is lower than or equal to the speeified leakage class, the duet is in compliance. 4.4 Assignment of leakage cIasses involves careful consideration of system size, duct location, sealing and construction class. Arbitrary assignment of an al!owable % of leakage in disregard of these factors can indicate unobtainable results. A Y2% alIowance, for example, on a 3900 cfm system with 1300 s.f. of duct or on a 39,000 cfm system with 13,000 s.f. of duct would mean an unrealistic leakage factor of 1.5 cl'mllOO s.f. in each case. Similarly, arbitrary assignment of 10" wg c1ass construction for a system operating at 1" wg in order to get leak class

,

LEAKAGE CLASSIFICATION 3 rectangular duct would not be cost efTective. Assigning a leakage c1ass3 to a 1" wg rectangular duct system may address an achievable result but the associated difficulty and costs wiII be excessive. Table 4-1 represents the leakage expected using Seal Classes A, B, and C as indicated on duct construction of the types typically selected for each pressure class. Conceivably Seal Class B or A could be applied at construction pressure c1asses lower than indicated in Table 4-1. However, unless joint type, seam type, duct wal! thickness and specific sealing method were already colIectively prequalified by tests (or by an aeceptable expenenee record at a higher pressure) leakage rate is less predictable. The benefits of setting alIowable leakage rates lower than shown in Table 4-1 should be carefully weighed against the costs of achieving them. 4.5 A sample leakage cIassification analysis is given in Appendix B. 4.6 No leakage tests are required by the SMACNA duct construction standards or by this leakage test manual. When the designer has only required leakage tests to be condueted in accordance with the SMACNA HVAC Air Duct Leakage Test Manual for verification that the leakage cIassifieations in Table 1 have been met (and has given no other criteria and scope), he is deemed to have not fulfilled the responsibilities outlined in section 2.1 for praviding a clear scope of work. When duct construction pressure cJasses are not identi fied in the contraet drawings and the amount of leakage testing is not set forth in the contract documents, any implied obligation ofthe instalIer to fulfil! the responsibilities under section 2.2 in regard to leakage are deemed to be waived by defective specification.

100

90 80 70 60 50

40

u: 30 Oen

O

O

..-

Ci

c..

20

~ u..

U

Ctl

O) •...

LL

o

O .lIl: Q) LL ....J Ctl

Q)

10 86759 4

3. ~,.

~~'

pO.55

0.1

0.2

0.3

OA

0.5 06 0.7

091.0

2.0

3.0

4.0

50 6.0

7.0

90

Pressure in Inches 01 Water

SEETABLE

4-1 FOR ASSOCIATED

~==APPENDIX

DUCT CONSTRUCTION

CLASS

E FOR TABULAR FORM OF FIGURE 4-1

FIGURE 4-1 DUCT LEAKAGE CLASSIFICATION

4.2

~

~--'-~----'

I

.d

OUCT CLASS METAL JOINTS, SEAMS

B 6 PENETRATIONS ]2 JOINTS A ONLY 243" 3]2 TRANSVERSE JOINTS TRANSVERSE ANO ALL ANO SEAMS Cwg 4".6",10" wg )1;, ", ]", 2"WALL wg

Table 4-1 Applicable Leakage Classes NOTES:

].

..,

3.

4.

Leakage classes in Table 4-1 apply when the designer does not designate other Iimits and has specified Sea] Class C for)l;,1I and 1" wg See text on sealing in the HVAC-DCS manual.

Unsealed rectangular Leakage Class 48.

metal duct may follo\V

Fibrous glass duct may folIow Leakage Class 6 (at 2" wg or less). Unsealed flexible duct leakage average is estimated 10 be Class 30. Sealed nonmetal flexible duct is an average ofClass

5.

6.

12.

7.

Leakage C]ass (Cd is defined as being the leakage rate (cfmlIOO s.f.) divided by pO.65 where P is the static pressure (in wg). When P is numerically equal to 1" the leakage rate is CL. See Figure 4-1.

8.

The duct pressure c1assification is not the fan sta tic pressure nor the external static pressure (on an HVAC unit) unless the system designer has made such an assignment is his contract documents. Unless construction class is otherwise specified it means a static prcssure c1assification in the SMACNA HVAC-DCS. Those classifications pertain to maximum operating pressure in the duct as follows: 0.5" wg maximum 0.6" to 2" wg maximum

See SMACNA HIAC Duct Systems Design

1.1" to 2" wg maximum

Manual Table 5-1 for longitudinal age rates.

