information to users

0 downloads 0 Views 22MB Size Report
downstream of the town of Noxon, opposite the mouth of the Bull River on the ...... T5. I.
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy subm itted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.

Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy.

Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R e p r o d u c e d with p e r m is s io n of t h e cop y rig h t o w n e r. F u r th e r r e p r o d u c tio n prohibited w ith o u t p e r m is s io n .

NOTE TO USERS

This reproduction is the best copy available

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R e p r o d u c e d with p e r m i s s io n of t h e co p y rig h t o w n e r. F u r th e r r e p r o d u c tio n prohibited w ith o u t p e r m is s io n .

Maureen and Mike

MANSFIELD LIBRARY

The University of

MONTANA

Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports.

** Please check "Yes" or "No" and provide signature **

Yes, I grant permission No, I do not grant permission

X. ____

Author’s Signal Date Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R e p r o d u c e d with p e r m is s io n of t h e cop y rig h t o w n e r. F u r th e r r e p r o d u c tio n prohibited w ith o u t p e r m is s io n .

VEGETATION AND PROCESS OF THE KOOTENAI NATIONAL FOREST by Daniel M. Leavell B. S. Oregon State University, 1977 M. S. Oregon State University, 1991 presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy The University of Montana 2000

\ •/ 'i

r



'

Chairperson

Dean, Graduate School

____________ l o ~

I ~6 a

Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9970793

Copyright 2000 by Leavell, Daniel Michael All rights reserved.

UMI* UMI Microform9970793 Copyright 2000 by Bell & Howell Information and Learning Company. Ail rights reserved. This microform edition is protected against unauthorized copying under Title 17, United S tates Code.

Bell & Howell Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements Thanks to Dr. Robert E. Keane for the vision that initiated this study. In addition, thanks for his continued support in data acquisition, data output provided, excellent manuscript reviews, positive feedback, and overall encouragement. Thanks to Ceci McNicoll and members of her 1995 field crew. They did an excellent job collecting, editing, and processing the data used as the foundation of this study. Thanks to the Botany/Ecology folks on the Kootenai National Forest (Lou Kuennen, Jack Triepke, Leslie Ferguson, Therese Gibson, Mike Arvidson, Bob Lambrecht, Eric Pfalzer, Betty Chamon, Jon Reny, Mike Lolley, Kara Hungate, Deb Bond, Anne Karsian, Roger Ferriel, Terry Hightower, and Roy Loft) who collectively picked up the program, made it one that truly benefitted the resources, and provided me with continued inspiration and support in more ways than they will ever know. Thanks to the Chair of my Committee, Dr. Kelsy S. Milner, for initially agreeing to oversee this study and for all the time, effort, support, and overall leadership that followed throughout the course of my program. Thanks to Committee members who provided guidance, positive feedback, moral support, editing expertise, and many miscellaneous efforts that kept me on track and moving ahead (Drs. Jack Ward Thomas, Ray Callaway, Bob Pfister, Paul Alaback, and Ronni Korol). Thanks to Wayne Johnson, Wildlife Biologist, and Lou Kuennen, Soils Scientist, for the time and effort in giving a concise and thorough review of the first draft and for being trusted sound-boards for periodic reviews throughout. Thanks to Becky Timmons, Forest Archaeologist and temporal/ cultural expert for the hours of advising, consulting, and encouragement. Thanks to Russ Gautreaux for all the insight, expertise-sharing, and completing the VRU write-up. Thanks to Hans Zuuring, of the UM School of Forestry, for early statistical advice that kept going and going... Thanks to Britani Ague for much time spent on the tedious, eternal editing and data input. Thanks to the Leadership Team of the Kootenai National Forest for giving me the time and support to do this study. Thanks to my family: ❖ Nancy Kmonk, GIS and graphics wizard, who gave until it hurt and without whom this effort would not have been completed. ❖ Dan, Heather, Jacquelin, Colleen, Dave, (and even Jennifer) for their patience, understanding, inspiration, and confidence. If this study in the most minute way provides some benefit to the understanding, conservation, and respectful consumption of ecological systems for them and their kids and grand-kids and onward, then it all will have been worth it.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Leavell, Daniel M., Ph. D., May 2000

Forestry

Vegetation and Process of the Kootenai National Forest (507pp.) Chairperson: Dr. Kelsey S. Milner

Abstract The primary focus o f silviculture within most forested ecosystems managed by the USDA Forest Service in the Pacific Northwest and Rocky Mountains has been the production of timber. Since 1992, however, objectives for management have shifted to a more conservative approach leading to a desired outcome of ecological sustainability and ecologic integrity. A silvicultural prescriptive method is tested in order to accomplish these objectives. The design requires the following knowledge of vegetative communities and landscapes: a historic range of variability for communities and landscapes; current structure, composition, and process elements; and what communities and landscapes are potentially capable of becoming. This study, completed for the Kootenai National Forest in Northwest Montana, asked three questions in order to provide some knowledge and tools to aid with managing from an ecological perspective: 1. What is the significant relationship of plant species and communities to certain ecological system processes? 2. Can existing vegetation species and communities be described and characterized by process? 3. Can these relationships be used for diagnostic and prescriptive purposes? To provide some answers, the following are presented: 1. A summary o f current and historic variability for the Kootenai Forest based on literature review and collected data; 2. A set of multivariate analyses including TWINSPAN used with 389 macroplots collected in 1995 which resulted in the foundation of this study - an existing vegetation classification; and 3. Recommendations on designing forest-level silvicultural prescriptions based on the composition, structure, and process information developed in this study. The classification followed the recommendations of the US National Vegetation Classification System. A modified version o f BIOME-BGC was used to simulate a suite of process attributes (gross primary productivity, evapotranspiration, outflow, aerobic and anaerobic respiration, leaf and stem carbon, etc.). Canonical Correspondence analysis was then used to correlate these simulated attributes and sampled, process and process-related attributes (leaf area index [LAI], fire history, etc.) to the plant associations obtained through the classification. Associations and sub-associations obtained through the classification are described and characterized by the highly correlated process and process-related attributes, site attributes, and attributes, both calculated and derived. And finally, a critique is given to illustrate the effectiveness of the methodolgy in meeting the objectives.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents Aknowledgements..........................................................................................

ii

Abstract...........................................................................................................

iii

Table of Contents............................................................................................

iv

List of Tables................................................................................................... List of Figures................................................................................................

v ii v iii

List of Appendices............................................................................................ x INTRODUCTION........................................................................................

1

METHODS...................................................................................................

4

Sampled Data.............................................................................................

8

General Field Data...............................................................................

9

Location Data........................................................................................

10

Tree Data...............................................................................................

10

Measured Down Wood D a ta...............................................................

10

Disturbance and Treatm ent History Data........................................ Optional Data........................................................................................ Calculated Plot Data................................................................................

10 10 11

Downed Wood Summary...................................................................

11

Diversity Summary.............................................................................

11

Wildlife Cover Summary....................................................................

13

ANALYSIS....................................................................................................

14

Vegetation Classification and Ordination...............................................

14

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Verification o f Alliances, Associations, and Sub-Plant Associations

17

Indicator Species Analysis......................................................................

18

Classification Comparison......................................................................

18

Process Attributes....................................................................................

18

Canonical Correspondence Analysis......................................................

26

RESULTS.....................................................................................................

28

The Setting...............................................................................................

28

Overview...........................................................................................

28

Administrative...............................................................................

28

Prehistoric......................................................................................

30

Historic..........................................................................................

32

Stochasticitv and the Ranee of Variability.................................... 38 Current Climate.............................................................................

40

Current Vegetation........................................................................

42

Southwest (Bitterroot Mountains).............................................. 42 West Central (West Cabinets)...................................................

44

Northwest (Purcell Mountains).................................................

45

Northeast (Whitefish Mountains)............................................... 46 Southeast (Salish Mountains)....................................................

47

Current Vegetation Classification........................................................... 49 Alliances, Associations, and Sub-Plant Associations......................

49

Verification o f Alliances, Plant Associations and Sub-Plant Associations.............................................................................................. 54 v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Indicator Species Analysis....................................................................... 56 Classification Comparison...................................................................... 56 Canonical and Detrended Correspondence Analysis............................. 64 Discussion o f Results..............................................................................

79

General Results........................................................................................ 93 CONCLUSION............................................................................................ Analysis o f the Management Situation Summary (Vegetation)

96 96

N eedfor Change..................................................................................... 99 New Directions........................................................................................ 101 Applications.............................................................................................. 104 CRITIQUE..................................................................................................

115

ADDITIONAL RECOMMENDATIONS.................................................. 119 Additional Study....................................................................................... 119 Potential Application.................................................................

120

REFERENCES............................................................................................. 122

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables Table 1.

Summary of Individual Species by Lifeform Sampled from the "Ecology Plots" of 1995.................................................. page 7

Table 2.

Summary of Individual Species by Lifeform Weighted by Importance............................................................................. page 16

Table 3.

A List of Sampled Process and Process-Related Attributes with Descriptions and Values................................................ page 20

Table 4.

Process Attributes (average per unit area) Generated by BIOME-BGC Using a 100-Year Simulation Period............. page 25

Table 5.

Vegetation Patterns of the Past 12,000 Years......................... page 32

Table 6.

List of Disturbance Factors and Consequences Regarding Soil, Vegetation, and Wildlife............................................... page 36

Table 7.

Multi-Response Permutation Procedure Result for Alliances

page 55

Table 8.

Confusion Table by Numbers of Plots...................................

page 58

Table 9.

Intraset Correlations Between Sampled and Modeled Attributes and DCA Ordination Axes One and Two

Page 68

Table 10.

Forest Alliances, Associations, and Sub-Plant Associations, their Label Acronyms, and Gradient Attributes.................... Page 70

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures Figure 1.

Prescription for Maximum Growth and Yield/Physical Flow for Warm, Moist Habitat Groups - Maximize Growth and Yield page 2

Figure 2.

Hydrologic Hierarchy

page 7

Figure 3.

ECODATA Plot Locations

page 8

Figure 4.

Vertical Profile Stratification.................................................

page 12

Figure 5.

Average Overstory Age

page 15

Figure 6.

Structure Classes

page 21

Figure 7.

BIOME-BGC Schematic

page 24

Figure 8.

Physiographic Features of the Kootenai National Forest A rea......................................................................................

page 30

Kootenai National Forest Historic Fire Map

page 34

Figure 9.

Figure 10a. Timber Inventory of Lincoln County, Montana, from 1930’s

page 35

Figure 10b. Amount of Commercial / Coniferous Forest Land in Lincoln County, Montana, in 1939.......................................

page 35

Figure 11.

Fire History Events Based on a Charcoal/Sediment/Pollen Core Collection from Smeads Bench on the Kootenai National Forest......................................................................

page 41

Figure 12.

Southwest (Bitterroot Mountains)..........................................

page 43

Figure 13.

West Central (West Cabinets)................................................ page 44

Figure 14.

Northwest (Purcell Mountains)............................................. page 45

Figure 15.

Northeast (Whitefish Mountains)........................................... page 47

Figure 16.

Southeast (Salish Mountains)................................................. page 48

Figure 17.

Distribution of Alliances, Plant Associations, and Sub-Plant Associations on the Kootenai National Forest...................... page 53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 18.

Species Proportions in Ordination Space - by Plot

page 65

Figure 19.

Regression Scatterplot (DCA) - Averaged and Grouped by PA and Sub-PA................................................................ page 67

Figure 20.

Abundance of Structure Class...............................................

Figure 21.

Abundance o f LAI - Overstory...........................................

page 69 page 69 Figure 22. Figure 23.

Abundance of LAI - Plot/Ground Level............................... page 69 The Moisture, Solar Radiation, and Topographic Gradient of the Kootenai National Forest by Plant Associations and page 75 Sub-Plant Associations..........................................................

Figure 24.

Gross Primary Production Across the Moisture, Solar Radiation, and Topographic Gradient of the Kootenai page 76 National Forest by Plant Associations and Sub-Plant Associations...........................................................................

Figure 25.

Rate of Evapotranspiration Across the Moisture, Solar Radiation, and Topographic Gradient of the Kootenai National Forest by Plant Associations and Sub-Plant Associations..........................................................................

Figure 26.

Figure 27.

Rate of Species Richness Across the Moisture, Solar Radiation, and Topographic Gradient of the Kootenai National Forest by Plant Associations and Sub-Plant Associations.......................................................................... Leaf Area Index Across the Moisture, Solar Radiation, and Topographic Gradient of the Kootenai National Forest by Plant Associations and Sub-Plant Associations....................

page 77

page 78

page 79

Figure 28.

Gaussian Response Curve..................................................... page 83

Figure 29.

Gross Primary Production by Age......................................... page 94

Figure 30.

Forest Plan-directed Landscape (from 1:15,840 1990 Aerial page 102 Photo Taken on the Kootenai National Forest).....................

Figure 31.

Vegetation Response Units on the Kootenai National Forest page 107

Figure 32.

Prescription Managing Structure, Composition, and Process for Ecologic Integrity and Maintaining Biodiversity page 112

Figure 33.

Landscape Managed for Ecological Integrity........................ page 114 ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Appendices Appendix I. Species List.............................................................................. page 133 Appendix 2. Species and Importance Scores................................................ page 148 Appendix 3. Cover / Constancy Tables........................................................ page 156 Appendix 4. Descriptions and Characterizations for Plant Associations and Sub-Plant Associations........................................................................... page 195 Appendix 5. Multi-Response Permutation Procedure Results for Plant Associations and Sub-Plant Associations...................................................... page 462 Appendix 6. Physical Flow Examples.......................................................... page 466 Appendix 7. BIOME-BGC Parameter File................................................... page 478

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 INTRODUCTION The primary objective for silvicultural treatment prescriptions within most forested ecosystems has been the production of timber (Daniel et al. 1979b, Smith 1962, Smith et al. 1997). Recently, however, conservation issues have redirected objectives of land management toward sustainable development and ecosystem management (EM) (Agee and Johnson 1988, Overbay 1992, Quigley 1992, Unger 1994). These objectives demand silvicultural treatments based on landscape approaches and a dynamic concept of forest development. The design of this type of silvicultural prescription is, therefore, to base the physical flow o f management over time on an understanding of both ecological sustainability and the conditions necessary for ecological integrity (i.e., the characteristic and natural composition, structure and processes of ecosystems) (Angermeier and Karr 1994, Committee of Scientists Report 1999). This will result in the conservation and maintenance of a full range of landscape attributes including: stand age and size class proportions, spatial patterns, processes, and native species composition. This type of management provides many and diverse benefits which include maintenance of biological diversity, outputs of goods and services, and employment opportunities (Johnson 1999). Silviculture is the art and science of manipulating forest stands to achieve human objectives, including the production o f goods and services (Kohm and Franklin 1997). Different objectives require different treatment scenarios over time. As an example, a forested stand is managed for a targeted output of timber based on the maximization of growth and yield in Figure 1. This type of agriculture-based, target-output model has been the basis for forest management for many decades (Kennedy and Quigley 1993).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission

Figure 1. Prescription for Maximizing Growth and Yield / Physical Flow for Warm and Cool, Moist Habitat Groups

of the copyright ow ner.

VMR 1*

W9L •

pla n t

m

FORAGE DIVERSITY I

im

PRE-COM* THSt'TOI FORAGE DIVERSITY HIGH

Further reproduction

GENERALIST SPEC

prohibited without p e r m is s io n .

vwam

opm.

i

I I Ji

iiim m i

i i i r n i l » |i i i iMi

CLEARCUT W/ RESERVES

MZSH K?Wr?35S7?TTTOTrr.

•wy.*. Vrvi-^iiiLg-atpwigaaaMMi

Basal area, trees per acre and quadratic mean diameter are manipulated to prescribe silvicultural treatments to meet certain objectives. The prescription above has an objective ofmaximizing growth and yield for optimum timber production over time within this mixed conifer stand. Management activities will affect cover and forage for big game, diversity, and interior habitat, even though these are not part of the growth and yield objectives. to

The transition from managing for commodity outputs to managing for integritybased outcomes takes an understanding of vegetation community development and how communities influence and are influenced by ecosystem processes. The Report of the Interagency Ecosystem Management Task Force (1995) lists seven specific gaps in our knowledge base that can and should be filled by scientific efforts in order to meet ecosystem management objectives. The first on the list is "Ecology on multiple scales (includes structure, composition, process and function from both temporal and spatial perspectives)." I have focused my efforts on a part of that recommendation in order to test some methods intended to fill a small gap in the knowledge base. During this investigation, I addressed the following questions concerning vegetation and process on the Kootenai National Forest: 1. What is the significant relationship o f plant species and plant communities (characterized in part by structure and composition attributes) to certain ecological system processes? 2. Can existing vegetative species and communities be described and characterized by process variables? 3. Can these relationships be used fo r diagnostic and prescriptive ______ purposes?____________________________________________________ The Kootenai is a good place from which to answer these questions. The natural diversity o f climate, vegetation, and topography make this Forest a representative sample o f many Forests in the Rocky Mountains and Pacific Northwest. Past planning efforts focused on maximizing growth and yield on suitable timber lands while deferring management action on lands either not suitable or when constrained by resource considerations other than amber. This has created landscapes that do not necessarily meet EM objectives. The Kootenai has been attempting to varying degrees during the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 past eight years to make the transition from commodity-based output management to integrity-based outcome management. We have found that knowledge gaps need to be filled in order to accomplish this effectively and efficiently. And with the direction to revise the existing Forest Plan in the next few years, any attempt to test methods in order to acquire knowledge in this area of resource management is timely. My intent is to develop and evaluate several methodolgies to answer the questions above and to give a general example of how to place the results into implementation through a hypothetical management prescription for a certain vegetation type in order to meet EM objectives. I also intend to critique methods, analysis, and results and give recommendations for further investigative efforts. METHODS To answer the questions above, I decided to see if vegetation community variability across environmental gradients (coenoclines) correlated with process and process-related environmental relationships along the same gradients (ecoclines). I selected indirect gradient analysis (Whittaker 1967 and 1973, Kessell 1979, Gauch 1982) as the analytic tool to accomplish this. I also decided to develop a current vegetation classification with which to derive plant association units instead of the habitat type classifications (Pfister, et al. 1977, Cooper et al. 1991) we now have. I decided to follow the floristic level vegetation classification protocol outlined in the U.S. National Vegetation Classification System (USNVCS) (Grossman et al. 1998) for consistency and clarity. Indeed, one key issue for the USNVCS includes the following statement: "Descriptions of the composition, structure, and function of these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 communities form a core body of knowledge for understanding ecological systems". Within the protocol, "these communities" refer to current vegetation plant association units, as opposed to units based on potential or "climax" vegetation. Current or existing plant association units are used in part to, "...ensure the conservation of a high percentage of all species, both plant and animal". Other reasons for using current vegetation as opposed to potential are to ensure a spectrum o f serai stages would be addressed (both naturally disturbed and naturally undisturbed) and to allow interpretation of vegetation patterns in the context of ecological units and processes at multiple scales at this point in time (Grossman et al. 1998). The focus of my investigation is based on a series of plots collected on the Kootenai National Forest in 1995. The plots are based on a comprehensive and hierarchically nested field-sampling methodology designed and implemented to obtain inventories of vegetation and ecosystem attributes at various spatial and temporal scales (Figure 2) (Keane et al. 1996). The USDA Forest Service Northern Region's ECODATA system (Hann et al. 1988, Keane et al. 1990, Jensen et al. 1993) was used as a foundation from which to build the inventory (sample design and methodology). The current vegetation classification I developed for this study was derived from vascular and nonvascular species abundance (ocular estimation) collected on these plots. Resulting plant association and sub-plant association units became the dependent variable throughout the multivariate gradient analysis. Some process (and process-related) attributes such as leaf area index, water holding capacity, structure class, and fire history were also sampled on each plot (independent variables). Process attributes such as gross primary production, net primary production, maintenance respiration, net ecosystem production, maintenance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 respiration, and evapotranspiration, used in the analysis were simulated for each plot using a modified version of the BIOME-BGC (Running and Hunt 1993) simulation model. DAYMET (Thornton et al. 1997), a method for obtaining daily surface values of temperature, precipitation, humidity, and radiation over complex terrain, provided necessary weather input to the BGC program. All process and process-related attributes, whether sampled or modeled, were used as independent variables within the gradient analysis. My classification and analysis of process is based on the 449 integrated resource ecology plots sampled in the summer of 1995 (Keane et al. 1996), mentioned above. All plots were collected by the same crew. These plots were located to sample the entire range in environmental, vegetation, and biophysical gradients throughout the Kootenai National Forest (Figure 2) and to test an integrated inventory approach (Keane et al. 1996). The plots were originally based on the environmental, vegetation, and biophysical variability within a spatially nested hydrologic hierarchy (Figure 2). The hierarchy started with variability within the Columbia River Basin Assessment area, to variability within the Kootenai National Forest, to variability within the Upper Kootenai River Sub­ basin, to variability within 6thhydrologic units (HUC). All were appropriately scaled. Due to placement in areas such as roadsides or very site-specific environments, sixty-six plots were removed from the analysis. The 383 remaining plots were used throughout the analysis. An ArcView theme was developed (Figure 3) with an attribute table listing primary variables from the ECODATA INFOS databases for all plots. This theme provided a base from which to proceed in the analysis and methods.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2. Hydrologic Hierarchy

