Indicator mineral exploration methodologies for VMS

0 downloads 0 Views 25MB Size Report
The results distinguish magmatic, metamorphic and supergene ..... Simplified bedrock geology map of the Izok Lake deposit. .... Principle component analysis results of electron microprobe data for magnetite ..... make magnetite a nearly common mineral found in a wide variety of igneous, ...... Sedimentary rocks, 2nd edition.
Indicator mineral exploration methodologies for VMS deposits using geochemistry and physical characteristics of magnetite

Thèse

Sheida Makvandi

Doctorat interuniversitaire en sciences de la Terre Philosophiae doctor (Ph.D.)

Québec, Canada ! ! ! ! !

© Sheida Makvandi, 2015

Résumé Pour évaluer le potentiel de la magnétite en tant que minéral indicateur des dépôts de Sulfures Massifs Volcanogènes (SMV), la composition des éléments traces et les caractéristiques (morphologie, taille des grains et textures de surface) de la magnétite provenant de différents contextes ont été investiguées. Les caractéristiques physiques et les associations minérales de la magnétite du dépôt d’Izok Lake (Nunavut, Canada), de la roche encaissante et du till recouvrant la zone à proximité ont été étudiés en utilisant la microscopie optique, le Microscope Électronique à Balayage (MEB) et l’Analyseur de Libération Minérale (MLA). Les résultats permettent de distinguer la magnétite magmatique, métamorphique et supergène dans un environnement de SMV, et indiquent que 1) la taille des grains de magnétite et leur relation texturale avec les associations minérales caractérisent la roche encaissante, 2) l’angularité de la magnétite du till est indicatrice de la forme originel du minérale, et 3) les textures de surface de la magnétite détritique sont diagnostiques des processus affectant les grains durant l’érosion, le transport, et après la déposition dans les sédiments glaciaire. La composition de la magnétite provenant d’Izok Lake (Nunavut, Canada) et d’Halfmile Lake (Nouveau-Brunswick, Canada) et de leurs roches encaissantes a été étudiée en utilisant le MEB, la microsonde électronique, et l’ablation laser- spectrométrie de masse à plasma à couplage inductif (LA-ICP-MS). Les données censurées ont été transformées en utilisant la routine R robCompositions, puis converties en utilisant les log-ratios centrés pour éviter tout effet de fermeture. L’analyse en Composantes Principales (ACP) permet de discriminer différents types de roche encaissantes et des dépôts basés sur la teneur de la magnétite en Si, Ca, Zr, Al, Ga, Mn, Mg, Ti, Zn, Co, Ni et Cr. Les données de composition de la magnétite de seize dépôts SMV (mafique, bimodal mafique, bimodal felsique, felsique-silicoclastique), et de trois Formations de Fer Rubanées (FFR) associés à des SMV ont été investiguées par analyse discriminante par les moindres carrés partiels (PLS-DA) pour distinguer les différentes compositions de magnétite basées sur les teneurs en Si, Ca, Al, Mn, Mg, Ti, Zn, Co et Ni. Le résultat indique quatre types de magnétite en association avec les dépôts de SMV: magmatique, hydrothermale, métamorphique, et la magnétite zonée. L’analyse des données par PLS-DA sépare la

iii

magnétite des SMV et BIF des autres types de gites minéraux. Les analyses en PCA et PLS-DA des échantillons de la roche encaissante/dépôt SMV et FFR produisent un modèle de discrimination de la composition de la magnétite dans le till qui peut être utilisé pour identifier, en exploration minérale, la magnétite dérivée de l'érosion d'un SMV par un glacier.

iv

Abstract To evaluate the potential of magnetite as an indicator mineral for Volcanogenic Massive Sulfide (VMS) deposits, trace element compositions and physical characteristics (morphology, grain size, and surface textures) of magnetite from various VMS settings were investigated. Physical characteristics and mineral associations of magnetite from the Izok Lake deposit (Nunavut, Canada), its host bedrocks, and till covering the nearby area were studied using optical microscopy, Scanning Electron Microscopy (SEM), and Mineral Liberation Analysis (MLA). The results distinguish magmatic, metamorphic and supergene magnetite in the VMS setting, and indicate that 1) the grain-size distribution of magnetite and its textural relationships with mineral associations fingerprint the host bedrocks, 2) the angularity of magnetite in till is indicative of the original shape of the mineral, and 3) the surface textures of detrital magnetite are diagnostic of processes affecting grains during erosion, transport, and after deposition in glacial sediments. Variation in magnetite composition from the Izok Lake (Nunavut, Canada) and Halfmile Lake (New Brunswick, Canada) deposits and their host rocks were studied using SEM, Electron Probe Micro-Analyzer (EPMA), and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). The data were transformed for censored values using the R-package robCompositions. Transformed data were converted using centered log-ratio to overcome the closure effect, and then were investigated by Principal Component Analysis (PCA) to discriminate different rock/deposit samples based on Si, Ca, Zr, Al, Ga, Mn, Mg, Ti, Zn, Co, Ni and Cr contents of magnetite. The data from sixteen VMS deposits from four subtypes (mafic, bimodal-mafic, bimodalfelsic, and felsic-siliciclastic), and three VMS-associated Banded Iron Formations (BIF) were also investigated by Partial Least Squares Discriminant Analysis (PLS-DA). PLS-DA to distinguish different compositions of magnetite based on Si, Ca, Al, Mn, Mg, Ti, Zn, Co and Ni contents. The results indicate four types of magnetite in association with VMS deposits: 1) magmatic, 2) hydrothermal, 3) metamorphic, and 4) zoned magnetite. PLS-DA separates VMS and VMS-associated BIF magnetite from that of other mineral deposit types including Ni-Cu, porphyry, IOCG and IOA deposits. PCA and PLS-DA of magnetite data

v

from VMS bedrock/deposit and BIF samples yield discrimination models that can be used to classify magnetite compositions in till samples for mineral exploration.

vi

Table of Content

Résumé .......................................................................................................................................... iii Abstract ...........................................................................................................................................v List of Tables ................................................................................................................................ ix List of Figures ............................................................................................................................... xi Acknowledgments ........................................................................................................................xv Foreword .................................................................................................................................... xvii

Chapter 1 Introduction ........................................................................................................ 1 1.1.

Bckground .........................................................................................................................1

1.2.

Research objectives ...........................................................................................................7

1.3.

Thesis outline ....................................................................................................................8

Chapter 2 “The surface texture and morphology of magnetite from the Izok Lake volcanogenic massive sulfide deposit and local glacial sediments, Nunavut, Canada: Application to mineral exploration” ................................................................................. 11 Résumé: .....................................................................................................................................11 Abstract:.....................................................................................................................................12 2.1.

Introduction: ....................................................................................................................13

2.2.

Methodology ...................................................................................................................18

2.3.

Results .............................................................................................................................21

2.4.

Discussion .......................................................................................................................41

2.5.

Conclusions .....................................................................................................................51

Chapter 3 “Principal Component Analysis of magnetite composition from volcanogenic massive sulfide deposits: Case studies from the Izok Lake (Nunavut, Canada) and Halfmile Lake (New Brunswick, Canada) deposits” ................................ 53 Résumé: .....................................................................................................................................53 Abstract:.....................................................................................................................................54 3.1.

Introduction .....................................................................................................................55

3.2.

Geologic settings .............................................................................................................60

3.3.

Methodology ...................................................................................................................62

3.4.

Results .............................................................................................................................69

3.5.

Discussion .......................................................................................................................93

vii

3.6.

Conclusions .................................................................................................................. 104

Chapter 4 “Partial Least Squares Discriminant Analysis of trace element compositions of magnetite from various VMS deposit subtypes: Application to mineral exploration” ........................................................................................................ 107 Résumé:................................................................................................................................... 107 Abstract: .................................................................................................................................. 108 4.1.

Introduction .................................................................................................................. 109

4.2.

Sample selection and compositional diversity in selected VMS deposits .................... 113

4.3.

Methodology................................................................................................................. 116

4.4.

Results .......................................................................................................................... 121

4.5.

Discussion..................................................................................................................... 134

4.6.

Conclusions .................................................................................................................. 146

Chapter 5 Thesis conclusions and recommendations for future work ........................ 149 5.1.

General conclusions...................................................................................................... 150

5.2.

Recommendations for future work ............................................................................... 152

Bibliography ..................................................................................................................... 155 Appendices ........................................................................................................................ 187 Appendix-I: Variable contributions for Mag from VMS deposits in Fig. 4-4B……………..187 Appendix-II: Variable contributions for Mag from the VMS deposits Fig. 4-6B…………...189 Appendix-III: Variable contributions for Mag from mineral deposits in Fig. 4-7B………....191 Appendix-IV: The range of detection limits for A) EMPA and B) LA-ICP-MS analyes…...192 Appendix-V: EMPA raw data for Mag from the Izok Lake area……………………………193 Appendix-VI: LA-ICP-MS raw data for Mag from the Izok Lake area……………………..203 Appendix-VII: EPMA raw data for Mag from the Halfmile Lake area……………………..209 Appendix-VIII: LA-ICP-MS raw data for Mag from the Halfmile Lake area………………222 Appendix-IX: EPMA raw data for Mag from the other VMS settings……………………...227 Appendix-X: LA-ICP-MS raw data for Mag from the other VMS settings…………………231

viii

List of Tables Table 2-1. The Izok Lake studied bedrock samples description. .......................................................................22! Table 2-2. The Izok Lake studied till samples description.................................................................................24! Table 2-3. The proportion of microtextures found on the surface of magnetite in bedrock samples. ...............24! Table 2-4. The proportion of microtextures found on the surface of magnetite in till samples from the Izok Lake area. ..........................................................................................................................................29! Table 3-1. Trace element compositions of associated spinel group minerals in Figure 3-2G, obtained by EPMA (in wt%). ................................................................................................................................70! Table 3-2. Average compositions and standard deviations (Std) for minor and trace elements (in ppm; obtained by LA-ICP-MS) in magnetite from Izok Lake bedrock samples. ......................................77! Table 3-3. Average compositions and standard deviations (Std) for minor and trace elements (in ppm; obtained by LA-ICP-MS) in magnetite from Halfmile Lake bedrock samples. ...............................83! Table 4-1. List of VMS deposits studied. .........................................................................................................117! Table 4-2. Mean compositions of magnetite (in ppm) from VMS deposits BIFs studied. ..............................130!

ix

List of Figures Figure 2-1. Simplified bedrock geology map of the Izok Lake deposit. ............................................................16! Figure 2-2. Locations of bedrock and till samples in the Izok Lake area ..........................................................19! Figure 2-3. Typical morphology and microtextures of magnetite from Izok Lake massive sulfide lenses. ......26! Figure 2-4. Typical surface textures of magnetite from gahnite- rich dacite (A to D), iron formations (E to G), and gabbro (H & I). ...........................................................................................................................27! Figure 2-5. Typical morphology of till magnetite ..............................................................................................28! Figure 2-6. A selection of mechanical textures on the surface of Izok Lake till magnetite. ..............................33! Figure 2-7. Different forms of dissolution characterizing the surface of till magnetite grains. .........................34! Figure 2-8. A to C) Precipitation texture overprinting dissolution texture (shown by arrows). D) Overgrowth rims of Mag2 precipitated on surfaces of till magnetite. E) Widespread precipitation of Mag2 masked mechanical microtextures. F) A dissolution pit filled by precipitation of Mag2. ................35! Figure 2-9. Histograms show the proportions of euhedral, subhedral, and anhedral crystals of magnetite from different Izok Lake bedrock samples. ...............................................................................................35! Figure 2-10. Izok Lake till magnetite grains classified into 5 roundness classes of Powers’ angularity chart. .37! Figure 2-11. Distribution of magnetite grains from Izok Lake till samples among different roundness classes. ...........................................................................................................................................................37! Figure 2-12. Equivalent Ellipse enclosed in a particle to calculate the angularity by the MLA. .......................38! Figure 2-13. Box-and-whisker plots showing values of angularity of magnetite grains obtained from equation (1) in Izok Lake bedrock and till samples. ........................................................................................38! Figure 2-14. Cumulative weight percent passing graphs showing grain size distribution of magnetite in A) bedrock samples and B) till samples. ................................................................................................40! Figure 2-15. The diagram shows comparison between frequency of occurrences of microtextures in Izok Lake till magnetite, Wahianoa magnetite, and Weichselian quartz. ..........................................................46! Figure 3-1. A) Location map of the Halfmile Lake area in eastern Canada. B) Simplified bedrock geology map of the Halfmile Lake district. C) Locations of till samples in the Halfmile Lake area.. ...........61! Figure 3-2. Backscattered electron images of mineral grains in the Izok Lake bedrock samples .....................72! Figure 3-3. Backscattered electron images of mineral grains in the Halfmile Lake bedrock samples. .............76! Figure 3-4. Principle component analysis results of electron microprobe data for magnetite from the Izok Lake bedrock samples. ......................................................................................................................80! Figure 3-5. Principle component analysis results of laser ablation inductively coupled mass spectrometry data for magnetite from the Izok Lake bedrock samples. .........................................................................81! Figure 3-6. Projection of A) EPMA and B) LA-ICP-MS data of magnetite in till samples from the Izok Lake deposit area into t1-t2 models defined by p1-p2 in Figure 3-4B and Figure 3-5B. C) Histograms show proportions of magnetite grains in till with the signature of mineralization, unmineralized bedrock, and unclassified grains in A. ..............................................................................................82! Figure 3-7. PCA results of EPMA data for magnetite from Halfmile Lake bedrock samples. ..........................85! Figure 3-8. PCA results of LA-ICP-MS data for magnetite from Halfmile Lake Lake bedrock samples. ........86! Figure 3-9. Projection of A) EPMA and B) LA-ICP-MS data of magnetite in till samples from the Halfmile Lake deposit area into t1-t2 models defined by p1-p2 in Figure 3-7B and Figure 3-8B. C) Proportion of magnetite grains in till with the signature of mineralization, unmineralized bedrock, and unclassified grains in A. .............................................................................................................91!

xi

Figure 3-10. PCA of EPMA data for Mag from Izok Lake and Halfmile Lake deposit districts ...................... 92! Figure 3-11. PCA of LA-ICP-MS data for Mag from Izok Lake and Halfmile Lake depoit districts. ............. 93! Figure 3-12. PCA of LA-ICP-MS data for magnetite from Izok Lake and Halfmile Lake depoit districts. ..... 94! Figure 3-13. Projection of A) EPMA and B) LA-ICP-MS data of till magnetite from Izok Lake and Halfmile Lake deposit districts into t1-t2 models defined by PCA in Figure 3-11B and Figure 3-12B. ........ 94! Figure 3-14. Chemical maps of zoned Mag from Halfmile Lake alteration zone by EPMA. ........................... 99! Figure 4-1. Locations of studied VMS deposits and VMS-associated BIFs on simplified bedrock geology maps of A) Canada and B) Oman. .................................................................................................. 118! Figure 4-2. A selection of figures showing mineral aggregates from VMS deposits and VMS-associated BIFs studied. ............................................................................................................................................ 126! Figure 4-3. Chemical maps of zoned Mag from the Ansil bimodal-mafic VMS deposit by EPMA .............. 127! Figure 4-4. PLS-DA of LA-ICP-MS data for Mag from various subtypes of VMS deposits, their host bedrocks, and VMS-associated BIFs. ............................................................................................. 131! Figure 4-5. PLS-DA of LA-ICP-MS data for Mag from the studied VMS deposits and VMS-associated BIFs of the Bathurst Mining Camp ......................................................................................................... 132! Figure 4-7. PLS-DA of LA-ICP-MS data for Mag from various ore deposit types including VMS, VMSassociated BIF, Ni-Cu, IOCG, IOA, porphyry and the Bayan Obo REE-Fe-Nb deposit. .............. 134!

xii

……dedicated to my loved ones: My Mother, My Father & My husband

xiii

Acknowledgments My sincere gratitude is expressed to my dear supervisor, Professor Georges Beaudoin, for his professional guidance and continuous encouragement throughout my thesis work. His vast knowledge and incisive insight have been inspiring. His support, and valuable comments and suggestions have always lighted the way throughout my PhD research. I sincerely appreciate M. Beth McClenaghan, Massoud Ghasemzadeh-Barvarz, Eric C. Grunsky, Daniel Layton-Matthews and Carl Duchesne for their contributions to this research, and also for their suggestions and scientific/technical support. I would also like to acknowledge my committee members who graciously agreed to serve on my committee, when they were probably up to their neck in work. Thank you and the best of luck in your future endeavors. I also wish to acknowledge the kind, cordial and helpful staffs of Département de géologie et de génie géologique of Université Laval, especially Marc Choquette for his technical supports for SEM and EPMA, and also the secretarial staffs for putting up with me and answering all my questions. I would like to thank my colleagues and friends (Émilie Boutroy, Erik Lalonde, Marion Lesbros, Thomas Raskevicius, Nelly Maneglia, Clovis Cameron Auger, and Anne-Aurélie Sappin) for their moral support, and for creating such a good atmosphere in our office/research group. Finally, but most importantly, I would like to extend my deepest gratitude to my family for allowing me to realize my own potential. All the support they have provided me over the years was the greatest gift anyone has ever given me. Without my parents’ encouragement, sacrifices and patience, I may never have gotten to where I am today. Also, I need to thank my best friend, my husband, Mousa, for his endless support, inspiration, and encouragement throughout this research effort, and always at difficult times. This dissertation would not have been accomplished without the help and moral support of my loved ones.

xv

Foreword Magnetite is common in many different mineral deposit types. This widespread distribution as well as the potential of magnetite to fingerprint the chemistry of its host rocks has caused an increasing interest in investigating trace element compositions of magnetite from different mineral deposit types. Despite numerous studies demonstrating the application of magnetite chemistry in provenance studies and mineral exploration, magnetite compositions from volcanogenic massive sulfide settings is almost unstudied. In addition, in the majority of magnetite studies, the potential of detrital magnetite chemistry and physical characteristics (e.g., shape, grain-size distribution, and surface textures) to track mineral deposits from distances have not been considered. Thus, my PhD studies have been done with the aim of 1) characterizing physical and chemical characteristics of magnetite from various VMS deposits, their host bedrocks, and from till covering the deposit nearby areas, and 2) establishing criteria to use these characteristics of magnetite in exploration for VMS deposits under layers of overburden cover. This doctoral thesis presented to the department of Geology and Geological engineering of Laval University, has been carried out under supervision of Professor Georges Beaudoin. This research was funded by a partnership between the Geological Survey of Canada under its Geo-mapping for Energy and Minerals 1 (GEM-1) program (2008-2013), Natural Science and Engineering Research Council (NSERC) of Canada, and industrial partners Overburden Drilling Management Limited, MMG Limited, Teck Resources Limited, and AREVA Resources Canada. The thesis includes three research papers in which I have been the principal researcher and the first author. Two articles have already been published and the third is under revision at the time of the thesis submission. My contribution to this PhD project has been: 1) to write the research plan, 2) to do sample selection, preparation, examination by various analytical techniques such as SEM, MLA, EMPA, and LA-ICP-MS, and data collection, 3) to establish statistical methodology to transform geochemical censored data, to overcome the effect of closure of compositional data, and to present data using state of the art discrimination techniques, and 4) to write up research papers.

xvii

As it is mentioned above, this PhD thesis includes three research papers. The first paper entitled “The surface texture and morphology of magnetite from the Izok Lake volcanogenic massive sulfide deposit and local glacial sediments, Nunavut, Canada: Application to mineral exploration” is co-authored by Georges Beaudoin (research supervisor from ULaval), M. Beth McClenaghan (research scientist from the GSC, Ottawa), and Daniel Layton-Matthews (associate professor in economic geology and petrology from the Queen's University). The article is already published in the Journal of Geochemical Exploration, 2015, V. 150, pages 84-103. The second paper entitled “Principal component analysis of magnetite composition from volcanogenic massive sulfide deposits: Case studies from the Izok Lake (Nunavut, Canada) and Halfmile Lake (New Brunswick, Canada) deposits” is co-authored by Massoud Ghasemzadeh-Barvarz (PhD in chemical engineering, postdoctoral fellow at Pfizer Inc.), Georges Beaudoin, Eric C. Grunsky (retired GSC research geostatistician, and current adjunct professor at the University of Waterloo), M. Beth McClenaghan, and Carl Duchesne (professor in in chemical engineering from ULaval). This article is already published in the journal of Ore Geology Reviews, 2016, V. 72, pages 60-85. The third manuscript is entitled “Partial Least Squares Discriminant Analysis of trace element compositions of magnetite from various subtypes of VMS deposits: Application to mineral exploration. It is also co-authored by M. Ghasemzadeh-Barvarz, G. Beaudoin, E.C. Grunsky, M.B. McClenaghan, and C. Duchesne, and is submitted to the journal of Ore Geology Reviews at the time of the thesis submission.

xviii

Chapter 1

1.1.

Introduction

Bckground

1.1.1. Indicator mineral methods Growing demands of industries for raw materials have always forced the human to find better ways to discover mineral resources. Development of indicator mineral methods may be considered part of the mineral’s industry efforts to discover new resources. These methods may be the result of innovative uses of some former exploration methods (e.g., traditional geochemical analysis and heavy minerals). A great advantage of indicator mineral methods is tracing the dispersion of eroded mineral deposits in surficial sediments. In contrast to indicator mineral methods, traditional mineral exploration techniques such as geophysical exploration cannot trace ore bodies or alteration zones from distances. These methods face challenges when applied to areas of transported cover (Jackson, 2009). Overall, different mineral exploration methods are complementary to each other. Study of different characteristics of indicator minerals may provide information applicable to evaluate mineral potential of the study area, determine mineral deposit types, distinguish specific sources (for gold e.g. Desborough, 1970; Antweiler and Campbell, 1977; Antweiler and Campbell, 1982; Von Gehlen, 1983; Knight and McTaggart, 1986; Hallbauer and Utter, 1977), determine secondary from primary deposits (for gold e.g. Wilson, 1984), and to determine the location of deposits. Presence of indicator minerals such as omphacite, pyrope and manganiferous ilmenite in sediments fingerprints kimberlitic bodies, and the chemistry of these minerals is useful to assess the fertility for diamonds (Golubev, 1995; Dredge et al., 1996; Clements et al., 2009; Kaminsky and Belousova, 2009). Grant et al. (1991) also indicated that the integration of morphological and chemical data of indicator minerals would provide more effective exploration tools. Changes in physical characteristics of minerals might be related to chemical alteration 1

affecting grains during weathering and/or transport. For instance, rims in gold grains are commonly generated by the removal of Ag, Hg and Cu, and not because of Au precipitation (Grant et al., 1991). The two most fundamental properties that characterize a mineral and make it distinguishable from other minerals are its chemical composition and crystal structure. In nature, there is no truly pure mineral because similarity in atomic number/radius always allows some elements substituting for mineral forming elements. Some minerals, such as magnetite, are able to preferentially incorporate extensive substituting elements in their crystallographic structure that results in exhibition of extensive variation in chemical composition, called a solid solution. The extent of the elemental substitution and the type of substituting elements are strongly controlled by the environment in which the mineral has formed (Barnes and Roeder, 2001). The chemistry of some indicator minerals is useful for tracing more than one type of mineral deposits. For instance, cinnabar is an indicator for mercury (Plouffe, 2001), and gold mineralization (Stendal and Theobald, 1994), whereas fluorite is an indicator for tungsten Mississippi Valley Type Pb-Zn, molybdenum and/or tin mineralization (Stendal and Theobald, 1994; Friske et al., 2001). The chemistry of some indicator minerals is a discriminant tool to determine the mineral deposit type. For instance, gold grains from epithermal environments are Ag-rich and Cu-poor, whereas gold grains from Au-Cu porphyry deposits are Cu-rich with variable content of Ag (Townley et al., 2003). Apatite is a ubiquitous accessory mineral in a wide range of rock types and useful to record trace elements chemistry of rock systems at the time of its crystallization (Sha and Chapell, 1999; Belousova et al., 2001). Similarly, magnetite is a major to accessory mineral in many types of mineral deposits/geologic settings. The composition of magnetite has been used to distinguish various mineral deposit types including Ni-Cu, porphyry, iron oxide copper gold (IOCG), iron oxide-apatite (IOA), banded iron formation, skarn, Mg-skarn, and the Bayan Obo REE-Fe-Nb deposit (Lindsley, 1976; Ghiorso and Sack, 1991; Razjigaeva and Naumova, 1992; Carew, 2004; McClenaghan, 2005; Singoyi et al., 2006; Gosselin et al., 2006; Beaudoin and Dupuis, 2009; Dupuis and Beaudoin, 2011; Gao et al., 2013; Hu et al., 2014; Boutroy, 2013; Boutroy et al., 2012a,b, 2014; Dare et a., 2012, 2014, 2015; Nadoll et

2

al., 2012, 2014, 2015; Huang et al., 2015; Chung et al., 2015; Chen et al., 2015a,b; Liu et al., 2015a,b; Zhao and Zhou, 2015). Indicator mineral studies often result in obtaining multiple beneficial information applicable in other geological domains. The study of a single indicator mineral, such as zircon, enables geologists to extract data about crystal structure, chemistry of major and trace elements, patterns of REEs, U-Pb ratios, and Hf isotope ratios (Jackson, 2009). The chemistry of minerals can also be used as a petrogenetic indicator. Zircon from different igneous rocks shows a variable composition with an increase in trace elements concentration from ultramafic through mafic to granitic rocks. Belousova et al. (2002) used binary diagrams as well as classification trees to discriminate different host rocks of zircon. Dare et al. (2014) suggested using trace element compositions of magnetite as petrogenetic indicators for various magmatic and hydrothermal mineral deposits. The study of indicator mineral inclusions also provides useful information about genetic history of minerals, the composition of host rocks or the type of deposits (Slansky et al., 1991; Auge and Legendre, 1992; Cabri et al., 1996; Leake et al., 1998; Mortensen et al., 2005; Shcheka, 2004; Shcheka et al., 2004; Podlipsky et al., 2007). For instance, chromite inclusions in xenomorphic Pt-Fe alloy grains indicate an association with dunite (Shcheka, 2004). Enargite inclusions in gold grains represent a high sulfidation epithermal source, however, argentite inclusions indicate a mesothermal provenance for gold (Mortensen et al., 2005). In Pt-group minerals, there is a correlation between the presence of inclusions with the minerals morphology and/or chemistry. Iridium, Ru and Os inclusions are observed in small xenomorphic Pt-Fe alloy crystals, whereas they are completely absent in coarse idiomorphic grains. Lack of inclusions indicates a low concentration of PGEs, and also association with the late apatite-magnetite-phlogopite clinopyroxenite intrusions (Shcheka, 2004). Furthermore, the inclusions mineral chemistry can be used to develop trace element criteria and discriminant diagrams that are applicable in recognition of the mineral potential of an area (Jackson, 2009). For example, the majority of garnet inclusions in diamond have depleted trace element patterns characterized by low contents of Zr (800 m. These textures have never been observed on grains transported by cirque glaciers with thicknesses of less than ~200m. In this study, we examine the micro-scale surface textures and morphological features of magnetite grains from the ferromagnetic fractions of bedrock and till at the Izok Lake volcanogenic massive sulfide deposit (Nunavut, Canada) to evaluate if they may be useful for mineral exploration. Specifically, the objectives are to determine if the surface textures and morphological features in till can be used to 1) identify the nature of host bedrock, 2) determine the transport mechanisms, 3) estimate the distance of transport from the source, and 4) identify supergene processes that affected grains after deposition in sedimentary basins. Surface textures and morphology of magnetite grains from massive sulfides and host rocks are compared to that of magnetite grains in up- and down-ice till collected from various distances from the Izok Lake deposit to document the textures formed during erosion, transport and/or deposition. Magnetite is the focus of this study because: 1) it is a common iron oxide mineral found in different geological environments, 2) it is easily separated from sediments/disaggregated samples because it has the highest magnetic susceptibility among all naturally occurring minerals, 3) its physical properties (e.g. hardness, lack of cleavage) and mechanical behaviour (conchoidal fractures) are similar to quartz (Mandolla and Brook, 2010), and therefore surface textures of magnetite can be studied as indicators of transport media as well as depositional environments, and 4) its chemical composition allows discrimination of different types of mineral deposits (e.g. Beaudoin et al., 2007, 2009; Dupuis and Beaudoin, 2011; Dare et al., 2011, 2012; Nadoll et al., 2012, 2014; Sappin et al., 2014).

2.1.1. Geological setting The Izok Lake deposit is an Archean bimodal-felsic Zn-Pb-Cu-Ag volcanogenic massive sulfide deposit located at 65° 38' 00'' N, 112° 47' 45'' W in the northern part of the Slave Structural Province, Nunavut Territory, Canada (Figure 2-1; Morrison, 2004; Hicken, 2012; Paulen et al., 2013). The deposit is situated under Izok Lake, which is 20 km west of Itchen Lake and 30 km north of Point Lake. The deposit is hosted within 2.7-2.67 Ga granite greenstone terrain of folded, faulted, and metamorphosed rocks of the Point Lake Formation (PLF), which is a sub-division of the Yellowknife Supergroup (Padgham and 15

Fyson, 1992; Morrison, 2004; Bleeker and Hall, 2007; Paulen et al., 2013). In the Izok Lake area, the PLF consists of felsic to mafic meta-volcanic, and meta-sedimentary rocks (Figure 2-1), and has been intruded by 2.68 and 2.58 Ga syn-volcanic to post-volcanic granitic plutons, and by the Helikian Mackenzie gabbro dikes swarm (Bleeker et al., 1999). These intrusive bodies seem to be volcanic feeders to the overlying flows. The gabbro is typically medium to coarse-grained, with an equigranular texture, and is massive to weakly foliated (Morrison, 2004). The gabbro dykes trend north to northwest, and cut the massive sulfide lenses of the Izok Lake deposit (Buchan and Ernst, 2004).

