Industrial Ecology and Sustainable Management of Materials

20 downloads 172 Views 2MB Size Report
Background. – Anthropogenic materials and energy flows. • Industrial ecology. – Loop closure, stocks and flows. • Future challenges and the role of engineers.
Industrial Ecology and Sustainable  Management of Materials Sangwon Suh Bren School of Environmental Science and Management University of California in Santa Barbara

1

Content • Background – Anthropogenic materials and energy flows

• Industrial ecology – Loop closure, stocks and flows

• Future challenges and the role of engineers – Designing the future

2

Background

3

Anthropocene • Proposed by Crutzen and Stoermer (2000)  • A new epoch characterized by human  domination – Composition of the atmosphere / stratosphere • CO2 , O3

– Alteration in biophysical cycles • Nitrogen, Phosphorus, Carbon, Water

– Flora and founa • NPP under human influence, biodiversity Crutzen, P. J., and E. F. Stoermer (2000). The ‘Anthropocene’. Global Change Newsletter 41: 17–18.

4

CO2 concentration

Keeling, C.D., Whorf, T.P., Wahlen, M., Plicht, J. (1995) Interannual extremes in the  rate of rise of atmospheric carbon dioxide since 1980, Nature, 1995

5

Human use of materials 25

Iron (100Mt) 鉄(億ト ン) 20

セメ ント(億ト ン) cement (100Mt)

Production 生産量

アルミ (百万トン) aluminum (Mt) 15

プラスチック(千万ト plastics (10Mt) ン)

10

5

0 1850

1900

1950

2000

年 year

Source:  Halada  (2006)  Hidden  material  flow  of  metal  behind  economics, Tokyo, Japan.

How much is 75 million barrels of daily crude oil production?

7

Nutrient flows and hypoxia

Source: Vitousek, P. M., Matson, P. A. (1993) Agriculture, the global nitrogen cycle,  and trace gas flux. The Biogeochemistry of Global Change: Radiative Trace Gases. R.  S. Oremland. New York, Chapman and Hall

8

Industrial ecology

9

Industrial ecology • Derived from “industrial ecosystem” coined  by Frosch and Gallopoulos (1989). • Field of study concerns stocks and flows of  materials and energy in human‐nature  complexity.

Frosch, R.A.; Gallopoulos, N.E. (1989). Strategies for  Manufacturing. Scientific American 261 (3): 144–152

10

Industrial Ecology: closing the loop • In principle, adverse impacts by humans can  be prevented from the source by closing the  materials cycle within the technosphere.

Extraction

Technosphere

Emission

11

    

      

W pure water WW wastewater influent OW organic wastewater WT WW effluent WR WW reusing

ULSAN METROPOLITAN CITY

PW

ULSAN NAMGU FOOD WT

KUMHO PETROCHEM.

ULSAN PACIFIC Corp. IWIW SS

Total Recycling

BG

HALLA Corp. SK CHEMICAL Corp.

BG

ULSAN

WW

WR

S LANDFILL GAS RECYCLING

RM

WW WT

OW

SS

farm

SK Corp.

WW

O WWT SS

SS

TS Corp.

EAST SEA

WT

W

WS WS

SGR Tech.

AE

EAST SEA

WW H WWT

TAEYOUG INDUSTRY Corp.

KUNYOUNG

OS

Y WWT

OIS

WCS

KOREA RECYCLIG

BG

SS SSANGYONG CEMENT Corp.

alternative energy biogas recovery fuel production steam production & sale catalysis valuable metal recovery carbide of sludge slag

WCS

KCC

RF

AE BG RF SS C RM CS SL

       

HYUNDAI MOTOR Corp.

ENERGY Corp.

RF

IW industrial waste PW wasted plastic WS wasted sludge OS organic sludge OIS oil sludge WCS wasted casting sand WIM wasted fireproof material

WW KOENTEC Corp.

OW LS-NIKKO Corp.

CS IW

RM

KOREAZINC Corp.

RM

WIM

SL SAMSUNG PRECISION

KUMKANG RESOURCES

SS

HANKUK PAPER Corp.

LG CHEMICAL

12

The “Buy‐To‐Fly” Problem Material Utilization Case Study: Ti-6Al-4V Structural Forging Forging Weight [kg] Machined Part Weight [kg] Buy-to-Fly Ratio Scrap

154 28 ~6 82%

forging  envelope machined  part

Source: Sanjay Shah, “Isothermal and Hot-Die Forging,” ASM Metals Handbook, Vol.14 (Forming and Forging), 2nd Ed., ASM International, 1998.

Most of the input mass is lost to scrap From: Don Lipkin (GE Global Research): personal communication

Urban mining

=

150 g

1 ton 100 kg

14

Recycling rate • Little is known • Only a few metals exceed 50%, many