S Upper / Kootenai River Subbaain 4th H(JC/6th HUC* 1,408,374 Acres

The macroplots sampled were 404.7 sq. m (4356 sq. ft) in size with a circular configuration and a fixed radius. Vascular and non-vascular plant species canopy cover and height was sampled by ocular estimation. All plant species on the plot were sampled and recorded by lifeform groups (Table 1). Table 1. Summary of Individual Species by Lifeform Sampled from the "Ecology Plots" o f 1995 : LiM bm N usber Trees Shrubs Forbs Mosses Lichens Grasses Ferns

17 85 352 66 29 86 16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 Canopy cover sampled on the plots follows the 1968 Daubenmire definition of "...an expression of the percentage of the ground included in a vertical projection of imaginary polygons drawn about the natural spread of foliage of the individuals o f a species.". The following cover class codes were used to record cover Class Code 00 01 03 10 20 30 40 50 60 70 80 90 98

Ranee of Class 0 cover >0 1 5 15 25 35 45 55 65 75 85 95 -

Class Midpoint < 1% cover < 5% cover < 15% cover < 25% cover < 35% cover < 45% cover < 55% cover < 65% cover < 75% cover < 85% cover < 95% cover 100% cover

0 0.3% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0% 97.5%

Figure 3. ECODATA Plot Locations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 A mean height was estimated for each species. Tree and shrub species height was recorded for the dominant size class to the nearest foot. Six size classes were used for tree species (

64 Canonical and Detrended Correspondence Analysis Figure 18 illustrates the regression scatterplot of DCA Axis One against Axis Two obtained by the SYSTAT statistics analysis package (SPSS 1997). All Kootenai plots are arrayed within this ordination space scatterplot. Figure 18 is a series of graphs with the abundance of selected dominant species overlaid on this ordination of plots. The size o f the triangles in each graph is proportional to the abundance of each species. This depicts the relationship of each species to the first and second ordination axes (McCune and Mefford 1999). Figure 19 is the compilation of these relationships. All ordination axis scores by plot are averaged for each plant association and sub-plant association. The result is a general grouping of alliances, associations, and sub-plant associations in ordination space. Figure 18 represents an ordination space interpreted in terms of moisture, solar radiation, and topography gradient differences. Correlations o f Attributes with Axes Table 9 lists intraset correlations obtained through canonical correspondence analysis for the sampled and modeled process and process-related attributes found in Tables 3 and 4. Figure 20 is a set of similar graphs that illustrate the relationship of Structure classes (O’Hara et al. 1996) and LAI to the same scatterplot of ordination space. The size of the triangles in each graph is proportional to the value of each attribute. For example, Structure values range from 1 to 7 (Table 3), from stand initiation to Old Forest Single Strata. Large triangles in Figure 20 indicate older, forest structure classes within that area of ordination space. This relates to species abundance and to placement of associations and sub-associations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R eproduced with perm ission

Figure 18. Species Proportions in Ordination Space - by Plot Agropyron spicatum

Abies lasiocarpa

of the copyright ow ner.

U

; :

Aa Aaa^ •

hJ H .

?i

-

'

V . •«

Further reproduction

#• • :v **W • v•«' A

A Axis 1

Axis 1

Pinus ponderosa

Pinus contorta

prohibited without p e rm issio n .

CM

CM

I

I

Axis 1

Axis 1 Os

66

. 1



3

*

1

SB *

1

^

| 1 I

■s & §L

*

Axis 1

1

• < ■

■• f - r - r * ** •



j

- .

%

-

*

* .< '■ £ & ■ ■ ■

■■

•••

■*

. . **

‘ .••• v

•* •





' •



«

2 spcv

Figure 18. Species Proportions in Ordination Space, cont.

2S|*v

„ .*

,■■■> ■■ •••»•*

• ? . • ♦ * /



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67 Figure 19 illustrates the same scatterplot, but with plot scores averaged for each plant association and sub-plant association and grouped by alliance. Figure 19. Regression Scatterplot (DCA) - Averaged and Grouped - by PA and Sub-PA Florfstfe Classification Plotted on an Ordination Gradisnt 500

Hamlookffladcadar Forast Subalpine f ir . . and Woodland

a

IdarShru bland

PA13

rand fir Forast

8 Bluagrass Grass

LanotVPipar biroh Forast

Rabbitfansh Mlxad Grassland

dgapola pint/larch Woodland 'AUCTouglas-fir/Pondarosa pina Forast and Woodhnd Luptra Ml»ad Grassland A27

ndanosa pina Shrub land

200

300

400

500

600

700

800

AteiagB Values for Axis 1

Table 9 lists intraset correlations obtained through canonical correspondence analysis for the sampled and modeled process attributes found in Tables 3 and 4. Table 9. Intraset Correlations Between Sampled and Modeled Attributes and DCA Ordination Axes One and Two

STRUC UNLAI OVLA STDFIRE MIXFIRE

Sampled Attributes Axis One Axis Two -.278 .749 .626 -.009 .775 .185 .300 .417 .228 .062

GPP NPP MR GR AR

Modeled Attributes Axis One Axis Two -.504 .089 -.510 .076 -.419 .181 -.509 .094 -.489 .119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

Table 9. Intraset Correlations Between Sampled and Modeled Attributes and DCA Ordination Axes One and Two, cont. ____ ___________

1 © 1ft

NONFIRE WATCAP SOILDEP ROOTDEP

s ampled Attributes Axis One Axis Two .206 -.097 -.251 -.192 .268 .283 .072

LR SR HR ER NEP ET OUTF LEAFC STEMC PSI VMC

Modeled Attributes Axis One Axis Two -.434 .111 .069 -.412 .089 -.427 -.489 .118 -.510 .075 -.210 -.163 -.001 -.061 -.420 .186 -.509 .072 .047 -.055 .195 -.199

Table 10 displays Forest Alliances, Associations and Sub-Plant Associations in numeric order, but similar to the order obtained through the TWINSPAN program. Table 10 also lists the acronymns used for each plant association and sub-plant association in Figures 17 and 23 through 26. Acronymns were shortened from the full association and sub-association name for space efficiencies. Table 10 also lists the dominant gradient attributes (mean value for elevation, precipitation, and solar radiation) for each association and sub-association. Figures 23 through 26 illustrate the rates o f highly correlated process and processrelated attributes across the moisture, solar radiation, and topographic gradient of the Kootenai National Forest. These attributes include gross primary production, evapotranspiration, species richness, and leaf area index.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R eproduced with perm ission

Figure 20. Abundance of Structure Class

Figure 21. Abundance of LAI - Overstory

Structure (Overstory - above the dominant mndentoty)

of the copyright ow ner.

I

Further reproduction

Axis 1

Axis 1

Figure 22. Abundance of LAI - Plot/Ground Level LAI (Total canopy - ground level)

4

prohibited without p e rm issio n .

* • * 4 A.

I

‘‘ O

-A

'

:

A A 'W® V* • ■■ »

A

A

*

.

Axis 1

Axis Two obtained by Ac SVSTAT statistics analysis package (SPSS 1997). Al) Kootenai pfets are arrayed withia this ordination space scatterplot. Thelateat gradients rcprescated are moistare, solar radiation, aad topography. Figare I t is a series ofgraphs with (he abaadaace of sdccted doadaaat spedes aveflaid oa this ordiMtioB of plots, The size or the triaaglet ia each graph Is proportional to the abaadaace of each spedes. TUs depicts the rdstiooahip of each species to the first aad second onHaatioa axes (McCaae aad Metford 1JFF). Figare 19 b the coaipiiatioa of these rdadoashlpt, AHonHaatioa axis scares bypiot are averaged for each pkat associatioB aad snb-piaat assodattoa. T l» resnlt is a general grouping of alHaaces, associations, aad snb-plant associations in ordiaatioa space. llgaresJM I'H are a sd of siinikrgraphattuitillBstrate the relationship of Stractare dassee (O’Hara et ah Iffd) aad LAi to the saate seatterpiot of onHaatioa space, Thedae of the triaagies (a each graph b proportional to the valae ofeachattribatc. For example, StriKture valaes range A sa 1 to 7 (Table 3), from stand initiation to Old Forest Single Strata. I^rge triangles in FIgnre 21 Indicate older, hirest stractare classes srithia that area of ordination space. This relates to spedcsabaadaaceaad to placement of plant associations aad sab'plaat associations. Figare 20 iUnstrates, therehire, older ferest stracturc dam s withia space occapied by the older Tsaga heterophyUa/Thajo pheaA plaat assodatfoas (TA1. PA2J5PA44 aad 47) aad smaller triangles (stead iaiHadoa stractare daises) h r the early sera) PA3.

ON VO

R eproduced with perm ission

Table 10. Forest Alliances, Associations and Sub-Plant Associations, their Label Acronyms, and Gradient Attributes ALLIANCES • ASSOCIATIONS - SUB-PLANT ASSOCIATIONS

of the copyright ow ner.

■) ’• * • Tu i h liflAMMhirfb ^ Thyls







. •■ AIKbiim

PA 1: Tsuga hetemphylla - Thuja plicata/Tiarella trifoliata - Disporum hooker!* PA 2: Tsuga hetemphylla - Thuja plicata (Abies grandis) / Pachistima myrsinites/Clintonia uniflora

Sub-PA 46: Tsuga hetemphylla * Thuja plicata (Abies grandis)/Coptis

ACRONYMS (used in Figures 17,23*26)

PRECIP Cm/(in)

SOLAR (cal/cm2/yr)

TSUHET-THUPU/TIATRI/DISHOO

1331/ 170/(57) 158058 (4367) The Sub-PA's have all the plot dvislons more suitable for sub-dMsion than the main PA. All the plots are represented by the Sub-PA's rather than the main PA. TSUHET/COPOCC/RHYROB

Further reproduction prohibited without p e rm issio n .

1010/ (3313) 11401 (3740)

109/(43)

124412

109/(43)

124012

ALSIN/EPIANG/CARCON/POLJUN

12481 (4093)

107/(42)

137730

PINCON/VACMYR/CALRUB

1581/ (5186)

94/(37)

131976

ABILAS/ALNSIN/ARNLAT

1533/ (5030) 1480/ (4856) 14821 (4862) 1675/ (5494) 1549/ (5081) 1765/ (5792)

114/(45)

127648

124/(49)

162671

86/(34)

127063

102/(40)

128780

91/(36)

146347

140/(55)

128912

occidentalis/flhytidiopsis robusta

Sub-PA 47: Thuja plicata / Pachistima myrsinites -Linnaea borealis /

ELEV M/(ft)

THUPLI/PACMYR/UNBOR/CLIUNI

Clintonia uniflora Tsuga heterophyta - Thuja plicata Woodland Alliance

PA 3 (early serai variant of PA 2 - presently shrubland): Alnus sinuata Pachystkna myrsinites (Rubus parvihoms)/Epilobium angustifolium/Carex concinnoides / Polytrichum juniperinum Pfoua contorta Forest Alliance

PA 4; Pinus contorta - Larix occidentals / Vaccinium myrtillis (Alnus sinuata) / Calamagmstis rubescens Abies leslocsrpa Forest Alliance

PAS: Abies lasiocarpa/Alnus sinuata - Rubus parvifforum / Arnica latifolia Thalictmm occidentals

PA6: Abies lasiocarpa - Larix occidentalis / Vaccinium globulare /Xerophyllum

ABILAS/VACGLO/XERTEN

tenax/Rhytidiopsis robusta

Sub- PA 40: Abies lasiocarpa *Larix occidentalis / Vaccinium myrtillis / Arnica latifolia Sub- PA 41: Abies lasiocarpa - Pinus contorta/Menziesia ferruginea Pachistima myrsinites / Vaccinium scoparium PA7: Abies lasiocarpa - Pinus contorta / Vaccinium myrtilis - Alnus sinuata /

ABILAS-LAROCC/VACMYR/ARNLAT ABILAS/MENFER-VACSCO ABILAS/VACMYR/ARNLAT

Arnica latifolia

PAS: Abies lasiocarpa - Picea engelmannii/Menziesia ferruginea Rhododendron albHlorum/Brachythecim erythrorhizon

ABILAS/MENFER/BRAERY

o

R eproduced with perm ission

Table 10. Forest Alliances, Associations and Sub-Plant Associations, their Label Acronyms, and Gradient Attributes, cont. ALLIANCES - ASSOCIATIONS - SUB-PLANT ASSOCIATIONS

of the copyright ow ner. Further reproduction

ACRONYMS (used in Figures 17,23-26)

ELEV M/(ft)

PRECIP Cm/(in)

SOLAR (cal/cm2/yr)

ABILAS-PINCON/VACGLOVACMYR/XERTEN ABILAS-PINALB/VAVGLO/XERTEN

1864/ (6117) 1779/ (S836)

145/(57)

205764

173/(68)

154743

PINCON/XERTEN

1893/(6216)

130/(51)

208412

ABILAS/VACSCO/LUZHIT

2062/ (6765)

140/(55)

128912

Ahbotoabcaipo (aartyaarW/opon elope) PerenntalFofb/ShrubtandAllance

PA9.EARLY: Abies lasiocarpa - Pinus contorta / Vaccinium globulare Vaccinium myrtillis / Xerophyllum tenax PA9_OPEN: Abies lasiocarpa - Pinus albicaulis / Vaccinium globulare / Xerophyllum tenax Abtoa toatoeama fhtah ilm tlon ) Woodland AlWinco

PA10: Pinus contorta/Xerophyllum tenax A tiaa laahcama (high olovationl Perennial rorh AWancc PA11: AWes lasiocarpa - Pinus albicaulis / Vaccinium scoparium/Luzula hitchcockii Abbagrandb FOnetAMancp

PA12: Abies grandis - Pseudotsuga menziesii (Thuja plicata)/Acer glabrum / Aralia nudicaulis

prohibited without p e rm issio n .

Sub- PA 32 (eastside calcareous): Abies grandis - Pseudotsuga menziesii/Acer glabrum - Linnaea borealis/Aralia nudicaulis Sub- PA 33 (westside): Abies grandis - Pseudotsuga menziesii (Thuja plicata) / Pachistima myrsinites

The Sub-PA's have all the plot rfvislons more suitable lor sutHSvision than the main PA. All the plots are represented by the Sub-PA's rather than the main PA. ABIGRA/ACEGLA/ARANUD 156603 896/ 69/(27) (2938) ABIGRA-PSEMEN/PACMYR 168079 1101/ 104/(41) (3613)

Ahum h a m (mil) Shrubland AWance

PA13: Alnus incana (Comus canadensis) / Symphoricarpos albus / Calamagmstis canadensis - Elymus glaucus Pbuo contort*-Lnrixocctoantolb (early aaral) Woodland Alliance PA14: Pinus contorta - Larix occidentalis /Alnus sinuata - Arctostaphylos uvaursi (Linnaea borealis)/Epilobium angustilolium

Sub- PA 27: Pmus contorta - Larix occidentalis/Alnus sinuata ■Linnaea

ALNINC/SYMALB/CALCAN

1021/ (3350)

81/(32)

181428

The Sub-PA's have all the plot dMsions more suitable for subdivision than the main PA. Al the plots are represented by the Sub-PA's rather than the main PA. PINCON/ALNSIN/CALRUB

borealis/Calamagmstis rubescens

Sub- PA 28: Pinus contorta - Larix occidentalis (Pseudotsuga menziesii) /

PINCON/VACMYR/SPIBET

Vaccinium myrblis • Spirea betutolia /Calamagrostis rubescens Sub- PA 29: Pinus contorta ■Larix occidentalis (Pinus ponderosa) / melanchier alnifolia / Calamagrostis rubescens

PINCON/AMEALN/CALRUB

1314/ (4326) 1398/ (4587) 938/ (3076)

84/(33)

171267

86/(34)

166197

79/(31)

169900

R eproduced with perm ission of the copyright ow ner. Further reproduction

T a b le 10. F o re st A llian ces, A sso ciatio n s an d S ub-P lant A ssociations, th e ir L abel A cronym s, and G rad ien t A ttributes, c o n t. ALLIANCES - ASSOCIATIONS - SUB-PLANT ASSOCIATIONS ACRONYMS ELEV PRECIP SOLAR (used in Rgures 17,23-26) M/(ft) Cm/In) (cal/cm2/yr) Larix occklm ilata-B otula papyri/era (Popukts tnm ubU ea) mined Forest / Woodland Alliance PAIS: Larix occidentalis - Betula papyrifera (Populus tremuloides)/Acer LAROCC-BETPAP/ACEGLA 117536 969/ 71/(28) glabrum - Alnus sinuata (3180) Fbissft/WoodtaitdAlitttcos tV(IU) M «V »« iJMl/VI 4 kVtVllJllIU) M 4IU

WoodlindAMaiice PA16: Larix occidentalis - Pseudotsuga menziesii (Abies lasiocarpa) / Vaccinium myrtillis/Calamagrostis rubescens PA17: Larix occidentalis - Pseudotsuga menziesii (Pinus contorta) / Vaccinium globulare/Xerophyllum tenax

prohibited

fOfwlAManct PA18: Larix occidentalis - Pseudotsuga menziesii (Pinus contorta) / Shepherdia canadensis - Spiraea betufolia/Calamagrostis rubescens WoodlMdAiane# PA18: Sub- PA 23 (early to early-mid serai variant of PA 17 and PA18): Larix occidentalis - Pseudotsuga menziesii (Pinus contorta)/Spiraea betufolia -

LAROCC/VACMYR/CALRUB

without p e rm issio n .