Figure 2-1. Simplified bedrock geology map of the Izok Lake deposit showing lithologies and massive sulfide lenses (modified from Morrison, 2004), and Location map of the Izok Lake area in Canada.

East of Izok Lake, the end of felsic volcanism is marked by a series of dacitic flows overlying rhyolite (Figure 2-1; Morrison, 2004). Felsic volcaniclastic rocks, dacitic, andesitic and basaltic flows, thin sulfide-rich iron formations, and turbiditic sedimentary rocks form the hanging wall of the Izok Lake deposit (Figure 2-1). Irregular granitic pegmatite, and diabase dikes subsequently cut all these lithologies (Morrison, 2004; Hicken, 2012). Carbonate and sulfide facies iron formations overlay dacite and basalt to the

16

east and north of Izok Lake (Thomas, 1978). Carbonate facies iron formation is wellbedded and consists of carbonate layers interbedded with cherty beds. In southeast of the deposit, carbonate facies grades into a sulfide facies iron formation containing pods of zincrich massive sulfides. The volcanic rocks in the Izok Lake belt have been altered by hydrothermal fluids followed by metamorphic overprint (Thomas, 1978; Money and Heslop; 1972; Morrison, 2004). A large, Na-depleted, sericitic alteration zone encloses the Izok Lake massive sulfide lenses, whereas the immediate footwall and hanging-wall rocks to the deposit are affected by aluminous alteration typified by the assemblage muscovite-biotite-sillimanite (Morrison, 2004). A metamorphosed magnesium enrichment alteration zone composed of chlorite, biotite and cordierite, formed in close association with the Izok Lake orebody (Thomas, 1978). Thomas (1978) suggested that the Mg alteration has been overprinted by locally intense silicification and sodium metasomatism. Volcanic and sedimentary rocks in the northern and central parts of the Izok Lake area are metamorphosed to the upper amphibolite-sillimanite grade forming a gahnite-rich zone at the margin of the massive sulfide bodies and the underlying stringer zone (Thomas, 1978; Bostock, 1980; Morrison and Balint, 1993, 1999). The gahnite-rich dacite hosting the stringer zone consists of gahnite, sillimanite, magnetite, illmenite, pyrite, pyrrhotite, chalcopyrite, sphalerite, quartz, biotite, plagioclase, and hornblende (Thomas, 1978; Bostock, 1980; Morrison and Balint, 1993, 1999; Morrison, 2004; Hicken, 2012; Hicken et al., 2013a). South of the Izok Lake area, the metamorphic grade decreases to the greenschist facies. The Izok Lake deposit comprises 5 massive sulfide lenses with 14.8 Mt indicated resources grading 12.8% Zn, 2.5% Cu, 1.3% Pb, and 71 g/t Ag (Costello et al., 2012). The massive sulfides contain 25% pyrite, 24% sphalerite, 9% chalcopyrite, 8% pyrrhotite, 3% galena, and 3% magnetite (Morrison, 2004). In addition to these massive sulfide lenses, several gossans have been discovered in the Izok Lake area including a zinc-rich gossan on the west side of Iznogoudh Lake, referred to as the WIZ showing (Heslop, 1976; Money and Heslop, 1976; Figure 2-2). Several diabase dikes of the Mackenzie Swarm, trend north to northwest, crosscut the massive sulfide lenses of the Izok Lake deposit (Buchan and Ernst, 2004). The Mackenzie dikes are composed of plagioclase, pyroxenes, and 1-15% fine-

17

grained Fe-Ti oxides (Baragar et al., 1996). Magnetite is dominant in Mackenzie dikes, whereas ilmenite is subordinate or rare. The Izok Lake area is a glaciated terrain affected by four phases of ice flow (Kerr et al., 1995; Dredge et al., 1996; Stea et al., 2009). Figure 2-2 shows the ice flow patterns in the Izok Lake region. Paulen et al. (2013) demonstrated that the oldest ice flow was directed towards the southwest (210° to 254°) followed by a flow directed towards the northwest (300° to 325°). The third ice flow from east to west-northwest (279° to 296°) was the dominant phase that shaped the present-day landscape of the area. Evidence of the youngest glacial flow direction towards the northwest (296° to 318°) is faint and rare, and are only found on outcrops east of Iznogoudh Lake (Paulen et al., 2013). Undulating topography, glacially streamlined bedrock hills surrounded by surficial sediments and abundant lakes are characteristic of the area. Till cover in the Izok area is generally thin, varying between < 0.5 m to 3 m (Dredge et al., 1996; Hicken et al, 2013).

2.2.

Methodology

2.2.1. Sampling methods A total of 22 bedrock samples and 85 till samples were collected by Geological Survey of Canada (GSC) in the Izok Lake region in 2009 and 2010 (McClenaghan et al., 2012b; Hicken et al., 2013a,b). Heavy mineral concentrates (HMC) of GSC bedrock and till were prepared by the Overburden Drilling Management Limited (ODM; Ottawa, Canada) using methods described in McClenaghan et al. (2012b). Massive sulfide and host rock samples were disaggregated using Electric Pulse Disaggregation (EPD). Electric Pulse Disaggregation liberates minerals from rock by applying a high-voltage electric current, which breaks the rock along grain boundaries. The resulting mineral morphologies after EDP reflect the original shape and grain size (Rudashevski et al., 2002; Cabri et al., 2008). A heavy mineral preconcentrate was then produced for each disaggregated rock and for till samples using a shaking table (McClenaghan, 2011). The table preconcentrate was refined using methylene iodide diluted to a specific gravity of 3.2. The heavy mineral concentrate was then further separated into ferromagnetic and non-ferromagnetic fractions using a hand magnet. The ferromagnetic fraction contains mainly mineral grains and aggregates in which 18

magnetite and/or pyrrhotite are principle components. The < 0.25 mm ferromagnetic fraction was archived, whereas the 2 to 0.25 mm ferromagnetic fractions of selected GSC till and bedrock samples were shipped to Université Laval (ULaval) for further preparation and examination of grains.

Figure 2-2. Locations of bedrock and till samples in the Izok Lake area (modified from Hicken, 2012). In the map, the prefix 09-MPB has been removed from the sample names, as sample 09-MPB-R64 is shown as R64.

Each ferromagnetic fraction was homogenized by hand shaking the container. Each sample was poured onto a sheet of paper and divided into four sections, and one of the four sections was selected as a subsample, according to the method described by Gerlach and Nocerino, (2003). The minimum number of grains for a representative subsample, based on previous microtexture investigations, has been determined to be 25 (Krinsley and Doornkamp, 1973; Baker, 1976; Mahaney, 2002; Townley et al., 2003; Madhavaraju et al., 2009). Townley et al. (2003) indicated that examination of at least 25 grains is required to 19

document the range in shape of gold grains in stream sediments. Krinsley and Doornkamp (1973), Baker (1976), and Mahaney (2002), also stated that study of at least 25 quartz grains was sufficient to record variations in surface textures and morphology of quartz in a sample. The splitting procedure was repeated until the subsample contained between 25 and 50 ferromagnetic particles. A ferromagnetic particle is a mineral aggregate in which magnetite may be a component. In this study, 150 magnetite grains from 6 bedrock samples, and 225 magnetite grains identified in ferromagnetic fractions of 9 till samples were examined for their surface textures using Scanning Electron Microscopy (SEM). The 6 rock samples include 1) sample 09-MPB-R60 from massive sulfides, 2) sample 09-MPBR64 from massive sulfides adjacent to gahnite-rich zone, 3) sample 09-MPB-R61 from gahnite-rich dacite within the deposit stringer zone, 4) samples 09-MPB-R42 and 5) 09MPB-R90 from iron formations located 6 km up ice to the east of the deposit, and 6) sample 09-MPB-R92 from the bedrock gabbro. The location of till samples, and directions of ice flows as identified by Paulen et al. (2013) are illustrated in Figure 2-2. Other subsamples were also prepared from the bedrock and till samples to determine modal mineralogy, mineral association, grain size distribution, and angularity of magnetite grains using Mineral Liberation Analysis (MLA).

2.2.2. Analytical methods 2.2.2.1. Scanning Electron Microscopy (SEM)

The SEM was used to examine and document the surface microtextures, morphological features, and shape of magnetite grains in the ferromagnetic fraction. Subsamples were cleaned using acetone in an ultrasonic bath for 5 minutes. Longer immersion in ultrasonic baths may alter existing surface textures and even create new microtextures (Porter, 1962; 1973; Vos et al., 2014). Grains were mounted on 3 mm thick carbon discs taped to 12.5 mm aluminum stubs. Grains were coated with gold and palladium. A JEOL JSM-840A SEM at ULaval equipped with Back-Scattered Electron (BSE) and Secondary Electron (SE) modes were used to examine magnetite grains. The accelerating voltage was 15 KeV and the beam current was 60 µA, at a working distance of 20 mm. Magnetite grains in each subsample were identified during Scanning Electron Microscopy using Energy Dispersive X-ray.

20

2.2.2.2. Mineral Liberation analysis (MLA)

The subsamples for the MLA were mounted in epoxy, and the surface of the mounts was polished. The analyses were performed using the MLA 650 Field Emission Gun Environmental SEM at Queen’s University, using an accelerating voltage of 25 kV and beam currents of 10-15 nA. The MLA software collects BSE images over the sample frame to automatically discriminate mineral grain boundaries and map distribution. Each particle is subdivided into grains, and grain boundaries are distinguished based the greyscale variations in the BSE images. Each grain is further analyzed by X-ray, and the collected spectra are compared to the library of reference spectra for mineral identification (Fandrich et al., 2007; Sylvester, 2012). For each sample, MLA produces different data sets including modal mineralogy, mineral association, particle properties, grain properties (including angularity, area, perimeter, weight proportion, length, breadth, angle length, aspect ratio, and form factor), particle size distribution, and grain size distribution (Fandrich et al., 2007). Quantitative mineralogical data (e.g. modal mineralogy, and grain properties and size distribution) generated by the MLA measurement software for each sample are presented by DataView software and can be exported by the operator (Fandrich et al., 2007). Table 2-1 and Table 2-2 summarize the modal mineralogy and weight proportion of minerals in the ferromagnetic fractions of the Izok Lake bedrock and till samples, respectively.

2.3.

Results

2.3.1. Surface textures of magnetite in bedrock samples Table 2-3 summarizes the proportion of different microtextures found on the surface of magnetite grains in bedrock samples. The proportion of a surface texture in bedrock samples indicates the percentage of grains that are characterized by the given texture. The occurrence of each surface texture has been assessed independently to that of other microtextures, as even if one texture is overprinted by another both textures have been counted.

21

Table 2-1. The Izok Lake studied bedrock samples description. Weight proportions of minerals in ferromagnetic fractions of each sample are presented. Samples

MS (09MPB-60)

MS (09-MPBR64)

Dacite (09MPB-R61)

IF (09-MPBR42)

IF (09-MPBR90)

Gabbro (09MPB-R92)

Sampling depth (m)

49.8

111

52

140

141

11

UTM East

417291

417314

417291

417291

418032

418684

UTM North

7279944

7279934

7279944

7279944

7281312

7279626

Mag

16

23

29.88

2.2

2.6

5.2

Hem

0.5

2.2

3.08

3

7.69

2.5

Sp

58.06

32

0.48

0.006

0

0

Py

10.92

18

0.07

0.004

0

0.01

Gn

0.02

0.7

0

0

0

0

Po

4.75

0

3.32

0

0.03

0.73

Ccp

5.34

7.74

0.03

0

0

0.02

Gnh

0

0.6

12

0

0

0

Grt

0.72

0.9

0.85

12.5

25

0.03

Ti-m

0

0

1

0.02

0.02

7

Qz

0

0

16.37

17

3

0.6

Amp

3.67

11.8

0.17

52

39.59

60

Mic

0.01

3

3.48

13

16

17.4

Fds

0.009

0.06

29.1

0.1

0.002

6

Ap

0

0

0

0.06

0.01

0

Zrn

0

0

0.05

0.09

0.05

0

Mnz

0

0

0.02

0.02

0.01

0

Ax

0

0

0

0

6

0.04

Sil

0

0

0.1

0

0

0.46

Abbreviations. MS: massive sulfides. IF: iron formations. Mag: Magnetite. Hem: Hematite. Sp: Sphalerite. Py: Pyrite. Gn: Galena. Po: Pyrrhotite. Ccp: Chalcopyrite. Ghn: Gahnite. Grt: Garnet group minerals such as pyrope, almandine, spessartine, and andradite. Ti-m: Ti-bearing minerals such as ilmenite, titanomagnetite, and titanite. Qz: Quartz. Amp: Amphibole group minerals such as actinolite, hornblende, and grunerite. Mic: Mica group minerals such as biotite and muscovite. Fds: Feldspare group minerals such as albite, anorthite, and orthoclase. Ap: Apatite. Zrn: Zircon. Mnz: Monazite. Ax: Axinite. Sil: Sillimanite.

A variety of grain morphologies and surface microtextures were observed on magnetite from the Izok Lake massive sulfides (Figure 2-3). Grains from massive sulfide samples are dominated by mineral aggregates in which magnetite is associated with sulfide and silicate minerals (Figure 2-3A). Magnetite from massive sulfides (MS-Mag) is subhedral to anhedral, medium to coarse grained (0.05-0.8 mm), and commonly hosts sphalerite and chalcopyrite inclusions (Figure 2-3B). Pyrite, sphalerite, and chalcopyrite are the abundant sulfide minerals in association with MS-Mag. Pyrite is typically cubic shaped, whereas

22

MS-Mag is intergrown with sphalerite and contains inclusions of muscovite and sphalerite. Muscovite, biotite, and amphibole (actinolite with lesser amounts of hornblende) are either associated with sulfides and MS-Mag, or are inclusions in these minerals. Mineral aggregates from the central parts of massive sulfide lenses (sample 09-MPB-R60) tend to be coarse-grained, whereas samples from margins of the massive sulfides (sample 09MPB-R64) are characterized by fine-grained magnetite with sulfide inclusions (Figure 2-3A & B). Figure 2-3C shows irregular grains of magnetite in sphalerite. Sphalerite contains inclusions of chalcopyrite, whereas magnetite contains inclusions of both sphalerite and chalcopyrite. Despite the central parts of massive sulfides where magnetite is intergrown with actinolite (Figure 2-3B), towards the margins, near the contact between massive sulfides and gahnite-rich host rocks, banded actinolite and magnetite are common (Figure 2-3D). In massive sulfides, parting planes are a characteristic texture in 10% of magnetite grains (Figure 2-3E). Parting planes form as a result of external stress in minerals, without formation of cleavage planes (Chang et al., 1998). External stress breaks minerals along their planes of structural weakness. Parallel micro-intergrowths of fine layers of magnetite in sphalerite can cause octahedral parting planes (Figure 2-3E). Dissolution textures are the most widespread surface texture characterizing 50% of MS-Mag (Figure 2-3F). Dissolution textures are commonly overprinted by precipitation textures. Porous magnetite (Mag2) is a precipitation product observed on the surface of 20% of the grains (Figure 2-3G). In Figure 2-3H, the surface of an actinolite aggregate is covered by a thin layer of porous Mag2. Mag2 precipitated on the surface of early-formed grains locally forms layers of non-porous crystals as shown in Figure 2-3I.

23

Table 2-2. The Izok Lake studied till samples description. Weight proportions of minerals in ferromagnetic fractions of each sample are presented. )*%%(+09MPB-,-,.(

)*%%(+09MPB-,/-.(

)*%%(+09MPB-,--.(

)*%%(+09MPB-,01.(

)*%%(+09MPB-,20.(

)*%%(+09MPB-,22.(

)*%%(+09MPB-,1,.(

)*%%(+09MPB-,31.(

)*%%(+09MPB-,,1.(

8/9298(

8/-010(

8/-1,8(

8/0082(

8/88/3(

8/8992(

8//223(

8/3/08(

8/,082(

219,1,1(

219,/93(

212>1-,(

219,-30(

219//,3(

219,9/1(

219/0>8(

2190322(

2191/,2(

5"?(

3,(

/0(

11(

/1(

/>(

/1(

/-@,9(

11@0(

13(

A&#(

6.5

6

1,(

0@1>(

//(

/3(

//(

10@/1(

7

B;(

0

0

,@,1(

,(

,(

,(

,(

,(

0

CD=(

,(

,(

,(

,@,/(

,(

,@0(

,@,,0(

,@,,0(

,(

C@0(

/,@0(

0@0(

/1(

0(

>(

9(

/,(

JK'(

8(

0(

3@0(

1(

/@1(

0(

8@1(

1@0(

/@98(

H$(

0.2

0.5

,@8(

,@1(

,@/(

1(

,@1(

/@0(

0.65

L(

,@,/(

0

BM(

/-(

33@0(

/-(

39(

1,(

33(

/9(

/2(

/2(

N 500 °C) hydrothermal fluids. Hitzman et al. (1992) also found out that magnetite from IOCG deposits is commonly depleted in Ti. Boutroy et al. (2012b) compared magnetite from Ni-Cu-PGE and IOCG deposits and realized that primary magnetite from Ni-Cu-PGE deposits contains higher Ni, Cu and Cr, and lower Ti, Al and Si relative to ore-stage magnetite from IOCG deposits. Magnetite from the IOA deposits can be discriminated from that of other deposit types due to their higher Ti and Co values (Figure 4-7A & C; Appendix-III). The IOA magnetite also contains higher Ni content relative to magnetite from the other deposit types other than NiCu deposits. Boutroy et al. (2012b) showed that magnetite from IOA deposits is rich in Al and Mg or in Ca. Knipping et al. (2015) investigated trace element contents of magnetite from the Cretaceous Kiruna-type Los Colorados IOA deposit (Chile), and realized that the chemistry of Los Colorados magnetite is similar to that from high temperature hydrothermal systems, such as porphyry Cu deposits, in which magnetite contains high Al, Ti, V and Ga. Higher Ca content relative to the other deposit types is the main contributor clustering the Bayan Obo REE-Fe-Nb magnetite in the left side of the t1-t2 plot (Figure 4-7A & B).

144

Huang et al. (2015), however, did not used the Ca content of magnetite in characterizing different types of magnetite associated to the Bayan Obo deposit. They excluded some elements such as Ca from their analyses because their concentrations were close to or below the detection limit of LA-ICP-MS, or because of considerable variation in their contents. The VIP plot (Figure 4-7C) reveals that Si, Ca, Al, Mn, Zn, Co and Ni are discriminator for magnetite from various mineral deposit types, whereas Mg and Ti are not useful.

4.5.4. Application of magnetite composition to provenance studies and mineral exploration Makvandi et al. (2016) used PCA models to classify magnetite compositions in till covering the areas nearby the Izok Lake and Halfmile Lake VMS deposits. They showed that in the Izok Lake area a high proportion of till magnetite have been derived either from the Izok Lake mineralization (massive sulfides and gahnite-rich dacite stringer zone) or the host bedrocks (gabbro or silicate facies iron formations). The PCA results displayed that in the Halfmile Lake area, a high proportion of till magnetite have been eroded from the deposit host rocks (felsic ash tuff, rhyolite, or andesite), whereas a low proportion of the grains show the chemistry of magnetite from the Halfmile Lake gossans, massive sulfides, or the associated magnetite alteration zone. Makvandi et al. (2016) showed that in both Izok Lake and Halfmile Lake areas, a low proportion of till magnetite is also from unclassified sources. Projecting the Halfmile Lake till data from Makvandi et al. (2016) in PLS-DA model formed by magnetite data from the BMC VMS deposits and BIFs (Figure 4-5B) results in projecting the majority of till magnetite grains in the region for the Halfmile Lake deposit or close to its boundaries (Figure 4-5D). Considering that Halfmile Lake till magnetite is mostly derived from the host bedrocks (Makvandi et al., 2016), the accumulation of till magnetite in the field for the Halfmile Lake gossans (Figure 4-5D) indicates that magnetite from the Halfmile Lake deposit and its host rocks are characterized by local chemical signatures, which separate them from that of the other deposits in the BMC.

145

Projecting the till data from both Izok Lake and Halfmile Lake VMS areas (Makvandi et al., 2016) into the PLS-DA subspace estimated magnetite data from various mineral deposit types (Figure 4-7B) also displays that a high proportion of till magnetite grains cluster in the same region as for the VMS deposits and VMS-associated BIFs (Figure 4-7D). Considering that a proportion of till magnetite from both VMS settings were derived from host bedrocks or unclassified sources, plotting a low proportion of till magnetite outside, but very close to the boundaries of the VMS deposits and BIFs field is inevitable. The results in Figure 4-5D and Figure 4-7D reveal the potential of magnetite chemistry in provenance studies and exploration of VMS deposits, and also demonstrate the ability of PLS-DA to classify different compositions of magnetite in unconsolidated sediments.

4.6.

Conclusions

Investigation of a representative number of magnetite grains from various VMS deposits, their host bedrocks, and VMS-associated BIFs by petrography, and chemical and statistical analyses identifies three types of magnetite in these geologic settings: magmatic, hydrothermal, and metamorphic. In VMS deposits, hydrothermal magnetite co-formed with sulfides, whereas metamorphic magnetite replaced sulfides and is intergrown with the chlorite ± calcite ± sericite ± quartz ± biotite ± anthophyllite assemblage. Metamorphic magnetite from BIFs formed as a result of Fe-silicate decomposition, or by exsolving from high temperature precursors during slow cooling or recrystallization during metamorphism at the expense of early forming minerals. Magmatic magnetite, however, shows metamorphic overprint. The composition of hydrothermal and metamorphic magnetite associated to massive sulfides varies over a wide range. Both types are rich in Mn, but mostly depleted in Si, Ca, Zr, Al, Ti, and Ni. Enrichment of some magnetite in Ti, Co and/or Zn suggests their crystallization from high temperature hydrothermal fluids or at high-grade metamorphism. It may also fingerprint the chemistry of sulfides or silicates replaced by magnetite. Magnetite from different VMS-associated BIFs shows distinct chemical and petrographic characteristics suggesting its formation from different sources. BIF-mag may form during

146

metamorphism or early stages of diagenesis by: 1) decomposition of Fe-bearing silicates, 2) recrystallization of precursor magnetite, hematite and/or silicates, and/or 3) exsolving from a high temperature precursor such as almandine. PLS-DA identifies Al, Ti and Zn as main contributors in classification of BIF-mag. Magmatic magnetite from the VMS deposits host bedrocks is characterized by ilmenite exsolution, and contains higher concentration of Ti relative to the other types of magnetite. Magmatic magnetite is commonly rich in Mn, Zn, Co, and/or Ni. PLS-DA classifies different VMS deposits and BIFs based on Si, Ca, Zr, Al, Mg, Ti, Zn, Co and Ni contents of magnetite. It is also a powerful method to discriminate between different mineral deposit types such as VMS, BIF, Ni-Cu, IOCG, IOA, and porphyry using the distribution of Si, Ca, Al, Mn, Mg, Ti, Zn, Co and Ni in magnetite. PLS-DA classifies different compositions of magnetite in sediments as a high proportion of Halfmile Lake till magnetite plot in the field for the Halfmile Lake gossans in the model formed by the BMC deposits data, and a high proportion of Halfmile Lake and Izok Lake till magnetite plot in the field for VMS deposits and BIFs in the model formed by different mineral deposit types data. PLS-DA indicates that the distribution of samples in score plots is controlled by 1) the origin of magnetite (magmatic, hydrothermal, or metamorphic), 2) the formation temperature of magnetite, 3) the grade of metamorphism, 4) the mineral deposit type, and 4) the geologic setting.

147

Chapter 5

Thesis conclusions and recommendations for future work

Over the last few decades, magnetite composition has been the focus of many studies as a petrogenetic indicator and a pathfinder for some mineral deposit types or geologic settings (Lindsley, 1976; Ghiorso and Sack, 1991; Razjigaeva and Naumova, 1992; McClenaghan, 2005; Dupuis and Beaudoin, 2011; Gao et al., 2013; Boutroy et al., 2014; Dare et a., 2012, 2014, 2015; Nadoll et al., 2012, 2014, 2015; Chung et al., 2015; Chen et al., 2015a,b; Liu et al., 2015a,b; Zhao and Zhou, 2015). Despite numerous studies of magnetite, the chemistry of the iron oxide from VMS settings remained almost unstudied. In addition, chemical and physical characteristics of magnetite in unconsolidated sediments for applying to sediment provenance and mineral exploration were not considered. My research presents the first comprehensive assessment of the minor and trace element geochemistry as well as physical characteristics of magnetite from VMS deposits, their host rocks, and respective alteration zones. It also presents a novel approach to classify different compositions of magnetite in till. Furthermore, this study develops the indicator mineral methods by establishing criteria for using the shape, angularity, grain size, surface textures, and mineral associations of detrital magnetite in discovery of VMS deposits.

149

5.1.

General conclusions

The major achievements of the present study are as following: 1) This study is the first using morphology, grain size distribution, surface textures, and mineral associations of magnetite in mineral exploration. Magnetite in mineralized zone and host bedrocks of the Izok Lake massive sulfide deposit was characterized and then the criteria to classify magnetite in till and to distinguish source rocks were established. This study shows that morphology and surface textures of magnetite are indicative of the conditions under which the mineral formed, and also processes affecting grains during erosion, transport, and after deposition in sedimentary environments. A high percentage of magnetite from till from the Izok Lake area are characterized by surface textures typical of glacial transport (e.g., crescentic gouges, deep grooves, arc-shaped steps, and troughs), whereas a low proportion of grains contain V-shaped percussion cracks indicating fluvial and/or glaciofluvial environments. Abundance of magnetite with surfaces characterized by different textures overprinting each other is consistent with 4 phases of ice flow affecting the Izok Lake area through time. The grain size distribution of till magnetite also fingerprints its origin. In vicinity of the Izok Lake deposit, the grain size of a high proportion of detrital magnetite is similar to that of magnetite from the mineralization. Mineral associations of magnetite are also useful to distinguish the composition of host rocks. For instance, ilmenite is a common association of magnetite from Izok Lake bedrock gabbro, whereas magnetite from the gahnite-rich dacite is associated to gahnite, silimanite and ilmenite. Integration of classified data for magnetite shape, angularity, grains size, surface textures, and mineral associations helps in identification of host bedrocks, and to estimate the proximity to the source. This research emphasizes the importance of the study of magnetite physical features for indicator mineral exploration methods. 2) This study provides a comprehensive statistical methodology for compositional data analysis, and establishes criteria to treat geochemical censored values and to overcome closure of compositional data. The small size of magnetite or lack of inclusion free surfaces, using small laser beam size, and high detection limits for some elements are main reasons for percentage of censored values in EPMA and/or LA-ICP-MS data. Excluding censored values or arbitrary substitutions (with zero, & DL or DL) cause

150

over/underestimating the statistical parameters of the data. In this study, censored geochemical data have been imputed using the impKNNa function from the R-package robCompostions yielding the smallest error in comparison with conventional techniques. This study also uses centered log-ratio transformation (clr) to overcome the closure problem of compositional data. In this transformation, each variable of a component is divided by the geometric mean of the variable concentration. clr is recommended for multivariate statistical techniques, and geometric mean is an appropriate, natural parameter for lognormal random variables. 3) In this study, five types of magnetite were identified in association with VMS deposits: 1) hydrothermal, 2) metamorphic, 3) magmatic, 4) zoned, and 5) supergene. In massive sulfides, hydrothermal magnetite is intergrown with sulfides, whereas metamorphic magnetite commonly replaces sulfides and is intergrown with typical metamorphic minerals such as chlorite, sericite, anthophylite, and/or actinolite. At Izok Lake, metamorphic magnetite in the deposit stringer zone is intergrown with gahnite. In VMSassociated BIFs, metamorphic magnetite is a product of a) decomposition of Fe-bearing silicates (biotite, hornblende) during metamorphism, b) exsolution from a high temperature (almandine) precursor during slow cooling, or c) recrystallization of magnetite, hematite, or Fe-bearing sulfides/silicates. Magmatic magnetite is commonly characterized by ilmenite exsolution, and fingerprints VMS deposits host bedrocks. Zoned magnetite may indicate retrograde skarn alteration associated to VMS mineralization. The growth zoning of magnetite can be the result of changes in the composition of hydrothermal fluids, the grade of metamorphism, and/or oxygen fugacity. Intrusion of seawater in volcanic sub-seafloor environments may also cause retrograde skarn alteration. Supergene magnetite overprints hypogene minerals and fingerprints supergene environments where low temperatures and high oxygen fugacity are prevalent. 4) This is the first study to combine high-resolution LA-ICP-MS analyses and PCA to determine variations in minor and trace element composition of magnetite from different VMS deposits and geologic settings. PCA discriminates the Izok Lake bimodal-felsic and Halfmile Lake felsic-siliciclastic VMS deposits, their host bedrocks, and alteration zones based on Si, Ca, Zr, Al, Ga, Mn, Mg, Ti, Zn, Co, Ni and Cr contents of magnetite. This research suggests that magnetite grains of the same origin share similar chemistry 151

clustering them in PCA models. However, the results show that the composition of metamorphic and hydrothermal magnetite vary over a wider range of trace elements concentration than that of magmatic magnetite. Magmatic magnetite from VMS settings is commonly rich in Ti but depleted in Si, Ca and Mg. 5) PLS-DA, a supervised classification technique, has also been used for the first time to classify LA-ICP-MS data of magnetite from various VMS deposits, host bedrocks, and VMS-associated BIFs. PLS-DA suggests that Si, Ca, Zr, Al, Mg, Ti, Zn, Co and Ni as discriminator elements isolating various VMS settings. PLS-DA of magnetite composition discriminates VMS deposits and VMS-associated BIFs from other deposit types including Ni-Cu, IOCG, IOA, porphyry, and the Bayan Obo REE-Fe-Nb deposit. Magnetite from VMS settings contains lower concentration of trace elements than that from mentioned mineral deposit types. 6) PCA and PLS-DA of magnetite compositions from various VMS deposits, their host rocks, alteration zones, and VMS-associated BIFs yield discrimination models for discovery of VMS deposits using the chemistry of magnetite in Quaternary sediments. This study indicates that magnetite forms a characteristic dispersal halo around the host deposit in which the percentage of magnetite with chemical signatures of VMS deposits shows the proximity to the source. My research also suggests that magnetite grains of each geologic environment carry local signatures plotting them in the fields for the bedrock samples of their host area in PLS-DA and PCA models.