2. 1" to 3" wg maximum

Although for lower conform pressure. results.

seam leak-

Seal Class A or B might be assigned pressures. the leakage c1ass may not to those associated with the higher Otherconstruction details influence

3.1" to 4" wg maximlll11 4.1" to 6" wg l11aximum 6.1" to 10" wg maXil1111111

snJ.Vl:IVddV J.S3J.

s NOI.L:>3S

--

,

SECTION 5

TEST APPARATUS

5.1 Test apparatus shal1 consist of an airflow measuring device, flow producing unit, pressure indicating devices and accessories necessary to connect the metering systcm to the test specimen. 5.2 Thc contractor conducting tests shall arrange for or provide al1 temporary services, al! test apparatus, all temporary scals and all qualified personnel necessary to conduct the specified testing.

5.8 Taps for st3tic pressure indication across orifices shall be made with Y\6" to Ya diameter hoJes 11

drilled neatly in the meter tu be wal!. The interior ofthe tube shall be smooth and free of projections at the dril!ed holes. 5.9 Pressure differential sensing instruments shall be readabJe to 0.05" scale division for now rates below 10 cfm or belO\v 0.5" wg di fterential. For higher flow scale divisions of 0.1" are appropriate. U-tube manometers should not be used for readings Iess than J of water. 11

5.3 Test apparatus shal1 be accurate \vithin plus or minus 7.5% at the indicated flow rate and test pressure and shall ha ve calibration data or a certificate signifying manufacture ofthe meter in conformance with the ASME Requirements for F1uid Meters. ASME qualified orifice meters do not require calibration. 5.4 Unless otherwise specified, test apparatus shall be used asoutlined in this section, as described in Section 3 and as recommended for good practice.

5.10 Liquid for manometers shall have a specific gravity of I (as water) unless the scale is calibrated to read in inches of water contingent on use of a liquid of another specific gravity, in which case the associated gage fluid must be used. 5. J 1 The duct test pressure shall be sensed only from an opening in the duct. 5.12 The illustration

5.5 Typical construction and use of orifice meters is indicated in Figures 5-1 and 5-2. TypicaI orífice selections are shown in Figure 5-3. 5.6 The use offlow nozzles, venturi meters, laminar flow meters, rotameters, Pitot tube meters or other meters having equivalent accuracy and suitability is not prohibited by the references herein to orifice meters. 5.7 The

recommended

mlnlmum

thicknesses

larger diameters. Steel or stainless steel plate material is preferable. Plates shall be flat and have holes with square edges (90°) that are free of burrs. Orifice openings shall be centered in the meter tube. Plates shal1 be perpendicular to the tlow path and shall be free of leaks at points of attachment.



0.50 0.36 0.60 0.70 0.490 0.52 0.623 0.600 0.608 0.699 0.88 0.73 0.63 0.82 O.()C)O OAO 0.250 0.160 0.650 0.30

use of it on the

5.13 Instruments must be adjusted before pressure is applied.

to zero reading

5.14 Airflow across a sharp edge orifice with standard air density of .075 Ib/ft3 is calculated from

_Equation 5-1 Q = 2L8K(D2r /¿jp

for

ori fice plates in tubes of various diameters are Y\6" to 6" diameter, 3/32" to 12" diameter and Ya" for

D:>/D1

of the flowmeter on test blower

discharge does not precIude suction side.

Where Q = air volume. cfm K = coefficient

of airflo\V from Table 5-1 or

Appendix J 0= orifice diameter, inches (02) OP= Pressure drop across orifice. inches wg

/

BLOWER WITH INLET OAMPER. BYPASS OAMPER OR VARIABLE SPEEO CONTROL

TESTE O OUCT

l- 401+ MIN. 201+ 401--1 J

I

1

----

01

OUCT TEST PRESSURE MANOMETER

_

'"

\

Xs" HOLE

lF

lI"

0.0.