1490/ (4888) 1536/ (5039)

86/(34)

157721

119/(47)

189085

LAROCC/SHECAN7CALRUB

1107/ (3633)

94/(37)

177708

LAROCC/SPIBET/CALRUB

11561 (3792)

76/(30)

156693

LAROCC/MAHREP/CALRUB

1130/ (3706) 1235/ (4051)

69/(27)

159515

76/(30)

135247

991/ (3250)

64/(25)

169232

LAROCC/VACGLO/XERTEN

Amelanchier alnifolia/Calamagrostis rubescens

FofMlAMaPM PA19: Larix occidentalis - Pseudotsuga menziesii/ Mahonia repens Calamagrostis rubescens

Sub- PA25: Larix occidentalis - Pseudotsuga menzisil (Abies grandis) / Acer glabrum/ Arnica cordifolia/Bryoria spp. P am K M atigam m akall-P km poM km ea Forest/WoodlandAWances ro n m dpmic* PA20: Pseudotsuga menziesii - Pinus ponderosa/Mahonia repens Symphoricarpos albus - Arctostaphylos uva-ursi/Calamagrostis rubescens

LAROCC/ACEGLA/ARNCOR/BRYORI

PSEMEN/MAHREP/CALRUB

~~4

N>

R eproduced with perm ission

Table 10. Forest Alliances, Associations and Sub-Plant Associations, their Label Acronyms, and Gradient Attributes, cont. Alliances - Associations - Sub-Plant Associations

Acronyms Elev Procip ^______________(used in Figures 17,23-26)_____________M/(ft)_______Cm/(in)

of the copyright ow ner.

wooipsnaAmnce PA20: Sub- PA14: Pseudotsuga menziesii - Pinus pondemsa /Amelanchier alnitolia - Purshia tridentata (Eureka Ranger District) - Philadelphus lewisii (Libby Ranger District) /Agmpymn spicatum Sub- PA1S: Pseudotsuga menziesii- Pinus pondemsa I Mahonia repens - Arctostaphylos uva-ursiI Calamagrostis rubescens /Polytrichum

Solar (cal/cm2/yr)

Further reproduction prohibited without p e rm issio n .

PSEMEN/AMEALN-PURTRI-PHILEW

1086/ (3562)

69/(27)

161127

PSEMEN/MAHREP/CALRUB/POUUN

9131 (2997)

56/(22)

167921

PSEMEN/SPIBET/BALSAG/FESIDA

1141/ (3745) 1023/ (3355)

69/(27)

198714

76/(30)

131688

PSEMEN/ACEGLA/BRYORI

1135/ (3723)

84/(33)

169211

CEAVEL/CALRUB

11561 (3792)

84/(33)

200199

10361 (3400) 1098/ (3602)

66/(26)

219248

69/(27)

213672

1213/ (3980) 1213/ (3980)

69/(27)

217858

69/(26)

183780

juniperinum

Sub- PA16: Pseudotsuga menziesii - Pinus pondemsa /Spiraea betufolia/Balsamorhiza sagittata/Festuca idahoensis

PA21: Pseudotsuga menziesii - Pinus pondemsa (Larix occidentalis) /

PSEMEN/PHYMAL-SYMALB/RHYTRI

Physocarpos malvaceus - Symphoricarpos albus / Rhyridiadelphus triquetrus

Forest AManca PA21; Sub- PA11 (moist): Pseudotsuga menziesii - Pinus ponderosa /Acer glabrum - Physocarpos malvaceus/Bryori spp. C m nopm yeM nua ShrublandA|Hance(aarlysaral FOrast AManca) PA22: Ceanothus velutinus - Amelanchier alnihoia/Calamagrostis rubescens** P k m p o n d m m ShruMand Alliance

PA24: Pinus pondemsa / Lomatium dissectum - Balsamorhiza sagittata / Bromus tectorum - Agropymn spicatum** PA25: Pinus ponderosa/Balsamorhiza sagittata/Agmpymn spicatum -

PINPON/BALSAG/BROTEC PINPON/BALSAG/AGRSPI

Festuca scabrella A g n p yrp o e p ka tm mixed-Grassland Alliance

PA23: Chrysothamnus nauseous/Balsamorhiza sagittata/Agropyron spicatum" PA26: Agropyron spicatum-Festuca idahoensis”

CHRNAUBALSAG/AGRSPI PINPON/FESIDA

-j u>

R eproduced with perm ission

Table 10. Forest Alliances, Associations and Sub-Plant Associations, their Label Acronyms, and Gradient Attributes, cont. ALLIANCES - ASSOCIATIONS - SUB-PLANT ASSOCIATIONS

of the copyright o w ner. Further reproduction

AMprafemfe

ACRONYMS ELEV (used in Figures 17,23-26)____________ M/(ft)

PRECIP C n # i)

SOLAR (cal/cm2/yr)

AManc*

PA27: Lupinus sericeus ■Lithospermum ruderale/Poa praiensis" LUPSER/POAPRA 937/ 51/(20) 190037 __________________________________________________________________________________________________(3075)_________________________ PA28: Poapratensis/ Poapalustris POAPRA/POAPAL 945/ 58/(23) 173082 (3100)

* No process plot infbnmation was sampled for this PA, so it is not represented on the gradient or comparative process graphs (Figures 17,23-26). ** This PA is located on the N ez Perce NF. This is a plant community present on the Kootenai NF, but without sufficient plot representation (one to three plots) to be labelled a PA on the KNF. Process plot infoimation was available for these plots. As a result, these community types were included on the gradient and comparative process graphs (Figures 17.23-26) to illustrate differences.

prohibited without p e rm issio n .

R eproduced with perm ission

Figure 23. The Moisture, Solar Radiation, and Topographic Gradient of the Kootenai National Forest by Plant Associations and SubPlant Associations

of the copyright ow ner. Further reproduction

Located in pocket on back cover

prohibited without p e rm issio n .

-4 in

R eproduced

76

with perm ission

Figure 24. Gross Primary Production Across the Moisture, Solar Radiation, and Topographic Gradient of the Kootenai National Forest by Plant Associations and Sub-Plant Associations

of the copyright ow ner.

Located in pocket on back cover

Further reproduction prohibited without p e rm issio n . ON

R eproduced with perm ission

Figure 25. Rate of Evapotranspiration Across the Moisture, Solar Radiation, and Topographic Gradient of the Kootenai National Forest by Plant Associations and Sub-Plant Associations

of the copyright ow ner. Further reproduction

Located in pocket on back cover

prohibited without p e rm issio n .

—4

-4

R eproduced with perm ission

Figure 26. Species Richness Across the Moisture, Solar Radiation, and Topographic Gradient of the Kootenai National Forest by Plant Associations and Sub-Plant Associations

of the copyright ow ner.

Located in pocket on back cover

Further reproduction

•»

prohibited without p e rm is sio n .

"4

OO

R eproduced with perm ission

Figure 27. Leaf Area Index Across the Moisture, Solar Radiation, and Topographic Gradient of the Kootenai National Forest by Plant Associations and Sub-Plant Associations

of the copyright ow ner.

Located in pocket on back cover

Further reproduction prohibited without p e rm issio n .

v£>

80 Discussion o f Results The habitat type site classification currently used by the Northern Region of the USDA Forest Service and other resource management agencies within the Rocky Mountain area is for potential, "climax" plant communities (Pfister et al. 1977). The habitat types were derived from a classification of late serai, terrestrial, upland vegetative communities. The habitat type site classification was developed to obtain "...knowledge of the ecological potential of the land..." (Pfister et al. 1977). The objective within the habitat type classification was to hold these communities as a constant in order to adequately characterize the environment and productivity potential. Using this rationale, environment can conversely be held constant by using habitat types while focusing on vegetation dynamics over time (Steele and Geier-Hayes 1987). Daubenmire (1952) noted that the environment (as it affects vegetation) can be delineated by habitat types or potential climax communities. The habitat type classification is therefore based on potential vegetation, not current. The habitat type concept allows time (as it relates to succession) to be delineated by community types or serai stages that can be obliterated, slightly altered, or advanced through various disturbances (Steele and Geier-Hayes 1987). Other objectives o f the habitat type classification were to provide tools that met the management objectives o f the times and to facilitate communication between varied resource management disciplines. The classification was very successful with meeting those objectives. However, I felt different baseline information and understanding in addition to the habitat type classification was needed in order to diagnose, predict and prescribe for ecosystem management objectives.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

I also considered the methods and resulting classification of Amo, Simmerman, and Keane (1985, 1986). This effort developed a forest succession classification for habitat types in Western Montana. The study had the following three objectives: 1. Develop a general-purpose classification of the serai community types on selected habitat types. 2. Outline or model the successional sequences of community types on each habitat type. 3. Document changes in canopy coverage by species during each successional sequence._________________________________________

The study was initiated to classify the successional pathways that resulted from stand-replacing wildfire and clearcutting within four habitat types in west-central Montana (Lolo, Bitterroot, and Flathead National Forests). This is a successional classification focused on results of intense management. I decided to use neither the habitat type classification o f Pfister et al. (1976) and Cooper et al. (1991) nor the successional classification of Amo et al. (1985, 1986) for this study. None of the three classifications were constructed specifically for the Kootenai Forest. All three had objectives different from those outlined for this study. The classifications neither described nor characterized an accurate, current condition of vegetation on the Kootenai. These classifications could neither be described nor characterized by process attributes with the analysis I used for this study. Confusion table results (Table 8) illustrate the disparity between current vegetation assemblages and potential. Plant communities and forested stands within the boundaries of the Kootenai National Forest represent plant associations and sub-associations acquired through the classification of current vegetation completed for this study. Appendix 4 is a summary o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82 descriptions and characterizations for these plant associations and sub-associations. The average value for a number of sampled, modeled, and derived attributes describes and characterizes plant associations and sub-associations within this appendix. These attributes include: site, process-related, modeled process, downed wood, diversity, wildlife cover, and growth and yield attributes. The attributes are averaged (where appropriate) for all the plots within a plant association or sub-association. Appendix 4 illustrates the utility and applicability of the classification and the estimation of process variables as outlined in the Results and Methods sections of this study. Use of the information in Appendix 4 along with the historic information in the previous Chapter and the generalized summary within the Vegetation Response Unit Descriptions and Characterizations and Landscape Prescriptions (USDA Forest Service, Gautreaux 1999) document will be beneficial to resource managers. This will be important to the Kootenai in order to meet ecosystem management objectives. The existing vegetation classification completed for this study is based on the similarity (and dissimilarity) of species of vegetation as measured by cover (abundance) related to the placement of these species on designated samples (plots). There is nothing more to the classification. Ties to the environment followed the completed classification. In reality, there is not a 1:1 correlation of vegetation to environment. Vegetation as species and communities most often has a variable range of environmental conditions. The Gaussian Response Curve (Figure 28) best explains this (Jongman et al. 1995, pages 40-43). I used average values for attributes within the descriptions and characterizations for each association and sub-association to better reflect the Gaussian response of vegetation to the non-vegetation attributes. Minimum and maximum values and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83 standard deviation values will also aid in an understanding of the extent of variability of attributes among all the plots that make up the associations. The value o f an attribute as a descriptor lessens when standard deviations are greater than 25% of the average value of all plots within an association (Freedman et al. 1978). This is due to high variability. Figure 28. Gaussian Response Curve (Jongman et al. 1995) c » Maximum a-optinuun ‘

species abundance

environmental variable

Specie* cae be farad Aroufbontit* “range?* - which is about4*t, bat found in lessor atwiidances farther away from opdmam environfflfgtil cQWtttlont(a)*

An example of high variability of an attribute within an association is illustrated by the values for gross primary production within Plant Association 6, Sub-Plant Association 40 (PA6_SPA40). Values range from .06 to 3.19 kgCm2. The average value for this association is 1.64. The standard deviation is 1.57. This is an extreme example, but does illustrate how variability can be very high among plots within an association. This association was differentiated by 11 plots in the classification. Only 3 plots out of a total of 11 had BIOME-BGC output. That was one reason for the high variability. PA6_SPA 40, like other associations did not have a high correlation to age. The process attributes that correlated well with the ordination axes in the canonical correspondence analysis also correlated well with age. The assemblage of species characteristic of this association occurred across many serai stages although the majority o f plots were of consistent physiology. Process attributes change according to serai stage. The 3 plots within this association with BGC output were 136,90, and 5 years old. The last plot was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84 a clearcut. This created high variability with some of the process attributes, even though the vegetation assemblage remained the same. If all plots had BGC output and the average taken, the value for gross primary production would have been higher and more indicative of the association overall. Twenty-three out of 41 associations have a standard deviation of over 25% of the average for some process attributes primarily due to the same reason. This does not negate the positive relationship of vegetation to process over the length of the gradient. The true value of the results when standard deviations are high is therefore for comparative purposes - not for exact measurement of process by association. When standard deviations are low, characteristic measurement of process by association can certainly be done with confidence. A comparative and relative look within and between plant associations best illustrates how these results aid in the implementation of ecosystem management objectives. Follow along by reading the description and characterization for Plant Association 2, Sub-Plant Association 46 (PA2_SPA46) and consult Figures 20 through 27. I will occasionally compare attribute values of Plant Association 25 (PA25), (Pinus ponderosa / Balsamorhiza sagittata / Agropyron spicatum - Festuca scabrella or ponderosa pine / arrowleaf balsamroot / bluebunch wheatgrass - rough fescue) to demonstrate utility by comparison. The two plant associations are on opposite ends o f the gradient. The contrast should aid in interpreting the results o f the descriptions and characterizations. Plant Association 2, Sub-Plant Association 46 (Tsuga heterophylla - Thuja plicata [Abies grandis] / Coptis occidentalis / Rhytidiopsis robusta or western hemlock - western redcedar [Grand fir] / western goldthread / rhytidiopsis) is a moderately cool, moderately

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85 moist plant association (Vegetation Response Unit 5 - USDA Forest Service, Gautreaux 1999. Note: A map o f the Vegetative Response Units isfound in the Applications section on page 96, Figure 31.). This association is typically mid-seral in successional development (average age is 120). It is found primarily on mid-elevations (average 3300 feet), moderate slopes (average 30 to 40 percent), and northerly aspects. Average precipitation for this association is 43 inches per year. This is a moderately high amount of precipitation for the Kootenai and high enough for moist-site vegetation. Average solar insolation value is 124,412-calories per cubic centimeter per year (cal/cm2/yr) (Buffo et al. 1972). Solar insolation values for the entire Kootenai range from approximately 20,000 to over 250,000 cal/cm2/yr. The value of 124,412 is average for the Forest. Solar insolation values o f20,000 are indicative of very moist, shaded conditions and values of over 200,000 indicate hot, dry slopes. There are 9 landtypes used to characterize this association. Values for landtypes correlate to soil types and characterize topographic landform. Values within the 100 series indicate flat, terraced landforms. Values for landtypes progressing upwards to the 400 and 500 series indicate progressively steep, mountainous, and dissected terrain. According to the landtype graph, the most common landtype for this association is within the 300 series. The most common among the 300 series for this association is landtype 352 (Andie Dystrochrepts, glaciated mountain slopes). Landtype 352 is more specifically characterized by 20 to 60% slopes, northerly aspects, and from 671 to 1585 meters (2200 to 5200 feet) in elevation. Kuennen and Nielsen-Gerhardt’s 1985 publication, “Soil Survey of the Kootenai National Forest Area, Montana and Idaho” has more detailed information pertaining to this landtype.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

PA25 is a warm, dry plant association (Vegetation Response Unit 1). This is also a mid-slope elevation association, but with a more southerly aspect (compared to a northerly aspect for PA2_SPA46. Average precipitation is almost half of that for PA2_SPA46 (27 compared to 43 inches), while average solar insolation is double (213,672 compared to 124,412 cal/cm2/yr). Predominant landtype is 510 and 303 (calcareous soil, south aspects and rock outcrop, glaciated mountain ridges). These site attributes define the environmental setting for this association. This is where species common to this association are most likely found in the aggregation and relative abundance listed in Appendix 3, the Cover and Constancy Tables. The next page of the description and characterization illustrates a list o f indicator species. The source o f this list is the indicator species analysis in the Methods section of this study. This is the analysis based on Dufrene and Legendre’s (1977) technique. These species reflect the greatest affinity with this association as compared to all other associations in the Tsuga Heterophylla / Thuja Plicata (Western Hemlock / Western Redcedar) Forest Alliance. Therefore, the species listed may not be either the most abundant or most constantly found within the representative plots, but will be the most indicative of that association in that combination of occurrences. The combination and relative abundance o f Abies grandis, Larix occidentalism Thuja plicata , Tsuga heterophylla, Coptis occidentalis, Rhytidiopsis robusta, and Rhytidiopsis triquetrus is mostly found within PA2JSPA46 and within no other. Indicator species for PA25 include Pinus ponderosa, Amelanchier alnifolia, Balsamorhiza sagittata, and other driersite species. These indicator species will greatly aid in identifying the associations in the field.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87 Because PA2_SPA46 is a mid-seral, older plant association, most plots (22 sampled for this association) were within the Tsuga heterophylla!Clintonia uniflora (Western hemlock/Queen’s cup beadlilly) habitat type (Pfister et al. 1977). There is a high correlation between this existing vegetation plant association and the potential vegetation association illustrated by the habitat type. Descriptions and characterizations for this habitat type found in Pfister et al. (1977) can be used for PA2_SPA46 because of this correlation. The next section in the descriptions and characterizations titled “Process Attributes” lists the values of sampled, process-related, and modeled process attributes. Structure class (Figure 6) reflects, “...fine- and coarse-grained processes that operate across stands and landscapes..