5.2.

Recommendations for future work

This PhD project has been directed to meet its research objectives; thus it answered many questions regarding the application of magnetite chemistry and physical characteristics to mineral exploration for VMS deposits, while new questions have risen. Answering these new questions requires carrying out new research and investigations. To evaluate the reproducibility of the results, and to develop the established methods in this dissertation, recommendations for future works are listed as followings:

152

- Integrating magnetite data with that of other indicator minerals, and till geochemistry from the Izok Lake and Halfmile Lake areas to develop indicator mineral methodologies. - Characterizing surface textures, shape, grains size distribution and mineral associations of magnetite transported by geologic environments other than glaciers (e.g., aeolian, fluivial) and comparing the results with that of the Izok Lake area to get insight into the application of these characteristics for remote discovery of new mineral deposits/potentials using magnetite. - Using multivariate statistical methods to investigate the MLA data and establish more sophisticated classification methods for using surface textures, grain size, shape and modal mineralogy of magnetite to indicator mineral exploration. - Integrating magnetite geochemical and morphological data to 1) distinguish relations between physical and chemical alterations of magnetite grains during erosion and liberation from host rocks, transport by geologic environments, and deposition in sedimentary basins; and 2) develop indicator mineral exploration methologies using magnetite. - Improving PLS-DA and PCA classification methods by implementing boundary classifiers such as using Probabilistic Principal Component Analysis (PPCA), or the nonlinear KNN classifier. - Compiling data on magnetite compositions from various mineral deposit types from the literature to establish a comprehensive dataset that is useful for validating future works as well as establishing comprehensive discrimination models.

153

Bibliography Adair R.N., 1992. Stratigraphy, structure, and geochemistry of the Halfmile Lake massive-sulfide deposit, New Brunswick; Exploration and Mining Geology 1, 151-166. Aitchison J., 1986. The Statistical Analysis of Compositional Data. Monographs on Statistics and Applied Probability. Chapman and Hall Ltd. (Reprinted 2003 with additional material by The Blackburn Press), London (UK). 416 pages. Alabaster T., and Pearce J.A., 1985. The interrelationship between magmatic and ore-forming hydrothermal processes in the Oman ophiolite. Economic Geology 80, 1-16. Alekseeva V., 2005. Micromorphology of quartz grain surface as indicator of glacial sedimentation sonditions: evidence from the Protva River Basin. Lithology and Mineral Resources 40 (5), 420-428. Angerer T., Hagemann S., Danyushevsky, L.V., 2013. High-grade iron ore at Windarling, Yilgarn Craton: a product of syn-orogenic deformation, hypogene hydrothermal alteration and supergene modification in an Archean BIF-basalt lithostratigraphy. Mineralium Deposita 48, 697-728. Angerer T., Hagemann S.G., Danyushevsky L.V., 2012. Geochemical evolution of the banded iron formationhosted high-grade iron ore system in the Koolyanobbing greenstone belt, Western Australia. Economic Geology 107, 599-644. Annersten H., 1968. A mineral chemical study of a metamorphosed e iron formation in northern Sweden. Lithos 1, 374-397. Antweiler J.C., and Campbell W.L., 1977. Application of gold composition analysis to mineral exploration in the United States. Journal of Geochemical Exploration 8, 17-29. Antweiler J.C., and Campbell W.L., 1982. Gold in exploration geochemistry, in Precious Metals in the Northern Cordillera. In: Levinson A.L., (Ed.). Association of Applied Geochemists, Rexdale, Ont., Special volume 10, 33-44. Auge T., and Legendre O., 1992. Pt-Fe nuggets from alluvial deposits in eastern Madagascar. The Canadian Mineralogist 30, 983-1004. Averill S.A., 2001. The application of heavy indicator minerals in mineral exploration. In Drift Exploration in Glaciated Terrain, M.B. McClenaghan, P.T. Bobrowsky, G.E.M. Hall, and S. Cooks (eds.). Geological Society of London Special Publication 185, 69-82. Averill S.A., 2009. Viable indicators in surficial sediments for two major base metal deposit types: Ni-CuPGE and porphyry Cu. In: Indicator Mineral Methods in Mineral Exploration, Workshop B. 24th International Applied Geochemistry Symposium, 55-65.

155

Averill S.A., and Zimmerman J.R., 1986. The Riddle resolved: the discovery of the Prtridge gold zone using sonic drilling in glacial overburden at Waddy lake, Saskatchewan. Canadian Geology Journal of the CIM, 1, 14-20. Bacon-Shone J., 2011. A short history of compositional data analysis. Pawlowsky-Glahn, Buccianti (Eds.). Compositional Data Analysis: Theory and applications. Wiley & Sons, New York (7-11, 378 pages). Baguley P., John D.H.St., Hayes P.C., 1983. The conditions for the formation of lath and porous magnetite on reduction of hematite in H2/H2O gas mixtures. Metallurgical and Materials Transactions 14B, 513-514. Baker H.W., 1976. Environmental sensitivity of submicroscopic surface textures on quartz sand grains- a statistical evaluation. Journal of Sedimentary Petrology 46, 871-880. Baragar W.R.A., Ernst R.E., Hulbert T., Peterson T., 1996. Longitudinal petrochemical variation in the Mackenzie dyke swarm, Northwestern Canadian Shield. Journal of Petrology 37 (2), 317-359. Barbosa P.F., and Lagoeiro L., 2010. Crystallographic texture of the magnetite-hematite transformation: Evidence for topotactic relationships in natural samples from Quadrilátero Ferrífero, Brazil. American Mineralogist 95, 118-125. Barker M., and Rayens W., 2003. Partial least squares for discrimination. Journal of Chemometrics, 17(3): 166-173. Barnes S.J, Maier W.D., Ashwal L.D., 2004. Platinum-group element distribution in the Main Zone and Upper Zone of the Bushveld Complex, South Africa. Chem Geol 208:293-317. Barnes S.J., and Roeder P.L., 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology 42 (12), 2279-2302. Barrett T.J., MacLean W.H., Cattalani S., 1991. Massive sulfide deposits of the Noranda area, Quebec. III. The Ansil Mine. Canadian Journal of Earth Sciences 28, 1699-1730. Basu A., 1985. Reading provenance from detrital quartz, in Zuffa G.G.I., Provenance of Arenites. Nato Series C. 148, 231-247. Basu A., Young S.W., Suttner L.J., James W.C., Mack G.H., 1975. Reevaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Petrology 45, 873-882. Batchelor D., 1992. Styles of metallic mineralization and their tectonic setting in the Sultanate of Oman. Transactions of the Institution of Mining and Metallurgy 101, B108-B120. Bau M., 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology 93, 219-230. Beal M.A., and Shepard F.P., 1956. A use of roundness to determine depositional environments. Journal of Sedimentary Petrology 26, 49-60.

156

Beaudoin G., and Dupuis C., 2007. Signature géochimique des oxydes de fer et application à l’exploration minière- 2e volet. Rapport Annuel, DIVEX. Beaudoin G., and Dupuis C., 2009. Iron-oxide trace element fingerprinting of mineral deposit types. In: M.H. Corriveau L. (Ed.) Exploring for Iron Oxide Copper-Gold Deposits: Canada and Global Analogues, Short Course, Geological Association of Canada Annual Meeting, Québec City, 107-121. Beaudoin G., Dupuis C., Gosselin P., Jebark M., 2007. Mineral chemistry of iron oxides: application to mineral exploration. Proceedings of the 9th Biennial SGA Meeting, Dublin. 497-500. Beaudoin G., Dupuis C., McClenaghan B., 2009. Fingerprinting mineral deposit types using iron-oxide chemistry: Application to till from Thompson, Manitoba, Canada. Proceedings of the 24th IAGS, Fredericton, 107-121. Bekker A., Slack J.F., Planavsky N., Krapez B., Hofmann A., Konhauser K.O., Rouxel O.J., 2010. Iron formation: The sedimentary product of a complex interplay among Mantle, tectonic, oceanic, and biospheric processes Belousova E.A., Griffin W.L., O’Reilly S.Y., Fisher N.I., 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology 143, 602-622. Belousova E.A., Walters S., Griffin W.L., O’Reilly S.Y., 2001. Trace element signatures of apatites from granitoids of Mount Isa Inlier, north-west Queensland, Australia. Australian Journal of Earth Sciences, 48, 603-619. Berzina A., 2012. Platinum- group element geochemistry of magnetite from porphyry-Cu-Mo deposits and their host rocks (Siberia, Russia). Acta Geologica Sinica 86, 106-117. Best M.G., 2002. Igneous and metamorphic petrology. Wiley-Blackwell. 2nd Edition, 752 pages. Bhattacharya H.N., Chakrabortym I., Ghosh K.K., 2007. Geochemistry of some banded iron-formations of the Archean Supracrustals, Jharkhand-Orissa region, India. Journal of Earth System Science 116, 245-259. Biagioni C., and Pasero M., 2014. The systematics of the spinel-type minerals: An overview. American Mineralogist 99, 1254-1264. Bleeker W., and Hall B., 2007. The Slave Craton: geological and metallogenic evolution. Mineral Deposits of Canada: A Sythesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; W.D. Goodfellow (ed.), Geological Association of Canada, Mineral Deposits Division, Special Publication 5, 849-879. Bleeker W., Ketchum J.W.F., Davis W.J., 1999. The Central Slave Basement Complex, Part II: Age and tectonic significance of highstrain zones along the basement-cover contact: Canadian Journal of Earth Sciences 36, 1111-1130.

157

Blenkinsop T.G., 2000. Deformation microstructures and mechanisms in minerals and rocks. Springer Netherlands, 150 pages. 10.1007/0-306-47543-X. Borg S., Liu W., Pearce M., Cleverley J., MacRae C., 2014. Complex mineral zoning patterns caused by ultra-local equilibrium at reaction interfaces. Geology 42(5), 415-418. Bostock H.H., 1980. Geology of the Itchen Lake area, District of Mackenzie. Geological Survey of Canada, Memoir 391,102 pages. Boucher S.M., Hannington M.D., and Dube B., 2010. Primary and secondary ore textures in the West Ansil volcanic- hosted massive- sulphide deposit, Noranda mining camp, Rouyn- Noranda, Quebec. Current Research 2010-10, Geological Survey of Canada, 16 pages. Boutroy E., 2013. Magnetite from porphyry deposits. NSERC-AEM chair mineral exploration workshop, Université Laval, Quebec, Canada. Boutroy E., Beaudoin G., Barnes S.J., Corriveau L., 2012b. Minor and trace element composition of iron oxides from IOCG deposits worldwide and its application to mineral exploration. Goldschmidt conference 2012, Montreal, Canada. Boutroy E., Dare S.A.S., Beaudoin G., Barnes S.J., 2012a. Minor and trace element composition of magnetite from Ni-Cu deposits worldwide and its application to mineral exploration. GAC-MAC 2012, St- John's, NL, Canada. Boutroy E., Dare S.A.S., Beaudoin G., Barnes S.J., Lightfoot P.C., 2014. Minor and trace element composition of magnetite from Ni-Cu-PGE deposits worldwide and its application to mineral exploration. Journal of Geochemical Exploration in press. Bowles J.F.W., Howie R.A., Vaughan D.J., Zussman J., 2011. Rock-forming Minerals- Non-silicates: Oxides, Hydroxides and Sulphides2nd ed. Geological Society, London. Boyle D.R., 2003. Preglacial weathering of massive sulfide deposits in the BMC: Economic geology, geochemistry, and exploration applications, In Massive Sulfide Deposits of the Bathurst Mining Camp, New Brunswick and Northern Maine, (eds.) W.D. Goodfellow, S.R. McCutcheon, and J.M. Peter; Economic Geology, Monograph 11, 689-721. Brearely A.J., and Champness P.E., 1986. Magnetite exsolution in almandine garnet. Mineralogical Magazine 50, 621-633. Brooker D.D., Craig J.R., Rimstidt J.D., 1987. Ore metamorphism and pyrite porphyroblast development at the Cherokee mine, Ducktown, Tennessee. Economic Geology 82, 72-86. Buchan K.L., and Ernst R.E., 2004. Diabase dyke swarms and related units in Canada and adjacent regions. Geological Survey of Canada, Map 2022A, scale 1:5,000,000.

158

Buddington A.F., and Lindsley, D.H., 1964. Iron-titanium oxide minerals and synthetic equivalents. Journal of Petrology 5, 310-357. Budulan G., McClenaghan M.B., Layton-Matthews D., Crabtree D., Pyne M., McClenaghan S., 2015. Indicator mineral signatures of the Halfmile Lake Zn-Pb-Cu volcanogenic massive sulphide deposit, Bathurst Mining Camp, New Brunswick: Part 1- bedrock data. Geological Survey of Canada, Open file 7644, 75 pages. Budulan G., McClenaghan M.B., Parkhill M.A., Layton-Matthews D., Pyne M., 2013. Till geochemical signatures of the Halfmile Lake Zn-Pb-Cu volcanogenic massive sulphide deposit, Bathurst Mining Camp, New Brunswick. Geological Survey of Canada, Open File 7174, 122 pages. Buerger M.J., 1947. The relative importance of the several faces of a crystal. American mineralogist 32, 593606. Cabri L.J., Harris D.C., Weiser T.W., 1996. Mineralogy and distribution of platinum-group minerals (PGM) placer deposits of the world. Exploration and Mining Geology 2, 73-167. Cabri L.J., Rudashevsky N.S., Rudashevsky V.N., Oberthur T., 2008. Electric-pulse disaggregation (EPD), Hydroseparation (HS) and their use in combination for mineral processing 232 and advanced characterization of ores. Proceedings of the 40th Annual Canadian Mineral Processors Conference, Ottawa 2008, 221-235. Campbell I.H., Lesher C.M., Coad P., Franklin J.M., Gorton M.P., Thurston P.C., 1984. Rare-earth element mobility in alteration pipes below massive Cu-Zn sulfide deposits. Chemical Geology 45, 181-202. Campbell S., and Thompson I.C., 1991. Palaeoenvironmental history of Late Pleistocene deposits at Moel Tryfan, North Wales: evidence from scanning electron microscopy. Proceedings of the Geological Association 102, 123-134. Carew M.J., 2004. Controls on Cu-Au Mineralisation and Fe-oxide metasomatism in the Eastern Fold Belt, NW Queensland, Australia. PhD thesis, James Cook University, Townsville. 308 pages. Carew M.J., Mark G., Oliver N.H.S., Pearson N., 2006. Trace element geochemistry of magnetite and pyrite in Fe oxide (+/'Cu-Au) mineralised systems: insights into the geochemistry of ore-forming fluids. Geochimica et Cosmochim Acta 70 (18), 1 page. Cassidy K.F., Groves D.I., Binns R.A., 1988. Manganoan ilmenite formed during regional metamorphism of Archean mafic and ultramafic rocks from Western Australia. The Canadian Mineralogist 26, 999-1012. Chang L.L.Y., Deer W.A., Howie R.A., Zussman J., 1998. Rock-forming minerals. Non-silicates: sulphates, carbonates, phosphates, halides. Geological Society, London, 5B, 383 pages. Chartrand F., and Cattalani S.,1990. Massive sulfide deposits in Northwestern Quebec. In: Rive M., Verpaelst P., Gagnon Y., Lulin J.M., Riverin G., Simard A. (Eds.), The northwestern Quebec polymetallic belt: A

159

summary of 60 years of mining exploration. Canadian Institution of Mining and Metallurgy Special 43, 7792. Chen W.T., Zhou M-F., Gao J-F., Hu R., 2015a. Geochemistry of magnetite from Fe-Cu deposits in the Kangdian metallogenic province, SW China. Mineralium Deposita, DOI 10.1007/s00126-014-0575-7. Chen W.T., Zhou M-F., Li X., Gao J-F., Hou K., 2015b. In-situ LA-ICP-MS trace elemental analyses of magnetite: Cu-(Au, Fe) deposits in the Khetri copper belt in Rajasthan Province, NW India. Ore Geology Reviews 65, 929-939. Chong I.G., and Jun C.H., 2005. Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems 78, 103-112. Chung D., Zhou M.F., Gao J-F., Chen W.T., 2015. In-situ LA-ICP-MS trace elemental analyses of magnetite: The late Palaeoproterozoic Sokoman Iron Formation in the Labrador Trough, Canada. Ore Geology Reviews 65, 917-928. Clements B., Pell J., Holmes P., Grenon H., 2009. Following kimberlite indicator minerals to Chidliak, Baffin Island: Canada’s newest diamond district. In: McClenaghan M.B. & Throleifson L.H. (eds), Indicator Mineral Methods in Mineral Exploration, Workshop B, 24th International Applied Geochemistry Symposium, 83-87. Cook N.J., and Dudek K., 1994. Mineral chemistry and metamorphism of garnet -chlorite-mica schists associated with cassiterite-sulphide-mineralisation from the Kamienica Range, Izera Mountains, S.W. Poland. Chemie der Erde 54,1-32. Cornell R.M., and Schwertmann U., 2003. The iron oxides: Structure, properties, reactions, occurrences, and uses, 2 ed. Weinheim, Wiley-VCH. Cornell R.M., and Schwertmann U., 2006. The Iron Oxides: structure, properties, reactions, occurrences and uses. John Wiley & Sons, 664 pages. Cornwall H.R., 1951. Ilmenite, magnetite, hematite, and copper in lavas of Keweenawan Series. Economic Geology 46, 51-57. Costa P.J.M., Andrade C., Mahaney W.C., Marques da Silva F., Freire P., Freitas M.C., Janardo C., Oliviera M.A., Silva T., Lopes V., 2013. Aeolian microtextures in silica spheres induced in a wind tunnel experiment: comparison with aeolian quartz. Geomorphology 180-181, 120-129. Costello K., Senkow M., Bigio A., Budkewitsch P., Ham L., Mate D., 2012. Nunavut Mineral Exploration, Mining and Geoscience Overview 2011. Aboriginal Affairs and Northern Development Canada, 71 pages. Croghan C.W., and Egeghy P.P., 2003. Methods of Dealing with Values Below the Limit of Detection using SAS. Southeastern SAS User Group, City, 22-24 September 2003. Daigle P., Arseneau G., Maunula T. 2009. Halfmile Lake technical report and resource estimate; Report to Beartooth Platinum Corp. by Wardrop, Document Number 0887190200- REP-L0002-02, 69 pages.

160

Daigneault R., Mueller W.U., Chown E.H., 2004. Abitibi greenstone belt plate tectonics: the diachronous history of arc development, accretion and collision. In: Eriksson P.G., Altermann W., Nelson D.R., Mueller W.U., Catuneau O., Strand K., (eds). Developments in Precambrian geology/tempos of events in Precambrian time. Elsevier, Amsterdam, 88-103. Dare S.A.S., Barnes S.J., Beaudoin G., 2011. Evolution of trace element concentrations in magnetite from a fractionating magmatic sulphide liquid: an example from the Sudbury (Canada) Ni-Cu-PGE deposits. 11th Biennial SGA meeting: Let’s Talk Ore Deposits. Antofagasta, Chile, 621-623. Dare S.A.S., Barnes S.J., Beaudoin G., 2012. Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination. Geochimica et Cosmochimica Acta 88, 27-50. Dare S.A.S., Barnes S.J., Beaudoin G., 2015. Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Mineralium Deposita 50, 607-617. Dare S.A.S., Barnes S.J., Beaudoin G., Meric J., Boutroy E., Potvin-Doucet C., 2014. Trace elements in magnetite as petrogenetic indicators. Mineralium Deposita, 1-12. de Caritat P., and Grunsky E.C., 2013. Defining element associations and inferring geological processes from total element concentrations in Australian catchment outlet sediments: Multivariate analysis of continentalscale geochemical data. Applied Geochemistry 33, 104-126. De Iorio M., Ebbels T.M.D., Stephens D.A., 2008. Statistical Techniques in Metabolic Profiling. Handbook of Statistical Genetics: Third Edition, 347-373. 10.1002/9780470061619.ch11. Deer W.A., Howie R.A., Zussman J., 1997. Rock Forming Minerals. Volume 5B: Non-Silicates; Sulphates, Carbonates, Phosphates and Halides. Geological Society, London, 392 pages. Deo B., Dube R.K., Chatterji S., 1989. Formation of porous magnetite in the initial stage of solid state reduction of hematite by metallic iron. ISIJ International 29, 345-347. Desborough G.A., 1970. Silver depletion indicated by microanalysis of gold from placer occurrences, western United States. Economic Geology 65, 304-311. DeVore G.W., 1956. Surface chemistry as a chemical control on mineral association. Journal of geology 64, 31-55. DeVore G.W., 1957. The association of strongly polarizing cations with weakly polarizing cations as a major influence on element distribution, mineral composition, and crystal growth. Journal of geology 65, 78-195. DiLabio R.N.W., 1991. Classification and interpretation of the shapes and surface textures of gold grains from till. Geological Survey of Canada, contribution N° 32391, 297-313.

161

Dill H.G., 2007. Grain morphology of heavy minerals from marine and continental placer deposits, with special reference to Fe–Ti oxides. Sedimentary Geology 198, 1-27. Dimroth E., Imreh L., Goulet N., Rocheleau M., 1983. Evolution of the south-central segment of the Archean Abitibi Belt, Quebec. Part III: plutonic and metamorphic evolution and geotectonic model. Canadian Journal of Earth Sciences 20, 1374-1388. Doyle M.G., and Allen R.L., 2003. Subsea-floor replacement in volcanic-hosted massive sulfide deposits. Ore Geology Reviews 23(3-4), 183-222. Dredge L.A. Kerr D.E., and Ward B.C., 1996. Surficial Geology, Point Lake, District of Mackenzie, Northwest Territories; Geological Survey of Canada, Map 1890A, scale 1:125 000. Dredge L.A., Kerr D.E., Wolfe S.A., 1999. Surficial materials and related ground ice conditions, Slave Province, N.W.T., Canada. Canadian Journal of Earth Sciences 36, 1227-1238. Dupuis C., and Beaudoin G., 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita 46 (4), 319-335. Duuring P., and Hagemann S.G., 2012. Leaching of silica bands and concentration of magnetite in Archean BIF by hypogene fluids: Beebyn Fe ore deposit, Yilgarn Craton, Western Australia. Mineralium Deposita 48, 341-370. Egozcue J.J., Pawlowsky-Glahn V., Mateu-Figueraz G., Barceló-Vidal C., 2003. Isometric logratio transformations for compositional data analysis. Mathematical Geology 35 (3), 279-300. Energy, Mines and Resources Canada, 1989. The Canadian mineral deposits not being mined in 1989: Mineral Resources Bulletin MR2 223, 400 pages. Eriksson L., Johansson E., Kettaneh-Wold N., Wold S., 2001. Multi- and megavariate data analysis, principles and applications. UMETRICS, Umea, 425 pages. Eugster H.P., and Chou I.M., 1979. A model for the deposition of Cornwall-type magnetite deposits. Economic Geology 74 (4), 763-774. Evans B.W., and Frost B.R., 1975. Chrome-spinel in progressive metamorphism- a preliminary analysis. Geochimica et Cosmochimica Acta 39, 959-972. Evans D.T.W., Swinden H.S., Kean B.S., Hogan A., 1992. Metallogeny of the vestiges of Iapetus, Island of Newfoundland. Newfoundland Department of Mines and Energy Map 92-19, scale 1:500000. Fandrich R., Gu Y., Burrows D., Moeller K., 2007. Modern SEM-based mineral liberation analysis. International Journal of Mineral Processing 84, 310-320. Figueiredo e Silva R.C., Lobato L.M., Rosiere C.A., 2008. A hydrothermal origin for the jaspilite-hosted giant Sierra Norte deposits in the Cajajas Mineral Province, Para State, Brazil. In: Hagemann, S., Rosière,

162

C.A., Gutzmer, J., Beukes, N.J. (Eds.), Banded Iron Formation-related High-grade Iron Ore: Society of Economic Geologists, 255-290. Filzmoser P., Hron K., Reimann C., 2009. Principal component analysis for compositional data with outliers. Environmetrics 20(6), 621-632. Fisher N.H., 1945. The fineness of gold, with special reference to the Morobe Goldfield, New Guinea. Society of Economic Geologists 40, 449-495. Fleet M., 1981. The structure of magnetite. Acta Crystallographica B37, 917-920. Floran R.J., and Papike J.J., 1978. Mineralogy and petrology of the Gunflint ironformation, MinnesotaOntario: Correlation of compositional and assemblage variations at low to moderate grade. Journal of Petrology 19, 215-288. Folk R.L., 1978. Petrology of Sedimentary Rocks. Hemphill Publishing Co., Austin, Texas, 182 pages. Ford K., Keating P., Thomas M.D., 2007. Overview of geophysical signatures associated with Canadian ore deposits, in Goodfellow, W.D., ed., Mineral deposits of Canada- A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication 5, 939-970. Franklin J.M., Gibson H.L., Jonasson I.R., Galley A.G., 2005. Volcanogenic Massive Sulfide Deposits. Economic Geology 100th anniversary, 523-560. Franklin J.M., Lyndon J.W., Sangster D.F., 1981. Volcanic-associated sulfide deposits. Economic Geology 75th anniversary volume, 485-627. Friske P.W.B., McCurdy M.W., Day S.J.A., 2001. Regional stream sediment and water geochemical data, eastern Yukon and western Northwest Territories. Geological Survey of Canada, Open File 4016, doi:10.4095/212965. Frost B.R., 1979. Metamorphism of iron-formation; parageneses in the system Fe-Si-C-O-H. Economic Geology 74, 775-785. Frost B.R., 1991. Stability of oxide minerals in metamorphic rocks. Lindsley D.H. (Ed.). Oxide Minerals: Petrologic and Magnetic Significance. Reviews in Minerology, Mineralogical Society of America, 469-487. Frost B.R., and Frost C.D., 2014. Essentials of igneous and metamorphic petrology. Cambridge university press, United States of America, 297 pages. Frost B.R., and Lindsley D.H., 1991. Occurrence of iron-titanium oxides in igneous rocks. In: Lindsley, D.H. (Ed.), Petrologic and Magnetic Significance 25, 489-509. Gaboury D., and Pearson V., 2008. Rhyolite Geochemical Signatures and Association with Volcanogenic Massive Sulfide Deposits: Examples from the Abitibi Belt, Canada. Economic Geology 103(7), 1531-1562.

163

Galicki M., Marshall D., Staples R., Thorkelson D., Downie C., Gallagher C., Enkin R., Davis W., 2012. Iron oxide ± Cu ± Au deposits in the Iron Range, Purcell Basin, southeastern British Columbia. Economic Geology 107, 1293-1301. Galley A.G., Hannington M.D., Jonasson I.R., 2007. Volcanogenic massive sulfide deposits. Mineral deposits of Canada. In Goodfellow, W.D., ed., Mineral Deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication 5, 141-161. Galley A.G., Jonasson I.R., Watkinson D.H., 2000. Magnetite-rich calc-silicate alteration in relation to synvolcanic intrusion at the Ansil volcanogenic massive sulfide deposit, Rouyn-Noranda, Quebec, Canada. Mineralium Deposita 35, 619-637. Galley A.G., Watkinson D.H., Jonasson I.R., Riverin G., 1995. The subsea-floor formation of volcanic-hosted massive sulfide: evidence from the Ansil deposit, Rouyn Noranda, Canada. Economic Geology 90, 20062017. Geladi P., and Grahn H., 1996. Multivariate image analysis. John Wiley & Sons, 330 pages. Geladi P., Isaksson H., Lindqvist L., Wold S., Esbensen K., 1989. Principal component analysis of multivariate images. Chemometrics and Intelligent Laboratory Systems 5(3), 209-220. Genna D., Gaboury D., Roy G., 2014. The Key Tuffite, Matagami Camp, Abitibi Greenstone Belt, Canada: petrogenesis and implications for VMS formation and exploration. Mineralium Deposita 49, 489-512. Gerlach R.W., and Nocerino J.M., 2003. Guidance for obtaining representative laboratory analytical subsamples from particulate laboratory samples. Environmental Protection Agency: the United States, Report N° EPA/600/R-03/027, 156 pages. Ghiorso M.S., and Sack O., 1991. Fe-Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas. Contribution to Mineralogy and Petrology 108, 485-510. Gibson H.L., Allen R.L., Riverin G., Lane T.E., 2007. The VMS Model: Advances and application to Exploration Targeting. In, "proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration". Milkereit B., ed., 713-730. Gibson H.L., and Kerr D.J., 1993. Giant volcanic-associated massive sulphide deposits, with emphasis on Archean examples. Society of Economic Geologists Special Publication 2, 319-348. Gibson H.L., and Watkinson D.H., 1990. Volcanogenic massive sulphide deposits of the Noranda cauldron and shield volcano, Quebec. Canadian Institute of Mining and Metallurgy Special volume 43, 119-132. Gilgen S.A., Diamond L.W., Mercolli I., Al-Tobi K., Maidment D.W., Close R., Al-Towaya A., 2014. Volcanostratigraphic controls on the occurrence of massive sulfide deposits in the Semail Ophiolite, Oman. Economic Geology 109, 1585-1610.