------

G

/

FLOW STRAIGHTENER VANESORPERFORATEO PLATE ORIFICE PRESSURE OIFFERENTIAL MANOMETER

INCLlNEO MANOMETER (REQUIREO FOR ORIFICE OIFFERENTIAL BELOW 1" WG)

TUBE

1~" LONG

STATIC PRESSURE TAP ATORIFICE

NOTE: MANOMETERS MUST BE LEVELEO ANO ADJUSTEO TO ZERO BEFORE UNE PRESSURE IS IMPOSEO.

1

01

FLOW

! 1" LOCATION USE

3132"

OR

Ya 11

1"

OF FLANGE

(PIPE) TAPS

STEEL SQUARE EOGE ORIFICE PLATE

FIGURE 5-1 LEAKAGE TEST METER APPARATUS-FLANGE

5.2

TAPS

.

/

BLOWER WITH INLET OAMPER, BYPASS OAMPER OR VARIABLE SPEEO CONTROL

TESTEO OUCT

/

- 4Qt 20¡-/- 40,MIN.

1

~-........

O,

CB

\ OUCT TEST PRESSURE MANOMETER

FLOW STRAIGHTENER VANES OR PERFORATEO

-------

\

x," HOLE

'r: U"

STATIC PRESSURE ATORIFICE

N

ORIFICE PRESSURE OIFFERENTIAL MANOMETER

PLATE

INCUNEO MANOMETER (REQUIREO FOR ORIFICE OIFFERENTIAL BELOW 1" WG)

l\" 0.0. TUBE 1 ¡;;" LONG

TAP NOTE: MANOMETERS MUST BE LEVELEO ANO AOJUSTEO TO ZERO BEFORE UNE PRESSURE IS IMPOSEO. D2 0.3 0.7 0.6 0.8 0.4 0.5 f

FLOW

O2

O,

0.2

O, J

/-x-i /=.-0,~1 LOCATION OF VENA CONTRACTA TAPS USE

3h2"

OR

Ya"

X

0.36 D, 0.66 0.60 0.45 D, 0.74 0.53 0.71

STEEL SQUARE EDGE ORIFICE PLATE

FIGURE 5-2 LEAKAGE TEST METER APPARATUSVENA CONTRACTA TAPS

The ralio

01' orifice

diameler O2 lo meter lube interior

diameler 01 is known as lhe Bela (1)). or diameler r~llio. It is nonnally selecledin lhe range 01'0.710 0.3. The orifice-lo-lube area ralio (.'\2/A,) i::; an indication 01' lhe conlraclion of tlow. Kp in Table 5-1 is the overall prc::;::;ureloss lhal occurs from conlraL'ling ami cxpanJing lhe 110\\. Thus. lhe oritice cause::; a Kp x i'lP loss that atreclS blo\\'er capacily. 5.15

Select a tlmvmetcrsuilablc dllCl to be tesled: a.

b.

tClr1he Icakage inlhe

Using the target leakagc rale (cfmlOO s.r) for the desired amount 01' tcsted duct tind lhe cfm rcqllired. Al this cfin the blo\\-er \ViII ha\'c to produce a pressure approximatel.y cqual to the Slll11ofthe dUCl test pressure and lhe oritice ditlÚential pressure. Add 0.5" wg ir 02iO¡ is less than 0.5. This assumes that there are no extraordinary pressure losses in the lest meter and duct connecting it to lhe lest specimen. Selcct the meler trom Figure 5-3 or use Table and Equation 1 10 size a meter that \Vi11 have a tlo\\' curve of the desired range and

slill be wilhin the capacily 01' the blower. Characlerislics 01' lypical ori tices are shown in Table 5-2. 5.16 Precaulions

10

be followed for test apparallls:

a.

Start the bltmer wilh blocked suclion or discharg:c 10 a\oid o\'erprcssurizing: duclwork.

b.

Use clean manometers.

c.

Heal manometers cold \Veather.

d.

11'

manometer

to avoid ti'eezing tluid in

tlllid is blo\Vn out: retill wilh

the appropriate tluid: tor convenience add a drop ofwaler soluble dye to \Vater-tilled manometers. e.

Level position sensilive instnnnents them to zero scale reading.

and set

f.

Read liquid le\'els by viewing them horizonlally.

g.

Record instruments

5-1

5.4 ~------~~~~~~~~~~~~~~~

HVAC Air Duct Leaka~e Test Manual·

First

used for testing.