(O’Hara et al. 1996). Structure class D (Understory

Reinitiation) describes most plots sampled within this plant association with the next most abundant being in structure class C (Closed Stem Exclusion). Structure class D, according to the definition found in the O’Hara et al. 1996 publication, describes stands with a broken overstory canopy with a formation of understory stratum with two or more cohorts. The understory is composed of seedlings, saplings, grasses, forbs, or shrubs, while the overstory may be in poles or larger trees. Structure class C describes a continuous closed canopy with usually one cohort and with poles and small or medium trees present In general, structure class correlates moderately to the age of the association (.509, Pearson correlation, SPSS 1997). Leaf area index (both overstory and plot-level) for this association is relatively high for the Kootenai Forest. Stands on this Forest with minimal overstory such as remains following a regeneration harvest or found on open-grown, warm, dry slopes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88 normally have an LAI value of 1.00 to 2.00. Dense stands of old growth in warm, moist environments will have LAI values of 4.00 and greater. PA2_SPA46 has one of the higher overstory LAI values sampled for this study. LAI for PA25 is 2.05. The values for gross and net primary production and all the other carbon cyclerelated attributes are highest for PA2_SPA46 when compared to other associations and sub-associations. Gross primary production for PA2_SPA46 is 2.21 kgCm2 as compared to .93 for PA25. In fact, all modeled process attributes listed in the descriptions and characterizations for PA25 are roughly a third to half that for PA2_SPA46. Simulated process attributes related to the carbon cycle had the highest correlation to either the ordination gradient or classification associations and sub-associations as determii.ed through canonical correspondence analysis (intraset correlations, Table 8). Gross and net primary production is influenced by changes in elevation, temperature, and moisture (Perry 1994). Changes in the type of soil and resultant inherent productivity will also influence gross and net primary production, all other factors being equal. More importantly, changes in structure class and serai stage will also alter gross and net primary production and all the other carbon cycle-related attributes. These environmental and site conditions also have the highest combined correlation to the ordination gradient and therefore the greatest influence on the classification of plant associations and sub­ associations. Carbon-cycle processes have the greatest correlation to the plant associations and sub-plant associations obtained through the classification of current vegetation completed in this study. The results need to be used with caution, however. For instance, gross primary production correlates well with vegetation composition across the length of the gradient (-.504 CCA output, Table 8). This is due to high relative

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89 differences between gross primary production values for warm moist to cool moist to warm dry vegetation types. The correlations obtained through the CCA analysis lose value for some individual plant associations and sub-plant associations since vegetation composition (the basis of TWINSPAN divisions) do not necessarily reflect changes in structural and serai stage differences. It is not valid to use values of simulated process attributes to describe and characterize individual plant associations and sub-plant associations when standard deviations of mean values of plots exceed 20 to 25%. This needs to be taken into account when using Appendix 4. The next page in the description and characterization of PA2JSPA46 is the Downed Wood Summary. This provides a good relative indication of how downed wood differs between plant associations. Unfortunately, the sample size was not sufficient to sample the high degree of variability of downed wood. This variability among plots for most associations created very high standard deviations. The accuracy and reliability of these measurements when applied to the description and characterization of plant associations should be viewed with caution, but might prove to be useful for relative comparisons and other generalizations. Fuel models were a call made by samplers on each plot, independent of the downed wood transects. An ocular estimation of fire behavior fuel model was made on each plot sampled for this study. The fuel models follow the illustrated guide by Anderson, titled, “Aids to Determining Fuel Models for Estimating Fire Behavior” (1982). Albini (1976) initially presented these models. PA2JSPA46 is predominately described and characterized by fuel model 10. This model is used when heavy down material occupies the stand. This model describes insect- or disease-ridden stands,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90 windthrown stands, overmature situations with deadfall, and aged light thinning or partial-cut slash. The real value of the fuel model is to aid in the estimation o f potential fore behavior. In addition, a correlation exists between the fuel models in Anderson (1982) and the fuel models used by the National Fire Danger Rating System (NFDRS). The equivalent NFDRS model is also given in the plant association descriptions and characterizations. NFDRS model G matches fuel model 10. Used with existing daily weather conditions, the NFDRS model can be used to represent daily and seasonal trends in fire danger. The next section deals with diversity. These are indices with a primary value of relative comparison. Species richness is simply the number of species found on the plots. The average value for PA2_SPA46 is approximately 23. This is roughly a median value of richness for all associations and sub-associations. Plots sampled for this study had a high of over 60 species to a low of 10 and less. Again, be somewhat aware o f the high standard deviation value. The value is not high enough to discount the average, but high enough to be wary o f using this number for an exact descriptor of the associations. With a low value of 9.00 and a high value o f 43.00, the range represents a moderately high degree of variability. The species diversity index indicates how many species occupy the plot and to what degree these species are evenly distributed in their abundance throughout the plot Values range from .1 to 1.5. A value of .1 indicates the least number o f species with a few having the greatest dominance. A value of 1.5 indicates the highest number of species with most of those species having an equal amount of abundance between them. High species diversity is usually found on warm or cool, moist, productive sites

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91 with an overstory canopy thin enough to allow sufficient light and moisture to reach all lifeform levels and where no one species or group of species will dominate. Low species diversity is usually indicative o f either sites with a dense overstory canopy that shades out most understory species or o f sites with low productivity and one or a few dominant species. Examples would be either a dense, doghair stand of Pinus contorta (Lodgepole pine) or a Pinus ponderosa!Agropyron spicatum community. The average value of .94 for PA2_SPA46 indicates an association of moderate species numbers that are relatively evenly distributed with regard to abundance. Species diversity and richness are made up of numbers and amounts of cover, nothing more. A word of warning about diversity is that the numbers should be viewed only as a relative index value. A manager should never try to maximize or minimize diversity. The numbers can be viewed as a relative indicator and should be used with knowledge of what species (consult the cover/ constancy table in Appendix 2) make up the numbers. As a monitoring value, if an association had a species diversity of 1.00 now and had a species diversity of .25 five years from now, questions should be asked. Has dominance increased as well? Is the overstory canopy overcrowding to the extent of losing species? Has a noxious, weedy species taken over the community? The diversity numbers will then have value. The same concepts apply to vertical diversity. The vertical diversity index reflects how cover values for a number of species (richness) are distributed within the six heights o f canopy classes (Figure 4). Plots with a few number of species aggregated within one vertical canopy class would have a low vertical diversity index o f . 1. Plots with the maximum number o f species with evenly distributed cover within all six canopy height classes would have a high vertical diversity o f 1.5 (the maximum number).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92 PA2_SPA46 has a vertical diversity index value of .53. This is neither low nor high when compared to other associations. The vertical diversity profile on the next page is a graphical representation of the amount of cover and number of species within each canopy class. This graph is intended to provide a picture of vertical structure for the association. PA2_SPA46 has on average much cover for the number of species in the two higher canopy classes and a moderate amount of cover for the number of species in the three lower canopy classes. The canopy class of 1.37 m (4.5 ft) to 4.72 m (15.5 ft) has either a very low number of species with low cover or both. Contrast the diversity values of PA2_SPA46 with PA25. PA25 has almost the same number of species and similar species diversity, but the species present are very different and represent moist-site to dry-site affinities. The vertical diversity for PA25 is roughly half that of PA2JSPA46 as illustrated by the graphical representation of the vertical diversity profile. The vertical diversity profile reflects wildlife habitat characteristics as indicated in the Wildlife Cover graphs below. Hiding and thermal cover index values are based on definitions from Thomas et al. 1987 (see Methods). The highest number of species-tocover is in the top two canopy classes with a moderate number of species-to-cover in the three lower canopy classes. This is why the thermal cover (and summer/winter cover) is relatively high when compared to other plant associations (a value of .1 is the lowest to a value o f 1.5 for the highest). The low hiding cover and wind blockage value are also indicative of the amount and lack of vertical diversity. PA25 has a comparatively small amount o f cover and shelter value. The Growth and Yield section on the next page is a summary of productivity for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93 major tree species sampled on the Tree Data plot (see Methods). The graph of Trees Per Acre (TPA) vs. Stand Density Index (SDI) vs. Quadratic Mean Diameter (QMD) is meant to portray a typical SDI graph as documented in Reinecke (1933) and Daniel et al. (1979). SDI essentially compares the number of trees in a stand of a certain average diameter with the average number o f trees present in fully stocked stands o f the same diameter. Basal area is also an absolute measure of stand density for stands o f ages 40 to 60 or greater. The values within these graphs should be used with stocking level charts or yield tables for maximum effectiveness. The final graphs at the bottom o f this page represent height and age distribution for major species. These curves follow the logic of site index curves (Cochran 1979, Seidel and Cochran 1981). The greater the slope, the better suited the particular species is to the site under current conditions of growth. Pinus contorta (lodgepole pine) and Betula papyrifera (paper birch) are not as suited to current stand conditions as are Abies grandis (grand fir) and Larix occidentalis (western larch). General Results Plant species and communities relate significantly to certain ecological system processes across environmental gradients (Figures 20 through 27). This is demonstrated by the correlations of process and process-like attributes to the ordination axes within the canonical correspondence analysis (Table 9). The following are observed patterns: Age as an attribute did not correlate well to the ordination gradient within the canonical correspondence analysis (-.269, Pearson correlation, SPSS 1997) and therefore did not influence the overall classification. However, either disturbance intensity and frequency or the lack of disturbance throughout an entire successional sequence seemed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94 to alter the vegetation sufficiently to effect the designation of associations and sub­ associations resulting from the classification. The classification did produce early serai plant associations. However, there are also early serai plots within some plant associations with an average mid- to late-seral age. Most process attributes, however, did correlate to age and successional status. This led to a high level of attribute variability within 23 out of 41 associations. This also allowed a high degree of difference between early serai plant associations and mid- to late serai associations. Gross primary production, respiration rates, and amount of carbon fixed within stems and leaves decrease with early serai plant associations and non-forested plant associations and also with older, late serai plant associations. Gross primary production peaks at average plot ages of approximately 80 to 160 years and then declines as age increases (Figure 29). Figure 29. Gross Primary Production by Age

plntDfyatiictie oatpid produced by a Motfecommiaity. TMrlnciMfef above-aid bofew-groaid aot primary prodactios, above-rod beiow-groaad ty stb a it respiration, and upwood, tbHay, and Hae-roota maintenance respiration. " Rates orgrass primary production were simulated from a modified vprsloaofBIOME-BGC (Keane et al. 1996) foreadi plot. Climate linm ialor DAYMET provided ;

^

aadeL -

Afc» are cakelated averacca for an trees M ailed o»tacb plot. " ‘

KatmofgnsspHmtryprodmedon paUuttmtrtgtp&ttgesifippnx. a n / S p m i M a A d ta r T d M r« « rb o M iK

Average Age of Plots (years)

TUriaaareflecttjK stcubeiiicaau-eii

Average plot values for Gross Primary Production (GPP) and Age were used. A LOWESS (SPSS 1997) smoother was applied to display a regression line connecting the weighted average of GPP across all ages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95 Gross primary production is highest for all plant associations within high moisture-influenced habitats, whether warm, moist or cool, moist, or with plant associations near riparian areas. This trend follows with ecosystem respiration and stem carbon rates. These rates decline slightly with the cool, dry associations and late serai associations and decrease more noticeably with mesic associations. Evapotranspiration and outflow rates show increases with the early serai and non-forested associations. Soil volumetric water content is lowest with the most moisture-influenced plant associations. These are the associations with the highest gross primary production values. Soil volumetric water content is also high with plant associations having grasses or shrubs as the dominant overstory. Fire history based on the fire scar analysis and disturbance observations taken during sampling produced interesting results. High elevation plant associations {Abies lasiocarpa Alliance) had little to no evidence of underbum activity. Mixed lethal or partial stand replacing events occurred at 80 to 250 year intervals and stand replacing events occurred at 200 to 400 year intervals for these high elevation plant associations. Evidence of past stand replacement fire events were more common and frequent on the highest elevation Pinus contorta and Pinus monticola plant associations. Historic stand replacement fire intervals varied from 60 to 150 years within these upper elevation associations. Underbums were more frequent on mid-elevation, mixed conifer sites with intervals at 15 to 80 years. Underbums and partial stand replacing (mixed lethal) fires were the most common disturbance within the mesic, mid-elevation Larix occidentalis / Pseudotsuga menziesii Alliance. Typical intervals were 15 to 60 years for underbums

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96 and 30 to ISO years for mixed lethal fires. Stand replacing fires occurred within these associations at 150 to 300 year intervals. A high level of insect and disease activity was recorded for mid- to high elevation plant associations. Pinus contorta and Larix occidentalis had a high degree of mountain pine beetle and mistletoe infection, respectively. Warm, dry associations (Pseudotsuga menziesii / Pinus ponderosa Alliance) had evidence of even more frequent underbums (10 to 50 year intervals). Mixed lethal fires within these associations occurred at 40 to 150 year intervals. Stand replacing fires were very uncommon within these associations. Many plots had no evidence of stand replacing events. Insect and disease activity was also common within these warm, dry associations. Root rot and mistletoe were common. One of the more disturbing observations taken indicate no fire activity had taken place in many decades within most communities. This is especially true within the warm, dry associations and upper elevation Pinus contorta and Pinus monticola associations. Many plots indicated several missed fire intervals of both underbum and mixed lethal intensities. This has resulted in increased levels of insect and disease activity, an increase in dead standing and down woody fuel, and an alteration in the level of processes. Structural and species diversity has changed and as a result, habitat has been modified in comparison to a historic range of variability. When fires do bum in these areas, intensity may be significantly higher than what would have occurred within a range of variability. CONCLUSION Analysis o f the Management Situation Summary (Vegetation) A Forest Plan was completed for the Kootenai in 1987. The Forest Plan guides all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97 natural resource management activities and establishes management standards for the Forest (USDA 1987). The Plan provides management direction. Twenty-four goals were identified in the 1987 Plan. A few are highlighted:

According to the 1987 Plan, regulated timber harvest is to “.. .occur on 1,263,000 suitable acres or 56% o f the Kootenai National Forest. The total harvest volume

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98 available for sale annually during the first decade of this plan is 233 MMbf [million board feet], including 31 MMbf of salvage, with an eventual [annual] sustained yield level of290MMbfi”. The Plan stated these timber objectives could not be read as standing alone out of context from the rest of the Forest Plan. All resource objectives had to be consistent with all other resource objectives. The desired condition for the Kootenai Forest for the first decade (1987 to 1995) following Plan implementation included additional road building and timber harvest where these activities were not readily apparent in the past. For this decade, “.. .2,380 miles of new road will have been constructed and 2,330 MMbf of timber from 161,000 acres will have been harvested.”. According to the 1987 Plan, the desired future condition in the fifth decade following 1987 (the year 2034) will be one with 10,050 miles of roads in place for 30 years (57% closed or seasonally restricted). The suitable timber acres (1,263,000) will have a spread of age classes from recently harvested to over 210 years old with 60% harvested to date (750,000 acres). The average age of the suitable timber is 65 years old. Areas o f lodgepole pine will be managed on an 80-year rotation. There will be patches of old-growth timber in blocks of 40 acres and larger (up to 300 acres) scattered throughout the Forest (10% of all Kootenai National Forest land, both suitable and unsuitable, under 5,000 feet in elevation). The Plan standards directed all silvicultural prescriptions to maximize growth and yield consistent with Management Area (MA) standards and goals. The Plan divided the Forest into 23 mapped Management Areas (and one unmapped). Each MA has different management goals, resource potential and limitations. Of the 23 MA’s, six were in the suitable timber base with the production o f timber being the primary focus of one.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99 Resources other than timber were a constraint to the production of outputs within this MA. The other five MA’s in the suitable timber base had either big-game, grizzly bear habitat, or visuals as the primary goal. However, these MA’s were expected to provide a programmed yield of timber. Suitable timber acres, except where otherwise constrained, had as MA standards to limit existing harvest units to 40 acres until certified as regenerated. Silvicultural systems were to be normally evenage (basically one or sometimes two cohorts). Regeneration prescriptions were to be clearcut, shelterwood, or seed tree harvests. Figure 1 is the basic prescription outline for suitable timber acres on the Kootenai National Forest. The 1987 Plan was drafted with the best intent, available knowledge, and full public input. Upon approval, the Plan was implemented with the best intent and sincerity. Since 1987 the Plan goals, objectives, and standards have been efficiently and effectively followed. Specialists on the Forest did the best job possible with the best knowledge available and should be proud of it. In addition, the results have shaped the landscape and modified habitat and processes all across the Forest N eedfor Change Goals and objectives in the 1987 Plan were generally functional, narrow in scope, and agriculture-based, output-driven. Standards and guidelines were at times conflicting, and confrontational. Many were functional with little recognition of the interrelationship of resources and the need to manage ecosystems at various scales. Management Area direction exasperated these problems. Principles of landscape ecology, biological diversity, conservation biology,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100 historic range of variability, fire ecology, wildlife ecology, and even human ecology were either little used or unknown at the time the Plan was written. Some elements o f these principles do show throughout the 1987 Plan, however. Examples include diversity standards and endangered, threatened, and sensitive species standards. According to the 1999 Forest Plan Monitoring and Evaluation Report, wildlife habitat management, watershed concerns, litigation, appeals, deferrals, and changes in management area designation (particularly designation o f old growth management areas from the suitable timber harvest MA’s) have all affected the potential to meet the Plan’s projected regeneration harvest. The Forest is now producing approximately 25% of projected volume in the 1987 Plan. Since the Plan was approved, approximately 95% of all harvest prescriptions implemented within suitable timber acres have called for clearcut, shelterwood, or seed tree treatments in mostly 40 acre blocks. Areas between these harvest units have been completely deferred from any disturbance. Commercial thins and other intermediate treatments have been rare (Corda 1992). Unsuitable timber acres have seldom been disturbed at all. Fires continue to be suppressed throughout the Forest as has been the practice since the 1920’s and 30’s. Increased insect and disease damage is occurring in the deferred leave strips on suitable and in unsuitable land in general because o f increased population levels o f trees exceeding the site’s productive capability. Dead and downed wood amounts are also dramatically increasing in these areas. Pseudotsuga menziesii (Douglas-fir) is growing in dense thickets where open-grown Pinus ponderosa (ponderosa pine) once grew in park-like stands due to the absence of fire on warm, dry sites. These factors have all caused a continuing trend away from a range o f variability

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

for these ecological systems. Historically, approximately 20% of the overall, generalized landscape of the Kootenai was in an “old growth”, or late serai condition (Losensky 1993). Since every acre had the potential to be oldgrowth, this successional stage o f vegetative development shifted across the landscape in response to the intensity and frequency of disturbance. Old growth was classic, multi-story, multi-age, forest only in moist riparian areas and upper elevation cool, moist sites. Old growth in warm, dry stands with frequent, low intensity fires events were characterized by open, park-like, mature trees with light understory. Approximately 20% of the historic landscape was also in an early serai state (Losensky 1993). Stand replacing fires occurred at different rates and patch sizes throughout. Intervals between stand replacing events varied from 150 to 400 years in the cool, moist environment and 150 to 200 years in warm, moist habitats. Approximately 60% of the landscape was in a varied, mixed-age, mixed height, mixed conifer, mid-seral condition (Losensky 1993). The historic landscape within a range of variability was a shifting, dynamic mosaic o f all these age and size class proportions as diverse as the dissected landscape and environment. Structure, composition, and process shifted proportionally in response to disturbance. The historic landscape was very different from the landscape being shaped by the 1987 Forest Plan. Figure 30 is an example of a 1987 Forest Plan-directed landscape. New Directions F. Dale Robertson, Chief of the Forest Service within the United States Department of Agriculture from 1987 to 1993 sent a memo to all employees on June 4, 1992. The memo officially directed the Forest Service to take the Agency's first step