164

Gilliom R.J., and Helsel D.R., 1986. Estimation of distributional parameters for censored trace-level waterquality data. I. Estimation Techniques, Water Resources Research 22, 135-146. Giusti L., 1987. The morphology, mineralogy, and behavior of "fine-grained" gold from placer deposits of Alberta: sampling and implications for mineral exploration: Reply. Canadian Journal of Earth Sciences 24 (7), 1503. Glass D.C., and Gray C.N., 2001. Estimating mean exposures from censored data: exposure to benzene in the Australian petroleum industry- The Annals of occupational hygiene 45(4), 275-282. Gochfeld M., Burger J., Vyas V., 2005. Statistical Analysis of Data Sets with Values Below Detection Limits. Goldie R., 1978. Magma mixing in the Flavrian pluton, Noranda area, Quebec. Canadian Journal of Earth Sciences 15, 132-144. Goldschmidt V.M., 1954. Geochemistry Oxford University Press, Oxford. Golubev Yu.K., 1995. Diamond exploration in glaciated terrain: a Russian perspective. Journal of Geochemical Exploration 53 (1-3), 265-275. Goodfellow W.D., and McCutcheon S.R., 2003. Geologic and genetic attributes of volcanic sediment-hosted massive sulfide deposits of the Bathurst Mining Camp, northern New Brunswick- a synthesis: Economic Geology Monograph 11, 245-302. Goodfellow W.D., McCutcheon S.R., Peter J.M., 2003. Massive sulfide deposits of the Bathurst Mining Camp, New Brunswick, and Northern Maine: Introduction and summary of findings. Economic Geology Monograph 11, 1-16. Goodwin A.M., 1973. Archean iron-formation and tectonic basins of the Canadian Shield. Economic Geology 68, 915-933. Goodwin A.M., 1982. Archean volcanoes in southwestern Abitibi Belt, Ontario and Quebec: form, composition, and development. Canadian Journal of Earth Sciences 19, 1140-1155. Gosselin P., Beaudoin G., Jebrak M., 2006. Signature géochimiques des oxydes de fer et application à l’exploration minière. Rapport D'etae 1, 14 pages. Goudie A.S., and Watson A., 1981. The shape of desert sand dune grains. Journal of Arid Environments 4, 185-190. Grant A.H., Lavin O.P., Nichol I., 1991. The morphology and chemistry of transported gold grains as an exploration tool. Journal of Geochemical Exploration 40 (1-3), 73-94. Griffiths J.C., 1967. The Scientific Method in the analysis of sediments. McCraw-Hill, New York, 508 pages. Grigsby J.D., 1990. Detrital magnetite as a provenance indicator. Journal of Sedimentary Research 60, 940951.

165

Grinchenko O., Bondarenko S., Semka, V., 2005. Gold-telluride associations in the Lower Paleozoic Sauljak deposit, Ukrainian Carpathians. Geochemistry, Mineralogy and Petrology 2005, Bulgarian Academy of Sciences, Sofia, Bulgaria. Grunsky E.C., 2010. The interpretation of geochemical survey data. Geochemistry: Exploration, Environment, Analysis 10, 27-74. Grunsky E.C., Drew L.J., Woodruff L.G., Friske P.W.B., Sutphin D.M., 2013. Statistical variability of the geochemistry and mineralogy of soils in the Maritime Provinces of Canada and part of the Northeast United States. Geochemistry: Exploration, Environment, Analysis 13(4), 249-266. Gutzmer J., Beukes N.J., de Kock M.O., Netshiozwi S.T., 2005. Origin of high-grade iron ores at the Thabazimbi deposit, South Africa. In: AusIMM (Ed.), Proceedings Iron Ore Conference 2005, 19-21 September 2005. Freemantle, Western Australia, 57-65. Haggerty S.E., 1991. Oxide mineralogy of the upper mantle. In: Lindsley Donald, H. (Ed.), Oxide Minerals: Petrologic and Magnetic Significance. Reviews in Mineralogy and Geochemistry 25, 355-416. Hall B.V., 1982. Geochemistry of the alteration pipe at the Amulet Upper A deposit, Noranda, Quebec. Canadian Journal of Earth Sciences 19, 2060-2084. Hallbauer D.K., and Utter T., 1977. Geochemical and morphological characteristics of gold particles from recent river deposits and the fossil placers of the Witwatersrand. Mineralium Deposita 12 (3), 293-306. Hannington M.D., Barrie C.T., Bleeker W., 1999. The giant Kidd Creek volcanogenic massive sulfide deposit, western Abitibi subprovince, Canada: Preface and introduction. In: Hannington M.D., Barrie C.T., (Eds.), The giant Kidd Creek volcanogenic massive sulfide deposit, western Abitibi subprovince, Canada. Economic Geology Monograph 10, 1-30. Harley D.N., 1977. Geology of the Halfmile Lake Zn-Pb-Cu deposit, New Brunswick unpublished thesis, University of Western Ontario, 208 pages. Harley D.N., 1979. A mineralized resurgent caldera complex in the Bathurst-Newscale mining district, New Brunswick, Canada. Economic Geology 74, 786-796. Heider F., Dunlop D.J., Sugiura N., 1987. Magnetic properties of hydrothermally recrystallized magnetite crystals. Science 236, 1287-1290. Heimann A., Spry P.G.,Teale G.S., 2005. Zincian spinel associated with metamorphosed Proterozoic basemetal sulfide occurrences, Colorado: A re-evaluation of gahnite composition as a guide in exploration. The Canadian Mineralogist 43, 601-622. Helland P.E., Diffendal R.F. Jr., 1993. Probably glacial climate conditions in source areas during deposition of parts of the Ash Hollow Formation, Ogallala Group (Late Tertiary) of western Nebraska. American Journal of Science 293, 744-757.

166

Helland P.E., Holmes M.A., 1997. Surface textural analysis of quartz sand grains from ODP Site 918 off the southeast coast of Greenland suggests glaciation in southern Greenland at 11 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology 135, 109-121. Helland P.E., Huang P.H., Diffendal R.F., 1997. SEM analysis of quartz sand grain surface textures indicates alluvial/colluvial origin of the Quaternary “glacial” boulder clays at Huangshan (Yellow Mountain), EastCentral China. Quaternary Research 48, 177-186. Helsel D., and Lee L., 2006. Analysis of environmental data with nondetects; Statistical methods for censored environmental data. ASA Workshop at Analysis of Environmental Data With Nondetects- Statistical methods for censored environmental data, Seattle, Washington, August 2006. Helsel D.R., 1990. Less Than Obvious: Statistical treatment of data below the detection limit. Environmental Science and Technology 24(12), 1766-1774. Helsel D.R., 2005. Nondetects and data analysis. Wiley, New York, 268 pages. Helsel D.R., and Cohn T.A., 1988. Estimation of descriptive statistics for multiply censored water quality data. Water Resources Research 24(12), 1997-2004. Helsel D.R., and Gilliom R.J., 1986. Estimation of distributional parameters for censored trace-level waterquality data. II: Verification and applications. Water Resources Research 22, 147-155. HÈrail G., Fornari M., Rouhier M., 1989. Geomorphological control of gold distribution and gold particle evolution in glacial and fluvioglacial placers of the Ancocala-Ananea basin- Southeastern Andes of Peru. Geomorphology 2(4), 369-383. Heslop J.B., 1976. Geochemical survey, Itchen Lake claims, Han 1 grid. Nunavut Assessment Report 76-SI26, Department of Indian and Northern Affairs, Yellowknife, NWT, 36 pages. Hicken A.K., 2012. Glacial dispersal of indicator minerals from the Izok Lake Zn-Pb-Ag VMS deposit, Nunavut, Canada. MSc. thesis, Department of Geological Sciences and Geological Engineering, Queen’s University: Kingston, Ontario, Canada, 666 pages. Hicken A.K., McClenaghan M.B., Layton-Matthews D., Paulen R.C., Averill S.A., Crabtree D., 2013a. Indicator mineral signatures of the Izok Lake Zn-Cu-Pb-Agvolcanogenic massive sulphide deposit, Nunavut: Part 1 bedrock samples. Geological Survey of Canada, Open File 7173. Hicken A.K., McClenaghan M.B., Paulen R.C., Layton-Matthews D., 2012. Till geochemical signatures of the Izok Lake Zn-Cu-Pb-Ag volcanogenic massive sulphide deposit, Nunavut. Geological Survey of Canada, Open file 7046, 118 pages. Hicken A.K., McClenaghan M.B., Paulen R.C., Layton-Matthews D., Averill S.A., Crabtree D., 2013b. Indicator mineral signatures of the Izok Lake Zn-Cu-Pb-Ag volcanogenic massive sulphide deposit, Nunavut: Part 2 till. Geological Survey of Canada, Open File 7343.

167

Higgins M.D., 2006. Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press, Cambridge, UK, 276 pages. Higgs R., 1969. Quartz grain surface features of Mesozoic-Cenozoic sands from the Labrador and western Greenland continental margins. Journal of Sedimentary Petrology 39, 599-610. Hill R., and Roeder P., 1974. The crystallization of spinel from basaltic liquid as a function of oxygen fugacity. Journal of Geology 82, 709-729. Hitzman M.W., Oreskes N., Einaudi M.T., 1992. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits: Precambrian Research 58, 241-287. Hron K., Templ M., Filzmoser P., 2010. Imputation of missing values for compositional data using classical and robust methods. Computational Statistics and Data Analysis 54 (12), 3095-3107. Hu H., Li J.W., Lentz D., Ren Z., Zhao X.F., Deng X.D., Hall D.,2014. Dissolution-reprecipitation process of magnetite from the Chengchao iron deposit: Insights into ore genesis and implication for in-situ chemical analysis of magnetite. Ore Geology Reviews 57, 393-405. Huang X., Qi L., Meng Y., 2014. The element geochemistry of magnetite from Fe(-Cu) deposits in the Hami Region, Eastern Tianshan Orogenic Belt, NW China. Acta Geologica Sinica 88 (1), 176-195. Huang X., Zhou M.F., Qiu Y.Y., Qi L., 2015. In-situ LA-ICP-MS trace elemental analyses of magnetite: The Bayan Obo Fe-REE-Nb deposit, North China. Ore Geology Reviews 65 (4), 884-899. Jackson S.E., 2009. Mineral chemistry: modern techniques and applications to exploration. In: McClenaghan M.B. & Throleifson L.H. (eds), Indicator Mineral Methods in Mineral Exploration, Workshop B, 24th International Applied Geochemistry Symposium, 21-26. Jacob H.L., and Tremblay A., 2012. Geological description of the Joulet property, Abitibi, Quebec. Consultation Geo-logic, Technical report NI 43-101 and NI 43-101A, 46 pages. Jambor J.L., 1979, Mineralogical evaluation of proximal-distal features in New Brunswick massive sulfide deposits. The Canadian Mineralogist 17, 649-664. James H.L., 1983. Distribution of banded iron-formation in space and time. In: A.F. Trendall. and R.C. Morris, (Editors), Iron formation facts and problems. Developments in Precambrian Geology 6, 471-490. Jarosewich E., Nelen J.A., Norberg J.A., 1980. Reference samples for electron microprobe analysis. Geostand. Newslett. 4, 43-47. Jenner F.E., O'Neill H.S.C., Arculus R.J., Mavrogenes J.A., 2010. The magnetite crisis in the evolution of arcrelated magmas and the initial concentration of Au, Ag and Cu. Journal of Petrology 51, 2445-2464. Jiang S.Y., and Palmer M.R., 1996. Mn-rich ilmenite from the Sullivan Pb-Zn-Ag deposit, British Columbia. The Canadian Mineralogist 34, 29-36.

168

Jolly W.T., 1980. Development and degradation of Archean lavas, Abitibi area, Canada, in light major elements geochemistry. Journal of Petrology 21, 323-363. Jonas L., John T., Putnis A., 2013. Influence of temperature and Cl on the hydrothermal replacement of calcite by apatite and the development of porous microstructures. The American Mineralogist 98,1516-1525. Kaminsky F.V., and Belousova E.A., 2009. Manganoan ilmenite as kimberlite/diamond indicator mineral. Russian Geology and Geophysics, 50 (12), 1212-1220. Kamvong T., Zaw K., Siegele R., 2007. PIXE/PIGE microanalysis of trace elements in hydrothermal magnetite and exploration significance: a pilot study. 15th Australian Conference on Nuclear and Complementary Techniques of Analysis and 9th Vacuum Society of Australia Congress. University of Melbourne, Melbourne, Australia. Kasper-Zubillaga J.J., 2009. Roundness in quartz grains from island and coastal dune sands, Altar Desert, Sonora, Mexico. Boletín de la Sociedad Geológica Mexicana 61(1), 1-12. Kasper-Zubillaga J.J., Dickinson W.W., Carranza-Edwards A., Hornelas-Orozco Y., 2005. Petrography of quartz grains in beach and dune sands of Northland, North Island, New Zealand. Journal of Geology and Geophysics 48, 649-660. Kean B.F., Evans D.T.W., Jenner G.A., 1995. Geology and mineralization of the Lushs Bight Group. Newfoundland and Labrador Department of Natural Resources, Geological Survey, Report 95-02, 204 pages. Kennedy L.P., 1985. The geology and geochemistry of the Archean Flavrian pluton, Noranda, Quebec. PhD thesis, University of Western Ontario, London, Ontario, 469 pages. Kerr D.E., Dredge L.A., Ward B.C., Gebert J.S., 1995. Quaternary geology and implications for drift prospecting in the Napaktulik Lake, Point Lake, and Contwoyto Lake map areas, northwest Slave Province, Northwest Territories, In Current Research, Part E; Geological Survey of Canada, Paper 1995-E, 201-209. Kettles K.R., 1987. The Turgeon mafic volcanic associated Fe-Cu-Zn sulphide deposit in the ophiolitic Fournier Group, Northern New Brunswick. M.Sc. thesis, University of New Brunswick, Fredericton, 202 pages. Kleesment A., 2009. Roundness and surface textures of quartz grains in Middle Devonian deposits of East Baltic and their palaeogeographic implications. Estonian Journal of Earth Sciences 58 (1), 71-84. Klein C., 2005. Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist 90, 1473-1499. Knight J.B., and McTaggart K.C., 1986. The composition of placer and lode gold from the Fraser River drainage area, southwestern British Columbia. Canadian Journal of CIM 1, 21-30.

169

Knight J.B., Morison S.R., Mortensen J.K., 1999. The relationship between placer gold particle shape, rimming, and distance of fluvial transport as exemplified by gold from the Klondike District, Yukon Territory, Canada. Economic Geology 94, 635-448. Knipping J.L., Bilenker L.D., Simon A.C., Reich M., Barra F., Deditius A.P., Heinrich C.A., Holtz F., Munizaga R., 2015. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochimica et Cosmochimica Acta 171, 15-38. Kolker A., 1982. Mineralogy and geochemistry of Fe-Ti oxide and apatite (nelsonite) deposits and evaluation of the liquid immiscibility hypothesis. Economic Geology 77, 1146-1158. Koski R.A., 2012. Hypogene Ore Characteristics in Volcanogenic massive sulfide occurrence model. 2012, U.S. Geological Survey Chap. 8, 135-146. Kramer R., 1998. Chemometric Techniques for Quantitative Analysis. CRC Press, edition 1, 220 pages. Kretz R., 1966. Interpretation of the shape of mineral grains in metamorphic rocks. Journal of petrology 7(1), 68-94. Krinsley D.H., and Donahue J., 1968. Environmental interpretation of sand grain surface textures by electron microscopy. Geological Society of America Bulletin 79, 743-748. Krinsley D.H., and Doorkamp J.C., 1973. Atlas of quartz sand and surface textures. Cambridge University Press, Cambridge, UK, 102 pages. Krinsley D.H., and Marshall J.R., 1987. Sand grain textural analysis: An assessment. In Clastic particles: scanning electron microscopy and shape analysis of sedimentary and volcanic clasts. Edited by John R. Marshall. Van Nostand Reinhold Company, New York, New York. Lalonde E., and Beaudoin G., 2015. Petrochemistry, hydrothermal alteration, mineralogy, and sulfur isotope geochemistry of the Turgeon Cu-Zn volcanogenic massive sulfide deposit, northern New Brunswick, Canada. Canadian Journal of Earth Sciences 52, 215-234. Large R.R., 1977. Chemical evolution and zonation of massive sulfide deposits in volcanic terrains. Economic Geology 72, 549-572. Larson, J.E., 1983. Geology, geochemistry and wall-rock alteration at the Magusi and New Insco massive sulfide deposits, Hebecourt Township, northwestern Quebec. M.Sc., thesis, University of Western Ontario: London, Ontario, 173 pages. Leake R.C., Chapman R.J., Bland D.J., Stone P., Cameron D.G., Styles M.T., 1998. The origin of alluvial gold in the Leadhills area of Scotland: evidence from interpretation of internal chemical characteristics. Journal of Geochemical Exploration 63(1), 7-36.

170

Lentz D. and Goodfellow W.D., 1993. Mineralogy and petrology of the stringer sulphide zone in the Discovery Hole at the Brunswick No. 12 massive sulphide deposit, Bathurst, New Brunswick. Geological Survey of Canada Paper 93-1E, 249-258. Lentz D. and Goodfellow W.D., 1996. Intense silicification of footwall sedimentary rocks in the stockwork alteration zone beneath the Brunswick No. 12 massive sulphide deposit, Bathurst, New Brunswick. Canadian Journal of Earth Sciences 33, 284-302. Lentz D.R., and McCutcheon S.R., 2006. The Brunswick No. 6 massive sulfide deposit, Bathurst Mining Camp, northern New Brunswick, Canada: A synopsis of the geology and hydrothermal alteration system. Exploration and Mining Geology 15(3-4), 1-34. Lindsley D.H., 1976. The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides. In: Rumble III D. (Ed.), Oxide Minerals. Reviews in Mineralogy: Mineralogical Society of America, L1-L60. Liu P.P., Zhou M.F., Chen W.T., Gao J.F., Huang X.W., 2015a. In-situ LA-ICP-MS trace elemental analyses of magnetite: Fe-Ti-(V) oxide-bearing mafic-ultramafic layered intrusions of the Emeishan Large Igneous Province, SW China. Ore Geology Reviews 65 (4), 853-871. Liu W., Zhang J., Sun J., Zhou L., Liu A., 2015b. Low-Ti iron oxide deposits in the Emeishan large igneous province related to low-Ti basalts and gabbroic intrusions. Ore Geology Reviews 65, 180-197. Longerich H.P., Jackson S.E., Günther D., 1996. Laser ablation-inductively coupled plasma-mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry 11, 899-904. Madhavaraju J., Barragán J.C.G., Hussain S.M., Mohan S.P., 2009. Microtextures on quartz grains in the beach sediments of Puerto Peñasco and Bahia Kino, Gulf of California, Sonora, Mexico. Revista Mexicana de Ciencias Geológicas 26, 367-379. Mahaney W.C., 1990a. Ice on the Equator. W. Caxton Press, Ellison Bay, Wisconsin, 386 pages. Mahaney W.C., 1990b. Macrofabrics and quartz microstructures confirm glacial origin of Sunnybrook drift in the Lake Ontario basin. Geology 18, 145-148. Mahaney W.C., 1991. Microtextures on quartz and gold grains transported by glaciers. Gisements alluviaux d'or, La Paz. 315-323. Mahaney W.C., 1995. Pleistocene and Holocene glacier thicknesses, transport histories and dynamics inferred from SEM microtextures on quartz particles. Boreas 24 (4), 293-304. Mahaney W.C., 2002, Atlas of sand grain surface textures and applications. Oxford University Press, 256 pages.

171

Mahaney W.C., and Andres W., 1991. Glacially crushed quartz grains in loess as indicators of long distance transport from major European ice centers during the Pleistocene. Boreas 20, 231-240. Mahaney W.C., and Andres W., 1996. Scanning electron microscopy of quartz sand from the North-Central Saharan desert of Algeria. Zeitschrift fur Geomorphologie 103, 179-192. Mahaney W.C., and Kalm V., 2000. Comparative scanning electron microscopy study of oriented till blocks, glacial grains and Devonian sands in Estonia and Latvia. Boreas 29, 35-51. Mahaney W.C., Dirszowsky R.W., Milner M.W., Menzies J., Stewart A., Kalm V., Bezada M. 2004. Quartz microtextures and microstructures owing to deformation of glaciolacustrine sediments in the northern Venezuelan Andes. Journal of Quaternary Science 19, 23-33. Mahaney W.C., Dohm J.M., Costa P., Krinsley D.H., 2010. Tsunamis on Mars: Earth analogues of projected Martian sediment. Planetary and Space Science 58, 1823-1831. Mahaney W.C., Stewart A., Kalm V., 2001. Quantification of SEM micortextures useful in sedimentary environmental discrimination. Boreas 30 (2), 165-171. Mahaney W.C., Vortisch W., Fecher K., 1988a. Sedimentary petrographic study of tephra, glacial and aeolian grains in a Quaternary paleosol sequence on Mount Kenya, East Africa. Géographie physique et Quaternaire 42, 137-146. Mahaney W.C., Vortisch W., Julig P., 1988b. Relative differences between glacially crushed quartz transported by mountain and continental ice- some examples from North America and East Africa. American Journal of Science 288, 810-826. Makvandi S., Beaudoin G., McClenaghan B.M., Layton-Matthews D., 2015. The surface texture and morphology of magnetite from the Izok Lake volcanogenic massive sulfide deposit and local glacial sediments, Nunavut, Canada: Application to mineral exploration. Journal of Geochemical Exploration 150, 84-103. Makvandi S., Ghasemzadeh-Barvarz M., Beaudoin G., Grunsky E.C., McClenaghan B.M., Duchesne C., (2016). Principal component analysis of magnetite composition from volcanogenic massive sulfide deposits: Case studies from the Izok Lake (Nunavut, Canada) and Halfmile Lake (New Brunswick, Canada) deposits. Ore Geology Reviews 72, 60-85. Mandolla S., and Brook M.S., 2010. A preliminary Scanning Electron Microscope (SEM) study of magnetite surface microtextures from the Wahianoa moraines, Mt Ruapehu, New Zealand, in Geoscience. Working paper series in physical geography. Physical Geography Research Forum, Massey University: New Zealand, 1-12. Margolis S.V., and Krinsley D.H., 1974. Processes of formation and environmental occurrence of microfeatures on detrital quartz grains. American Journal of Science 274, 449-464.

172

Martin-Fernandez J.A., Barcelo-Vidal C., Pawlowsky-Glahn V., 2003. Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Mathematical Geology 35 (3), 253-278. Martin-Fernandez J.A., Horn K., Teml M., Filzmoser P., Palarea-Albadejo J., 2012. Model-based replacement of rounded zeros in compositional data: classical and robust approaches. Computational Statistics and Data Analysis 56, 2688-2704. Mathur A.K., Mishra V.P., Singh J., 2008. Study of quartz grain surface texture by electron microscopy- a tool in evaluating palaeoglacial sediments in Uttarakhand. Current Science 96 (10), 1377-1382. Matthews A., 1976. Magnetite formation by the reduction of hematite with iron under hydrothermal conditions. American Mineralogist 61, 927-932. Mazzullo J., and Ritter C., 1991. Influence of sediment source on the shapes and surface textures of glacial quartz sand grains. Geology 19, 384-388. McAllister A.L., 1960. Massive sulphide deposits in New Brunswick. Canadian Institute of Mining Metallurgy Bulletin 53 (574), 88-98. McCarthy T., and Cawthorn R.G., 1983. The geochemistry of vanadiferous magnetite in the Bushveld complex: implications for crystallization mechanisms in layered complexes. Miner Deposita 18, 505-518. McClenaghan M.B. 2011. Overview of common processing methods for recovery of indicator minerals from sediment and bedrock. Geochemistry: Exploration, Environment, Analysis, 11, 265-278. McClenaghan M.B., 2005. Indicator mineral methods in mineral exploration. Geochemistry: Exploration, Environment, Analysis 5, 233-245. McClenaghan M.B., Budulan G., Averill S.A., Layton-Matthews D., Pakhill M.A., 2012a. Indicator mineral abundance data for bedrock and till samples from the Halfmile Lake Zn-Pb-Cu volcanogenic massive sulphide deposit, Bathurst Mining Camp, New Brunswick; Geological Survey of Canada, Open File 7076. McClenaghan M.B., Hicken A.K., Averill S.A., Paulen R.C., Layton-Matthews D., 2012b. Indicator mineral abundance data for bedrock and till samples from the Izok Lake Zn-Cu-Pb-Ag volcanogenic massive sulphide deposit, Nunavut. Geological Survey of Canada, Open File 7075. McClenaghan M.B., Paulen R.C., Layton-Matthews D., Hicken A.K., Averill S.A., 2015. Glacial dispersal of gahnite from the Izok Lake Zn-Cu-Pb-Ag VMS deposit, northern Canada. Geochemistry Exploration, Environment, Analysis. doi:10.1144/geochem2014-317. McClenaghan M.B., Thorleifson L.H., DiLabio R.N.W., 1997. Till geochemical and indicator mineral methods in mineral exploration. Proceedings of Exploration 97: Fourth Decennial International Conference on Mineral Exploration” edited by A.G. Gubins, 233-248. McClenaghan M.B., Thorleifson L.H., DiLabio R.N.W., 2000. Till geochemical and indicator mineral methods in mineral exploration. Ore Geology Reviews 16, 145-166.

173

McCutcheon S.R., 1992. Base-metal of the Bathurst-Newscale district: characteristic and depositional models. Exploration and Mining Geology 1, 105-119. McCutcheon S.R., and Walker J.A., 2001. Volcanogenic massive sulphide deposits of the Bathurst Mining Camp: Geological Association of Canada-Mineralogical Association of Canada, Joint annual meeting, St. John’s, Newfoundland, Guidebook for Field trip B7, 89 pages. McCutcheon S.R., Brewer A., Belland M., 1989. Brunswick project, Gloucester County, New Brunswick. in Project Summaries for 1989, Fourteen Annual Review of Activities. Abbott S.A., ed., New Brunswick Department of Natural Resources and Energy, Mineral and Energy Division, Information Circular 89-2, 110118. McCutcheon S.R., Gower S.J., Lentz D.R., Langton J.P., Walker J.A., Wilson R.A., Fyffe L.R., Hamilton A., Luff W.M., 1997. Geology and massive sulphides of the Bathurst Camp, New Brunswick. Field trip B7, Mineralogical Association of Canada joint annual meeting 1997, Ottawa, Canada, 91 pages. McCutcheon S.R., Walker J.A., McClenaghan S.H., 2000. The geological setting of massive sulphide deposits in the Bathurst Camp- A synthesis: New Brunswick Department of Natural Resources and Energy, Minerals and Energy Division, Mineral Resources Report 2001-4, 63-95. McIntire W.L., 1963. Trace element partition coefficients- a review of theory and applications to geology. Geochimica et Cosmochimica Acta 27, 1209-1264. McQueen K., 2005. Ore deposit types and their primary expressions. In: Regolith expression of Australian ore systems. CRC LEME: Perth, WA. 1-14. Meinert L.D., 1998. A review of skarns that contain gold. In: D.R. Lentz (Editor). Mineralized intrusion related skarn deposits. Mineralogical Association of Canada, Short Course Series 26, 359-414. Mercier-Langevin P., Gibson H.L., Hannington M.D., Goutier J., Monecke T., Dubé B., Houlé M.G. 2014. A special issue on Archean magmatism, volcanism, and ore deposits: part 2. Volcanogenic massive sulfide deposits preface. Economic Geology 109, 1-9. Méric J., 2011. Caractérisation géochimiques des magnétites de la zone critique de l’intrusion magmatique de Sept-Iles (Québec, Canada) et intégration a une base de données utilisant la signature géochimique des oxydes de fer comme outil d’exploration Université duQuébec à Chicoutimi- Université Montpellier 2, 48 p. Miller F.P., Vandome A.F., McBrewter J., 2009. Crystallographic Defects in Diamond. VDM Publishing, 106 pages. Miller P., Swanson R., Heckler C., 1998. Contribution plots: the missing link in multivariate quality control. Applied Mathematics and Computer Science 8, 775-792. Ministere des Ressources naturelles du Quebec, 1996 to 2004. Website database, E-sigeom à la carte, http://www.mrn.gouv.qc.ca/english/productsservices/mines.jsp.