Fc-litinn

. J. ",. -~M"~U"

1000 -l'

f

,:;

.:

:

~-

:.::

.....

,.,

... , c-l

~

: ~

~~:

j~

:~:;::::;::::e

::::.-

~

.. ~;;:.:;~;;

;;-~~;;;:::J

:=:::'I~:::-;:~~:~: ~':-:- ~=;;-;

~~26

;;:"

D2/D,=0.7

:r:n: :~::.:~~i.~,~¡~·~'~'>i ;:;~;e::: ::::::

Q = 372 ',P,

:~::~:::~::: ~:::1

~~4

:::::.~~.:::~;-

.'.1.1.1

~~-::~=~? ":=;:~¡;:-:~:~; :=~--;- ; -=:::_~=~=:~ ::::~~

~:.: .•:~- :::~:.=:::::~:~:~:=:: ~:::~~:

100

~~·~~~9'·· t¡:r7~(~~¡ ii~~~~'~g~1 ....

- .- . uu . -

- ..

Q,

_n -- - ....• -- -- .••. '--

_o.. 'OO.

P

-.

----

-.

---



o:: ~---

··d-.Y'~

'7': 130

_._e; ::; ;-: .., __

,

__

u

.....,.--I--H~--~-'-i--i-,- •..-,-..-i: f----. ---:-c

• __

•.•_

-

-

,

-- __

- o c------

f-~

-----

-

-

+";-":'

-j--o--

~ i.92.~;.;;;;:~~ ~2::.~~.g~~::2 ~~.

mcr;;:

__ ~~:': ~:.~::~;::~~~:~J~;;;(= 'i. :i~~=_:::.::=é.· ~.!?=:: ~ I=.='~ ~~-

2

u.

O

·:_c=:./o

c:

41

.~::::--.=-----

3o

,:C:

u.

o

...............

o;::

"- ....c.···.':

Q)

::=c::.: '::-:1: :t.,}=!-Q

.... -,.

')6,'P

;"¡~.~ I2 ~; ••~l+ _

'0'_;""

__

:;::

O 10

-

::C

:.-

-::···::-.,Jf

:

.

!_ ~'-

.,~

~

1- '.

'--~~

:

•..

~.,

~.

._..



._""

-'-o

" .

' .. '

.~.;-~'=T±~! ~~ •• -

~ :'10 ~:._ ..~__~::.:~:::=:= _=~ ===~ ~-~.::::.: -, - --~'_-c--n __ ~-:- ;--·-'7'_.__ __ o -.- ..

::"::::::~. H·V-I---

~:::=_.

- .. - ::::-1=-=-==-.:,

::::=-~ :;~i~~:~ ~~:.~~~.:::~~ ~i-=·~:::=-~~:-:c:::~~;;:.:-:~.:Ei~::==: o::;