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

toward achieving ecosystem management objectives. This is what Chief Robertson wrote in that memo: "We have made good progress over the past 3 years in experimenting with more environmentally sensitive ways to manage the National Forests and Grasslands under our New Perspectives program. ...Mostly what we learned is that ecosystem management works and it is where we need to be headed...by ecosystem management, we mean that an ecological approach will be used to achieve the multiple-use management o f the National Forest and Grasslands. It means that we must blend the needs o f people and environmental values in such a way that the National Forests and Grasslands represent diverse, healthy, productive, and sustainable ecosystems." Figure 30. Forest Plan-directed Landscape (from 1:15,840 1990 aerial photo taken on the Kootenai National Forest) Jack Ward Thomas replaced Dale Robertson as Chief o f the Forest Service in 1993. He reinforced the direction to implement ecosystem management objectives and to, ..."display honesty in all things, be adaptable, and have a firm foot in scientific principles". Chief Thomas also defined the management context and focus of priorities within the Agency as the following: 1) Protect ecosystems; 2) Restore deteriorated ecosystems; 3) Provide multiple benefits for people within the capabilities of ecosystems. He said this could be accomplished within existing laws (Thomas 1996). Present Chief o f the Forest Service,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103 Michael P. Dombeck (succeeded Jack Ward Thomas as Chief in 1997) reiterated the objectives of his predecessors by proposing "A Natural Resource Agenda for the 21st Century". Within this Agenda, Chief Dombeck focused an four key areas: Watershed health and restoration; Sustainable forest ecosystem management; Forest Roads; and Recreation (Dombeck 1998). In 1997, Secretary of Agriculture Dan Glickman appointed selected scientists to the Committee of Scientists. This Committee had a mission to review and evaluate the current forest land management planning process beginning with the Organic Act of 1897 to the National Forest Management Act o f 1976. Citing Ecological Sustainability as a necessary foundation for stewardship, a synopsis of the Committee's findings states: "... ecological sustainability provide a foundation upon which the management for national forests and grasslands can contribute to economic and social sustainability. ...conserving habitat for native species and the productivity of ecological systems remains the surest path to maintaining ecological sustainability. First, we suggest a scientific assessment of the characteristic composition, structure, and processes of the ecosystems. This assessment should provide an understanding of the 'ecological integrity' o f the planning area. Ecosystems with integrity maintain their characteristic species diversity and ecological processes, such as productivity, soil fertility, and rates of biogeochemical cycling. Because ecosystems are dynamic and variable, the concept of Tiistoric range of variability' is used to characterize the variation and distribution of ecological conditions occurring in the past. This concept allows one to compare the ecological conditions that will be created under proposed management scenarios to past conditions. The more the prospective conditions differ from the conditions during recent millennia, the greater the expected risk to native species, their habitats, and their long-term ecological productivity". According to the Committee of Scientist's "Review of Forest Service Land management Planning" synopsis (1998), ecological sustainability should be the foundation of stewardship o f the National Forests and Grasslands. This report states that, "Ecological sustainability entails maintaining the composition, structure, and processes of a system", and that the goals of the National Forest management Act (NFMA)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104 (maintaining species' diversity and ecological productivity) are consistent with the concept o f ecological sustainability. Only then can management of the National Forests and Grasslands contribute to economic and social sustainability. The Committee of Scientists believe that conserving habitat for native species and the productivity of ecological systems is the best way to maintain ecological sustainability. The concept of "historic range of variability" is recommended by the Committee to characterize the variation and distribution of ecological conditions that will be created under proposed management scenarios to past conditions. This primarily observational study is a current assessment of the characteristic composition, structure and process of terrestrial ecosystems on the Kootenai National Forest. It is carried out specifically to meet part o f the information needs necessary to implement ecosystem management consistent with the directions and objectives of the USDA Forest Service from 1992 to the present. This study has followed the recommendations of the Committee of Scientists and the proposed planning regulations (Federal Register Tuesday, October 5, 1999 - Part H, 36 CFR Parts 217 and 219: National Forest System Land and Resource Management Planning Proposed Rule) with specific regard to land management planning on the Kootenai National Forest. Applications The foundation of this study is the existing floristic classification. This classification used with the description of the natural range of variation and the descriptions and characterizations of plant associations and sub-associations (including the correlation to process) provides basic tools that aid the understanding o f structure, composition, and process. Although not all-inclusive, these tools are necessary to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105 implement ecosystem management objectives. The natural range of variability for the Kootenai Forest is discussed in the Results section of this study. Additional information pertaining to the range of variability is found for associations and sub-associations within the Narrative section of the descriptions and characterizations in Appendix 4. Further information has been collected and assimilated into the Kootenai National Forest report, ‘Temporal Ecological Synthesis: for Kootenai National Forest: Phase 1 Report” (1995). The report is on file at the Supervisor’s Office. However, this existing floristic classification cannot and should not take the place of habitat type classifications for planning purposes. Figure 31 is a map of Vegetative Response Units (VRU's) for the Kootenai National Forest (USDA Forest Service, Gautreaux, 1999). The VRU project was completed following the recommendation and direction o f an interdisciplinary EM Core Group I directed on the Kootenai National Forest from 1992 to 1997. The mapped polygons are based primarily on potential vegetation using habitat type groups. Land types (synonymous with soil type), slope, and elevation modify these polygons. At the 1:24,000 scale (smallest polygon being > 125A), the VRU's provide an excellent "...knowledge of the ecological potential of the land..." (Pfister et al. 1977). It is indeed possible to hold plant communities as a constant in order to adequately characterize the environment and productivity potential. The VRU effort also had an objective to "...provide a mechanism to interpret existing vegetation in the context of natural disturbance processes and enables a projection of future landscape conditions and a foundation for landscape design." (USDA Forest Service, Russ Gautreaux 1999). Because the VRU effort was based on potential vegetation and potential vegetation does not correlate highly with existing vegetation, this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

objective was not realized. My study is not intended to replace the habitat type classification and not to replace the VRU effort completed on the Kootenai National Forest. Rather, this study can and should complement both efforts in providing a scientific assessment of what structure, composition and process currently exists. Likewise, a potential vegetation classification cannot and should not replace the accuracy and utility of an existing vegetation classification.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 31. Vegetation Response Units on the Kootenai National Forest

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108 Present management has the capability to cause disturbances of great intensity more frequently and o f a greater scale than any other disturbance agent. Nature has functional, historical and evolutionary limits (limits relating to physiological characteristics evolved through time). We may lose species or ecosystem productivity and/or sustainability if we exceed these limits. Disturbance is a necessary function of these ecological systems. Not allowing disturbance in the forested ecological systems of the Kootenai National Forest has negative results. Disturbance with the frequency and intensity o f a reasonable range of variability can maintain species and habitats. There is room to produce a sustainable level of commodities from a forested ecological system while maintaining biological diversity and ecological sustainability. By understanding the historic range of variability and by understanding the existing composition, structure and function of our ecological systems, we may be better able to recognize what is needed to maintain habitat within communities and throughout the landscape sufficient to allow for minimum viable populations of species that have evolved within these ecological systems throughout the past 2500 years. With this understanding, severe stochastic events that will happen eventually may not have cumulative, irretrievable, irreparable results. Social, cultural and economic considerations must also be part of the management scheme. The public at large represents every facet o f society in general and local communities specifically. The public varies from spiritual preservationist to commodityoriented consumptive (and everything in between). The fact that all have needs is the commonality between and among all of these varied groups and individuals. Short- and long-term objectives for the management of ecological systems must take the varied need

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109 for goods and services (both commodity and amenity) into account. More insight into the human dimension can be gained from the document, “Social Assessment of the Kootenai National Forest” (1995). This is another product the EM Core Group sponsored under my leadership. We need to know what we have (existing plant association classification and gradient analysis results). We need to know where these associations have the potential to develop in a successional sense and need to know the environment by keeping vegetation constant (habitat type classification). With this knowledge and with our understanding of the range of historic variability (and the role of stochasticity within that range), we can begin to develop alternatives for desired outcomes. An essential key to sustaining forest biodiversity is in the management of the matrix. The matrix is the portion of the landscape not reserved for purposes other than timber harvest. These lands were traditionally reserved for maximizing growth and yield. These acres should now be managed to provide a broad array of forest habitat, species, and processes if society is to succeed in a goal of maintaining forest biodiversity and ecologic integrity (Franklin 1998). The design of silvicultural prescriptions incorporating structure, composition, and process descriptions and characterizations o f plant associations within a range of historic variability on all lands suitable for timber harvest can meet ecosystem management objectives. Density management of forested stands can then be a result of linking knowledge of silviculture with the ecological knowledge of structure, composition, and process gained from this study and applied from a temporal and spatial perspective (Long 1985, Jack and Long 1996). Effects and consequences to composition, structure and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

function can be measured and disclosed with the same attributes. Figure 1 and Figure 32 compare prescriptions for the Thuja plicata / Pachistima myrsinites - Linnaea borealis / Clintonia uniflora (PA2 SPA47) plant association within Vegetative Response Unit 5 (Moderately Cool and Moist). These prescriptions are designed to meet different objectives. Figure 1 maximizes growth and yield of timber based on density curves and the culmination of mean annual increment in accordance with Kootenai Forest Plan direction. Figure 1 graphically represents a physical flow designed to maximize growth and yield with a precommercial thin at age 18, commercial thin at age 40, and a final regeneration harvest of seed tree, clearcut, or shelterwood at age 95. This prescription does not however, allow for structure, composition and function sufficient to maintain biological diversity and ecological integrity. From that perspective and for those objectives, this prescription is not sustainable. In contrast, Figure 32 presents an example of the same stand managed to optimize understood historic disturbance processes within a range o f variability. This prescription is designed for different objectives than for Figure 1. This management scenario is an attempt to focus on outcomes that will produce timber as a result of maintaining processes based on disturbance within a range of historic variability (Morgan et al. 1994, Swanson et al. 1994, Foster et al. 1996, Harrod et al. 1999). Figure 32 is patterned after the understanding of structure, composition, and process gained from this study, disturbance history discussed in Appendix 4 (the Narrative section); the generalized discussion of disturbance in the Temporal Synthesis; and the proportions of age and size classes addressed in the Vegetation Response Unit report by Gautreaux (1999). Objectives for this prescription are to maintain biodiversity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ill and ecologic integrity (as defined by the Committee of Scientists Report 1998). This prescription will change (with the same objectives) as communities of vegetation change across the landscape in tune to the diversity of the environmental gradient and in time to historic disturbance intensities and frequencies. Variations on this theme will be different for warm, dry habitats as compared to cold, moist and for all habitats in between.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission

Figure 32. Prescription Managing Structure. Composition, Process for Ecologic Integrity and Maintaining Biodiversity Objectives o

y ea r

YEAR 20

■ “stand r>placing

of the copyright owner.

n fi

h q m i

YEAR 80

YEAR 00

h s c v n t)

M LfJ M u il Plant

M h a ri Mbad

— *»------■ Spaclaa

'

"

h.

v J'".

f.ft

Pro-Comm Thin i t 20 Yoavs

Further reproduction

FORAGE

cm YEAR 110

YEAR 140

prohibited without p e r m is s io n .

II H A I I I

|l

al

lA llf l

YEAR 100 OLD GROWTH

■■■VW A M S

I

YEAR 200 M a t t e r ‘te n d l a p t a r t n g lfc» “

M.

..«nd Again at 110*

n i p

E * rty 8 « r ||

THERMAL COVER LOW INTENSITY!*

1 ♦ y p p rw

FORAGE ■ ■ ■

INTERIOR Basal area, trees per acre and quadratic mean diameter are used to prescribe silvicultural treatments to meet certain objectives. The prescription above has an objective o f returning historic disturbance processes to the landscape (here a mixed conifer stand) while maintaining habitat for a range o f animal species and producing a sustainable quantity ofwood fiber. This prescription manages for ecologic integrity. This is the same community illustrated in Figure I.

113 The two management scenarios use traditional, established silvicultural techniques, but have strikingly different outcomes for composition, structure, process, diversity, and habitat characteristics within the forested ecosystem. It is assumed that Figure 32, as carried out within all the variability of a dissected, diverse landscape, will be better suited to ecosystem sustainability, ecological integrity, and economic viability to timber-dependent communities, (GAO 1994, Roberts 1995, Christensen et al. 1995, Oliver and Larson 1996, Kimmins 1997, Franklin et al. 1997. Silviculturists have been implementing prescriptions for objectives other than maximizing timber growth and yield for many years (Thomas et al. 1979, Kohm and Franklin 1997, Smith et al. 1997, Harrod et al. 1999). The treatments oudined in Figure 33 represent nothing that has not been tried before. The implementation tools outlined there have been in the silviculturist’s bag o f tricks for centuries. Why is it different now? What difference will the knowledge of composition, structure, and process within a context of a range of natural variability obtained from this study make to the landscapes o f the Kootenai Forest? Several years ago, we tried a few landscape-level assessments and analyses with sustainable development and ecologic integrity the primary goal and objective. Most o f the concepts and recommendations made by the Committee of Scientists were followed as best as possible given limited budgets and limited knowledge at the time. There were challenges. A lack of understanding, a lack o f knowledge, and understandable resistance to methods not fully tried and true at the Forest, District, and even Team level almost scuttled these projects before completion. There were problems with the assessments being inefficient and too costly. We are still on a steep learning curve. However, in spite

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114 o f all this, several projects have been completed and implemented on the ground. Even though we have learned much and will probably do things differently next time, these projects have essentially shaped the landscape differently than the 1987 Plan directed (Figure 33). Timber has been produced as the result of a desired outcome to sustain Figure 33. Landscape Managed for Ecological Integrity

:

V 'r ' ttj

11/ 2 / 1 9 9 9

ecological integrity and not as a targeted output. In addition, with the results of this study and the knowledge gained, we can continue to design alternatives that do so. The cutting unit is in the middle o f Figure 33. According to the historic range of variability, management units o f this intermediate type (mid-seral successional state) will dominate the landscape (approximately 60%), with approximately 20% o f the landscape in a an early serai state and 20% in a late serai condition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115 CRITIQUE 1. What is the significant relationship o f plant species and plant communities (characterized in part by structure and composition attributes) to certain ecological system processes? 2. Can existing vegetative species and communities be described and characterized by process variables? 4._____ Can these relationships be used fo r diagnostic and prescriptive ______ purposes?____________________________________________________

This study answered question one in a broad and general sense as the standard deviations for mean process attribute values in Appendix 4 reveal. I believe the answer to questions two and three are yes. However, in critique of this study in answering questions number two and three, some potential problems need discussion. These problems also influenced the answer to question one as well. The methodology I used to initiate a study of vegetation-process relationships included establishing a current vegetation classification as a base from which to correlate sampled and simulated process attributes. The next step was the indirect gradient analysis. Both methods have decades o f precedent and are well established in the literature citations given in the Methods and Analysis sections. I believed an existing vegetation classification was the best place to start an analysis of process and vegetation after reading the USNVCS by Grossman, et al. But after conducting this study, I believe this methodology is the wrong one to use for a goal o f predicting and applying process. And without the ability o f a classification to predict process with a high degree o f confidence, question three cannot be fully and completely addressed. The potential utility of a current vegetation classification to be functional in management-by-process is also very much undermined. This is something

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116 the USNVCS needs to address. The USNVCS (Grossman 1998) has stated the following: "Descriptions of the composition, structure, and function of these communities form a core body of knowledge for understanding ecological systems". Within the protocol, "these communities" refer to current vegetation plant association units, as opposed to units based on potential or "climax" vegetation. Current or existing plant association units are used in part to, "...ensure the conservation of a high percentage of all species, both plant and animal". I agree with the statement that conservation of plant and animal species depends in part on understanding the current structure, composition, and function of ecological systems. I disagree, however, that a current plant association classification is the best foundation from which to build an understanding of function when the objective is to predict and prescribe specific biogeochemical process attributes. The existing vegetation classification did give a thorough overview and understanding of vegetation structure and composition and how variable and diverse this can be across a complex gradient such as the Kootenai National Forest. The resulting classification and ordination based on the current vegetation classification is critical in developing an initial understanding of this complexity. What I learned after the completion of this study is that current vegetation composition as classified into communities (based on abundance of species) does not correlate well with biogeochemical processes. Therefore, the existing vegetation classification is a good base from which to understand the gradient and to gain a broad, relative knowledge of process, but not a good base from which to develop an understanding of vegetationprocess relationships specific enough to use in management prescriptions. The modified BIOME-BGC program (Keane 1996) produced 100-year

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117 simulations of process attributes for each plot, after each plot was placed into appropriately matched biomes. Output for each plot was different due to site-specific adjustments to the default parameters for each biome. Adjustments to initial input and default parameters were based in part on structural differences existing at the time of sampling and other optional data collected. Did these simulations accurately represent the current vegetation structure and composition (proxies for age and successional status)? Was 100 years the right timespan to use? I don’t know. We had no reference plots from which to check and verify. Plot by plot, the output of process attributes seemed to make sense. The problem was in assigning a simulated process attribute average (mean) to the plant association and sub-plant association groups. The TWINSPAN program based these groupings on similarity and dissimilarity of vegetation composition only. Age, structure, and successional status (including effects of disturbance) were not figured into the classification. What resulted was a statistically verifiable classification of vegetation groupings interpreted in terms of latent environmental gradients. These gradients are primarily moisture, solar radiation, and topography. However, in many cases, the resulting vegetation groupings had large differences in age and structure, even though composition was similar. Based on my results, vegetation composition does not necessarily change with age, structure, disturbance, and subsequent successional status. Processes do. This is one o f the lessons learned in this study. The plant associations and sub-plant associations with the greatest range o f age, structure, and successional status had the greatest standard deviation (and the least predictability) o f process attributes. As discussed in the Results section, carbon-based attributes such as gross primary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118 production did correlate well with an ordination based on vegetation composition as evidenced in the results o f the canonical correspondence analysis (-.504, Table 8). However, gross primary production has very high standard deviations for some plant associations (1.57 SD for a 1.64 mean, Appendix 4). According to Jongman et al (1987), high CCA correlations infer that Axis one depicts a gross primary production (carbon cycle) gradient. This is not so. Well, not exactly. If it were so, the standard deviations would not be as high. Gross and net primary production are influenced by environmental factors actually defining the gradient: elevation (topography), temperature (solar radiation), and moisture (precipitation). The confounding factor is that gross and net primary production is also influenced by leaf area and structural characteristics (serai stage in response to disturbance interactions). Based on the CCA correlations, an even better definition of the gradient appears to be leaf area index (.775). But leaf area is influenced by the same environmental factors and structural and biomass factors as influence gross and net primary production. There appears to be a two- (or higher-) dimensional gradient needing definition that vegetation classification by abundance (specifically TWINSPAN) and canonical correspondence analysis is not at present capable of dealing with in regard to vegetation and process interrelationships. Appendix 4 contains descriptions and characterizations o f processes by plant association and sub-plant association. Use o f process attributes for description and characterization will be appropriate in a general and relative sense, and even for some associations, but care must be taken and standard deviations consulted before using process attributes for describing and characterizing specific plant associations and sub­ plant associations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119 Silvicultural prescriptions are written for management actions of a similar vegetation type across a physical flow of time. It is critical to know the changes in process for each stage of succession across this period of time (or length of rotation). In order to be truly effective, Figures 1 and 32 need each stage of succession to be clearly labeled with changes in process attribute values. Although this study has accomplished the goal o f providing a base foundation of understanding vegetation structure, composition, and process across a complex environmental gradient, it does not provide process information specific enough for diagnostic, predictive, and prescriptive purposes. We need another classification to accomplish this. In addition, simulated process attributes need verification with measured process attributes for similar vegetation type, ages, and successional states. Once verified, these attributes should be the dependent variable with vegetation structure and composition the independent variable. This is the opposite o f what I used for this study. This type o f classification will be similar to a site classification. Resulting “process associations” can subsequently be the basis for process predictions and correlations. Then the process associations would be complimentary when used in conjunction with the current classification developed in this study. ADDITIONAL RECOMMENDATIONS Additional Study This is an observational study. Recommendations for management alternatives made within this study are based on observations, not findings based strictly on the scientific method. These observations should be treated as hypotheses in need o f testing. Cooperation with Research is essential to provide that test. A more exact, scientific measure o f process and vegetation is needed to fine-tune the relationships, especially

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

from a temporal perspective. One recommendation would be to develop divisions within plant associations by structure stage similar to that developed by Amo, Simmerman, and Keane (1985). The current vegetation classification developed by this study is not agedependent in general, even though some associations have early serai characteristics. Many associations have an early and mid-seral mix, as long as the vegetation assemblages remained similar in composition, coverage, and constancy. However, many process attributes are correlated to age and/or structure stage. This study is not a successional classification. Several early serai plant associations were delineated within the classification due to unique species assemblages. There was even an early serai alliance. The dynamics occurring here, especially with the presence and/or persistence of Pinus contorta need further study. These Pinus contortadominated associations have the same environmental attributes as other mixed conifer associations. The only difference is that the Pinus contorta associations have an intense disturbance history. This study does not give an exhaustive relational account of all the processes and functions within ecological systems. It is just a start to understand structure, composition, and function and by no means an end to that understanding. There is so much more. I hope that the scientific community can continually add to the understanding. Use o f the products produced by this study need to be ground-verified. Experience on the ground is essential to test the adequacy of this study. Potential Applications Questions to ask when designing alternatives based on the types of prescriptions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

recommended in this study include the following: 1. What is the gradient across the landscape being assessed? 2. What are the alliances, plant associations, and sub-associations and how are these distributed? 3. What is the proportion of age, size class, and species composition within a range of historic variability across the landscape? 4. How fast can the site grow to potential LAI? 5. What are process thresholds to having an effect on resources? 6. What structural characteristics are necessary for species habitat needed to maintain species diversity? 7. What LAI value is needed to maintain watershed integrity? 8. How do these community-based prescriptions affect the size, distribution, and proportion of patches, interior habitat (and the fragmentation of that habitat), old growth, and connectivity over the landscape? 9. How do these prescriptions tie with the historic variability of patch and landscape dynamics? 10. What wildlife species are affected? 11. What is the tie and contribution o f this study to wildlife habitat relationship models (in addition to just thermal cover and forage)?