174

Mireku L.K., and Stanley C.R., 2006. Lithogeochemistry and Hydrothermal Alteration at the Halfmile Lake South Deep Zone, a Volcanic-Hosted Massive Sulfide Deposit, Bathurst Mining Camp, New Brunswick. Exploration and Mining Geology 15 (3-4), 177-199. Mollo S., Putirka K., Iezzi G., Scarlato P., 2013. The control of cooling rate on titanomagnetite composition: implications for a geospeedometry model applicable to alkaline rocks from Mt. Etna volcano. Contribution to Mineralogy and Petrology 165 (3), 457-475. Monecke T., Gibson H., Dube B., Laurin J., Hannington M.D., 2008. Geology and volcanic setting of the Horne deposit, Rouyn-Noranda, Quebec: initial results of a new research project. Geological Survey of Canada, Current Research 2008-9, 18 pages. Money P.L., and Heslop J.B., 1976. Geology of the Izok Lake massive sulphide deposit. Canadian Mining Journal 97, 24-28. Moral Cardona J.P., Gutiérrez Mas J.M., Sánchez B.A., López-Aguayo F., Caballero M.A., 1997. Provenance of multicycle quartz arenites of Pliocene age at Arcos, southwestern Spain. Sedimentary Geology 112, 251261. Morris R.C., 1980. A textural and mineralogical study of the relationship of iron ore to banded iron-formation in the Hamersley Iron Province of Western Australia. Economic Geology 75, 184-209. Morris T.F., Breaks F.W., Averill S.A., Crabtree D.C., McDonald A., 1997. Gahnite composition: implications for base metal and rare-element exploration. Exploration and Mining Geology 6, 253-260. Morrison I.R., 2004. Geology of the Izok Lake massive sulfide deposit, Nunavut Territory, Canada. Exploration and Mining Geology 13, 25-36. Morrison I.R., and Balint F., 1993. Geology of the Izok Lake massive sulphide deposits, Northwest Territories, Canada, In Proceedings of the World Zinc ’93 Symposium, Hobart, Australia, 161-170. Morrison I.R., and Balint F., 1999. Geology of the Izok Massive Sulfide Deposit, Northwest Territories, Canada. Canadian Journal of Earth Sciences 36, 1227-1238. Mortensen J.K., 1993. U-Pb geochronology of the eastern Abitibi Subprovince. Part 1: ChibougamauMatagami-Joutel region. Canandian Journal of Earth Sciences 30, 11-28. Mortensen J.K., Chapman R., LeBarge W., Jackson L., 2005. Application of placer and lode gold geochemistry to gold exploration in western Yukon. In: Yukon Exploration and Geology 2004, Emond D.S., Lewis L.L., & Bradshaw G.D., (Eds.), Yukon Geological Survey, 205-212. Mücke A., and Annor A., 1993. Examples and genetic significance of the formation of iron oxides in the Nigerian banded iron-formations. Mineralium Deposita 28, 136-145. Mueller W.U., Daigneault R., Mortensen J.K., Chown E.H. 1996. Archean terrane docking: upper crust collision tectonics, Abitibi greenstone belt, Quebec, Canada. Tectonophysics 265, 127-150.

175

Mueller W.U., Stix J., Corcoran P.L., Daigneault R., 2009. Subaqueous calderas in the Archean Abitibi greenstone belt: an overview and new ideas. Ore Geology Reviews 35, 4-46. Mukhopadhyay J., Gutzmer J., Beukes N.J., Hayashi K.I., 2008. Stratabound magnetite deposits from the eastern outcrop belt of Archaean Iron Ore Group, Singhbhum craton, India. Transactions of the Institutions of Mining and Metallurgy, Section B: Applied Earth Science117, 175-186. Müller B., Axelsson M.D., Ohlander B., 2003. Trace elements in magnetite from Kiruna, northern Sweden, as determined by LA-ICP-MS. GFF 125, 1-5. Nadoll P., 2011. Geochemistry of magnetite from hydrothermal ore deposits and host rocks - Case studies from the Proterozoic Belt Supergroup, Cu-Mo-porphyry + skarn and Climax-Mo deposits in the western United States [PhD]: University of Auckland. Nadoll P., and Koenig A.E., 2011. LA-ICP-MS of magnetite: methods and reference materials. Journal of Analytical Atomic Spectrometry 26, 1872-1877. Nadoll P., Angerer T., Mauk J.L., French D., Walshe J., 2014. The chemistry of hydrothermal magnetite: A review. Ore Geology Reviews 61, 1-32. Nadoll P., Mauk J.L., Hayes T.S., Koenig A.E., Box, S.E., 2012. Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States. Economic Geology 107, 1275-1292. Namur O., Charlier B., Toplis M.J., Higgins M.D., Liégeois J.P., Vander Auwera J., 2010. Crystallization sequence and magma chamber processes in the ferrobasaltic Sept Iles layered intrusion, Canada. Journal of Petrology 51, 1203-1236. Narayana A.C., Mohan R., Mishra R., 2010. Morphology and surface textures of quartz grains from freshwater lakes of McLeod Island, Larsemann Hills, East Antarctica. Current Science 99 (10), 1420-1424. Nesbitt B.E., 1986. Oxide-sulfide-silicate equilibria associated with metamorphosed ore deposits. Part I: Theoretical considerations. Economic Geology 81, 831-840. Nguyen D., and Rocke D., 2002. Muti-class cancer classification via partial least squares with gene expression profiles. Bioinformatics 18, 1216-1226. Nielsen R.L., Forsythe L.M., Gallahan W.E., Risk M.R., 1994. Major- and trace- element magnetite-melt equilibria. Chemical Geology 117, 167-191. Otake T., Wesolowski D.J., Anovitz L.M., Allard L.F., Ohmoto H., 2007. Experimental evidence for nonredox transformations between magnetite and hematite under H2-rich hydrothermal conditions. Earth and Planetary Science Letters 257, 60-70. Padgham W.A., and Fyson W.K., 1992. The Slave Province: a distinct Archean craton. Canadian Journal of Earth Sciences 29, 2072-2086.

176

Pang K.N., Zhou M.F., Lindsley D., Zhao D., Malpas J., 2008. Origin of Fe-Ti oxide ores in mafic intrusions: evidence from the Panzhihua intrusion, SW China. Journal of Petrology 49, 295-313. Paradis S., Ludden J., Gélinas L., 1988. Evidence for contrasting compositional spectra in comagmatic intrusive and extrusive rocks of the late Archean Blake River Group, Abitibi, Quebec. Canadian Journal of Earth Sciences 25, 134-144. Parkhill M.A., and Doiron A., 2003. Quaternary geology of the Bathurst Mining Camp and implications for base metal exploration using drift prospecting, In Massive Sulfide Deposits of the Bathurst Mining Camp, New Brunswick and Northern Maine, (eds.) W.D. Goodfellow, S.R. McCutcheon, and J.M. Peter; Economic Geology, Monograph 11, 631-660. Paulen R.C., McClenaghan B., Hicken A., 2013. Regional and local ice-flow history in the vicinity of the Izok Lake Zn-Cu-Pb-Ag deposit, Nunavut. Canadian Journal of Earth Sciences 50, 1209-1222. Pawlowsky-Glahn V., Egozcue J.J., Tolosana-Delgado J., 2007. Lecture notes on compositional data analysis. http://hdl.handle.net/10256/297. Pearce T.H., 1968. A contribution to the theory of variation diagrams. Contributions to Mineralogy and Petrology 19, 142-157. Peter J.M., and Goodfellow W.D. 1996. Sulphur isotope composition of the Brunswick No. 12 massive sulphide deposit, Bathurst Mining Camp, New Brunswick: implications for ambient environment, sulphur source and ore genesis. Canadian Journal of Earth Sciences 33, 231-251. Peter J.M., Kjarsgaard I.M., Goodfellow W.D., 2003. Hydrothermal sedimentary rocks of the Heath Steele Belt, Bathurst mining camp, New Brunswick-Part 1. Mineralogy and mineral chemistry, in Goodfellow W.D., McCutcheon S.R., Peter J.M., eds., Massive sulfide deposits of the Bathurst mining camp, New Brunswick, and northern Maine: Economic Geology Monograph 11, 361-390. Pettijohn F.J., 1957. Sedimentary rocks, 2nd edition. Harper & Row, 718 pages. Pettijohn F.J., Potter P.E., Siever R., 1973. Sand and sandstone. Springer-Verlag, 618 pages. Piché M., Guha J., Daigneault R., 1993. Stratigraphic and structural aspects of the volcanic rocks of the Matagami mining camp, Quebec; implications for the Norita ore deposit. Economic Geology 88,1542-1558. Piercey S.J., and Hinchey J., 2012. Volcanogenic massive sulfide (VMS) deposits of the Central Mobile Belt, Newfoundland. GAC-MAC Joint Annual Meeting 2012, St. Johns, Newfoundland, Field trip guidebook- B4, 75 pages. Piercey S.J., Paradis S., Murphy D.C., Mortensen J.K., 2001. Geochemistry and paleotectonic setting of felsic volcanic rocks in the Finlayson Lake volcanic-hosted massive sulfide district, Yukon, Canada. Economic Geology 96, 1877-1905.

177

Plimer I.R., 1990. The ilmenite-ecandrewsite solid solution series, Broken Hill, Australia. Neues Jahrbuch für Mineralogie, 529-536. Plouffe A., 2001. The glacial transport and physical partitioning of mercury and gold in till: implications for mineral exploration with examples from central British Columbia, Canada. In Drift Exploration in Glaciated Terrain, McClenaghan M.B., & Bobrowsky P.T., (Eds.). 2001, Geological Society, London, 287-299. Podlipsky M.Y., Nesterenko G.V., and Krivenko A.P., 2007. Isoferroplatinum mineral assemblage in the northwestern Salair gold placer. Russian Geology and Geophysics 48 (3), 291-298. Pokhilenko N.P., Afanas’ev V.P., Vavilov M.A., 2010. Behavior of kimberlite indicator minerals during the formation of mechanical dispersion halos in glacial settings. Lithology and Mineral Resources 45(4), 324329. Pollok K., Putnis C.V., Putnis, A., 2011. Mineral replacement reactions in solid solution-aqueous solution systems: Volume changes, reactions paths and end-points using the example of model salt systems. American Journal of Science 311, 211-236. Porter J.J., 1962. Electron microscopy of sand surface texture. Journal of Sedimentary Petrology 32 (1), 124135. Powell W.G., Carmichael D.M., Hodgson C.J., 1995. Conditions and timing of metamorphism in the southern Abitibi greenstone belt, Quebec. Canadian Journal of Earth Sciences 32, 787-805. Powers M.C., 1953. A new roundness scale for sedimentary particles. Journal of Sedimentary Petrology 23 (2), 117-119. Price G.D., 1981. Subsolidus phase relations in the titanomagnetite solid solution series. American Mineralogist, 66, 751-758. Prins P., 1972. Composition of magnetite from carbonatites. Lithos 5, 227-240. Putnis A., 2009. Mineral replacement reactions. Reviews in Mineralogy & Geochemistry 70, 87-124. Putnis A., and John T., 2010. Replacement processes in the Earth's crust. Elements 6, 159-164. Putnis A., and Putnis C.V., 2007. The mechanism of re-equilibration of solids in the presence of a fluid phase. Journal of Solid State Chemistry 180, 1783-1786. Ramdohr P., 1955. Die Erzminerale und ihre Verwachsungen Akademie-Verlag, Berlin. Ray G., and Webster I., 2007. Geology and chemistry of the low Ti magnetite-bearing Heff Cu-Au skarn and its associated plutonic rocks, Heffley Lake, south-central British Columbia. Exploration and Mining Geology Journal16, 159-186. Razjigaeva N.G., and Naumova V.V., 1992. Trace element composition of detrital magnetite from coastal sediments of northwestern Japan Sea for provenance study. Journal of Sedimentary Petrology 62, 802-809.

178

Reguir E.P., Chakhmouradian A.R., Halden N.M., Yang P., 2008. Early magmatic and reaction-induced trends in magnetite from the carbonatites of Kerimasi, Tanzania. The Canadian Mineralogist 46, 879-900. Reich M., Simon A.C., Deditius A.P., Bilenker L., Knipping J., Barra F., 2014. Chemical zoning and microtexture of magnetite from Los Colorados iron oxide-apatite deposit, Chile. Goldschmidt conference 2014, California, USA. René M., 2008. Titanite-ilmenite-magnetite phase relations in amphibolites of the Chynov area (Bohemian massif, Czech Republic). Acta Geodynamica et Geomaterialia 5 (3), 239-246. Rivé M., Verpaelst P., Gagnon Y., Lullin J.M. Riverin, G., Simard A., ed., 1990. The northwestern Quebec polymetallic belt. Canadian Institute of Mining and Metallurgy Special 43, 423 pages. Riverin G., LaBrie M., Salmon B., Cazavant A., Asselin R., Gagnon M., 1990. The geology of the Ansil Deposit, Rouyon-Noranda, Quebec. In: Rive M., Gagnon P.V.Y., Lulin J.M., Riverin G., Simard A., (eds). The Northwestern Quebec polymetalic belt. Canadian Institute of Mining, Metallurgy and Petroleum, Special volume 43, 143-152. Rosière C.A., Siemes H., Quade H., Brokmeier H.G., Jansen E.M., 2001. Microstructures, textures, and deformation mechanism in hematite. Journal of Structural Geology 23, 1429-1440. Ross P.S., McNicoll V.J., Debreil J.A., Carr P.M., 2014. Precise U-Pb geochronology of the Matagami mining camp, Abitibi Greenstone Belt, Quebec: stratigraphic constraints and implications for volcanogenic massive sulfide exploration. Economic Geology 109, 89-101. Rudashevsky N.S., Garuti G., Anderson J.C.O., Krester Y.L., Rydashevsky V.N., Zaccarini F., 2002. Separation of accessory minerals from rocks and ores by hydroseparation (HS) technology: method and application to CHR-2 chromitite, Niquelandia intrusion, Brazil. Applied Earth Science: Mineral Process and Extractive Metallurgy Transactions section B 111, 87-94. Rumble D., 1976. Oxide minerals. Mineralogical Soiety of America Reviews in Mineralogy, Short Course Notes 3, 706. Rusk B.G.,Oliver N.H.S., Cleverley J.S., Blenkinsop T.G., Zhang D., Williams P.J., Habermann P., 2010. Physical and chemical characteristics of the Ernest Henry iron oxide copper gold deposit, Australia; implications for IOCG genesis. In: Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective, v. 3-Advances in the Understanding of IOCG Deposits. PGC Publishing, Adelaide. Russell R.D., and Taylor R.E., 1937. Roundness and shape of Mississippi river sands. American Journal of Geology 45, 225-267. Sagga A.M.S., 1993. Roundness of sand grains of longitudinal dunes in Saudi Arabia. Sedimentary Geology 87, 63-68.

179

Saif S.I., 1980. Petrographic and geochemical investigation of iron formation and other iron-rich rocks in Bathurst district, New Brunswick. In Current research, part A. Geological Survey of Canada, Paper 80-1A, 309-317. Sandhaus D.J., and Craig J.R., 1986. Gahnite in the metamorphosed stratiform massive sulfide deposits of the Mineral District, Virginia, U.S.A. Mineralogy and Petrology 35, 77-98. Sappin A.A., Dupuis C., Beaudoin G., McMartin I., McClenaghan M.B., 2014. Optimal ferromagnetic fraction in till samples along ice-flow paths: Case studies from the Sue-Dianne and Thompson deposits, Canada. Geochemistry: Exploration, Environment, Analysis 14, 315-329. Savard D., Barnes S.J., Dare S., Beaudoin G., 2012. Improved calibration technique for magnetite analysis by LA-ICP-MS. Goldschmidt 2012 Abstract. Sha L.K., and Chappell B.W., 1999. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta 63 (22), 3861-3881. Shcheka G.G, Solianik A.N., Lehmann B., Bieniok A., Aathauer G., Topa D., Laflamime J.H.G., 2004. Euhedral crystals of ferroan platinum cooperite and mertieite-II from alluvial sediments of the Darya river, Aldan Shield, Russia. In Mineralogical Magazine 68 (6), 871-885. Shcheka G.G., 2004. Macrocrystals of Pt-Fe alloy from the Kondyor PGE placer deposit, Khabarovskiy Kray, Russia: trace-element content, mineral inclusions and reaction assemblages. The Canadian Mineralogist 42, 601-617. Shcheka S.A., Platkov A.V., Vrzhosek A.A., Levashov G.B., Oktyabrsky R.A., 1980. The trace element paragenesis of magnetite. Nauka Press, Moscow, 147 pages. Shepard F.P., 1973. Submarine Geology. Harper and Row, New York, 517 pages. Shepard, F.P., and Young R., 1961. Distinguishing between beach and dune sands. Journal of Sedimentary Petrology 31, 196-214. Shimazaki H., 1998. On the occurrence of silician magnetites. Resource Geology 48, 23-29. Singh V.P., Singh P., Haritashya U.K., (Eds.) 2011. Encyclopaedia of Snow, Ice and Glaciers. Springer, XLVI, 1253 pages. 659 illus., 428 illus. in color. Singoyi B., Danyushevsky L., Davidson G.J., Large R., Zaw K., 2006. Determination of trace elements in magnetites from hydrothermal deposits using the LA-ICP-MS technique. Abstracts of Oral and Poster Presentations from the SEG2006 Conference, Keystone, USA, 367-368. Slansky E., Johan Z., Ohenstetter M., Barron L.M., Suppel D., 1991. Platinum mineralization in the Alaskatype intrusive complexes near Fifield, New South Wales, Australia. Part 2. Platinum-group minerals in placer deposits at Fifield. Mineralogy and Petrology 43 (3), 161-180.

180

Smalley I.J., 1966. The properties of glacial loess and the formation of loess deposits. Journal of Sedimentary Research 36 (3), 669-676. Smith D., Silver E., Harnly M., 2006. Environmental samples below the limits of detection- comparing regression

methods

to

predict

environmental

concentrations.

http://www.lexjansen.com/wuss/2006/Analytics/ANL-Smith.pdf Smith R.E., Anand R.R., Alley N.F., 2000. Use and implications of paleoweathering surfaces in mineral exploration in Australia. Ore Geology Reviews 16, 185-204. Spiridonov E.M., 2013. Kostovite Au(Cu, Ag, Au)Te4- conditions of formation and replacing minerals in hydrothermal gold deposits. Geosciences 2013, Bulgarian Geological Society, Sofia, Bulgaria. Spry P.G., 1982. An unusual gahnite-forming reaction, Geco base metal deposit, Manitouwadge, Ontario. The Canadian Mineralogist 20, 549-553. Spry P.G., 1987a. Compositional zoning in zincian spinel. The Canadian Mineralogist 25, 97-104. Spry P.G., 1987b. The chemistry and origin of zincian spinel associated with the Aggeneys Cu-Pb-Zn-Ag deposits, Namaqualand, South Africa. Mineralium Deposita, 22, 262-268. Spry P.G., and Scott S.D., 1986. The stability of zincian spinels in sulfide systems and their potential as exploration guides for metamorphosed massive sulphide deposits. Economic Geology 81, 1446-1463. Spry P.G., and Teale S., 2009. Gahnite composition as a guide in the search for metamorphosed massive sulphide deposit. International Applied Geochemistry Symposium Indicator Mineral Methods in Mineral Exploration, Fredericton, New Brunswick, Canada, 2009, unpublished notes Workshop B, 27-34. Stanton R.L., 1972. Ore petrology. New York, McGraw-Hill, 713 pages. Stea R.R., Johnson M., Hanchar D., 2009. The geometry of KIM dispersal fans in Nunavut, Canada, In Application of Till and Stream Sediment Heavy Mineral and Geochemical Methods to Mineral Exploration in Western and Northern Canada, (eds.) R.C. Paulen and I. McMartin; Geological Association of Canada, Short Course Notes 18, 1-13. Stendal H., Theobald P.K., 1994. Heavy-mineral concentrates in geochemical exploration. Drainage Geochemistry 6, 185-225. Stepanov A.S., and Hermann J., 2013.

Biotite is an important host for Nb in the lower crust.

Goldschmidt2013, page 2262. Strand K., Passchier S., Nasi J., 2003. Implications of quartz grain microtextures for onset Eocene/Oligocene glaciation in Prydz Bay, ODP Site 1166, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 198, 101-111. Succop P.A., Clark S., Chen M., and Galke W., 2004. Imputation of data values that are less than a detection limit. Journal of Occupational and Environmental Hygiene 1(7), 436-441.

181

Sweet D.E., and Soreghan G.S., 2010. Application of quartz sand microtextural analysis to infer cold-climate weathering for the Equatorial Fountain Formation (Pennsylvanian-Permian, Colorado, U.S.A.). Journal of Sedimentary Research 80, 666-677. Swinden H.S., and Kean B.F., 1988. The volcanogenic sulphide districts of Central Newfoundland. Geological Association of Canada Guidebook, 250 pages. Sylvester P.J., 2012. Chapter 1: Use of the Mineral Liberation Analyzer (MLA) for mineralogical

studies of

sediments and sedimentary rocks. Mineralogical Association of Canada, St. John's, NL, 1-16. Taipale A., 2013. Composition of magnetite in gabbros of the Mustavaara Fe-Ti-V Deposit. (M.Sc. thesis), Department of Geosciences, University of Oulu, Oulu, Finland, 65 pages. Tarassova M., Tarassova E., Tacheva E., Peytcheva I., Nedialkov R., 2013. Contrasting response of accessory ilmenite and magnetite to magma mixing and postmagmatic alteration in Petrohan Pluton, Western Balkan, Bulgaria.Comptes rendus de l'Académie bulgare des Sciences 66 (8), 1151-1158. Taylor D., Dalstra H.J., Harding A.E., Broadbent G.C., Barley M.E., 2001. Genesis of high-grade hematite orebodies of the Hamersley province, Western Australia. Economic Geology and the Bulletin of the Society of Economic Geologists 96, 837-873. Tegner C., Cawthorn R.G., Kruger F.J., 2006. Cyclicity in the Main and Upper Zones of the Bushveld Complex, South Africa: crystallization from a zoned magma sheet. Journal of Petrology 47, 2257-2279. Thomas A., 1978. Volcanic stratigraphy of the Izok Lake greenstone belt, District of Mackenzie, NWT; M.Sc. thesis, University of Western Ontario, London, Ontario, 130 pages. Toplis M.J., and Carroll M.R., 1995. An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral–melt equilibria in ferro-basaltic systems. Journal of Petrology 36, 1137-1170. Townley B.K., Hérail G., Maksaev V., Palacios C., Parseval P., Sepulveda F., Orellana R., Rivas P., Ulloa C., 2003. Gold grain morphology and composition as an exploration tool: application to gold exploration in covered areas. Geochemistry: Exploration, Environment, Analysis 3, 29-38. Tracy R.J., 1982, Compositional zoning and inclusions in metamorphic minerals. In Ferry J.M., (ed.), Reviews in Mineralogy, Volume 10: Characterization of Metamorphism through Mineral Equilibria, Mineralogical Society of America, 355-397. Utter T., 1979. The morphology and silver content of gold from the upper Witwatersrand and Ventersdorp systems of the Klerkdrop Gold Field, South Africa. Economic Geology 74, 27-44. Valsami E., and Cann J.R., 1992. Mobility of rare earth elements in zones of intense hydrothermal alteration in the Pindos ophiolite, Greece. In: Parson, L.M., Murton, B.J. & Browning, P. (eds) Ophiolites and their Modern Oceanic Analogues. Geological Society, London, Special Publication 60, 219-232.

182

van Baalen M.R., 1993. Titanium mobility in metamorphic systems: a review. Chemical Geology 110, 233249. van Hoesen J.G., and Orndorff R.L., 2004. A comparative SEM study on the micromorphology of glacial and nonglacial clasts with varying age and lithology. Canadian Journal of Earth Science 41, 1123-1139. van Staal C.R., 1987. Tectonic setting of the Tetagouche Group in northen New Brunswick; implications for plate tectonic models of northern Appalachians. Canadian Journal of Earth Sciences 24, 1329-1351. van Staal C.R., and Fyffe L.R., 1991. Dunnage and Gander Zone, New Brunswick: Canadian Appalachian Region. New Brunswick Department of Natural Resources and Energy, Mineral resources, Geoscience Reports 91-2, 39 pages. van Staal C.R., and Fyffe L.R., 1995a. Gander Zone, New Brunswick. Geological Survey of Canada, Geology of Canada 6, 216-223. van Staal C.R., and Fyffe L.R., 1995b. Dunnage Zone, New Brunswick. Geological Survey of Canada, Geology of Canada 6, 166-178. van Staal C.R., Fyffe L.R., Langton J.P., McCutcheon S.R., 1992. The Ordovician Tetagouche Group, Bathurst camp, northern New Brunswick, Canada: history, tectonic setting, and distribution of massive sulfide deposits. Exploration Mining Geology 1 (2), 93-103. van Staal C.R., Ravenhurst C. E., Winchester J.A., Roddick J.C., Langton J.P., 1990. Evidence for a post Taconic blueschist suture in northern New Brunswick, Geology 18, 1073-1077. van Staal C.R., Wilson R.A., Rogers N., Fyffe L.R., Langton J.P., McCutcheon S.R., McNicoll V., Ravenhurst C.E., 2003. Geology and tectonic history of the Bathurst supergroup, Bathurst Mining Camp, and its relationships to coeval rocks in southwestern New Brunswick and adjacent Maine- a synthesis Economic Geology Monograph 11, 37-60. van Staal C.R., Winchester J.A., Bédard J.H., 1991. Geochemical variations in Middle Ordovician volcanic rocks of the northern Miramichi Highlands and their tectonic significance. Canadian Journal of Earth Sciences 28, 1031-1049. Verbovsek T., 2011. A comparison of parameters below the limit of detection in geochemical analyses by substitution methods. Materials and Geoenvironment 58, 393-404. Verlaguet A., Brunet F., Goffé B., Murphy W.M., 2006. Experimental study and modeling of fluid reaction paths in the quartz-kyanite ± muscovite-water system at 0.7 GPa in the 350-550 °C range: implications for Al selective transfer during metamorphism. Geochimica et Cosmochimica Acta 70, 1772-1788. Vincent E.A., and Phillips R., 1954. Iron-titanium oxide minerals in layered gabbros of the Skaergaard intrusion, East Greenland: part I. Chemistry and ore-microscopy. Geochimica et Cosmochimica Acta 6(1), 2734.

183

Von Gehlen K., 1983. Silver and mercury in single gold grains from the Witwatersrand and Barberton, South Africa. Mineralium Deposita 18: 6 pages. Von Gruenewaldt G., Klemm D.D., Henckel J., Dehm R.M., 1985. Exsolution features in titanomagnetites from massive magnetite layers and their host rocks of the upper zone, eastern Bushveld Complex. Economic Geology 80, 1049-1061. Vos K., Vandenberghe N., Elsen J., 2014. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation. Earth Science Reviews 128, 93-104. Watts S.H. ,1985. A scanning electron microscope study of bedrock microfractures in granites under high arctic conditions. Earth Surface Processes and Landforms 10, 161-172. Waychunas G.A., 1991. Crystal chemistry of oxides and oxyhydroxides. In: Lindsley, D.H. (Ed.), Oxide Minerals: Petrologic and Magnetic Significance. Mineralogical Society of America Reviews in Mineralogy 25, 11-68. Wechsler B.A., Lindsley D.H., Prewitt C.T., 1984. Crystal structure and cation distribution in titanomagnetites (Fe3-xTixO4). American Mineralogist 69, 754-770. Westendrop R.W., Watkinson D.H., Jonason I.R., 1991. Silicon-bearing zoned magnetite crystals and the evolution of hydrothermal fluid at the Ansil Cu-Zn Mine, Rouyn-Noranda, Quebec. Economic Geology 86, 1110-1114. Westerhuis J.A., Hoefsloot C.J.H., Smit S., Vis D.J., Smilde A.K., van Velzen E.J.J., Duijnhoven J.P.M., van Dorsten F.A., 2008. Assessment of PLSDA cross validation. Metabolomics 4 (1): 81-89. Whalen J.B., and Chappel B.W., 1988. Opaque mineralogy and mafic mineral chemistry of I- and S-type granites of the Lachlan fold belt, southeast Australia. American Mineralogist 73, 281-296. Whitford D.J., Korsch M.J., porritt P.M., Craven S.J., 1988. Rare earth element mobility around the volcanogenic polymetallic massive sulfide deposit at Que River, Tasmania, Australia. Chemical Geology 68, 105-119. Whitney D.L., Hirschmann M., Miller M.G., 1993. Zincian ilmenite-ecandrewsite from a pelitic schist, Death Valley, California, and the paragenesis of (Zn,Fe)TiO3 solid solution in metamorphic rocks. The Canadian Mineralogist 31, 425-436. Whitten E.H.T., 1995. Open and closed compositional data in petrology. Mathematical Geology 27 (6), 789806. Wilson A.F., 1984. Origin of quartz-free gold nuggets and supergene gold found in laterites and soils- a review and some new observations. Australian Journal of Earth Sciences 31 (3), 303-316. Winter J.D., 2001. An introduction to igneous and metamorphic petrology. Prentice Hall, 695 pages.

184

Wishart D., 2013. Module 6- Backgrounder in Statistical Methods. Informatics and Statistics for Metabolomics workshop 2013, Toronto, Canada. 53 pages. Wold H., 1966. Estimation of Principal Components and Related Models by Iterative Least Squares. In P.R. Krishnaiaah (Ed.). Multivariate Analysis, 391-420, New York: Academic Press. Wold S., Sjöströma M., Eriksson L., 2001. PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems 58 (2), 109-130. Wolter K.M., 1985. Introduction to Variance Estimation. New York: Springer-Verlag, 338 pages. Xia F., Brugger J., Chen G., Ngothai Y., O’Neill B., Putnis A., Pring A., 2009. Mechanism and kinetics of pseudomorphic mineral replacement reactions: A case study of the replacement of pentlandite by violarite. Geochimica et Cosmochimica Acta 73, 1945-1969. Yang K., and Scott S.D., 2003. Geochemical relationships of felsic magmas to ore metals in massive sulfide deposits of the Bathurst Mining Camp, Iberian Pyrite Belt, Hokuroku District, and the Abitibi Belt. Economic Geology Monograph 11, 457-476. Youngson J.H., and Craw D., 1999. Variation in placer style, gold morphology, and gold particle behavior down gravel bed-load rivers: an example from the Shotover/Arrow-Kawarau-Clutha River system, Otago, New Zealand. Economic Geology 94, 615-634. Zaccarini F., and Garuti G., 2008. Mineralogy and chemical composition of VMS deposits of northern Apennine ophiolites, Italy: evidence for the influence of country rock type on ore composition. Mineralogy and Petrology 94 (1), 61-83. Zaccarini F., Garuti G., Ortiz-Suarez A., Carugno-Duran A., 2004. The paragenesis of pyrophanite from Sierra de Comechingones, Cordoba, Argentina. The Canadian Mineralogist 42, 155-168. Zhao W.W., and Zhou M.F., 2015. In-situ LA-ICP-MS trace elemental analyses of magnetite: the Cretaceous Tengtie skarn iron deposit in the Nanling Range, South China. Ore Geology Reviews 65, 872-883.