~~._._

n.~

••

~~~~==~~_~= -~."

= -~



+

---

•...

-.-

..~~::;'~ =~Iff]':J: ~:I -~--. l·

::'''.+'--_:.: -._ •.••• :~ . ...

'

4':

.~.-~

--'o. --- ~ --_0-."

--.---

::::::-::.:::h: ::-:::_ ___ m. __

--

- ..-..::'1'::::

0.511

1.0"

2.0"

3.0" 4.0"

6.0"

Orifice Differential

FIGURE 5-3 TYPICAL ORIFICE FLOW CURVES


>

...

r: ~

SlJ Il.l EC'f

"\)

_

PROJECT NO.

****

_

f'IELD TEST DATA RECORD

DUCT CONSTRUCTION

PRESSURE

SPECIFIED TEST PRESSURE (Pt)

LEAKAGE CLASS

AIR DUCT LEAKAGE TEST SUMMARY

***** **** **** ***** **** FACTOR PERFORMED DATA DATE DIAMETERACROSS BY CFM ORIFICE PRESSURE" DUCT TUBE BY CFM CFMII 00 ['Te WITNESSED ACTUAL ORIFICE ARlóA INDI:SIClNW.G. !T' (TEST SECTION)

_

_

FAN CFM (O)

~n

AIR SYSTEM

PROJECT NAME

CLASS (Pcl-------

_

PAGE

OF

"

TOTAl.

TESTED) RISERS

J

PROJECT NO, __

3432

-ª-

FIELD TEST DATA RECORD200

DUCT CONSTRUCTION

PRESSURE

SPECIFIED TEST PRESSURE (Pt)

LEAKAGE CLASS

AIR DUCT LEAKAGE TEST SUMMARV

**** ********* •• ******** ••• DESIGN DATA FACTOR BY ORIFICE DIAMETERACROSS ACTUAL DUCT CFM PRESSURE •• w.G. AREAIN WITNESSED TUBE BY FT2 CFM/IOO FT2 PERFORMED 9.639 ORIFICE 60.6 7" 7" 9.ó 9.654 1.4 -ISO :!.2" static pressure. At ;/;>" s.p. on Class 48 curve in Figure 4-1, 30 cfmllOO s.f. is read. 30 x 2074 ft2 100

= 622 cfm

622 cfm is 7.8% of 8000 cfm fan capacity. Alternative

Calculation

(as in Appendix A)

8000 cfm 2074 ft2

= 3.9 to 1 ratío

Allowable

leakage factor 30 X 3.9

1 = 7.7%

NOTE: The diflerence (7. 7 vs. 7. 8) occurs because 3.9 is roundedlrom 3.857. b.

Unsealed duct (;/;>" s.p. c1ass) operating at 0.3" s.p. If the system actually operates with 0.3" average static pressure and is unsealed, 22 cfm/l 00 s.r. leakage is read from the Class 48 curve 00 Figure 4-1 at 0.3" pressure. This is 456 cfrn or 5.7%.

c.

Leakage Class 24 Requiremeot, Pressure)

Ch" Static

From Figure 4-1, 16 cfm/IOO s.f. is read.

1~~ x 2074 x 322 cfm, which is 4.1 % of fan cfm.

CLASSIFICATION

Alternative

method:

16 x 3\

SYSTEM DATA d. Leakage Evaluation for Supply Duct in Figure 8-1, page 8-4 of the SMACNA HVA C Duel Design Manual

Leakage Class 12 Requirement, Pressure) From Figure 4-1,7.5/100

=

4.1 (;/;>"

Static

x 2074 = 156 cfm

or 1.94% gOOOctin fan /;>"

wg duct construction

c1ass

e.

Allowable

leakage of 5%

320 Lf. ofduct

2.074 ti~ duct

i.9 cfm/s.r.

is average

8000 cfm l.e., 2074 s.r.

=

distribution

83. )7)

If 5°'0 is allowed (i.e., 400 cfm) this is :~~ or 19.3 ctin/I 00 s.f. allowable; . F 19.3 Leakage class If Cl. = p0l15 = 0.64 = 30 The plan on page 8-5 ofthe duct design manllal shows an access door, two volume dampers and a flexible connection (vibration isolation tvoe): leakaQ'e allow-

L ®

-

> ®O® ® t

~

6000 cfm'" O VD 500 12 cfm x 18 x 44 x 18' 0.13" w.c. 30' 20'

®

lL

2 @ 16 8000cfm x 8 Gr 20' 500 cfm ea.

~

UNSEALED

F

Leakage Factor (F) in CFM/100 S.F. Duct

These factor may also be read from Figure 4-] . See Table 4-1 for sea! class and pressure class.

--APPENDIX

F

LEAKAGE 50 150 400 300 500 250 5625 00 833 417 833 200 100 250 200 333 666 167 ]25 100 167333 4]7833 500 750 667 833 208 83 100200 300 600 50 2.500 USO 250 600 800 400 500 800 12.500 7.500 2.000 5,000 5.000 10,000 2,500 7,500 20.000 40,000 13,333 5,000 5,000 6,250 ],667 500 1,000 2,500 3,333 4,000 20,000 32400 5,000 ,333 8~333 15,000 30,000 1,250 3,750 1,333 1,250 2,083 1,500 25,000 10,000 3,000 4,167 1,667 10,000 6,667 6,000 ,000 1,666 6,666 15,000 10,000 ,500 1,000 ],000 2,000 1,500 2,500 1,000 2,667 1,200 1,000 1,000 1,250 2,500 4,000 1,600 3,000 2,000 1,333 3,333 8,000 CFM/IOO SFO

25

LEA K TEST RIG FLOW CAPACITY

IN CFM

Table F-l Amount of Duct to be Leak Tested (SFD) SFD IS DUCT SURFACE AREA IN SQUARE FEET NOTE: The statie pressurefor the test mU8i develop within the efm range ofthe test rig; ifit does not the leakage in the amount of dl!t;ueSletHS (prooably) greater than the estimated amOlmt.

,,,

;It

1"

l"

311

tU

211

)"

8"

6"

4"

2"

O"

8"



I

:.-

¡

I

28'; - 30" 5.33 ..':67.-.600.

"1

DUCT

i

I

_1467U~i~~t:~.~:;;-::~ r 6.00 6.33 6.67 7.00 ::: 7.33 :: 7.67

8.00

,

I

¡-

'

-.1

!

.

I

. --- ¡.

U

t

----

--

'1

....

,-

- .

..

_l .. __

.L_.

"". _

J·_+-rJ

-.--.----j- -

..

- .-

._u_

-.,.,,-_.-~._-

18.00 L2?:~~1

..

----.---

----

... -.-.- ..

11.00 1200 ::: :::

o

----

••

n

·-··----1

,

.

,

I

I

. 2 .00 i 30.00 I 32.00

8

- -1""

¡-..--..-..--

i

I

¡

I I