"Ecosystem management is like the goose that laid the golden egg: a continuing supply of golden eggs depends on keeping the goose healthy." -Jack Ward Thomas, 1994-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

References Agee, J., and D. Johnson. 1988. Ecosystem management for parks and wilderness. University of Washington Press, Seattle, Washington, USA. Albini, FA. 1976. Computer-based models o f wildland fire behavior: A user’s manual. Ogden, UT: USDA Forest Service, Intermountain Forest and Range Experiment Station. 68pp. Alverson, W.S., W. Kuhlman, and D.M. Waller. 1994. Wild forests: conservation and public policy. Island Press, Washington, D.C. 300pp. Anderson, H.E. 1982. Aids to determining fuel models for estimating fire behavior. Gen. Tech. Rep. INT-122. Ogden, UT: USDA, Forest Service, Intermountain Forestry and Range Experiment Station. 22pp. Angermeier, P.L. and J.R. Karr. 1994. Biological integrity versus biological diversity as policy directives. Bioscience 44(10): 690-697. Amo, S.F. 1979. Forest regions of Montana. Research Paper INT-218. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 39pp. Amo, S.F., D.G. Simmerman, and R.E. Keane. 1985. Forest succession on four habitat types in western Montana. Gen. Tech. Rep. INT-177. Ogden, UT: U.S. Depart­ ment of Agriculture, Forest Service, Intermountain Research Station. 74pp. Art, H.W., ed. 1993. The dictionary of ecology and environmental science. Henry Holt, New York. 632pp. Bailey, R.G., P.E. Avers, T. King, and W.H. McNab (eds. and compilers). 1994. Ecoregions and subregions o f the United States. Prepared in cooperation with the ECOMAP Team of the USDA Forest Service and US Geological Survey. Band, L.E., D.L. Peterson, S.W. Running, J.C. Coughlan, R. Lammers, J. Dungan, and R. Nemani. 1991. Forest ecosystem processes at the watershed scale: Basis for dis­ tributed simulation. Ecological Modeling, 56:171-196. Band, L.E., P. Patterson, R. Nemani, and S.W. Running. 1993. Forest ecosystem pro­ cesses at the watershed scale: Incorporating hillslope hydrology. Agricultural and Forest Meteorology, 63: 93-126. Berry, R.J. 1971. Conservation aspects of the genetic constitution of populations. In: E.D. Duffy and A.S. Watt, eds. The scientific management of animal and plant communities for conservation. Blackwell, Oxford. Pp 177-206.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123 Biondini, M.E., C.D. Bonham, and E.F. Redente. 1985. Secondary successional patterns in a sagebrush (Artemisia tridentata) community as they relate to soil disturbance and soil biological activity. Vegetatio 60:25-36. Biondini, M.E., P.W. Mielke, and E.F. Reddente. 1988. Permutation techniques based on Euclidean analysis: A new and powerful statistical method for ecological re­ search. Coenoses 3:155-174. Bradner, M. (ed.) 1941. Forest survey statistical service: Forest statistics for Sanders County, Montana. USDA Forest Service, Northern Rocky Mountain Forest and Range Experiment Station, Forest Survey Progress Report No. 5. Brower, J.E., J.H. Zar, and C.N. Von Ende. 1989. Field and laboratory methods for gen­ eral ecology. 3rd edition, WM. C. Brown Publishers, LA. 175pp. Callaway, R.M. 1998. Idea to display differences —from a class on multivariate statisti­ cal analysis. Univ. of Montana, Missoula, MT. Chatters, J.C. and K.A. Hoover. 1992. Response of the Columbia River fluvial system to Holocene climatic change. Quaternary Research, 37:42-59. Chatters, J.C. and D.M. Leavell. 1994. Smeads Bench Fen: A 1500-year history of fire and succession in the hemlock forests of the Lower Clark Fork Valley, northwest­ ern Montana. North American Paleoscience Research Report PI. Unpublished administrative study. On file at the Kootenai National Forest Supervisor's Office, Libby, MT. Christensen, N.A., A. Bartuska, J. Brown, S. Carpenter, C. D’Antonio, R. Francis, J. Franklin, J. MacMahon, R. Noss, D. Parsons, C. Peterson, M. Turner, and R. Woodmansee. 1995. The scientific basis for ecosystem management: an assessment by the Ecological Society of America. Ecological Applications 6(3): 665-691. Cochran, P.H. 1979. Site index and height growth curves for managed, even-aged stands o f Douglas-fir east of the Cascades in Oregon and Washington. USDA For. Serv. Res. Pap. PNW-251, Pacific Northwest Forest and Range Experiment Station, Portland, OR. 16pp. Committee of Scientists and the proposed planning regulations that have been listed in the Federal Register (Tuesday, October 5, 1999 - Part II, 36 CFR Parts 217 and 219): National Forest System Land and Resource Management Planning Proposed Rule.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124 Committee of Scientist's "Review of Forest Service Land management Planning" synopsis. 1998. A USFS letter to all employees: File code: 1330, January 22, 1998. Taken from webpage = http://www.cof.orst.edu/org/scicomm/letter.htm. Committee of Scientists, Corvallis, OR. Cooper, S.V., K.E. Neiman, and D.W. Roberts. 1991. Forest habitat types of northern Idaho: A second approximation. USDA Forest Service Gen. Tech. Rep. INT-236. Intermtn. Res. Statn., Ogden, UT. 135pp. Corda, A. 1992. Personal communication. Kootenai National Forest, 1101 US Hwy 2 West, Libby, MT 59923. Daniel, T.W., J.A. Helms, F.S. Baker. 1979a. Principles of silviculture. 2ndedition. McGraw-Hill Book Company. New York, NY. 500pp. Daniel, T.W., R.L. Meyn, and R.R. Moore. 1979b. Reineke’s stand density index: in tabular form in English and metric units with its applications. Utah Agricultural Experiment Station, Logan, UT. 16pp. Daubenmire, R. 1943. Vegetational zonation in the Rocky Mountains. Bot. Rev. 9: 325393. Daubenmire, R. 1952. Forest vegetation of northern Idaho and adjacent Washington, and its bearing on concepts of vegetation classification. Ecological Monographs 22:301-330. Daubenmire, R. 1956. Climate as a determinate of vegetation distribution in eastern Washington and northern Idaho. Ecological Monographs 26:131 -154. Daubenmire, R. 1968. Plant communities: a textbook of plant synecology. Harper and Row, New York, NY. 300pp. Daubenmire, R., and J.B. Daubenmire. 1968. Forest vegetation of eastern Washington and northern Idaho. Wash. Agric. Exp. Stn. Tech Bull. 60, 104pp. Dombeck, M. 1998. News release and accompanied speech from Associated Press, March 2, 1998, Washington, D.C., 2pp. Speech taken from www webpage = http://www.fs.fed.us/news/agenda/sp30298.html. 9pp. Dufrene, M. and P. Legendre. 1977. Species assemblages and indicator species: The need for a flexible, symmetrical approach. Ecological Monographs 67:345-366. Dunster, J. and K. Dunster. 1996. Dictionary of natural resource management. UBC Press. Univ. o f B.C., Vancouver, B.C., Canada. 363pp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125 Ecosystem Inventory and Analysis Guide. 1992. U.S. Dept of Agriculture, Forest Service, Northern Region. Federal Bldg, 200 East Broadway, Missoula, MT 59807. Eyre, F.H., ed. 1980. Forest cover types o f the United States and Canada. Society of American Foresters, Washington, DC. 148pp. Fiedler, P.L. and S.K. Jains, eds. 1992. Conservation biology: The theory and practice of nature conservation, preservation, and management. Chapman and Hall, Inc., New York, NY. 507pp. Flahault, C. and C. Schroter. 1910. Rapport sur la nomenclature phytogeographique. Actes 3me Congr. Intematl. Bot., Bruxelles, 1910, 1:131-164. Foster, D.R., D.A. Orwig, J.S. McLachlan. 1996. Ecological and conservation insights from reconstructive studies of temperate old-growth forests. Tree 11(10), 419424. Franklin, J.F., D.R. Berg, D.A. Thornburgh, and J.C. Tappeiner. 1997. Alternative silvi­ cultural approaches to timber harvesting: variable retention harvest systems. In: Creating a forestry for the 21 st century: the science o f ecosystem management. K..A. Kohm and Franklin, J.F., eds. 1997. Island Press, Washington, D.C. 475pp. Franklin, J.F. 1998. The natural, the clearcut, and the future. In: J.A. Trofymow and A. MacKinnon, eds. Proceedings of a workshop on structure, process, and diversity in successional forests of coastal British Columbia. Feb. 17-19, 1998. Victoria, British Columbia. Northwest Science, Vol. 72 (special issue No. 2). Pp. 134-138. Freedman, D., R. Pisani, and R. Purves. 1978. Statistics. University of California, Berkeley, California. W.W. Norton & Company, New York, NY. 589pp. Gauch, H.G. 1982. Multivariate analysis in community ecology. Cambridge University Press, Press Syndicate of the University of Cambridge, The Pitt Building, Trumpington Street, Cambridge. 298pp. Gauch, H.G. and T.R. Wentworth. 1976. Canonical correlation analysis as an ordination technique. Vegetatio33: 17-22. Government Accounting Office (GAO). 1994. Ecosystem management: Additional ac­ tions needed to test a promising approach. United States General Accounting Of­ fice Report to Congressional Requesters. Washington, D.C. GAO/RCED-94-l 11. 87pp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

Grossman, D.H., D. Faber-Langendoen, A.S. Weakley, M. Anderson, P.Bourgeron, R. Crawford, K. Goodin, S. Landaal, K. Metzler, K. Patterson, M. Pyne, M. Reid, and L. Sneddon. 1998. International classification of ecological communities: Terrestrial vegetation of the United States: Volume I: The national vegetation classification system: Development, status, and applications. The Nature Conser­ vancy, Arlington, Virginia, USA. 126pp. Hall, F.C. 1973. Plant communities of the Blue Mountains in eastern Oregon and south­ western Washington. R-6 Guide 3-1. Portland, OR. USDA For. Ser., Pac. North­ west Region. 62pp. Hann, W.J., M.E. Jensen, and R.E. Keane. 1988. Chapter 4: Ecosystem management handbook -- ECODATA methods and field forms. USDA Forest Service North­ ern Region Handbook. On file at Northern Region headquarters, Missoula, MT. Herrod, J.H., B.H. McRae, W.E. Hartl. 1999. Historical stand reconstruction in ponderosa pine forests to guide silvicultural prescriptions. Forest Ecology and Management 114:433-446. Hill, M.O. 1979. TWINSPAN-A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Ith­ aca, NY, Cornell University. Hill, M.O. and H.G. Gauch. 1980. Detrended correspondence analysis, an improved or­ dination technique. Vegetatio 42:47-58. Hill, M.O., R.G.H. Bunce, and M.W. Shaw. 1975. Indicator species analysis, a divisive polythetic method of classification, and its application to a survey o f native pinewoods in Scotland. Journal of Ecology 63: 597-613. Hungerford, R.D., R.R. Ramakrishna, S.W. Running, and J.C. Coughlan. 1989. MT CLIM: a mountain microclimate simulation model. Res. Pap. INT-414, Ogden, UT. USDA For. Serv., INT Res. Statn., 52pp. Interagency Ecosystem Management Task Force Report. 1995. The ecosystem ap­ proach: healthy ecosystems and sustainable economies. Volume I Overview. Na­ tional Technical Information Service (NTIS), U.S. Dept, of Commerce, Spring­ field, Virginia. Volume I: PB95-265583. 39pp. Jack, S.B. and J.N. Long. 1996. Linkages between silviculture and ecology: an analysis of density management diagrams. Forest Ecology and Management 86: 205-220. Jensen, M.E. and R. Everett. 1994. An overview of ecosystem management principles. In: M.E. Jensen and P.S. Bourgeron, eds. Eastside forest health assessmentecosystem management: principles and applications. PNW-GTR-318. USDA, Forest Service, Pacific Northwest Region, Portland, OR. Pp 6-15.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

Jensen, M.E., W. Hann, R.E. Keane, J. Caratti, and P.S. Bourgeron. 1993. ECODATA - a multiresource database and analysis system for ecosystem description and evaluation. In: M.E. Jensen and P.S. Bourgeron, eds., Eastside forest ecosystem health assessment, Volume II, Ecosystem management: Principles and applications. USDA Forest Service, National Forest System Information Report. Pp 249-265. Johns, W.M. 1970. Geology and mineral deposits of Lincoln and Flathead counties, Montana. State Bureau of Mines, Bulletin No. 79, Missoula, MT. Johnson, K.N. 1999. Statement of Dr. K. Norman Johnson, Chairman, Committee of Scientists before the Subcommittee on Forests and Forest Health, Committee on Resources, United States House of Representatives regarding the Final Report of the Committee o f Scientists, March 16, 1999. Taken from webpage = http://www.fs.fed.us/intro/testimony/19990316c.html. Jongman, R.H.G., C.F. ter Braak, and O.F.R. Van Tongeren, eds. 1995. Data analysis in community and landscape ecology. Cambridge University Press, the Press Syndi­ cate of the University of Cambridge, The Pitt Building, Cambridge. 299pp. Keane, R.E., M.E. Jensen, W.J. Hann. 1990. ECODATA and ECOPAC - analytical tools for integrated resource management. The Compiler, Vol. 23, Pp 11-24. Keane, R.E., C.H. McNicoll, K.M. Schmidt, J.L. Gamer. 1996. Spatially explicit eco­ logical inventories for ecosystem management planning using gradient modeling and remote sensing. In: J.D. Greer, editor, Proceedings of the sixth Forest Service remote sensing applications conference - Remote Sensing: People in Partnership with Technology. Denver, Colorado, April 29-May 3, 1996. Pp 135-146. Keane, Robert E., Dr. 1999. Personal exchange. Missoula Fire Lab, Rocky Mtn. Res. Statn. Missoula, MT. Kennedy, J.J., and T.M. Quigley. 1993. Evolution of Forest Service organizational cul­ ture and adaptation: Issues in embracing ecosystem management. Pp. 19-29. In: Eastside forest ecosystem health assessment. Vol II, Ecosystem management: Principles and applications. 1993. M.E. Jensen and P.S. Bourgeron, eds. USDA Forest Service, Washington, DC. 397pp. Kessell, S.R. 1979. Gradient modeling: resource and fire management. SpringerVerlag. New York, NY. 432pp Kimmins, J.P. 1997. Forest ecology: a foundation for sustainable management. Prentice-Hall, Inc., Upper Saddle, New Jersey. 596pp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

Kmonk, N.S. 1995. Historic fire map of the Kootenai Forest (1825-1994). USDA Forest Service, Kootenai National Forest, Libby, MT. Kohm, K.A. and Franklin, J.F., eds. 1997. Creating a forestry for the 21st century : the science of ecosystem management. Island Press, Washington, D.C. 475pp. Korol, R.L., S.W. Running, K.S. Milner, and E.R. Hunt, Jr. 1991. Testing a mechanistic carbon balance model against observed tree growth. Canadian Journal o f Forest Research, 21,1098-1105. Kuennen, L.J. and M.N. Nielsen-Gerhardt. 1985. Soil survey of Kootenai National For­ est Area, Montana and Idaho. USDA Forest Service and Natural Resources Con­ servation Service and the Montana Agricultural Experiment Station. 242pp. Layser, E.F. 1974. Vegetative classification: Its application to forestry in the northern Rocky Mountains. J. For. 72:354-357. Lavigne, M. and G. Robitaille. 1999. Fact sheet: Climate change science: Climate change and ecosystem respiration. Webpage: http://www.nofc.forestry.ca/climate/factsht/respirae.html. 2pp. LiCor, Inc. 1993. User's manual for the LAI-2000: Plant canopy analyzer. LiCor, Inc., Environmental Division, Lincoln, NE. Long, J.N. 1985. A practical approach to density management. Forestry Chronicle 61: 23-27. Loucks, O.L. 1970. Evolution of diversity, efficiency and community stability. Ameri­ can Zoologist. 10:17-25. Losensky, J.B. 1993. Historical vegetation in Region one by climatic section. USDA Forest Service, Northern Region, Missoula Montana. Draft Report, May 3, 1993. Lyon, L.J. 1987. HIDE2: Evaluation of elk hiding cover using a personal computer. Res. Note INT-365, Intermountain Res. Statn., USDA Forest Service, Ogden, UT. Mack, R.N., N.W. Rutter, and S. Valastro. 1983. Holocene vegetational history o f the Kootenai River Valley, Montana. Quat. Res. 20:177-193. Magurran, A.E. 1988. Ecological diversity and its measurement. Princeton University Press, New Jersey. 179pp. McCune, B., and M.J. Mefiford. 1997. PC-ORD. Multivariate analysis of ecological data, Version 3. MjMSoftware Design, Gleneden Beach, OR.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