185

Appendices Appendix-I: Variable contributions for magnetite from different VMS deposits and BIFs investigated in Figure 4-4B.

187

188

Appendix-II: Variable contributions for magnetite from the VMS deposits investigated in Figure 4-6B.

189

190

Appendix-III: Variable contributions for magnetite from various mineral deposits investigated in Figure 4-7B.

191

Appendix-IV: The range of detection limits (in ppm) for A) EMPA and B) LA-ICPMS analyes.

A

B

Beam size

V

Cr

Zn

Cu

Ni

Mn

K

Sn

Ca

Ti

Al

Si

Mg

10 μm

#$##%&' #$##&(!

#$##)*' #$#+(+!

#$##+' #$#++%!

#$##,-' #$##-!

#$##.*' #$##-&!

#$##(,' #$##%&!

#$##+%' #$##))!

#$##%' #$##%-!

#$##+.' #$##)&!

#$##+,' #$##)-!

#$##+*' #$##(!

#$##+%' #$##)&!

#$##)+' #$##%,!

Beam size

192

20 μm

35 μm

43 μm !

20 μm

35 μm

43 μm

Nb

0.01- 0.2

0.004-0.06

0.05- 5.5

0.08- 1.38

0.026-0.53

0.19- 88.54

Mg

0.03- 0.26

0.01-0.083

0.00176- 0.07

Al

0.21- 1.8

0.325-1.8

0.01- 1.38

Mo

P

0.72- 5.84

1.39-6.3

0.0365- 1.57

Ag

0.03- 0.5

0.007-0.077

0.83- 9.04

K

0.93- 7.26

178-809

0.0146- 1.05

Cd

0.09- 1.09

0.03-0.36

20.75- 435.38

Sc

0.09- 0.8

0.025-0.17

0.00379- 0.15

In

0.01- 0.21

0.003-0.097

0.02- 0.57

Ti

0.28- 2.89

0.056-1.6

0.04- 1.17

Sn

0.17- 1.88

0.12-0.6

0.03- 4.82

V

0.07- 0.59

0.05-0.3

0.03- 1.24

Sb

0.07- 0.79

0.58-3.07

0.03- 1.1

Cr

1.29- 8.14

2.23-9.03

0.0055-0.12

Eu

0.02- 0.16

0.004-0.076

0.47- 16.29

Mn

1.19- 6.91

0.8-4.6

0.01- 0.32

Yb

0.05- 0.28

0.009-0.14

0.32- 11.47

Co

0.02- 0.36

0.004-0.04

0.0068- 0.41

Hf

0.04- 0.23

0.007-0.11

0.003- 11.91

Ni

0.23- 2.04

0.16-1.25

0.0018- 0.06

Ta

0.01-0.09

0.003-0.044

0.99- 3.53

Cu

0.14- 1.62

0.03-0.26

0.00713- 0.3

W

0.04- 0.66

0.016-0.23

0.054- 1.93

Zn

0.35- 3.22

0.29-2.09

0.005- 0.25

Re

0.04-0.34

0.01-0.12

0.14- 5.3

Ga

0.14- 0.79

0.056-0.4

0.02-2.62

Ir

0.12- 2.1

0.04-1.09

0.02- 0.9

Ge

0.2- 1.22

0.17-1.08

0.014- 2.79

Pt

0.13- 1.45

0.03-2.03

0.08- 2.71

As

0.3- 3.31

0.73-4.3

0.0054- 0.39

Au

0.02- 0.37

0.01-0.21

0.22- 6.81

Y

0.01- 0.1

0.003-0.035

0.02- 0.66

Pb

0.05- 0.36

0.04-0.31

0.0019- 0.17

Zr

0.01- 0.13

0.006-0.06

0.003- 0.15

Bi

0.07- 0.62

0.64-4.32

0.01-0.16

Appendix-V: EMPA raw data (in wt.%) for magnetite from the Izok Lake area ID !"#$%&#'"()!*++ !"#$%&#'"()!(++ !"#$%&#'"()!1++ !"#$%&#'"()!5++ !"#$%&#'"()!4+ !"#$%&#'"()!2+ !"#$%&#'"()!"+ !"#$%&#'"()*!++ !"#$%&#'"()**++ !"#$%&#'"()*3++ !"#$%&#'"()*1+ !"#$%&#'"()*5++ !"#$%&#'"()*4++ !"#$%&#'"()*2+ !"#$%&#'"()(!++ !"#$%&#'"()(*++ !"#$%&#'"()((++ !"#$%&#'"()(3++ !"#$%&#'"()(1++ !"#$%&#'"()(6++ !"#$%&#'"()(5++ !"#$%&#'"()3*++ !"#$%&#'"()3(++ !"#$%&#'"()33++ !"#$%&#'"()36++ !"#$%&#'"()34++ !"#$%&#'"()32++ !"#$%&#'"()3"++ !"#$%&#'"()1!++ !"#$%&#'"()1*++ !"#$%&#'"()11++ !"#$%&#'"()16++ !"#$%&#'"()15++ !"#$%&#'"()14++ !"#$%&#'"()12++ !"#$%&#'"()1"++ !"#$%&#'"()6!++ !"#$%&#'"()6*++ !"#$%&#'"()6(++ !"#$%&#'"()61++ !"#$%&#'"()65++ !"#$%&#'"()64++ !"#$%&#'"()62++ !"#$%&#'"()6"++ !"#$%&#'"()5!++ !"#$%&#'"()5*++ !"#$%&#'"()5(++ !"#$%&#'"()53++ !"#$%&#'"()56++ !"#$%&#'"()55++

Sample !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+

Sample type ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+

Al !)!1*2+ !)!3*"+ !)!335+ !)!111+ !)(3(4+ !)!1*(+ !)!(16+ !)!"51+ !)!362+ !)!(56+ !)*3*4+ !)!(12+ !)!311+ *)33("+ !)!366+ !)!36*+ !)!("2+ !)!1!"+ !)!162+ !)!3"5+ !)!133+ !)!2*6+ !)!3*4+ !)!32+ !)!35*+ 6)666(+ !)!35*+ !)!1(*+ !)!("5+ !)!1*"+ 1)445+ *)146*+ !)!363+ !)!153+ !)!33(+ !)!122+ !)124"+ !)!3!3+ !)!345+ !)!11(+ !)!332+ !)3151+ !)!3(1+ !)!(26+ !)!332+ !)!13+ !)*5!1+ !)!(16+ !)!656+ !)!3(*+

Ca !)!*34+ !)!*!6+ !)!*(3+ !)!!(*+ !)!562+ !)!*42+ !)!((3+ !)!341+ !)!!63+ !)!((4+ !)*(34+ !)!64*+ !)!(!4+ !)**"4+ !)!5((+ !)!6(*+ !)!1!5+ !)!*5+ !)!!"3+ !)!*13+ !)!646+ !)!!54+ !)!"!6+ !)!!66+ !)!!55+ *)1"((+ !)!*26+ !)!(6+ !)!*15+ !)!354+ 3)4*5+ !)4*5*+ !)!6"(+ !)!555+ !)!!1"+ !)!*54+ !)1161+ !)!3!3+ !)!(*"+ !)!!52+ !)*(31+ 3)6551+ !)!2(3+ !)!**"+ !)!4*"+ !)!!2"+ !)!**1+ !)!6("+ !)!!"5+ !)!6"+

Cr !)*25(+ !)(6("+ !)33!5+ !)*464+ !)(242+ !)(*(5+ !)!"22+ !)*361+ !)*"*1+ !)*3!5+ !)1!*5+ !)*!2+ !)*245+ !)(!"4+ !)!1"(+ !)(42+ !)*31(+ !)("*+ !)*6*+ !)(5"4+ !)!"!1+ !)*63"+ !)*623+ !)*(6"+ !)*"4+ *)!3*1+ !)(511+ !)(***+ !)(!13+ !)3*!1+ !)"3(1+ !)(625+ !)**52+ !)*2""+ !)(2(1+ !)3"53+ !)*!3(+ !)*!!6+ !)*4("+ !)*"!"+ !)!""+ !)(""+ !)3!*2+ !)(!""+ !)**56+ !)*5*5+ !)"61(+ !)*3"6+ !)(13(+ !)3**1+

Cu !)!!3+ !)!!*1+ !)!!3(+ !)!!*"+ !)!!33+ + + !)!!66+ !)!!65+ !)!*1+ !)!!52+ + + + !)!!6*+ !)!!25+ !)!!3+ + + !)!**(+ !)!!36+ !)!!*+ !)!!41+ + + + + !)!!*"+ !)!!5*+ + !)!!65+ + + !)!!"6+ !)!!12+ !)!!11+ !)!*63+ + + !)!!12+ + + !)!**3+ !)!!3+ !)!!(6+ !)!!66+ + !)!(3(+ + +

K !)!!2+ !)!!!*+ + !)!!5*+ !)!!!5+ !)!!!6+ !)!!!(+ !)!!(*+ + + !)!3!3+ !)!*("+ !)!!*5+ !)!!4*+ !)!!*1+ + + + !)!!!5+ !)!!!4+ + + + !)!!*+ + !)!*"6+ !)!!!*+ + !)!!"2+ !)!**1+ !)!*!6+ !)!1"+ !)!!65+ !)!!!5+ + + !)!*+ + !)!!*(+ !)!!65+ !)!!**+ !)!!1"+ !)!!"1+ !)!!3(+ !)!!*(+ + !)!!!1+ !)!!5(+ !)!!(+ !)!!!2+

Mg !)!!14+ !)!!65+ + !)!!*1+ !)!!5+ !)!!32+ !)!!(6+ !)!152+ !)!!3(+ !)!!*6+ !)!5*4+ !)!!5"+ !)!!54+ !)*"56+ !)!!1*+ !)!!!3+ + !)!!35+ !)!!24+ !)!!(1+ + !)!(4*+ !)!!"1+ !)!!64+ !)!!(5+ + !)!!!1+ !)!!(*+ !)!!(2+ !)!!4+ !)2122+ *)**!5+ !)!!53+ !)!!!1+ !)!!26+ !)!!62+ !)*2(+ + + !)!!13+ + !)*5"2+ !)!*+ !)!!6(+ !)!!!6+ !)!!4(+ !)!(!6+ !)!!(1+ !)!6""+ !)!!2(+

Mn !)!**6+ !)!!6*+ !)!*1+ !)!!"(+ !)!*!(+ !)!!2"+ !)!!""+ !)!*2+ !)!!6"+ !)!!53+ !)!!53+ !)!!"3+ !)!!2"+ !)!(2"+ !)!!"5+ !)!*+ !)!!25+ !)!!"5+ !)!*16+ !)!!26+ + !)!"51+ !)!**1+ !)!33+ !)!!5*+ !)!*36+ !)!!1*+ !)!**2+ !)!!41+ !)!*(6+ !)!6!4+ !)!5*3+ !)!*11+ !)!!12+ !)!!(3+ !)!**5+ !)!*"1+ !)!*53+ !)!!2*+ !)!*!5+ !)!*4*+ !)!*5(+ !)!*((+ !)!***+ !)!!66+ !)!**6+ !)!*3"+ !)!*22+ !)!!21+ !)!*(4+

Ni !)!!2"+ !)!*54+ !)!!16+ !)!!!5+ !)!!"+ !)!!4(+ !)!!22+ !)!*33+ !)!*!1+ !)!*(2+ !)!!5"+ !)!*!"+ !)!!63+ !)!*!"+ !)!!6+ !)!!"4+ !)!!3"+ !)!!11+ !)!!51+ !)!!*3+ !)!*3+ !)!!4"+ !)!!33+ !)!!62+ !)!*3*+ + + !)!!6(+ !)!*!1+ !)!!12+ !)!!16+ !)!!2*+ !)!!52+ !)!**(+ !)!**1+ !)!*6+ !)!!36+ !)!*!4+ !)!!24+ + !)!!"1+ !)!!3(+ + !)!!*"+ !)!!54+ !)!!6*+ !)!!22+ !)!*65+ !)!!11+ !)!*1+

Si !)!*64+ !)!*6*+ !)!(!*+ !)!*42+ !)!(32+ !)!*23+ !)!*44+ !)!"2+ !)!*5+ !)!*56+ !)*("1+ !)!(**+ !)!*64+ *)616"+ !)!*23+ !)!(!5+ !)!*44+ !)!*(*+ !)!(**+ !)!*4"+ !)!*5"+ !)!335+ !)!*23+ !)!*6+ !)!*4*+ **)6(*(+ !)!*43+ !)!*22+ !)!*41+ !)!*43+ 4)3*"4+ 3)""56+ !)!*4"+ !)!*"1+ !)!*(3+ !)!*4(+ !)1!13+ !)!*"+ !)!((2+ !)!*4+ !)!*"1+ !)34(*+ !)*((2+ !)!((3+ !)!*56+ !)!*56+ !)*5+ !)!*43+ !)!*45+ !)!(5+

+ +

Sn !)!!(*+ + !)!!(*+ !)!!!"+ + !)!!65+ !)!!(1+ + !)!!!1+ + !)!!35+ + !)!!(6+ + !)!!56+ + + !)!!1"+ + !)!!6*+ + + !)!!13+ + + !)!!**+ !)!!*4+ !)!!!4+ !)!!*3+ + !)!!!"+ !)!!(3+ + + + !)!!65+ !)!!31+ + !)!!64+ + !)!!3"+ + + + !)!!*+ + !)!!*3+ + !)!!13+

Ti !)!34(+ !)!4(6+ !)(14"+ !)!16+ !)*((2+ !)!324+ !)!453+ !)!125+ !)!132+ !)!25"+ !)!6!6+ !)!322+ !)!633+ !)!33"+ !)!16(+ !)!1*"+ !)!15*+ !)!322+ !)*!5(+ !)!133+ !)!166+ *)(211+ !)!613+ !)3333+ !)!44*+ !)!3*2+ !)!22(+ !)!16+ !)!6(3+ !)!162+ !)2"(3+ !)!6(2+ !)*!*4+ !)!11+ !)!32(+ !)!133+ !)11*+ !)!1*+ !)!155+ !)!1"5+ !)!136+ !)!*"+ !)!1*"+ !)!1*(+ !)!35+ !)!655+ !)!664+ !)!251+ !)!141+ !)!4(3+

V !)5"6*+ !)246*+ !)61+ !)5566+ !)564"+ !)1636+ *)3(42+ !)5!!(+ !)6416+ !)442*+ !)5"34+ *)4"**+ !)"163+ !)6"62+ !)65!1+ !)(64(+ !)4(43+ !)136*+ !)26"3+ !)1(!5+ !)6452+ !)44*+ !)4!12+ !)466(+ !)633*+ !)11*+ !)345(+ !)664"+ !)421(+ *)!!12+ !)2(!1+ !)6""2+ *)*64+ !)46("+ !)5*(4+ !)156"+ !)526*+ !)24(*+ !)6!4*+ !)221"+ !)4524+ *)1142+ *)!*4*+ !)534+ !)"!5(+ !)6"!5+ !)1164+ !)"611+ !)6152+ !)6(*2+

Zn !)!!*"+ !)!!6"+ + !)!!"+ !)!!63+ + !)!*3+ !)!*1"+ + !)!!*1+ + !)!*(*+ !)!!32+ + !)!!"1+ + !)!*(1+ !)!*53+ !)!!64+ !)!!45+ + !)!(41+ + !)!!"(+ + !)!!44+ !)!!2"+ !)!!3"+ !)!!!6+ !)!(!4+ !)!(*5+ + !)!*+ !)!*36+ !)!!(3+ + !)!!62+ !)!!52+ + + + !)!*5(+ !)!**4+ + + !)!!14+ + !)!!44+ !)!(43+ + +

ID !"#$%&#'"()54++ !"#$%&#'"()52++ !"#$%&#'"()5"++ !"#$%&#'"()4*++ !"#$%&#'"()4(++ !"#$%&#'"()43++ !"#$%&#'"()41++ !"#$%&#'"()46++ !"#$%&#'"()44++ !"#$%&#'"()42++ !"#$%&#'"()4"++ !"#$%&#'"()2!++ !"#$%&#'"()2*++ !"#$%&#'"()23++ !"#$%&#'"()21++ !"#$%&#'"()26++ !"#$%&#'"()25++ !"#$%&#'5*)!*++ !"#$%&#'5*)!(++ !"#$%&#'5*)!3++ !"#$%&#'5*)!1++ !"#$%&#'5*)!6++ !"#$%&#'5*)!4++ !"#$%&#'5*)*!++ !"#$%&#'5*)**++ !"#$%&#'5*)*(++ !"#$%&#'5*)*3++ !"#$%&#'5*)*1++ !"#$%&#'5*)*6++ !"#$%&#'5*)*5++ !"#$%&#'5*)*4++ !"#$%&#'5*)(!++ !"#$%&#'5*)(*++ !"#$%&#'5*)((++ !"#$%&#'5*)(3++ !"#$%&#'5*)(1++ !"#$%&#'5*)(6++ !"#$%&#'5*)(5++ !"#$%&#'5*)(4++ !"#$%&#'5*)(2++ !"#$%&#'5*)("++ !"#$%&#'5*)3!++ !"#$%&#'5*)3*++ !"#$%&#'5*)3(++ !"#$%&#'5*)33++ !"#$%&#'5*)31++ !"#$%&#'5*)36++ !"#$%&#'5*)34++ !"#$%&#'5*)32++ !"#$%&#'5*)3"++

194

Sample !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'"(+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+ !"#$%&#'5*+

Sample type ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-../0+ ,-789:;#/9/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+ >/08+?0/@-:908+

Al !)!((1+ !)!(51+ !)!*"4+ !)!(14+ !)!6*"+ !)!3!3+ !)!153+ !)!33+ !)!64"+ !)!1*5+ !)!4("+ !)!3(*+ !)!(4"+ !)**35+ !)!(2"+ !)!4*4+ !)!3((+ !)!(36+ !)!3+ !)!("4+ !)!(51+ !)!(("+ !)!*36+ !)!33+ !)!3*3+ !)!3!*+ !)!(6+ !)!3*5+ !)!6"(+ !)!335+ !)!(5(+ !)!(45+ !)!324+ !)!*""+ !)!3!4+ !)**3*+ !)!(62+ !)!11"+ !)!""3+ !)!((3+ !)!*"3+ !)!556+ !)!2"+ !)!(12+ !)!3!4+ !)!(21+ !)!("1+ !)*!3+ !)!356+

Ca !)!*11+ !)!(24+ !)!3(2+ !)!(23+ !)!*42+ !)!334+ !)!!4(+ !)!(*5+ !)!52*+ !)!*51+ !)!**1+ !)!*6+ !)!!(4+ !)(4"6+ !)!!6"+ !)!!24+ !)!!23+ !)!363+ !)!624+ !)!(((+ !)!151+ !)!!"5+ !)!*55+ !)!*3"+ !)!1!"+ !)!!66+ !)!*!(+ !)!!2*+ !)*!(+ !)!3(4+ !)!(33+ !)!6*+ !)!*"5+ !)!(*(+ !)!("+ !)!4!3+ !)*36(+ !)!(1"+ !)!"41+ !)!!2(+ !)!*"5+ !)!52+ !)*!2+ !)!!62+ !)!!41+ !)!3!2+ !)!!(2+ !)!1*3+ !)!!24+

Cr + + + + + + + + + + + + + + + + + + + + !)!!*+ + + + + + + + + + + !)!!33+ + + + + + + + + + + + + !)!!!2+ + + !)!!*1+ +

Cu !)!!31+ + !)!!**+ !)!!44+ !)!!!4+ !)!!(4+ + !)!!!*+ + !)!!16+ + + + + !)!!42+ + !)!!4"+ + !)!!42+ + + !)!!!*+ + + + !)!!*3+ + + !)!!21+ + + !)!!1(+ !)!!*(+ + !)!!1"+ + !)!*(*+ !)!!(3+ !)!!45+ !)!!"(+ + + + !)!!(6+ !)!!"3+ + + + !)!!*"+

K !)!!!*+ !)!!45+ !)!!*+ !)!!!2+ !)!*!1+ !)!!65+ + !)!!*1+ !)!22+ + + !)!!!*+ !)!!!1+ !)!!3+ !)!!34+ !)!!("+ !)!!*3+ + !)!!*6+ !)!!*2+ !)!!(6+ + !)!!!5+ !)!!*3+ !)!!!5+ !)!!5"+ !)!!(3+ !)!!!2+ !)!(23+ !)!!*3+ !)!*!*+ !)!!(3+ + !)!!6"+ + !)!*"5+ !)!!26+ !)!!*1+ !)!452+ !)!!24+ !)!!35+ !)!!15+ !)!*22+ !)!!*2+ !)!!*3+ + + !)!!(4+ !)!!!4+

Mg !)!!*+ !)!!33+ !)!!31+ !)!!5(+ !)!((5+ !)!!*6+ !)!!33+ !)!!*3+ !)!(62+ !)!!*"+ !)!!56+ !)!!5*+ !)!!1(+ !)!2(1+ !)!!53+ !)!51*+ !)!!3+ !)!!(*+ !)!6(1+ !)!!*3+ !)!!66+ !)!!6*+ !)!!*4+ !)!!!"+ !)!!**+ !)!!(6+ !)!!62+ !)!!11+ !)!4!4+ !)!!65+ !)!!*"+ !)!!6(+ !)!123+ !)!!*3+ !)!!!2+ !)!!33+ !)(113+ !)!((2+ !)**!6+ !)!!(+ !)!!34+ !)!661+ !)((+ !)!!32+ !)!!65+ !)!!!5+ !)!!12+ !)!42*+ !)!!3"+

Mn !)!46*+ !)!426+ !)!1("+ !)!6(+ !)!41(+ !)!4*6+ !)!1(+ !)!441+ !)*!(3+ !)!1("+ !)**64+ !)!464+ !)!3(6+ !)!52+ !)!216+ !)!663+ !)!1(6+ !)!545+ !)!145+ !)!32*+ !)!224+ !)!634+ !)!3*4+ !)!31"+ !)!6"*+ !)*!4"+ !)*(13+ !)!356+ !)!121+ !)!1*(+ !)!(44+ !)!2""+ !)!252+ !)!4*+ !)!5*6+ !)*!52+ !)*31"+ !)!455+ !)!565+ !)!33+ !)!((3+ !)!144+ !)!252+ !)!"*(+ !)!325+ !)!413+ !)!32"+ !)!51(+ !)!12+

Ni !)!!4"+ + !)!!14+ !)!!61+ + !)!!*4+ !)!!**+ + + !)!!!(+ + !)!*("+ !)!!3+ !)!!13+ !)!!12+ !)!!"+ !)!!*5+ !)!!11+ !)!!54+ + + + !)!!1"+ !)!!36+ + + + !)!*+ !)!!!*+ + + !)!!**+ !)!!34+ !)!!(3+ !)!!!4+ + !)!!45+ !)!!51+ !)!!("+ + !)!!(1+ + !)!!32+ + + !)!!45+ + + !)!!4"+

Si !)!3(*+ !)!16*+ !)!1(4+ !)!6(2+ !)*!24+ !)!335+ !)!3"1+ !)!36+ !)*4*3+ !)!1!5+ !)!3"(+ !)!5!*+ !)!31*+ !)1535+ !)!32+ !)*533+ !)!316+ !)!31"+ !)(5*6+ !)!3(2+ !)!312+ !)!342+ !)!3(5+ !)!356+ !)!353+ !)!344+ !)!362+ !)!311+ !)33**+ !)!153+ !)!1!6+ !)!322+ !)3!*1+ !)!33(+ !)!355+ !)!11*+ *)363(+ !)**(2+ !)5*15+ !)!35*+ !)!34(+ !)("!*+ !)2323+ !)!35"+ !)!34*+ !)!1!3+ !)!32*+ !)645+ !)!1!1+

Sn + + + !)!!51+ + !)!!!(+ + + + !)!!!"+ + !)!!**+ + !)!!3+ + + + + !)!!5+ + + !)!!(+ + + !)!!13+ + !)!!(5+ !)!!55+ + !)!!*6+ !)!!!(+ !)!!**+ + !)!!*1+ + + !)!!1(+ !)!!5+ !)!!14+ + + + !)!!(6+ + !)!!*3+ + + !)!!*3+ +

Ti !)!625+ !)!143+ !)!12*+ !)!6(5+ !)!4(4+ !)!6(3+ !)!4*1+ !)!54*+ !)!1*2+ !)!64*+ !)3"25+ !)*(!1+ !)!431+ !)!35(+ !)3*!2+ !)*3"5+ !)!452+ !)!356+ !)!(4(+ !)!6(6+ !)!144+ !)*(*"+ !)!663+ !)!5!3+ !)!5("+ !)5!1(+ !)1461+ !)!63*+ !)!65+ !)!536+ !)!521+ !)!312+ !)!5*(+ !)!114+ !)!5(+ !)!244+ !)!1(4+ !)!111+ !)!65*+ !)!465+ !)!5!4+ !)!63*+ !)!56+ !)14!6+ !)!161+ !)!(6(+ !)!3*"+ !)!645+ !)!11+

V + !)!!36+ !)!!*5+ + !)!!5(+ + + + !)!!(5+ !)!!!(+ !)!!43+ + + + + + !)!!*(+ !)!!6+ !)!!!"+ !)!*!5+ + !)!*!3+ !)!!32+ !)!!62+ + + !)!*56+ + !)!!*1+ !)!!15+ + !)!!(6+ + !)!!16+ !)!!14+ !)!*13+ !)!!5(+ !)!**4+ !)!!66+ !)!!*6+ !)!!3"+ !)!!6(+ + !)!**2+ !)!!46+ + !)!!!2+ !)!!3(+ !)!!56+

Zn !)!*6+ + !)!*(3+ + !)!!(2+ !)!!"5+ !)!!45+ + !)!*26+ + !)!!5*+ !)!*1"+ + !)!*66+ !)!!53+ + + + !)!!61+ !)!!64+ + !)!!(*+ !)!*5(+ + !)!*51+ !)!*53+ + !)!!1(+ !)!*33+ !)!!*2+ !)!*4(+ + !)!!!*+ + + + + !)!!!2+ !)!!!4+ + !)!**"+ !)!*!1+ + !)!!16+ !)!!3+ !)!!2+ !)!*12+ + !)!!51+

ID !"#$%&#'"!)13++

Sample !"#$%&#'"!+

Sample type >/08+?0/@-:908+

Al !)!((6+

Ca !)!!33+

Cr

Cu !)!!!6+

K !)!!4+

Mg

Mn !)!3"*+

Ni

Si !)!313+

Sn

Ti !)!445+

V

!"#$%&#'"!)11++ !"#$%&#'"!)16++

!"#$%&#'"!+ !"#$%&#'"!+

>/08+?0/@-:908+ >/08+?0/@-:908+

!)!*!2+ !)!45*+

!)!6!6+ !)*!43+

+ +

!)!!!4+ !)!((4+

!)!!63+ !)!*(3+

+ !)!!6(+ !)!415+

!)!36+ !)!("6+

+ !)!!*+ !)!*!(+

!)!443+ !)*423+

+ !)!!*2+

!)!1!5+ !)!662+

+ + !)!!((+

!"#$%&#'"!)15++ !"#$%&#'"!)14++

!"#$%&#'"!+ !"#$%&#'"!+

>/08+?0/@-:908+ >/08+?0/@-:908+

!)!365+ !)!53*+

!)!*3*+ !)!!"3+

+ +

+ !)!!((+

!)!!34+ !)!!*+

!)!!1+ !)!!34+

!)!612+ !)!342+

!)!**5+

!)!346+ !)!321+

+ +

!)!(34+ !)!62"+

!"#$%&#'"!)12++ !"#$%&#'5!)!*++

!"#$%&#'"!+ !"#$%&#'5!+

>/08+?0/@-:908+ $-AA9B;+ACD?9=;A+

!)!3(4+ !)!!*4+

!)!(66+ !)!*!6+

+ +

!)!!"4+ !)!!4*+

!)!!!(+ !)!!*(+

!)!!3(+ *)554*+

!)!15*+ !)(5*+

+ +

!)!353+ !)!*64+

+ + !)!!3"+

!)!56+

!)!!1*+ !)!!!6+

+ !)!*53+

!"#$%&#'5!)!(++ !"#$%&#'5!)!3++

!"#$%&#'5!+ !"#$%&#'5!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

!)!!!4+

!)!!31+ !)!!(+

+ +

!)!((*+ !)!*"3+

+

!)3*26+ !)*"34+

!)*6(6+ !)34!"+

+ + !)!!51+

!)!!**+ !)!!*+

+

+ +

!)!!5(+ !)!!25+

+ !)3451+ !)(4(+

!"#$%&#'5!)!1++ !"#$%&#'5!)!6++

!"#$%&#'5!+ !"#$%&#'5!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ + !)!!**+

!)!*11+ !)!!*2+

+ +

!)!((2+

+ + !)!!*+

!)1*13+ !)5*""+

!)*66(+ !)3352+

+ !)!!*+

!)!*!6+ !)!3!1+

+ + !)!!62+

+ !)!!(1+

!)!!14+

!)(522+ !)!*62+

!"#$%&#'5!)!4++ !"#$%&#'5!)!"++

!"#$%&#'5!+ !"#$%&#'5!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+

!)!!(*+ !)!("1+

+ +

+ !)!!12+ !)!**4+

+

*)"2"+ !)!*2(+

!)((!*+ !)!3*+

!)!!5+

+ *)*32*+

!)!!13+ !)!*21+

+ +

+ !)!!*(+ !)!!!5+

!)!32(+

!"#$%&#'5!)**++ !"#$%&#'5!)*(++

!"#$%&#'5!+ !"#$%&#'5!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ !)!!*6+