~~~.·~·~fr.

i

,"u. __.•__ ..·--···..

22.00 .~~~~O. 25.00:7.00 j 29.00 24.00 26.00 28,00 I 30.00

~~~~~::~

...-,,--

16':O'.'O*OO,:i~OO:

-_==~j==[]=I==rl:r3200I~.::]

- ••

_.__n·

_,-,",O

16.00 17.00 18,00 19.00 20,00 "_I' 22,00 24,00 26.00 ..... I ••

------

13.00 140':

I

~i:~ -:¡~;~~ ;:~::~~:~ ~~!

t

10.00 12.00' 11.00 -73.00 12.00 14.00 13.00 -;5."00" 14.00 "1(;.00"';-7,'00 15.00 16.00 ';8~O--·20.ool22~·(;O17.00 19.00 I 21.00123.00 '24-.00' 14.00 15.00 16.00 17.00 18.00 19.00 21.00123,00 -25,00-

--==~_:-~o ------ .---__

__ ".. -

. =.•• -- .. =.• ' -- .

-.-.\

¡__ ._._ .. --

1:

G')

>
O

I

! r--...

I.-

~ ~ 13=0.1 r-. 1" I J.- _ I '-".~ I~ '\~ f"

"

13=0.6-1--

i 0.5 13=

~

0.90 0.00

0.05

0.10

Acoustic Ratio

0.15 L1

0.20

p

kP1

FIGURE L-1

Reprinted

from Handbook

GAS EXPANSION FACTOR, ~ VERSUS ACOUSTIC RATIO, iJPIKP1

No. 108900. Flol\"}J1eler Orifice Si=ing. Físcher and Poner, eo., wíth permíssion.

rica

""O

Is:

""O

1978. From ISA Recommended

Liquids

Practice RP2, I---Manometer

·100

»of Manometric - -Properties -m- ----

·24-42 -4 Coeflicienl 01'Thcrmul Expunsion nllll-intllllll. 300+ ,170 -31 O,3-50°C 427 17.5 .J.12 .--0'·(,0 ~o KI, 40 202 2 10 176 +(U\ K(.,I .10 20 100 1/') 230 /\l'l'l vlenl' ICIl'IIhn>11\ idc 2,l)('420/4 173 70 554320 64 !nw absllrbs 1,2C1O 20/4 absorbs \VlIlcr 6K7 12 (,K 111I1lllI'lI.\ .187 644 O (,(,0 241 3 140 il142 40 20120 ,1,IKO 1.11).1.25 non-inlllll11, 212 KY) 32 (((, Vapor ,100+ 20 non-inll:II1\. -201\\ (,7') 101 -.18 250 1.1.570 IOKO (,00 IIhso,hs 95R 532 75+ 34,7 2.()Kl) 20/4 354 (,38 (,8 O,(l9 1,1155 20/4 ·UO150+ 77H 30,\5,2 2HI 5056K 30-100 Point 1,024-30 ID7 340 165 106 367 74,7 0,85 IIbsorbs O,