Mehringer, P.J., S.F. Arno, and K.L. Petersen. 1977. Postglacial history o f Lost Trail Pass Bog, Bitterroot Mountains, Montana. Arctic and Alpine Research, 9(4): 345-368. Morgan, P, G.H. Aplet, J.B. Haufler, H.C. Humphries, M.M. Moore, W.D. Wilson. 1994. Historical range of variability: a useful tool for evaluating ecosystem change. In: R.N. Sampson and D.L. Adams, eds, Assessing forest ecosystem health in the Inland West. Haworth Press, New York, NY. Pp 87- 111. Mueggler, W.F. and W.P. Handl. 1974. Mountain grassland and shrubland habitat types of western Montana. USDA-FS Intermountain Forest and Range Exp. Statn., and Region One. 89pp. National Forest Management Act (NFMA). 1976. Act o f October 22, 1976 (P.L. 94588, 90 Stat. 2949, as amended; 16 U.S.C. 472a, 476, 500, 513-516, 518, 521b, 528(note), 576b, 594-2(note), 1600(note), 1601(note), 1600-1602, 1604, 1606, 1608-1614. O'Hara, K.L., P.A. Latham, and B.G. Smith. 1996. A structural classification for Inland Northwest Vegetation. Western Journal of Applied Forestry, 11:97-102. Oliver, C.D. and B.C. Larson. 1996. Forest stand dynamics (Update Edition). John Wiley and Sons, Inc., New York. 520pp. Overbay, J.C. 1992. Ecosystem management. In: Proceedings of the national workshop: taking an ecological approach to management. 1992 April 27-30; Salt lake City, UT. WO-WSA-3. Washington, DC:US Department of Agriculture, Forest Ser­ vice, Watershed and Air Management: 3-15. Palmer, M.W. 1993. Putting things in even better order: The advantages of Canonical correspondence analysis. Ecology 74, 2215-2230. Perry, D.A. 1994. Forest ecosystems. Johns Hopkins University Press. 649pp. Pfister, Robert D., Bernard L. Kovalchik, Stephen F. Amo and Richard C. Presby. 1977. Forest habitat types of Montana. USDA For. Serv. Gen. Tech. Rep. INT-34, Intermt. For. and Range Exp. Stn., Ogden, Utah. 174pp. Pielou, E.C. 1975. Ecological diversity. John Wiley and Sons, New York, NY. 165pp. Quigley, T.M. 1992. Forest health in the Blue Mountains: Social and economic perspec­ tive. USDA Forest Service, Pac. Northwest Res. Statn., Portland, OR. Gen. Tech. Rep. PNW-GTR-296. 9pp. Reinecke, L.H. 1933. Perfecting a stand-density index for even-aged forests. J. Agric. Res. 46:627-638.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

Roberts, D.W. 1995. Object or context? An ecologist's view of ecosystem manage­ ment. Pp. 22-28. In: Ecosystem management of natural resources in the Inter­ mountain West (proceedings). Edited by F.H. Walker. Natural Resources and Environmental Issues. Vol. V. Utah state University, Logan, Utah. Running, S.W. 1994. Testing FOREST-BGC ecosystem process simulations across a climatic gradient in Oregon. Ecological Applications, 4:238-247. Running, S.W. and J.C. Coughlan. 1988. A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange and pri­ mary production processes. Ecological Modeling, 42: 125-154. Running, S.W. and S.T. Gower. 1991. FOREST-BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. Tree Physiology, Vol. 9. Pp 147-160. Heron Publishing, Victoria, Canada. Running, S.W. and E.R. Hunt. 1993. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. In: Scaling ecological processes, leaf to globe. Academic Press, Inc. Pp 141-158. Seidel, K. W. and P.H. Cochran. 1981. Silviculture of mixed conifer forests in eastern Oregon and Washington. USDA For. Serv. Gen. Tech. Rep. PNW-121, Pacific Northwest Forest and Range Experiment Station, Portland, OR. 70pp. Smith, D.M., B.C. Larson, M.J. Kelty, and P.M.S. Ashton. 1997. The practice of silvi­ culture: applied forest ecology. 9th edition. John Wiley & Sons, New York, NY 10158. 537pp. Smith, D.M. 1962. The Practice of silviculture. 7th edition. John Wiley & Sons, Inc., New York. 578pp. Smith, R.L. 1990. Ecology and field biology. HarperCollins Publishers, Inc., New York, NY. 922pp. Smith, D.M., B.C. Larson, M.J.K. Kelty, and P.M.S. Ashton. 1997. The Practice of sil­ viculture: Applied forest ecology. 9th edition. John Wiley & Sons, Inc., New York, NY. 537pp. Soule, M.E. 1980. Thresholds for survival: Maintaining fitness and evolutionary poten­ tial. Pp 151-170. In: M.E. Soule and B.A. Wilcox, eds. Conservation Biology: An evolutionary-ecological perspective. Sinaver, Sunderland, Mass. 395pp. SPSS. 1997. SYSTAT 7.0 statistics program. Marketing Department, SPSS, Inc., Chi­ cago, Illinois.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

Steele, R. and K. Geier-Hayes. 1987. The Douglas-fir/ninebark habitat type in central Idaho: succession and management. Gen. Tech. Rep. INT-252. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 6Spp. Swanson, F.J., J.A. Jones, D.O. Wallin, J.H. Cissel. 1994. Natural variability implications for ecosystem management. In: M.E. Jensen and P.S. Bourgeron, eds. Eastside forest health assessment - ecosystem management: principles and applications. PNW-GTR-318. USDA, Forest Service, Pacific Northwest Region, Portland, OR. Pp 80-94. Ter Braak, C.J.F and C.W.N. Looman. 1986. Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65: 3-11. Ter Braak, C.J.F. 1986. Canonical correspondence analysis: a new eigenvector tech­ nique for multivariate direct gradient analysis. Ecology 67, 1167-1179. Ter Braak, C.J.F. 1987. CANOCO - a FORTRAN program for canonical community ordination by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1). TNO Institute of Ap plied Computer Science, Statistics Department, Wageningen, Box 100, 6700 AC Wageningen, The Netherlands. 95pp. Thomas, J.W. 1996. Forest perspective on ecosystem management. Ecol. Appl. 6(3), 1996, Pp 703-705. Thomas, J.W., ed. 1979. Wildlife habitats in managed forests: the Blue Mountains of Oregon and Washington. USDA Forest Service Agricultural Handbook No. 553. Washington, D.C. 512pp. Thoms, A.V., ed. 1984. Environment, archeology, and land use patterns in the middle Kootenai River Valley, vol 1. In: Cultured resource investigations at Libby Res­ ervoir, Kootenai River Valley, northwest Montana. Project report Number 2, Center for Northwest Anthropology, Washington State University, Pullman, WA. Thornton, P.E., S.W. Running, and M.A. White. 1997. Generating surfaces of daily meterological variables over large regions of complex terrain. Jour, of Hydro. 190:214-251. Tobin-Scheer, J.M. 1995. Quantification of habitat type and climate relationships in western Montana. Unpublished PHD dissertation. University of Montana, School of Forestry, Missoula, Montana. 124pp. Unger, D.G. 1994. The USDA Forest Service perspective on ecosystem management. Symposium on ecosystem management and Northeastern Area Association o f State Forester's Meeting, Burlington, Vermont, July 18,1994. 6pp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

USDA Forest Service, Great Lakes Assessment. 1997. Section entitled: Range of natural variability. Taken from webpage: http://www.lic.wisc.edu/gla/range.htm. USDA Forest Service, Kootenai National Forest. 1987. Kootenai National Forest Forest Plan. Unpublished. On file at the Forest Supervisor’s Office, Libby, MT. USDA Forest Service, Kootenai National Forest, R. Gautreaux. 1999. Vegetation re­ sponse unit characterizations and target landscape prescriptions 1999. Unpub­ lished. On file at the Kootenai National Forest Supervisor's Office, Libby, MT. 185pp. USDA Forest Service, Kootenai National Forest. 1995. Temporal ecological synthesis: For Kootenai National Forest: Phase I report. Unpublished. On file at the Kootenai National Forest Supervisor's Office, Libby, MT. USDA Forest Service, Kootenai National Forest. 1999. Monitoring Report. On file at the Kootenai National Forest Supervisor’s Office, Libby, MT. USDA Forest Service, Northern Region. 1992. Ecosystem inventory and analysis guide. Northern Region Headquarters, Missoula, MT. Walter, H. 1973. Vegetation of the Earth in relation to climate and the eco-physiological conditions. English Univ. Press Ltd. London. 237pp. Waring, R.H. and S.W. Running. 1998. Forest ecosystems: analysis at multiple scales. 2nd edition. Academic Press, San Diego, CA. 370pp. Whitlock, C. 1992. Vegetational and climatic history of the Pacific Northwest dining the last 20,000 years: Implications for understanding present-day biodiversity. The Northwest Environmental Journal, 8:5-28. Whittaker, R.H. 1967. Gradient analysis of vegetation. Biological reviews, 42,207-264. Whittaker, R.H. 1973. Direct gradient analysis: Techniques. In: R.H. Whittaker, ed. Handbook of vegetation science 5: Ordination and classification of communities. Junk, The Hague, Netherlands.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

Appendix 1. Species List

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

The following list is composed of species sampled during the 1995 Gradient Model Remote Sensing project (Keane et al. 1996) on the Kootenai National Forest. The Species # column are numbers used in the TWINSPAN analysis completed for this study. A cronym s are taken from 6-letter codes used in the Ecosystem Inventory and Analysis Guide (1992) for the Northern Region. Scientific and Common Name protocols for trees, shrubs, forbs, and grasses are from Flora of the Pacific Northwest by C.Leo Hitchcock and Arthur Cronquist, University of Washington Press, 1991. Naming protocols for mosses, lichens, and ferns are from Mosses. Lichens, and Ferns of Northwest North America by Dale Vitt, Janet E. Marsh, and Robin B. Bovey, Lone Pine Publishing, 1988. Species marked with an (*) are those used in the final TWINSPAN classification. All species were used in richness and diversity calculations.

Species #

Acronym

Scientific Name

Common Name

ABIGRAVT ABIGRAVD ABILASVT AB1LASVD BETPAPVT BETPAPVD CELOCCVT LAROCCVT LAROCCVD PICENGVT PICENGVD PINALBVT PINALBVD PINCONVT PINCONVD PINMONVT PINMONVD PINPONVT PINPONVD POPTREVT POPTRTVT POPTRIVD PSEMENVT PSEMENVD TAXBREVT THUPLTVT THUPLTVD TSUHETVT TSUHETVD TSUMERVT TSUMERVD

Abies grandis Abies grandis-dcad Abies lasiocarpa Abies lasiocarpa-dead Betula papyri/era Betula papyri/era-dead Celtis occidentalis Larix occidentalis Larix occidentalis-dead Picea engelmannii Picea engelmannii-dead Pinus albicaulis Pinus albicaulis-dead Pinus contorta Pinus contorta-desd Pinus monticola Pinus monticola-dead Pinus ponderosa Pinus ponderosa-dead Populus tremuloides Populus trichocarpa Populus trichocarpa-d&ad Pseudotsuga menziesii Pseudotsuga menziesii-dead Taxus brevifolia Thuja plicata Thuja plicata-dead Tsuga heterophylla Tsuga heterophylla-dead Tsuga mertensiana Tsuga mertensiana-dead

grand fir* grand fir subalpine fir* subalpine fir paper birch* paper birch hackberry western larch* western larch Engelmann spruce* Engelmann spruce white-bark pine* white-bark pine lodgepole pine* Iodgepole pine western white pine* western white pine ponderosa pine* ponderosa pine quaking aspen* black cottonwood* black cottonwood Douglas-fir* Douglas-fir Pacific yew* western redcedar* western redcedar western hemlock* western hemlock mountain hemlock* mountain hemlock

TREES 3 2 6 5 105 104 168 373 372 505 504 507 506 509 508 512 511 514 513 548 550 549 562 561 669 678 677 702 701 704 703

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

SHRUBS 8 33 32 36 35 40 39 66 79 78 100 102 101 165 167 166 178 179 181 183 195 198 207 210 211 213 214 280 312 349 362 366 376 388 405 407 406 409 433 456 465 496 503 552 556 557 558 567 566 577 581

ACEGLAVS ALNINCVS ALNINCVD ALNSINVS ALNSINVD AMEALNVS AMEALNVD ARCUVAVS ARTFRIVS ARTEMIVS MAHAQUVS MAHREPVS BERBERVS CEASANVS CEAVELVS CEAVELVD CHIMENVS CHIUMBVS CHRNAUVS CHRYSOVS CLECOLVS CLEMATVS CORCANVS CORNUSVS CORSTOVS CRACOLVS CRADOUVS EURLANVS GAUHUMVS HOLDISVS JUNCOMVS JUNIPEVS LEDGLAVS LINBORVS LONCILVS LONINWS LONICEVS LONUTAVS MENFERVS OPLHORVS PACMYRVS PHILEWVS PHYMALVS POTFRUVS PRUEMAVS PRUNUSVS PRUVIRVS PURTRTVS PURTRIVD RHAALNVS RHAPURVS

Acer glabrum Alnus incana Alnus incana-dead Alnus sinuata Alnus sinuata-dead Amelanchier alnifolia Amelanchier alnifolia-dead Arctostaphylos uva-ursi Artemisia frigida Artemisia spp. Mahonia aquifolium Mahonia repens Berberis spp. Ceanothus sanguineus Ceanolhus velutinus Ceanothus velutinus-dead Chimaphila menziesii Chimaphila umbellata Chrysothamnus nauseosus Chrysothamnus spp. Clematis columbiana Clematis spp. Comus canadensis Comus spp. Comus stolonifera Crataegus columbiana Crataegus douglasii Eurotia lanata Gaultheria humifusa Holodiscus discolor Juniperis communis Juniperis spp. Ledum glandulosum Linnaea borealis Lonicera ciliosa Lonicera involucrata Lonicera spp. Lonicera utahensis Menziesiaferruginea Oplopanax horridum Pachistima myrsinites Philadelphus lewisii Physocarpus malvaceus Potentillafructicosa Prunus emarginata Prunus spp. Prunus virginiana Purshia tridentata Purshia tridentata-dead Rhamnus alnifolia Rhamnus purshiana

Rocky Mountain maple* mountain alder* mountain alder Sitka alder* Sitka alder western serviceberry* western serviceberry knnikinnik* fringed sagewort* sagebrush tall Oregon-grape creeping Oregon-grape* Oregon-grape redstem ceanothus* slick-leaved ceanothus* slick-leaved ceanothus little prince's pine common prince's pine* common rabbitbrush rabbitbrush Columbia clematis clematis bunchberry* dogwood red-osier dogwood Columbia hawthorn black hawthorn winterfat alpine wintergreen ocean-spray* common juniper* juniper Labrador-tea twmflower* orange honeysuckle twm-berry honeysuckle Utah honeysuckle* fool's huckleberry* devil's club mountain-lover* mockorange* mallow ninebark* shrubby cinquefoil bitter cherry cherry common chokecherry antelope bitter-brush* antelope bitter-brush alder buckthorn cascara buckthorn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

583 584 585 588 590 592 589 593 595 596 597 598 599 601 594 603 604 605 607 610 613 611 614 615 634 649 650 648 652 653 660 661 663 707 708 710 711 712 713

RHOALBVS RHUGLAVS RHURADVS RIBCERVS RIBIRRVS RIBLACVS RIBES VS RIBVISVS ROSACIVS ROSCANVS ROSGYMVS ROSNUTVS ROSPISVS ROSWOOVS ROSAVS RUB IDAVS RUBLACVS RUBLEUVS RUBPARVS SALBEBVS SALSCOVS SALIX VS SAMCERVS SAMRACVS SHECANVS SORSCOVS SORSITVS SORBUSVS SPIBETVS SPIDOUVS SYMALBVS SYMOCCVS SYMOREVS VACCAEVS VACCESVS VACGLOVS VACMEMVS VACMYRVS VACSCOVS

Rhododendron albiflorum Rhus glabra Rhus radicans Ribes cereum Ribes irriguum Ribes lacustre Ribes spp. Ribes viscosissimum Rosa acicularis Rosa canine Rosa gymnocarpa Rosa nutkana Rosa pisocarpa Rosa woodsii Rosa spp. Rubus idaeus Rubus laciniatus Rubus leucodermis Rubus parviflorus Salix bebiana Salix scouleriana Salix spp. Sambucus cerulea Sambucus racemosa Shepherdia canadensis Sorbus scopulina Sorbus sitchensis Sorbus spp. Spiraea betufolia Spiraea douglasii Symphoricarpos albus Symphoricarpos occidentalis Symphoricarpos oreophilus Vaccinium caespitosum Vaccinium caespitosum Vaccinium globulare Vaccinium membranaceum Vaccinium myrtillus Vaccinium scoparium

white rododendron smooth sumac poison ivy squaw currant Idaho gooseberry swamp currant gooseberry sticky currant prickly rose dog rose baldhip rose* bristly nootka rose clustered wild rose wood's rose* rose* red raspberry evergreen blackberry blackcap thnnbleberry* bebb willow scouler willow* willow blue elderberry red elderberry Canada bufialoberry* Casade mountain-ash Sitka mountain-ash mountain-ash shiny-leaf spiraea* Douglas's spiraea common snowberry* western snowberry mountain snowberry dwarfhuckleberry dwarf huckleberry globe huckleberry* big huckleberry* dwarfbilberry* whortleberry*

ACHMILVF ACOCOLVF ACOCALVF ACTRUBVF ADEBICVF AGOGLAVF AGOSERVF ALLCERVF ALLIUMVF ALYALYVF ALYSSUVF AMSMENVF

Achillea millefolium Aconitum columbianum Acorus calamus Actaea rubra Adenocaulon bicolor Agoseris glauca Agoseris spp. Allium cemuum Allium spp. Alyssum alyssoides Alyssum spp. Amsinckia menziesii

comon yarrow* Columbian monkshood sweet flag baneberry trail-plant pale agoseris agoseris nodding onion onion pale alyssum

FORBS 10 12 11 13 14 15 16 30 31 37 38 42

Menzie's fiddleneck

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

43 45 47 48 49 46 50 53 54 55 56 57 52 58 59 60 61 63 65 64 67 68 69 70 72 73 76 77 75 80 83 84 85 88 90 86 92 81 82 87 89 91 94 98 99 103 117 133 136 138 140 141 144 145 146

AMSRETVF ANAMARVF ANEMULVF ANEPATVF ANEPIPVF ANEMONVF ANGARGVF ANTLUZVF ANTMICVF ANTNEGVF ANTPARVF ANTRACVF ANTENNVF APOANDVF ARADRUVF ARAHOLVF ARANUDVF ARCAMEVF ARCLARVF ARCLAPVF ARECAPVF AREMACVF AREPUSVF ARESERVF ARNCHAVF ARNCORVF ARNLATVF ARNSORVF ARNICAVF ASACAUVF ASTCHIVF ASTCONVF ASTENGVF ASTLAEVF ASTMODVF ASTER VF ASTSTEVF ASTADSVF ASTATRVF ASTINFVF ASTMISVF ASTRAGVF ATHPUSVF BALINCVF BALSAGVF BESRUBVF BRODOUVF CALAPIVF CALELEVF CALMACVF CALNUTVF CALOCHVF CALTHAVF CAMQUAVF CAMROTVF