!)!!("+ !)!!(4+

+ +

!)!!65+

+ !)!!!2+

()!*34+ *)6(23+

!)(6((+ !)(436+

+ !)!!*4+ !)!!64+

!)!!6*+ !)!!11+

+ !)!!!2+

!"#$%&#'5!)*3++ !"#$%&#'5!)*1++

!"#$%&#'5!+ !"#$%&#'5!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ +

!)!!*2+ !)!!(1+

+ +

+ !)!!61+ !)!!64+

+ +

!)!1"2+ *)(!(5+

!)34!5+ !)(6!*+

+ !)!!!6+

!)!!35+ !)!!!4+

!)!!(1+ !)!!!4+

+ +

+ !)!!35+ !)!!*3+

+ !)!(53+ !)!(((+

!"#$%&#'5!)*5++ !"#$%&#'5!)*4++

!"#$%&#'5!+ !"#$%&#'5!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ + !)!!!*+

!)!!!5+ !)!!12+

+ +

+

+ !)!!!4+ !)!!(1+

*)2553+ *)6!4"+

!)(62+ !)(("4+

+ !)!!44+

!)!!(4+ !)!!1*+

!)!!!"+

+ + !)!!!1+

!)!!11+ !)!!!4+

!)!(!5+ !)!(!5+

!"#$%&#'5!)*2++ !"#$%&#'5!)*"++

!"#$%&#'5!+ !"#$%&#'5!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+

!)!!!"+ !)!!(3+

+ +

+ + !)!!41+

+

*)1354+ !)!("+

!)(15"+ !)(112+

!)!!34+

!)!!*2+ !)!*23+

+ +

!)!!!(+

!)!!12+

!)!*32+ !)!*42+

!"#$%&#'5!)(!++ !"#$%&#'5!)(*++

!"#$%&#'5!+ !"#$%&#'5!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ +

!)!!33+

+ +

!)!*2"+

+ !)!!!5+ !)!!!*+

!)*6"3+ *)1*(3+

!)*524+ !)(*1(+

+ + !)!!44+

!)!!42+ !)!!*6+

+ +

+ +

+ +

!)*164+ !)!(61+

!"#$%&#'5!)((++ !"#$%&#'5!)(3++

!"#$%&#'5!+ !"#$%&#'5!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ +

+ !)!!(5+ !)!!33+

+ +

+ +

+

!)156(+ *)"41*+

!)*6*4+ !)(14(+

+

!)!!31+ !)!!(3+

+ !)!!52+

+ + !)!!!6+

+ +

!)4!"2+ !)!!*(+

!"#$%&#'5!)(1++ !"#$%&#'5!)(6++

!"#$%&#'5!+ !"#$%&#'5!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ + !)!!!"+

!)!!!1+ !)!!!4+

+ +

+ + !)!!("+

+ + !)!!!6+

*)3!"2+ *)3*32+

!)(3!"+ !)((46+

+ !)!!5*+

!)!!(1+ !)!!32+

+ !)!!(1+

+ !)!!6+

!)!5*5+ !)!12+

!"#$%&#'5!)(4++ !"#$%&#'5!)(2++

!"#$%&#'5!+ !"#$%&#'5!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

!)!!!"+

!)!!!"+ !)!!*2+

+ +

!)("**+ !)!!3+

+

!)*54*+ ()!(2*+

!)*(5*+ !)(3(5+

+ +

!)!!(+ !)!!32+

+ !)!!25+ !)!!*3+

+ +

+ !)!!4*+

!)*551+ !)*!43+

!"#$%&#'5!)("++ !"#$%&#'5!)3!++

!"#$%&#'5!+ !"#$%&#'5!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ +

!)!!44+ !)!!*+

+ +

!)!!54+

+ +

*)**5+ !)326"+

!)*2!3+ !)(("4+

+ !)!!(5+ !)!!1(+

!)!!(4+ !)!!*4+

+ !)!!54+

+ !)!!*3+

+ !)!!26+

!)*!23+ !)!324+

!"#$%&#'5!)3*++ !"#$%&#'5!)3(++

!"#$%&#'5!+ !"#$%&#'5!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ +

!)!!3+ !)!!!(+

+ +

+ !)!!2+ !)!!5+

+ !)!!*5+

()346"+ *)4*42+

!)(164+ !)(*"5+

!)!!6(+

!)!!33+ !)!!(4+

+

+ !)!!2*+ !)!!*2+

+ + !)!!4*+

!)!(""+ !)!!44+

!"#$%&#'5!)33++ !"#$%&#'5!)36++

!"#$%&#'5!+ !"#$%&#'5!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ +

!)!!*4+ !)!!(2+

+ +

!)!!!5+ !)!!46+

+ !)!!*+ !)!!!1+

()!3!"+ !)6!46+

!)(1""+ !)*535+

+ + !)!!((+

!)!!*4+ !)!!*+

+ !)!!3*+ !)!!15+

+ !)!!(+

!)!!43+ !)!!63+

!)!!*5+ !)!"4+

!"#$%&#'5!)35++ !"#$%&#'5!)34++

!"#$%&#'5!+ !"#$%&#'5!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ +

!)!!!5+ !)!!31+

+ + !)!!*(+

+ !)!!24+

+

*)5*42+ *)3222+

!)(31"+ !)(3!*+

+

!)!!12+ !)!!11+

!)!!32+

+

+ !)!!46+

+

!"#$%&#'5!)32++ !"#$%&#'5!)3"++

!"#$%&#'5!+ !"#$%&#'5!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ +

+ !)!!((+

+

!)!!"*+ !)!!21+

+ +

!)!42+ *)25!*+

!)!(+ !)(!2(+

+ + !)!!*2+

!)!(53+ !)!!(3+

+ !)!16+

+ + !)!!**+

!)!!32+

+ !)!6*5+ !)(234+

!"#$%&#'5!)1!++ !"#$%&#'5!)1*++

!"#$%&#'5!+ !"#$%&#'5!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ !)!!!6+ !)!!*5+

!)!!46+ !)!!**+

+ +

!)!!43+

+ + !)!!!3+

!)36*+ *)4!2(+

!)3*4"+ !)(*4(+

!)!!!3+ !)!!11+

!)!!5"+ !)!!*6+

+ + !)!!!4+

+ +

!)11!(+ !)!5(2+

!"#$%&#'5!)1(++

!"#$%&#'5!+

$-AA9B;+ACD?9=;A+

!)!!*6+

!)!!25+

+ +

+ !)!**2+

!)!!*1+

()("66+

!)*2(1+

!)!!63+

!)!!(3+

!)!!!4+

+ !)!!5"+

*)(6"3+

+ !)!!2+

+

+ + +

+ !)!!!3+

+

Zn !)!!2(+ + + !)!(*3+

+ !)!*"4+

197

ID !"#$%&#'5!)13++

Sample !"#$%&#'5!+

Sample type $-AA9B;+ACD?9=;A+

Al

Ca !)!316+

Cr

Cu

K

Mg !)!511+

Mn !)!234+

Ni

Si !)4114+

Sn !)!3(5+

Ti !)!!*2+

V !)!!(3+

Zn !)!*4*+

!"#$%&#'5!)11++ !"#$%&#'5!)16++

!"#$%&#'5!+ !"#$%&#'5!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ !)!!("+

!)!*65+

+ + !)!!!6+

+ !)!361+ !)!!1*+

+ !)!!(4+

!)*11(+ *)!22*+

!)!554+ !)((12+

+ +

!)51*"+ !)!!35+

!)!!21+ !)!!*"+

!)!*(3+

!)!!41+

!)!*31+ !)!(56+

!"#$%&#'5!)15++ !"#$%&#'5!)14++

!"#$%&#'5!+ !"#$%&#'5!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ +

+ !)!(**+ !)!!11+

!)!!32+

+ !)!!!3+

!)!1*6+ !)21!2+

!)!36+ !)*5"2+

+ +

*)!"2"+ !)!!23+

!)!!"*+ !)!!*+

+ +

+ !)!!(6+ !)!!!2+

+ !)*!(5+

!"#$%&#'5!)12++ !"#$%&#'5!)1"++

!"#$%&#'5!+ !"#$%&#'5!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ +

!)!!("+ !)!!13+

+ +

!)!6*(+

+ +

*)(*(*+ *)"45+

!)*614+ !)(424+

+ !)!!36+

!)!!*"+ !)!!(4+

!)!!35+

+ +

+

!)!(!(+ !)!*34+

!"#$%&#'51)!1++ !"#$%&#'51)!6++

!"#$%&#'51+ !"#$%&#'51+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ +

!)!1*"+ !)(!22+

+ +

+ !)!!(3+

+ + !)!!1*+

!)!*!*+ !)(2"2+

!)(*(4+ !)*646+

+ + !)!!1*+

!)!!55+ !)5(52+

+ + !)!!34+

+ !)!!3(+ !)!!!4+

+ !)!!11+ !)!!(5+

!)!2(4+ !)!!4*+

!"#$%&#'51)!5++ !"#$%&#'51)!4++

!"#$%&#'51+ !"#$%&#'51+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ !)!!6*+

!)!3(6+ !)!!1"+

+ !)!!!"+

+ +

+

!)!(2*+ !)!*44+

!)*262+ !)*"""+

+ !)!!6+

!)**"*+ !)!!1(+

!)!*"4+

!)!!!*+ !)!!!*+

!)!!!3+

!)!"3+ !)61!1+

!"#$%&#'51)!"++ !"#$%&#'51)*!++

!"#$%&#'51+ !"#$%&#'51+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ !)!!64+ !)!!*(+

!)!(66+ !)!621+

+ +

+ +

+ +

!)!324+ !)!!12+

*)!*1*+ !)*4*5+

+

!)!!4*+ !)!155+

+ +

!)!!*3+

+ !)!!3"+ !)!!!(+

!)*531+ !)!133+

!"#$%&#'51)*(++ !"#$%&#'51)*3++

!"#$%&#'51+ !"#$%&#'51+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

!)!!64+ !)!(!2+

!)!((5+ !)!2"3+

+ +

+ +

+ !)!!31+ !)!!42+

!)!3!2+ !)3*64+

!)(**1+ !)*""(+

+ !)!!1(+

!)!"65+ !)66"*+

+ + !)!!*3+

+ !)!*1(+ !)!!1(+

+

!)!!*4+ !)!1*5+

!"#$%&#'51)*1++ !"#$%&#'51)*6++

!"#$%&#'51+ !"#$%&#'51+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+

!)!!11+ !)!(*+

+ +

+ + !)!!"4+

+

!)!*2(+ !)!!5+

!)(**5+ !)*21*+

+ + !)!!55+

!)!!3(+ !)!!"+

!)!!!*+

!"#$%&#'51)*2++ !"#$%&#'51)(!++

!"#$%&#'51+ !"#$%&#'51+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ + !)!*"2+

!)!*(2+ !)!*55+

+ +

!)!!(5+

+ !)!!!3+ !)!!63+

!)!4**+ !)!632+

!)(!*5+ !)*31"+

!)!!55+

!)!463+ !)!5!5+

+ +

!"#$%&#'51)(3++ !"#$%&#'51)(1++

!"#$%&#'51+ !"#$%&#'51+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+

+ !)!!(1+

+ !)!!6*+

+ !)!1*+ !)!!"5+

+

!)!6(2+ !)!*25+

!)"22(+ !)(*"5+

+ + !)!!!"+

!)!!(6+ !)!!1*+

!"#$%&#'51)(6++ !"#$%&#'51)(5++

!"#$%&#'51+ !"#$%&#'51+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ !)!1!6+ !)!!3(+

!)!*!1+ !)!!("+

+ !)!!21+ !)!!*"+

!)!!**+ !)!!(3+

+ +

!)!3(3+ !)!((5+

!)(3"5+ !)((41+

!)!**3+

!"#$%&#'51)("++ !"#$%&#'51)3!++

!"#$%&#'51+ !"#$%&#'51+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

!)!!16+ !)!!*3+

!)*!(+ !)!*!4+

+

!)!!!(+

+ !)!!3"+ !)!!*1+

!)*!21+ !)!332+

!)*(2*+ !)*663+

!"#$%&#'51)3*++ !"#$%&#'51)3(+

!"#$%&#'51+ !"#$%&#'51+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

!)!!6+ !)!!52+

!)!!5*+ !)!3*+

+ +

+ !)!!"(+ !)!*15+

+ !)!!**+

!)!6!1+ !)!523+

!)(151+ !)615(+

!"#$%&#'51)35++ !"#$%&#'51)32++

!"#$%&#'51+ !"#$%&#'51+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

!)!!26+ !)!!*1+

!)!!3*+ !)!!32+

+ +

+

+ !)!!*"+

!)!15(+ !)!*26+

*)1566+ !)((5+

+ !)!!13+

!)!**5+ !)!!1+

+ !)!!*"+

!"#$%&#'51)3"++ E*1**24!+3++

!"#$%&#'51+ E*1**24!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

+ !)!625+

!)!"("+ !)!!13+

+ !)!!!3+

+ !)!351+ !)!!!4+

+

!)(*5+ !)*1!3+

!)2!51+ !)*(3+

+ !)!!44+

!)(!"3+ !)!!3"+

+ +

+ !)!346+

E*1**24!+1++ E*1**24!+6++

E*1**24!+ E*1**24!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

!)*565+ !)!!"*+

!)!!55+ !)!!6"+

+ !)!!*(+ !)!!!2+

!)!*61+

+ !)!!!"+

!)*3"5+ !)3*31+

!)*1!"+ !)*!6(+

+ + !)!!!*+

!)!!46+

+ !)!!25+ !)!!1*+

E*1**24!+(++ E*1**24!+*++

E*1**24!+ E*1**24!+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

!)*(43+ !)!!5"+

!)!!1*+ !)!**5+

!)!!*1+ !)!**4+

+ !)!!13+ !)!*5+

+ !)!!*1+

!)!*42+ !)6""2+

!)*33+ !)*!(3+

+

+ !)!!16+ !)!!6+

!)!*!5+

E*1**24(+*++ E*1**24(+1++

E*1**24(+ E*1**24(+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

!)!!"4+ !)!225+

!)!!(3+ !)!!5*+

+

!)!!"1+

+ + !)!!((+

!)("45+ !)*"3(+

!)3*41+ !)3*22+

+ !)!!(+ !)!!62+

!)!!*+ !)!!62+

E*1**24(+(++ E*1**24(+3++

E*1**24(+ E*1**24(+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

!)*!56+ !)3!12+

!)!!(+ !)!!16+

+ !)!!!1+ !)!!63+

+ !)!!23+

+ !)!!*1+

!)*(6*+ !)(4*"+

!)3155+ !)623(+

+ !)!!55+

%""FG**&+3++ %""FG**&+(++

%""FG**&+ %""FG**&+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

!)*333+ !)*!"1+

!)!*55+ !)!!66+

!)!*62+

+ !)!!56+

+ !)!!!5+

!)!!4"+ !)!**(+

!)!2(1+ !)!"!1+

%""FG**&+*++ E*1**2(3+*++

%""FG**&+ E*1**2(3+

$-AA9B;+ACD?9=;A+ $-AA9B;+ACD?9=;A+

!)*!1"+ !)!((1+

!)!!4+ !)!!6+

+ !)!*54+ !)!!*4+

+ !)!!33+ !)!!61+

!)!!53+ !)!!*(+

!)!*"*+ !)!!*6+

!)!23(+ !)!""3+

+ !)!!24+

+ !)!!41+

!)!!52+ !)16!5+

+ !)!!(6+

+ +

!)13"5+ !)6554+

+ !)!!*5+ !)!!14+

+ !)!!*1+ !)!!15+

+ !)!!*(+ !)!!!*+

!)!332+ !)*6!(+

!)!!11+ !)!!*(+

!)!!*+ !)!!*(+

!)!!34+ !)!!("+

+

!)!152+ !)(!((+

+ + !)!!*4+

!)3!!3+ !)!*4+

!)!!4*+ !)!!6+

+ !)!!(5+

+

!)!!4*+ !)!"64+

+ !)!!!"+

+ !)*3(5+

!)!!35+

+ +

!)!651+ *)!"*6+

+ !)!!62+ !)!!5"+

+ !)!**3+

!)!((4+ !)*653+

+ +

!)!(14+ !)!!"*+

!)!335+ !)!!!3+

+ !)!!"4+

!)!63+ !)!52"+

!)!645+ !)!!3(+

+ +

!)!*66+ !)!*43+

+ +

+ !)!(4"+

+ +

!)!!54+

!)!!6"+ !)!!("+

+ !)!!""+ !)!!!1+

!)!362+ !)3**3+

+ + !)!**3+

+ !)!*(3+ !)*31*+

!)!!12+ !)!!*+

!)!!23+ !)!**5+

+ !)!!(5+

!)!4*+ !)!34(+

!)***3+ !)!"53+

!)!!63+ !)!!"(+

!)!!(*+

!)!36(+ !)!!32+

+ !)!!!1+

!)!6!(+ !)!!*+

!)*!51+

!)!*(1+ !)*!(*+

+

198

+

+

+

ID !"#$%&#!!()!(++

Sample !"#$%&#!!(+

Sample type H9DD+

Al !)!*41+

Ca !)!!!1+

Cr

Cu !)!!(*+

K !)!!(1+

Mg !)!!1"+

Mn !)!!6*+

Ni !)!!3*+

Si !)!!21+

Sn

Ti !)!**2+

V !)3!"6+

Zn !)!!"2+

!"#$%&#!!()!3++ !"#$%&#!!()!6++

!"#$%&#!!(+ !"#$%&#!!(+

H9DD+ H9DD+

!)4332+ !)!!(*+

!)*23"+ !)!!!6+

+ !)!"5(+ !)*!36+

!)!*("+ !)!!54+

!)!!4(+ !)!!!4+

!)*465+ !)!!5*+

!)!*26+ !)!465+

!)!3*+ !)!15*+

!)(5!2+ !)!!4(+

+ !)!!!2+

!)!*52+

!)(!56+ !)*1"*+

+ !)!!54+

!"#$%&#!!()!5++ !"#$%&#!!()!4++

!"#$%&#!!(+ !"#$%&#!!(+

H9DD+ H9DD+

!)*3*(+ !)!412+

!)!!!5+ !)!!14+

!)!!1+ !)!!5*+

!)!!!6+

!)!!63+ !)!!((+

!)!*!"+ !)!!64+

!)!!*"+

!)!*54+ !)!1!4+

+ +

+ !)!3"4+ !)6*2+

!)3*3(+ !)!*14+

+ !)!!(5+

!"#$%&#!!()3!++ !"#$%&#!!()3*++

!"#$%&#!!(+ !"#$%&#!!(+

H9DD+ H9DD+

!)!2!*+ !)!(41+

!)!!!*+ !)!(!*+

+ !)!2"(+

+ !)!!54+ !)!!"+

!)!*65+ !)!!41+

+ + !)!!5+

!)!(3+ !)!"1"+

!)!!41+ !)(31(+

!)!*"(+ !)!!1*+

!"#$%&#!!()33++ !"#$%&#!!()31++

!"#$%&#!!(+ !"#$%&#!!(+

H9DD+ H9DD+

!)!3*6+ !)!*!1+

!)!!13+

!"#$%&#!!()36++ !"#$%&#!!()35++

!"#$%&#!!(+ !"#$%&#!!(+

H9DD+ H9DD+

!)!!(3+ !)!(*1+

!"#$%&#!!()16++ !"#$%&#!!()15++

!"#$%&#!!(+ !"#$%&#!!(+

H9DD+ H9DD+

!"#$%&#!!()1"++ !"#$%&#!!()63++

!"#$%&#!!(+ !"#$%&#!!(+

!"#$%&#!*5)!*++ !"#$%&#!*5)!5++

+ !)!*((+ !)!*1+

+ +

+ !)!!3(+

!)!(1(+ !)!!23+

!)!*54+

+ !)!!4"+ !)!!3"+

+ +

!)!!16+ !)!!*4+

!)!152+ !)!662+

!)!*!6+ !)!!!6+

!)!(!6+ !)!!42+

+ !)!!!6+

!)136*+ !)!*52+

!)6*(1+ !)*2*+

+ !)!2!3+

+ !)!!31+

+ !)*"11+ !)!424+

!)!!45+ !)!!*+

+ +

!)!!2+ !)!!5"+

!)!334+ !)!!26+

!)!*16+ !)!(*"+

!)!!53+ !)!!"(+

!)!!!"+ !)!!(6+

!)!!3+ !)!*1+

!)*56"+ !)(52"+

!)!!26+ !)!*"6+

!)**14+ !)!141+

+ !)!!(4+ !)!!3+

!)!!(*+ !)!*52+

!)!!(6+

+ +

!)!!**+ !)!*66+

!)!"32+ !)*53*+

!)!!53+

!)!(23+ !)!(16+

!)!!"+ !)!!*4+

!)!(((+ !)4115+

!)!!64+ !)322"+

!)!*1(+ !)!*!3+

H9DD+ H9DD+

!)!((2+ !)!165+

!)!(62+ !)!!!6+

+

+ !)!!*1+ !)!*!(+

+ !)!!*5+

!)!!(5+ !)!!66+

!)!!6"+ !)!6!1+

+ !)!!52+

!)!!56+ !)!!"1+

+ !)!!*+

!)!3(2+ !)!!26+

!)(551+ !)!6!1+

!)!!4*+

!"#$%&#!*5+ !"#$%&#!*5+

H9DD+ H9DD+

!)!(3"+ !)!*(1+

!)!!6*+ !)!!"*+

+ !)!!!*+

+ !)!!61+

+ + !)!!33+

!)!!"5+

!)!!(3+

+ !)!!61+

!)!1!5+ !)4!65+

!)!!31+ !)!!("+

!)3("4+ !)!3(2+

!)!(!*+

+ !)!!5+

!"#$%&#!*5)(6++ !"#$%&#!*5)3*++

!"#$%&#!*5+ !"#$%&#!*5+

H9DD+ H9DD+

!)(35(+ !)!35(+

!)!!*1+ !)!!("+

+ + !)!(""+

+ !)!!*3+

+

+ !)!!3(+ !)!!1+

+ !)!665+ !)!!*5+

+ + !)!!63+

!)!**1+ !)!!2"+

!)!!26+ !)!!!6+

!)!*66+ !)!*65+

+ !)!154+ !)22!6+

+ !)(6*3+

!"#$%&#!*5)35++ !"#$%&#!*5)32++

!"#$%&#!*5+ !"#$%&#!*5+

H9DD+ H9DD+

!)!!56+ !)!!4"+

!)!!1"+ !)!!3(+

!)!315+ !)*"4(+

+

+ + !)!!*(+

!)!!((+ !)!!21+

!)!62"+ !)!2(1+

!)!*!6+ !)!!""+

!)!!15+ !)!!55+

!)!!66+ !)!!6+

!)!!6(+ !)!!3(+

!)!4!*+ !)*2(1+

+ !)!!46+ !)!*12+

!"#$%&#!*5)1!++ !"#$%&#!*5)1(++

!"#$%&#!*5+ !"#$%&#!*5+

H9DD+ H9DD+

!)!35+ !)!!3"+

!)!!23+ !)!*5(+

+ !)!4("+

+

!)!!!(+ !)!!15+

!)!!33+ !)*!55+

!)!!(+ !)!!56+

!)!3!1+ !)!!1*+

+

!)*6"+

!)!!!(+ !)*333+

+ !)!*3*+

!"#$%&#!*5)14++ !"#$%&#!(!)!*++

!"#$%&#!*5+ !"#$%&#!(!+

H9DD+ H9DD+

!)*1(3+ !)!*1"+

!)!!*4+ !)!155+

+ !)!!!(+

!)!!2*+ !)!!6+

!)!!33+ !)!*12+

!)!!11+ !)!*15+

!)!(65+ !)!*3*+

+ !)!!(2+ !)!!12+

+ !)(14"+ !)*!64+

!)!*(6+ !)364*+

+ !)!!5*+

!"#$%&#!(!)!1++ !"#$%&#!(!)!5++

!"#$%&#!(!+ !"#$%&#!(!+

H9DD+ H9DD+

!)!352+ !)!(52+

!)!!*2+ !)!!3*+

!)!!("+ !)!(*4+

!)!!62+ !)!646+

!)!!13+ !)!!2+

!)!3!5+ !)!*3"+

+ !)!!!5+

!)!444+ !)!*2*+

+ !)3(25+

!"#$%&#!(!)!4++ !"#$%&#!(!)!"++

!"#$%&#!(!+ !"#$%&#!(!+

H9DD+ H9DD+

!)!(1(+ !)!4*5+

!"#$%&#!(!)*!!++ !"#$%&#!(!)*!3++

!"#$%&#!(!+ !"#$%&#!(!+

H9DD+ H9DD+

!"#$%&#!(!)**!++ !"#$%&#!(!)**3++

!"#$%&#!(!+ !"#$%&#!(!+

!"#$%&#!(!)**5++ !"#$%&#!(!)**2++

+ !)*"51+

+ !)!*1+ + !)!!33+ !)!**2+

+ !)!!14+

+ !)!!"1+

+ !)!!!2+ !)!!3+

!)!!*4+ !)!(6"+

!)!*+

!)!!!5+ !)!!25+

!)!!*2+ !)!!3+

!)!!!"+ !)!*!4+

!)!**(+ !)!1!3+

!)!!6*+ !)!*!1+

!)!**(+ !)!(!*+

+

!)!(6(+ !)!41(+

!)366"+ !)!1*2+

+ +

!)!566+ !)!!"6+

!)!!41+ !)!6"*+

+ + !)!"*(+

!)!!36+ !)!!11+

+ !)!!1"+

!)!!35+ !)!!!4+

+ !)!!"*+

+ !)!!12+

!)!1!1+ !)!(!*+

+ +

!)!1"3+ !)!!"*+

!)!!65+ !)*!**+

+ + !)!!62+

H9DD+ H9DD+

!)(*"(+ !)!1*(+

!)!!("+

!)!!(3+

+

!)!!14+ !)!!33+

!)!!3"+ !)!!!1+

!)!"2(+ !)!*!3+

+ !)!!41+

!)!*45+ !)!*65+

+ + !)!!53+

!)(**3+ !)!*2"+

!)!"*3+ !)!!2(+

!)!*"+ !)!*(3+

!"#$%&#!(!+ !"#$%&#!(!+

H9DD+ H9DD+

!)!(35+ !)*3(*+

+ !)!!"2+ !)!5!*+

+ !)!!2*+ !)24"1+

+ +

!)!!(+ !)!*2"+

!)!!*(+ !)*144+

!)!*(+ !)!362+

!)!*43+ !)!***+

!)!*3+ !)(1"(+

+

!)!663+ !)!525+

!)**1+ !)(64(+

!)!!!6+

!"#$%&#!(!)*(++ !"#$%&#!(!)*(1++

!"#$%&#!(!+ !"#$%&#!(!+

H9DD+ H9DD+

!)!!26+ !)!!6+

!)!!!1+ !)!**+

+ !)*5**+

+ !)!!52+ !)!!33+

!)!!*5+ !)!!(4+

!)!!((+ !)!!33+

!)!52"+ !)!*3(+

!)!!!1+

!)!!64+ !)!*!5+

+ +

!)!!2(+ !)!!**+

!)*("+ !)*4(6+

+ !)!322+

!"#$%&#!(!)*(6++ !"#$%&#!(!)*3++

!"#$%&#!(!+ !"#$%&#!(!+

H9DD+ H9DD+

!)!611+ !)1!55+

!)!!("+ !)!*34+

+ !)!522+

+ !)!!36+

+ !)!!*(+

!)!!3+ !)!*56+

!)!*25+ !)!*2*+

+ + !)!*!1+

!)!*"*+ !)!3!*+

+ !)!!33+ !)!!3(+

!)!3*"+ !)(531+

!)*!(3+ !)1(13+

+ !)!!!4+

!"#$%&#!(!)*35++ !"#$%&#!(!)*1++

!"#$%&#!(!+ !"#$%&#!(!+

H9DD+ H9DD+

!)!5!3+ !)!(44+

!)!!34+ !)!!("+

!)!!16+ !)!(66+

+

!)!!(5+ !)!!*+

!)!!(3+ !)!!15+

!)!!44+ !)*!64+

!)!!44+

!)!*12+ !)!**5+

+

!)!6"*+ !)*4(1+

!)3"51+ !)!6(3+

+ !)!*3+ !)!*(1+

!"#$%&#!(!)*1!++ !"#$%&#!(!)*16++

!"#$%&#!(!+ !"#$%&#!(!+

H9DD+ H9DD+

!)!*4(+ !)!!*1+

!)!**2+ !)!(44+

!)!162+ !)*512+

+ !)!!(1+ !)!*!1+

!)!!((+ !)!!1+

!)!!(4+ !)!!*(+

!)!!"3+ !)!631+

+ !)!*(1+ !)!!63+

!)!*!*+ !)!!45+

+ +

!)!*(2+ !)!!*6+

!)("*(+ !)*6"6+

+ !)!!(6+

!)!!61+

+

199

200

ID !"#$%&#!(!)*12++

Sample !"#$%&#!(!+

Sample type H9DD+

Al !)!!25+

Ca

Cr !)!165+

Cu

K !)!!*6+

Mg !)!!12+

Mn !)!56*+

Ni !)!!61+

Si !)!!14+

Sn

Ti !)!!(3+

V !)*441+

Zn

!"#$%&#!(!)*6++ !"#$%&#!(!)*6!.++

!"#$%&#!(!+ !"#$%&#!(!+

H9DD+ H9DD+

!)!(34+ !)!*56+

+ !)!3(3+ !)!!3(+

!)!***+

+ + !)!!46+

!)!!6"+ !)!!*2+

!)!!34+ !)!!((+

!)!!2(+ !)!*2"+

!)!!*3+

!)!63*+ !)!!"5+

+ +

!)!622+ !)!!55+

!)!1!1+ !)!*1"+

+ + !)!!1+

!"#$%&#!(!)*6*++ !"#$%&#!(!)(*++

!"#$%&#!(!+ !"#$%&#!(!+

H9DD+ H9DD+

!)!363+ !)*!*2+

!)!!(5+ !)!415+

+ + *)!31(+

!)!!*(+ !)!*!6+

!)!!*6+ !)!!*"+

!)!!(3+ !)!!64+

!)!(24+ !)!3*"+

+ !)!!15+ !)!14"+

!)!(!(+ !)!!"5+

+ +

!)!(4(+ !)**51+

!)!23(+ !)1221+

!)!!51+ !)!("3+

!"#$%&#!(!)(3++ !"#$%&#!(!)(2++

!"#$%&#!(!+ !"#$%&#!(!+

H9DD+ H9DD+

!)**!4+ !)!*3*+

!)!!14+ !)!*64+

+ !)12"6+

!)!!11+

!)*"(+ !)!61(+

!)!!16+ !)!*15+

!)!(34+ !)!!4*+

+ + !)!!5+

!)*32"+ !)!!5(+

!)!!34+ !)*44"+

!)!(*5+ !)!(12+

!"#$%&#!(!)3*++ !"#$%&#!(!)15++

!"#$%&#!(!+ !"#$%&#!(!+

H9DD+ H9DD+

!)*345+ !)!!*"+

*)2656+ !)!1**+

!)!!(+ !)234+

+ + !)!!52+

!)!!43+ !)!!3+

+ !)!65+ !)!!1*+

!)!(23+ !)!164+

!)!!*3+ !)!*12+

!)(564+ !)!*2*+

!)!!62+

!)*5*4+ !)!!32+

!)!!44+ !)(!5"+

!)!*!3+

!"#$%&#!(!)12++ !"#$%&#!(!)6!++

!"#$%&#!(!+ !"#$%&#!(!+

H9DD+ H9DD+

!)!*!*+ !)(1"*+

!)!!(+ !)!*!1+

!)!*65+

!)!!22+ !)!!64+

!)!!3+ !)!!(1+

!)!!*6+ !)!!1"+

!)!!(*+ !)!(5+

!)!!6(+

!)!51"+ !)!*6+

+ !)!!*3+

!)!*"2+ !)!1*1+

!)!35+ !)*4"*+

+ !)!!26+

!"#$%&#!(!)65++ !"#$%&#!(!)64++

!"#$%&#!(!+ !"#$%&#!(!+

H9DD+ H9DD+

!)!(4*+ !)!3*(+

!)!*(6+ !)!!3(+

+ +

!)!!5"+ !)!!!5+

!)!!34+ !)!!(*+

!)!!32+ !)!!"1+

+ !)!!*5+

+ + !)!!52+

!)!3(3+ !)*!**+

+ + !)!!1*+

!)!3*2+ !)!**+

!)!!6*+ !)!36(+

+ +

!"#$%&#!(!)6"++ !"#$%&#!(!)5"++

!"#$%&#!(!+ !"#$%&#!(!+

H9DD+ H9DD+

!)!(14+ !)!*!*+

!)!!*5+ !)!(!3+

+ !)!!52+ !)("45+

+

!)!!3(+ !)!!6*+

!)!!35+ !)!!(*+

!)!(4+ !)!!62+

!)!!*1+ !)!*(4+

!)!!54+ !)!*33+

!)!!*+

!)!313+ !)!*62+

!)!1(3+ !)6*+

+ !)!!33+ !)!**1+

!"#$%&#!(!)4!++ !"#$%&#!(!)4*++

!"#$%&#!(!+ !"#$%&#!(!+

H9DD+ H9DD+

!)!("+ !)!33(+

+ !)!!6"+

+ !)!34*+

+ + !)!*35+

+ !)!!!3+

!)!!65+ !)!!!"+

!)!623+ !)!(25+

+ !)!!*1+

!)!**4+ !)!!56+

+ + !)!!56+

!)!*52+ !)*!(5+

!)!166+ !)*"2"+

!)!*53+ !)!*11+

!"#$%&#!(!)41++ !"#$%&#!(!)46++

!"#$%&#!(!+ !"#$%&#!(!+

H9DD+ H9DD+

!)!5*2+ !)!(!5+

!)!4!*+ !)!!1+

!)!!13+ !)!("4+

!)!!3*+ !)!!!6+

!)!*22+

!)!6*1+ !)!!6(+

!)!(46+ !)!15"+

+

!)5"35+ !)!*13+

+ !)!!(+

!)(6"1+ !)!*+

!)*5""+ !)!3!5+

+

!"#$%&#!(!)45++ !"#$%&#!(!)44++

!"#$%&#!(!+ !"#$%&#!(!+

H9DD+ H9DD+

!)!16*+ !)53"5+

!)!!1*+ !)!!!2+

+

+

+ !)!!44+

!)!!35+ !)!*23+

!)!(5*+ !)!6(3+

+ !)!!45+ !)!*3(+

!)!(!1+ !)!!45+

!)!!!"+ !)!!4*+

!)!342+ !)*!6*+

!)!222+ !)!2!5+

+ !)!*((+ !)!1"2+

!"#$%&#!(!)4"++ !"#$%&#!(!)2(++

!"#$%&#!(!+ !"#$%&#!(!+

H9DD+ H9DD+

!)!((+ !)!*"1+

!)!!*2+ !)!*26+

+ !)!!64+

+ + !)!!24+

+ !)!!!"+ !)!!(3+

!)!!13+ !)!!6"+

!)!*"3+ !)!!(4+

+ !)!!(+

!)!!"+ !)!(54+

+ !)!!*5+

!)!*43+ !)!1!*+

!)!!45+

!"#$%&#!(!)23++ !"#$%&#!(!)26++

!"#$%&#!(!+ !"#$%&#!(!+

H9DD+ H9DD+

!)11!"+ !)!*(2+

!)!!((+ !)!142+

+ + !)3(((+

!)!!2"+ !)!!36+

+ !)!!*3+

+ !)!(5"+

!)321+ !)!3+

!)!!"5+ !)*1*5+

!)!*(+ !)!*6"+

!)!!!5+ !)!!*6+

!)133"+ !)(!6+

+ !)!*6(+ !)**2"+

+ !)155"+ !)!!*2+

!"#$%&#!3()!*++ !"#$%&#!3()!(++

!"#$%&#!3(+ !"#$%&#!3(+

H9DD+ H9DD+

!)***6+ !)!*53+

!)!!6"+ !)!!(2+

+ !)!!2*+

+ !)!!36+

!)!!*2+

!)!!*3+ !)!!(2+

!)!!(2+ !)!*66+

!)!*64+ !)!*(2+

!)!3+ !)!!""+

+ !)!!3+

!)*553+ !)!*4(+

!)!!"3+ !)*46+

!)!!((+ !)!**"+

!"#$%&#!3()!3++ !"#$%&#!3()!5++

!"#$%&#!3(+ !"#$%&#!3(+

H9DD+ H9DD+

!)!(4(+ !)!314+

!)!!2+ !)!!!6+

+

+

+

+ !)!"1"+

!)!!24+ !)!*26+

!)!(3+ !)!*32+

!)!!(6+

!)(46"+ !)!!!(+

!)!*15+ !)!652+

!)!!(*+

!"#$%&#!3()*!++ !"#$%&#!3()**++

!"#$%&#!3(+ !"#$%&#!3(+

H9DD+ H9DD+

!)!1*6+ !)!62"+

!)!!**+ !)!!!1+

+ !)!!!3+

+ +

!)!!!(+

+ !)!!36+ !)!*43+

!)!!!5+ !)!116+

+ !)!!""+

!)!*2+ !)!!21+

+ +

!)!1!"+ !)!*!"+

+ !)*142+

+ !)!*!(+ !)!*11+

!"#$%&#!3()*"++ !"#$%&#!3()((++

!"#$%&#!3(+ !"#$%&#!3(+

H9DD+ H9DD+

!)!(!4+ !)!*!1+

!)!!!6+ !)!**6+

+ +

+ +

+ + !)!!*1+

!)!!*4+ !)!!33+

!)!!44+ !)*5!2+

+

!)!!4*+ !)!!(5+

+ !)!!3*+

!)!*!(+ !)!!34+

!)!334+ !)!*32+

+ !)!((4+

!"#$%&#!3()3(++ !"#$%&#!3()36++

!"#$%&#!3(+ !"#$%&#!3(+

H9DD+ H9DD+

!)!*!3+ !)!*(1+

!)!(!6+ !)!!*5+

+ *)5""+

+ !)!!!(+ !)!!*5+

!)!((3+

!)!!(6+ !)!!6*+

!)!!"2+ !)!(1(+

+ !)!331+

!)!*("+ !)!!41+

+ +

!)!(46+ !)!!2*+

!)!5*6+ !)!!"2+

!)!!43+ !)!!62+

!"#$%&#!3()32++ !"#$%&#!3()1!++

!"#$%&#!3(+ !"#$%&#!3(+

H9DD+ H9DD+

!)!52"+ !)*(5(+

!)!3"4+

+ +

!)!!(6+

+ +

+ !)!!(4+

+ !)!22"+

+ +

!)!1!5+ !)!*61+

+ !)!!((+ !)!!5"+

!)!443+ !)!("+

!)!!1(+

!)!!6+ !)!6!5+

!"#$%&#!3()1(++ !"#$%&#!3()15++

!"#$%&#!3(+ !"#$%&#!3(+

H9DD+ H9DD+

!)!*"6+ !)!*15+

+ + !)!251+

+ !)!!2"+ !)*35*+

+ + !)!!16+

+ !)!!!1+ !)!!!2+

!)!!3+ !)!!!6+

!)!2("+ !)!6!(+

+ + !)!!53+

!)!!4+ !)!!4*+

+ !)!!!"+

!)!!24+ !)**3"+

+ !)**54+ !)*612+

!)!***+ !)!*!6+

!"#$%&#!3()6!++ !"#$%&#!3()64++

!"#$%&#!3(+ !"#$%&#!3(+

H9DD+ H9DD+

!)!42"+ !)!**"+

!)!!!4+ !)!!*1+

+ !)**2*+

+

+ !)!!**+

!)!!!2+ !)!!3*+

!)!635+ !)!666+

+ !)!*56+

!)!*1"+ !)!!44+

+

!)!(13+ !)!!22+

!)*!63+ !)*41"+

+ !)!*2*+

!"#$%&#!3()57++

!"#$%&#!3(+

H9DD+

!)!12*+

!)!*65+

!)!!*1+

!)!13(+

!)!(!2+

+ +

!)!(2+

!)!6!"+

!)!*11+

+

!)!!4(+

+ !)!!!6+

+ !)!!14+

+ + !)!!*6+

+

+

+

ID !"#$%&#!6()*5++

Sample !"#$%&#!6(+

Sample type H9DD+

Al !)*2*(+

Ca !)!!22+

Cr !)!!24+

Cu !)!!3(+

K !)!!3*+

Mg !)!(!3+

Mn !)!((+

!"#$%&#!6()*2++ !"#$%&#!6()(*++

!"#$%&#!6(+ !"#$%&#!6(+

H9DD+ H9DD+

!)!316+ !)!411+

!)!1"4+ !)!!*6+

+

+ !)!!1(+

!"#$%&#!6()(1++ !"#$%&#!6()(5++

!"#$%&#!6(+ !"#$%&#!6(+

H9DD+ H9DD+

!)!351+ !)!45+

!)!!25+ !)!(1(+

+ !)!63*+

!)!*25+ !)!*!6+

!"#$%&#!6()3!++ !"#$%&#!6()3(++

!"#$%&#!6(+ !"#$%&#!6(+

H9DD+ H9DD+

!)!!3"+ !)!*36+

!)!!6*+ !)!!46+

+ + !)(62+

!"#$%&#!6()6!++ !"#$%&#!6()6*++

!"#$%&#!6(+ !"#$%&#!6(+

H9DD+ H9DD+

!)!(33+ !)!14(+

!)!!*2+ !)!!35+

!"#$%&#!6()61++ !"#$%&#!5!)!*++

!"#$%&#!6(+ !"#$%&#!5!+

H9DD+ H9DD+

!)!34(+ !)!(1"+

!"#$%&#!5!)!6++ !"#$%&#!5!)*4++

!"#$%&#!5!+ !"#$%&#!5!+

H9DD+ H9DD+

!"#$%&#!5!)(!++ !"#$%&#!5!)3(++

!"#$%&#!5!+ !"#$%&#!5!+

!"#$%&#!5!)31++ !"#$%&#!5!)63++

Ni !)!633+

Sn !)!!!2+

Ti !)!(21+

V !)*245+

Zn

!)!*31+

!)!**3+ !)!!6+

!)!!33+

+

!)!!*+ !)*!2+

!)!**(+ !)*!"(+

+ !)!*5"+ !)!!42+

+ + !)!!!6+

!)!!14+ !)!"65+

+ !)!*2+ !)!!(5+

!)!!*1+ !)!!""+

+ !)!(!"+ !)3"33+

+ !)!!(*+

!)*32*+ !)!**(+

!)132(+ !)!!4(+

+ !)!!*3+

+ !)!!*2+

!)!!(6+ !)!!*4+

!)!!3"+ !)!643+

!)!*(5+ !)!*!6+

+

!)*!"+ !)!**3+

+ +

!)!!!6+ !)!!64+

!)*!3(+ !)(*(+

+ + !)!!"3+

!)!3(3+ !)!!(1+

!)!*!3+ !)!!13+

+

!)!!31+ !)!!31+

!)!544+

!)!*3(+

!)!!"2+ !)!654+

+ + !)!!!5+

!)!(5*+ !)!145+

!)!""*+ !)!!(5+

!)!*"+ !)!*(3+

+ !)!!*3+

!)*!"3+ !)!"12+

+

+ +

!)!!6"+ !)!!65+

+ !)!24*+ !)!1*6+

+ + !)!!5"+

!)!!4(+ !)!!65+

!)!!5"+ !)!!((+

!)!!5*+ !)!*(3+

!)*45"+ !)!"64+

!)!!54+ !)!!32+

!)!(((+ !)*!46+

!)!!!5+ !)!*5+

!)!*16+ !)!!1(+

+ !)!*!3+

+ +

!)!!*6+ !)!!4+

!)!14*+ !)!164+

!)!!**+

!)!!"(+ !)!"(6+

!)!!32+ !)!!*5+

!)!*(1+ !)!!"4+

!)!"13+ !)!"3"+

!)!!!"+ !)!*(5+

H9DD+ H9DD+

!)!661+ !)**!*+

!)!!*4+ !)!!**+

!)!1"+

+ +

+ !)!!**+

!)!!2(+

!)!**3+ !)!*3+

+ !)!!4*+ !)!!24+

!)!*61+ !)!**5+

!)!!66+

!)!366+ !)!((4+

!)*511+ !)36"4+

!"#$%&#!5!+ !"#$%&#!5!+

H9DD+ H9DD+

!)!(!2+ !)!62*+

!)!!!3+ !)!!5*+

+ !)!!(4+

+ + !)!!(+

+ +

+ !)!!*(+ !)!(12+

!)!11"+ !)!!62+

!)!!!1+

!)!!"6+ !)!3"4+

+ + !)!!!5+

!)!!64+ !)45*6+

!)!6!5+ !)!!6*+

+ !)!!66+

!"#$%&#!5!)61++ !"#$%&#!5!)66++

!"#$%&#!5!+ !"#$%&#!5!+

H9DD+ H9DD+

!)!(13+ !)!1!6+

+

+ !)!*(1+

!)!(!4+ !)!!5+

+ !)!!!(+ !)!!!"+

!)!!2(+

!)!!52+ !)!3+

+ !)!*!6+

!)!!52+ !)!*63+

+ !)!!*5+

!)!**3+ !)!*66+

!)*431+ !)!111+

+ + !)!!"1+

!"#$%&#!5!)5*++ !"#$%&#!5!)5(++

!"#$%&#!5!+ !"#$%&#!5!+

H9DD+ H9DD+

!)!!31+ !)!!61+

+ !)!!**+ !)!!!4+

+ !)**(+ !)3!55+

!)!!(3+ !)!!43+

!)!!!*+

+ !)!!3*+ !)!!53+

!)!1!1+ !)!6(2+

+ !)!!*"+ !)!!25+

!)!!((+ !)!!1+

+

!)!!(6+

!)!"66+ !)*!"2+

!)!!4(+

!"#$%&#!5!)53++ !"#$%&#!55)!3++

!"#$%&#!5!+ !"#$%&#!55+

H9DD+ H9DD+

!)*144+ !)!*54+

!)!!!"+ !)!!!2+

!)*"55+ !)!*1*+

+ !)!!51+

+ !)!!!(+ !)!!*+

!)!*"3+ !)!!(4+

!)!*!1+ !)*!51+

!)!!5(+

!)!!1"+ !)!*!6+

+ +

+ !)!45"+ !)!*3"+

!)("35+ !)!2*4+

+ !)!!3*+ !)!("+

!"#$%&#!55)!6++ !"#$%&#!55)*2++

!"#$%&#!55+ !"#$%&#!55+

H9DD+ H9DD+

!)!1(*+ !)!3"5+

!)!!13+

!)!!5*+

!)!!53+

+

+ !)!!11+

!)!!61+ !)!255+

+ +

!)!31(+ !)!*+

+ +

!)(341+ !)!5*"+

!)!((*+ !)!(!5+

!"#$%&#!55)(3++ !"#$%&#!55)(1++

+

!"#$%&#!55+ !"#$%&#!55+

H9DD+ H9DD+

!)!(*(+ !)!3!(+

+ !)!*!3+

+ + !)!6!3+

+ !)!!24+

+ !)!!11+ !)!!*6+

!)!6!2+ !)!("(+

!)!!*1+ !)!624+

+ !)!!34+

!)!112+ !)!3*(+

+ + !)!!*2+

!)!136+ !)!!63+

!)!!!3+ !)!454+

+ !)!*34+ !)!!5(+

!"#$%&#!55)(6++ !"#$%&#!55)(2++

!"#$%&#!55+ !"#$%&#!55+

H9DD+ H9DD+

!)!1!*+ !)!*!1+

+ !)!!*"+ !)!(5"+

!)!252+ !)!535+

+ +

!)!!!1+ !)!!*6+

!)!!32+ !)!*!*+

!)!34(+ !)!152+

+ + !)!*3*+

!)!*1*+ !)!!44+

+ !)!!*5+

!)!*1+ !)!!5+

!)*"14+ !)*6*"+

!)!*23+ !)!3(1+

!"#$%&#!55)3(++ !"#$%&#!55)31++

!"#$%&#!55+ !"#$%&#!55+

H9DD+ H9DD+

!)!(3+ !)!*22+

!)!!!4+ !)!**5+

!)*51"+ !)*333+

+ + !)!!35+

+ !)!!!1+

+

!)!656+ !)!1(+

+

!)!!63+ !)!!51+

!)!!*+

!)!*6"+ !)!*52+

!)*653+ !)*351+

!)!*"2+

!"#$%&#!55)35++ !"#$%&#!55)34++

!"#$%&#!55+ !"#$%&#!55+

H9DD+ H9DD+

!)!*6+ !)!*!2+

+ !)!!1*+

+ !)*!53+

+ !)!!46+

+ !)!!3*+

+ + !)!*32+

!)!26*+ !)!432+

+ !)!!"3+ !)!!31+

!)!!21+ !)!!23+

+ + !)!!*5+

!)!!51+ !)!!41+

!)*(35+ !)*!(5+

+ !)!166+ !)!!26+

!"#$%&#!55)3"++ !"#$%&#!55)1!++

!"#$%&#!55+ !"#$%&#!55+

H9DD+ H9DD+

!)!444+ !)!3*(+

!)!!(2+ !)!!33+

!)!!3(+

+

!)!!43+ !)!!**+

!)!!(1+

!)!!15+ !)!22+

!)!*31+ !)!!"4+

!)!**4+ !)!*!*+

+

!)!*1(+ !)*13"+

!)15""+ !)*(14+

+ !)!!6(+

!"#$%&#!55)13++ !"#$%&#!55)11++

!"#$%&#!55+ !"#$%&#!55+

H9DD+ H9DD+

!)!354+ !)!111+

!)!!!4+ !)!***+

+ +

+ !)!!3"+

!)!!**+

+ !)!!(+ !)!!52+

!)!635+ !)*6*(+

+

!)!!4"+ !)!*44+

+ + !)!!((+

!)!**1+ !)*1(*+

!)*364+ !)!*35+

!)!*31+ !)!*!6+

!"#$%&#!55)14++ !"#$%&#!55)1"++

!"#$%&#!55+ !"#$%&#!55+

H9DD+ H9DD+

!)*!*1+ !)!*(2+

!)!!("+ !)!!*"+

+ + !)!!13+

+ !)!**"+

+ !)!!*4+

!)!!3*+

!)!(*4+ !)!55*+

+ +

!)!!"2+ !)!!5(+

+ !)!!34+

!)!4*3+ !)!*43+

!)!*6*+ !)**("+

!)!*14+ !)!!"2+

!"#$%&#!55)6!++ !"#$%&#!55)61++

!"#$%&#!55+ !"#$%&#!55+

H9DD+ H9DD+

!)!**"+ !)!*1+

+ !)!!!3+

+ !)*(12+

+ + !)!!!1+

+ +

+ +

!)!2"6+ !)!541+

+ + !)!!5*+

!)!!42+ !)!!16+

!)!!34+

!)!**(+ !)!!46+

!)!261+ !)*632+

!)!212+ !)!*(4+

!"#$%&#!55)64++ !"#$%&#!55)6"++

!"#$%&#!55+ !"#$%&#!55+

H9DD+ H9DD+

!)!*(1+ !)!152+

+ !)!!*+

!)!*!4+ !)!!(6+

!)!!62+ !)!!!2+

+ + !)!!!*+

+ !)!!!5+

!)!543+ !)!1!(+

!)!!"2+ !)!*"2+

!)!!2"+ !)!!4*+

+ +

!)!**5+ !)!**2+

!)!45*+ !)*5!2+

!)!*(2+ !)!!6(+

!"#$%&#!55)5!++

!"#$%&#!55+

H9DD+

!)!1*3+

!)!!(5+

+

+

!)!!*4+

+ !)!!*+

!)!(43+

!)!*14+

+ !)!!!(+

!)!*"2+

!)!(43+

!)!!1*+

+ !)!!63+

+

Si !)**4*+ !)1131+

+

201

ID !"#$%&#!46)!(++

Sample !"#$%&#!46+

Sample type H9DD+

Al !)!(24+

Ca !)!!(5+

Cr !)!!!(+

Cu !)!!6+

K !)!!("+

Mg !)!!*"+

Mn !)!((*+

Ni !)!*!"+

Si !)!*!6+

Sn

Ti !)!(("+

V !)*435+

Zn

!"#$%&#!46)!6++ !"#$%&#!46)*5++

!"#$%&#!46+ !"#$%&#!46+

H9DD+ H9DD+

!)!*1+ !)!3*3+

!)!!("+ !)!*(5+

!)**"5+ !)!!43+

!)!!22+

+

!)!!55+ !)!!12+

!)!6*"+ !)!*32+

!)!**3+

!)!!"*+ !)!*64+

+ !)!!!1+

!)!!53+ !)!35+

!)*51(+ !)1*3"+

+ !)!!*6+ !)!*6(+

!"#$%&#!46)("++ !"#$%&#!46)3*++

!"#$%&#!46+ !"#$%&#!46+

H9DD+ H9DD+

!)!!46+ !)!335+

!)!(("+ !)!!3(+

!)161(+

+ +

+ !)!!!3+

!)!!3+ !)!!12+

!)!2*4+ !)!*2+

+ !)!(1"+ !)!!1*+

!)!!15+ !)!*(5+

+ !)!!*3+ !)!!(1+

!)!(45+ !)!3(*+

!)*51*+ !)1155+

!)!(4*+ !)!!(6+

!"#$%&#!46)33++ !"#$%&#!46)34++

!"#$%&#!46+ !"#$%&#!46+

H9DD+ H9DD+

!)!!("+ !)!133+

!)!*6+ !)!!5"+

+ !)!12"+ !)!**+

+ + !)!!36+

+ +

!)!!((+ !)!!61+

!)!*(5+ !)!!!2+

!)!*1(+

!)*!(2+ !)!*12+

+

!)!!!"+ !)!246+

!)!566+ !)131"+

!"#$%&#!46)3"++ !"#$%&#!46)1!++

!"#$%&#!46+ !"#$%&#!46+

H9DD+ H9DD+

!)!!*3+ !)!33*+

!)!(25+ !)!!33+

!)*!22+

+ !)!!6"+

+ !)!!34+

+ + !)!!!(+

!)!*15+ !)!!62+

!)!!"5+ !)!*"*+

+ !)!(*(+

!)*32"+ !)!*+

+ +

!)!!44+ !)!*51+

!)!142+ !)!55"+

!)!*45+ !)!!"(+

!"#$%&#!44)!4++ !"#$%&#!44)*!++

!"#$%&#!44+ !"#$%&#!44+

H9DD+ H9DD+

!)!*"2+ !)!14"+

!)!!3+ !)!!3(+

+ !)**21+ !)!!"4+

+ !)!!26+

!)!!!(+ !)!!!1+

!)!!2*+ !)!!4*+

!)!"6+ !)!(42+

+ !)!**"+ !)!!26+

!)!!65+ !)!*64+

+ +

!)!!"3+ !)!*24+

!)*"6+ !)*5((+

!)!(41+

!"#$%&#!44)**++ !"#$%&#!44)*(++

!"#$%&#!44+ !"#$%&#!44+

H9DD+ H9DD+

!)55!2+ !)!!63+

!)!(5(+ !)!!*6+

+ !)*!"(+

!)!*(1+ !)!!42+

+ !)!!!6+

!)!31(+ !)!!66+

!)!24+ !)!(25+

+ !)!!21+

!)!366+ !)!!6*+

+ !)!!11+

()*!!5+ !)!!32+

!)!*2(+ !)*6""+

+ !)(1*"+ !)!!13+

!"#$%&#!44)*1++ !"#$%&#!44)*2++

!"#$%&#!44+ !"#$%&#!44+

H9DD+ H9DD+

!)*"64+ !)!!4+

!)!!*4+ !)!!*"+

!)!(3+ !)!!*4+

!)!!3"+ !)!!33+

+

!)!!1(+ !)!!4*+

!)((12+ !)!51(+

!)!!(*+

!)!!63+ !)!!4"+

+ !)!!4*+

!)(!(5+ !)!!33+

!)*6!3+ !)**31+

!)!(1*+ !)!6!(+

!"#$%&#!44)((++ !"#$%&#!44)(5++

!"#$%&#!44+ !"#$%&#!44+

H9DD+ H9DD+

!)!123+ !)!2!"+

!)!!1*+ !)!!(1+

+ !)!(33+

+ !)!!35+

+ !)!!*4+ !)!!3(+

!)!!11+ !)!!"*+

!)!!*3+ !)!!3"+

+ + !)!*5*+

!)!((2+ !)!!42+

+ !)!!!3+ !)!!*4+

!)3*33+ !)!!4(+

!)!*3"+ !)(25+

!)!!2+ !)!!31+

!"#$%&#!44)(4++ !"#$%&#!44)(2++

!"#$%&#!44+ !"#$%&#!44+

H9DD+ H9DD+

!)!!42+ !)!*1*+

!)!!**+ !)!!!5+

!)(433+

!)!!1"+ !)!!(4+

!)!!55+ !)!!!1+

!)!!*(+

!)!4*3+ !)!*6*+

+

!)!!66+ !)!**2+

+

!)!!1(+ !)!*25+

!)*1*6+ !)!!!2+

+ !)!!63+

!"#$%&#!44)32++ !"#$%&#!44)3"++

!"#$%&#!44+ !"#$%&#!44+

H9DD+ H9DD+

!)!121+ !)!("4+

!)!!""+ !)!!*(+

+ + !)!!((+

!)!!2(+ !)!!!1+

!)!!21+ !)!!36+

+ !)!!36+ !)!!63+

+ !)!5!3+

+ + !)!*(4+

!)*!""+ !)!!21+

+ !)!!(6+

!)*!6+ !)!**4+

!)!!""+ !)*5"1+

+ !)!*+

!"#$%&#!44)6!++ !"#$%&#!44)6(++

!"#$%&#!44+ !"#$%&#!44+

H9DD+ H9DD+

!)!!23+ !)*(((+

!)!!!5+

+

!)!!!3+ !)!!!5+

!)!!51+ !)!!63+

!)*!5*+ !)*(*"+

!)!!4+ !)!!6(+

!)!*!3+ !)!*(3+

+ +

!)!*!"+ !)!*4(+

!)*(15+ !)!6"6+

!)!*"+ !)!264+

+

202

+ !)!!(4+

+

+

Appendix-VI: LA-ICP-MS raw data (in wt.%) for magnetite from the Izok Lake area ID !"#$%&#'"()(1-++

Sample !"#$%&#'"(+

Sample type ,-../0+

Ag !)!!!*+

Al !)!32!+

Au

As !)!!!(+

Bi

!"#$%&#'"()(1.++ !"#$%&#'"()(1