Amsinckia retrorsa Anaphalus margaritacea Anemone multifida Anemone patens Anemone piperi Anemone spp. Angelica arguta Antennaria luzuloides Antennaria microphylla Antennaria neglecta Antennaria parvifolia Antennaria racemosa Antennaria spp. Apocynum androsaemifolium Arabis drummondii Arabis holboellii Aralia nudicaulis Arceuthobium americanum Arceuthobium laricis Arctium lappa Arenaria capillaris Arenaria macrophvlla Arenaria pusilla Arenaria serpyllifolia Arnica chamissonis Arnica cordifolia Arnica latifolia Arnica sororia Arnica spp. Asarum caudatum Aster chilensis Aster conspicuus Aster engelmannii Aster laevis Aster modestus Aster spp. Aster stenomeres Astragalus adsurgens Astragalus atropubescens Astragalus inflexus Astragalus miser Astragalus spp. Athysanus pusillus Balsamorhiza incana Balsamorhiza sagittata Besseya rubra Brodiaea douglasii Calochortus apiculatus Calochortus elegans Calochortus macrocarpus Calochortus nuttallii Calochortus spp. Caltha spp. Camassia quamash Campanula rotundifolia

rigid fiddleneck pearly-everlasting* cliff anemone pasqueflower Piper’s anemone sharptooth angelica woodrush pussy-toes rosy pussy-toes field pussy-toes Nuttall's pussy-toes raceme pussy-toes* pussy-toes spreading dogbane* Drummond's rockcress Holboell's rockcress wild sarsaparilla* American dwarf mistletoe dwarf mistletoe great burdock thread-leaved sandwort bigleaf sandwort dwarf sandwort thyme-leaf sandwort meadow arnica heart-leaf arnica* broadleaf arnica* twin arnica wild ginger long-leaved aster showy aster* Engelmann's aster smooth aster few-flowered aster Rocky Mountain aster standing milk-vetch Kelsey's milk-vetch bent milk-vetch weedy milk-vetch milk-vetch sandweed hoary balsamroot arrowleafbalsamroot* bed besseya Douglas' brodiaea pointed mariposa northwest mariposa sagebrush mariposa sego-liDy mariposa marshmarigold common camas harebell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

150 161 162 163 164 169 170 171 172 173 177 180 182 184 186 187 188 189 190 193 194 192 196 197 200 201 203 202 204 206 208 209 212 215 216 217 218 221 222 225 226 230 231 242 243 244 245 246 248 249 250 247 251 257 258

CARDAMVF CASfflSVF CASLUTVF CASMINVF CASTILVF CENMACVF CENSOLVF CENTAUVF CERARWF CERASTVF CHEALBVF CHRLEUVF CHRVILVF CICINTVF CIRALPVF CIRARWF CIRBRWF CIRSIUVF CIRVULVF CLAPULVF CLARKIVF CLALANVF CLEHIRVF CLEMACVF CLIUNIVF COLGRAVF COLPARVF COLLINVF CONARWF COPOCCVF CORMACVF CORMERVF CORSTRVF CREACUVF CREATRVF CREPISVF CRUVULVF CRYTORVF CYNOFFVF DELBICVF DELPHIVF DESPINVF DIAARMVF DIPSYLVF DISHOOVF DISPORVF DISTRAVF DODCONVF DODJEFVF DODPAUVF DODPULVF DODECAVF DRAVERVF EPIANGVF EPICILVF

Cardamine spp. Castilleja hispida Castilleja lutescens Castilleja miniata Castilleja spp. Centaurea maculosa Centaurea solstitialis Centaurea spp. Cerastium arvense Cerastium spp. Chenopodium album Chrysantheum leucanthemum Chrysopsis villosa Cichorium intybus Circaea alpina Cirsium arvense Cirsium brevifolium Cirsium spp. Cirsium vulgare Clarfda pulchella Clarkia spp. Claytonia lanceolata Clematis hirsutissima

Cleomella macbrideana Clintonia uniflora Collinsia grandiflora Collinsia parviflora Collomia spp. Convolvulus arvensis Coptis occidentalis Corallorhiza maculata Corallorhiza mertensiana Corallorhiza striata Crepis acuminata Crepis atribarba Crepis spp. Crupina vulgaris Cryplanlha torreyana Cynoglossum officinale Delphinium bicolor Delphinium spp. Descurainia pinnata Dianthus armeria Dipsacus sylvestris Disporum hookeri Disporum spp. Disporum trachycarpum Dodecatheon conjugens Dodecatheonjeffireyi Dodecatheon paucijlorum Dodecatheon pulchellum Dodecatheon spp. Draba vema Epilobium angustifolium Epilobium ciliatum

bittercress harsh paintbrush white paintbrush scarlet paintbrush Indian paintbrush spotted knapweed yellow star-thistle knapweed field chickweed chickweed lambsquarter oxeye-daisy hairy golden-aster chickory Enchanter's nightshade Canada thistle Palouse thistle thistle bull thistle ragged robin

western springbeauty vaseflower clematis cleomella Queen's cup beadlilly* large-flowered blue-eyed Mary small-flowered blue-eyed Mary field morning-glory western goldthread* spotted coral-root western coral-root striped coral-root tapertip hawksbeard slender hawksbeard hawksbeard slender crupina 70116/8 cryptantha common hound’s-tongue little larkspur larkspur pinnate tansymustard Deptford pink teasel Hooker’s foiry-bell* foiry-bell wartberry foiry-bell slhnpod shooting star tall mountain shooting star few-flowered shooting star few-flowered shooting star shooting star spring Whitlow-grass fireweed* common willow-herb

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

259 261 262 260 263 265 266 267 270 273 274 275 269 268 271 272 276 277 278 279 291 299 300 293 302 303 301 304 306 309 307 308 311 313 314 315 318 320 326 328 330 331 332 329 333 334 336 335 337 340 341

EPIHORVF EPIMINVF EPIPANVF EPILOBVF EPIWATVF ERICORVF ERIDIWF ERIFILVF ERIGRAVF ERIPfflVF ERIPUMVF ERISPEVF ERIGERVF ERIFLAVF ERIHERVF ERIOGOVF ERIUMBVF EROCICVF ERYGRAVF EUPSPAVF FILARWF FORBANVF FORBPEVF FORB1 VF FRAVESVF FRAVIRVF FRASPEVF FREPUDVF GAILLAVF GALTETVF GALAPAVF GALBORVF GALTRJVF GERANIVF GEUMACVF GEUTRIVF GNAPHAVF GOOOBLVF GRISQUVF HABELEVF HABHYPVF HABORBVF HABSACVF HABENAVF HABUNAVF HEDSULVF HELUNIVF HELANNVF HERLANVF HEUCYLVF HEUGROVF

339 343 342

HEUCHEVF HIEALEVF HIEALBVF

Epilobium homemannii alpine willow-herb Epilobium minutum small-flowered willow herb Epilobium paniculatum Autumn willow-herb Epilobium spp. willow-herb Epilobium watsonii Watson's willow-herb Erigeron corymbosus long-leaved fleabane Erigeron divergens spreading fleabane ErigeronJilifolius thread-Ieaf fleabane Erigeron gracilis slender fleabane Erigeron philadelphicus Philadelphia fleabane Erigeron pumilus shaggy fleabane Erigeron speciosus showy fleabane Erigeron spp. fleabane Eriogonum flavum yellow buckwheat Eriogonum heracleoides Wyeth buckwheat Eriogonum spp. buckwheat Eriogonum umbellatum sulfur buckwheat Erodium cicutarium stork's-bill Erythronium grandijlorum glacier-Iilly Euphorbia spathulata spatulate-leaved spurge Filago arvensis field filago

forb annual forb perennial forb spp. Fragaria vesca woods strawberry* Frageria virginiana Virginia strawberry* Frasera speciosa giant frasera Fritillaria pudica yellow bell Gaillardia spp. Galeopsis tetrahit common hemp nettle Galium aparine goose-grass Galium boreale northern bedstraw Galium triflorum sweetscented bedstraw Geranium spp. Geum macrophyllum large-leaved avens Geum triflorum prairie smoke Gnaphallium spp. cudweed Goodyera oblongifolia western rattlesnake plantain Grindelia squarrosa curleycup gumweed Habenaria elegans elegant rein-orchard Habenaria hyperborea northern green bog-orchid Habenaria orbiculata large round-leaved rem-orchid Habenaria saccata slender bog-orchid Habenaria spp. bog-orchid Habenaria unalascensis Alaska rein-orchid Hedysarum sulphurescens yellow hedysarum Helianthella uniflora one-flowered helianthella Helianthus annuus common sunflower Heracleum lanatum cow-parsnip Heucheria cylindrica roundleaf alumroot Heucheria grossulariifolia gooseberry-leaved alumroot Heucheria spp. alumroot Hieracium albertinum western hawkweed Hieracium albiflorum white-flowered hawkweed*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

344 345 346 347 348 350 355 360 357 369 370 375 374 377 382 389 390 391 392 394 396 395 393 397 400 401 402 403 399 404 410 411 413 414 415 412 416 422 424 425 428 427 430 431 434 435 436 437 439 440 438 441 445 449 443

HIEAURVF HIECANVF HIECYNVF HIERACVF HIEUMBVF HOLUMBVF HYDCAPVF HYPPERVF HYPERIVF LACTUCVF LAMAMPVF LATNEWF LATHYRVF LEPPERVF LEWREDVF LINDALVF LISCAUVF LISCORVF USTERVF LITGLAVF LITPARVF LITHOPVF LITARWF LITRUDVF LOMCOUVF LOMDISVF LOMMACVF LOMSANVF LOMATIVF LOMTRTVF LUPARGVF LUPCAUVF LUPLAXVF LUPLEUVF LUPSERVF LUPINUVF LUPWYEVF MALPARVF MEDLUPVF MEDSATVF MELLINVF MELILOVF MENARWF MENDISVF MERLONVF MICGRAVF MIMGUTVF MITBREVF MITNUDVF MITPENVF MITELLVF MITSTAVF MONFISVF MONUNIVF MONAREVF

Hieracium aurantiacum orange hawkweed Hieracium canadense Canada hawkweed Hieracium cynoglossoides houndstongue hawkweed hieracium spp. hawkweed Hieracium umbellatum narrow-leaved hawkweed Holosteum umbellatum jagged chickweed Hydrophyllum capitatum ballhead waterleaf Hypericum perforatum common St. John's-wort* Hypericum spp. St. John's-wort Lactuca spp. lettuce Lamium amplexicaule common henbit Lathyrus nevadensis Sierran peavine Lathyrus spp. peavine Lepidium perfoliatum clasping pepperweed Lewisia rediviva bitterroot Linaria dalmatica Dalmation toadflax Listera caurina western twayblade Listera cordata heart-leaf twayblade Listera spp. twayblade Lithophragma glabrum smooth woodlandstar Lithophragma parviflora smaMower woodlandstar Lithophragma spp. woodlandstar Lithospermum arvense com gromwell Lithospermum ruderale western gromwell Lomatium cous Cous biscuit-root Lomatium dissectum fern-leaved desert-parsely* Lomatium macrocarpum bigseed desert-parsely Lomatium sandbergii Sandberg’s desert-parsely Lomatium spp. biscuit-root Lomatium tritematum nine-leaf lomatium Lupinus argenteus silvery lupine Lupinus caudatus tailcup lupine Lupinus laxiflorus spurred lupine Lupinus leucophyllus velvet lupine Lupinus sericeus silky lupine* Lupinus spp. lupine* Lupinus wyethii Wyeth's lupine Malva parviflora cheeseweed Medicago lupulina black medic alfalfa Medicago sativa Melampyrum lineare narrow-leaved cow-wheat Melilotus spp. sweet-c lover Mentha arvensis field mint Mentzelia dispersa bushy mentzelia Mertensia longijlora small bluebells Microsteris gracilis pink microsteris Mimulus guttatus common monkey-flower Mitella breweri Brewer's mitrewort Mitella nuda bare-stemmed mitrewort Mitella pentandra five-stamened mitrewort Mitella spp. mitrewort Mitella stauropetala side-flowered mitrewort Monardafistulosa horsemint Moneses uniflora woodnymph Montia arenicola sand montia

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

444 446 447 448 453 454 455 457 459 462 463 471 472 474 473 482 483 484 485 486 487 488 489 490 493 494 495 492 498 499 500 501 521 522 524 527 544 538 539 545 551 553 554 555 559 563 568 569 570 572 573 574 575 576 608

MONCORVF MONPARVF MONPERVF MONTIAVF MYOMICVF MYOSOTVF NEMBREVF OROUNIVF ORTTENVF OSMCHTVF OSMORHVF PEDBRAVF PEDCONVF PEDRACVF PEDICUVF PENALBVF PENARTVF PENCONVF PENELLVF PENERTVF PENSTEVF PENWILVF PERGATVF PETSAGVF PHAHASVF PHAHETVF PHALINVF PHACELVF PHLCAEVF PHLDIFVF PHLLONVF PHLOX VF PLALANVF PLAMAJVF PLAPATVF PLEMACVF POLPULVF POLBISVF POLDOUVF POLYGOVF POTCONVF POTGLAVF POTGRAVF POTRECVF PRUVULVF PTEANDVF PYRASAVF PYRCHLVF PYRPICVF PYRSECVF PYRUNTVF RANMACVF RANUNCVF RAPSATVF RUMACTVF

Montia cordifolia Montia parvifolia Montia perfoliata Montia spp. Myosotis micrantha Myosotis spp. Nemophila brevifolia Orobanche uniflora Orthocarpus tenuifolius Osmorhiza chilensis Osmorhiza spp. Pedicularis bracteosa Pedicularis contorta Pedicularis racemosa Pedicularis spp. Penstemon albidus Penstemon aridus Penstemon confertus Penstemon elegantulus Penstemon eriantherus Penstemon spp. Penstemon wilcoxii Perideridia gairdneri Petasides sagittatus Phacelia hastata Phacelia heterophylla Phacelia linearis Phacelia spp. Phlox caespitosa Phlox diffusa Phlox longifolia Phlox spp. Plantago lanceolata Plantago major Plantago patagonica Plectritus macrocera Polemonium pulcherrimum Polygonum bistortoides Polygonum engelmannii Polygonum spp. Potentilla concinna Potentilla glandulosa Potentilla gracilis Potentilla recta Prunella vulgaris Pterospora andromedea Pyrola asarifolia Pyrola chlorantha Pyrola picta Pyrola secunda Pyrola uniflora Ranunculus macounii Ranunculus spp. Raphanus sativa Rumex acetosa

broad-leaved montia little-leaved montia miner's lettuce* blue scorpion-grass forget-me-not Great Basin nemophila naked broomrape thin-leaved Owl-clover mountain sweet-cicely sweet-cicely bracted lousewort coiled-beak lousewort sickletop lousewort lousewort white-flowered penstemon stiff-leaf penstemon yellow penstemon lovely penstemon fiizzytongue penstemon Wilcox's penstemon Gairdner’s yampa arrowleaf coltsfoot silverleaf phacelia varileaf phacelia threadleaf phacelia tufted phlox spreading phlox long-leaved phlox buckhom plantain common plantain Indian wheat white plectritus skunk-leaved polemoniun American bistort Engelmann’s knotweed knotweed early cinquefoil sticky cinquefoil slender cinquefoil sulfur cinquefoil self-heal woodland pmedrops pink wintergreen green wintergreen white-veined pyrola one-sided wintergreen woodnymph Macoun's buttercup buttercup wild radish meadow sorrel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

609 616 618 619 621 620 627 628 630 629 631 632 635 636 637 639 640 638 642 641 644 645 647 646 655 658 659 662 664 665 666 668 667 670 672 673 674 675 681 687 690 688 689 694 695 698 692 696 693 697 705 717 715 716 714

RUMCRTVF SAXFERVF SCUANGVF SEDLANVF SEDUMVF SEDSTEVF SENCANVF SENCYMVF SENINTVF SENECIVF SENTRIVF SHEARWF SILCUCVF SILMENVF SISALTVF SISLOEVF SISOFFVF SISINFVF SMIRACVF SMILACVF SMISTEVF SOLCANVF SOLMISVF SOUDAVF STEOCCVF STRAMPVF SWEPERVF SYMOFFVF SYNMISVF SYNTHYVF TANVULVF TAROFFVF TARAXAVF THAALPVF THAOCCVF THEMONVF THLARWF THLFENVF TONFLOVF TOWFLOVF TRAGOPVF TRACARVF TRADUBVF TRILONVF TRILVPVF TRIREPVF TRIFOLVF TRIOVAVF TRILEPVF TRIPERVF URTDIOVF VALSITVF VALERIVF VALLOCVF VALERAVF

Rumex crispus curley dock Saxifraga ferruginea rusty saxifrage Scutellaria angustifolia narrow-leaved skullcap Sedum lanceolatum lance-leaved stonecrop Sedum spp. stonecrop Sedum stenopetalum wormleaf stonecrop Senecio canus woolly groundsel Senecio cymbalarioides few-leaved groundsel Senecio integerrimus western groundsel Senecio spp. groundsel Senecio triangularis arrowleaf groundsel Sherardia arvensis blue field-madder Silene cucubalus bladder campion Silene menziesii Menzie's silene Sisymbrium altissimum tumblemustard Sisymbrium loeselii Loesel tumblemustard Sisymbrium officinale hedge mustard Sisyrinchium inflatum purple-eyed grass Smilacina racemosa false spikenard Smilacina spp. false Solomon's seal Smilacina stellata starry Solomon-phime* Solidago canadensis Canada goldenrod Solidago missouriensis Missouri goldenrod Solidago spp. goldenrod Stenanthium occidentale western stenanthium Streptopus amplexifolius clasping-lvd twisted-stalk Swertia perennis swertia Symphytum officinale common comfrey Synthyris missurica mountain kittentails Synthyris spp. kittentails Tanacetum vulgare common tansy Taraxacum officinale common dandelion Taraxacum spp. dandelion Thalictrum alpinum alpine meadowrue Thalictrum occidentale western meadowrue* Thermopsis montana mountain thermopsis Thlaspi arvense field pennycress Thlaspifendleri Fendler's pennycress Tonella floribunda large-flowered tonella Townsendiaflorifera showy townsendia Tragopogon spp. salsify Trautvetteria caroliniensis false bugbane Trifolium dubium least hop clover Trifolium longipes long-stalked clover Trifolium longipes (pedunculatum) long-stalked clover Trifolium repens white clover Trifolium spp. clover Trillium ovatum white trillium Triodanis leptocarpa western Venus'-looking-glass Triodanis perfoliata clasping Venus' looking-glass Urtica dioica stinging nettle Valeriana sitchensis Sitka valerian Valeriana spp. valerian Valerianella locusta European com-salad Valerianella spp. valerianella

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

720 718 726 719 725 721 722 724 723 727 728 729 730 731 732 733 735 737 734 739 740

VERCALVF VERATRVF VERVIRVF VERBLAVF VERTHAVF VERCATVF VEROFFVF VERSERVF VERONIVF VERWORVF VICAMEVF VICIA VF VICVILVF VIOADUVF VIOCANVF VIOGLAVF VIONUTVF VIOORBVF VIOLA VF XERTENVF ZIGVENVF

Veratrum califomicum Veratrum spp. Veratrum viride Verbascum blattaria Verbascum thapsus Veronica catenata Veronica officinalis Veronica serpyllifolia Veronica spp. Veronica wormslgoldii Vicia americana Vicia spp. Vicia villosa Viola adunca Viola canadensis Viola glabella Viola nuttalii Viola orbiculata Viola spp. Xerophyllum tenax Zigadenus venenosus

California false hellebore false hellebore green false hellebore moth mullein common mullein chain speedwell common speedwell thyme-leaved speedwell speedwell Wormskjold speedwell American vetch vetch hairy vetch hook violet Canada violet pioneer violet yellow prairie violet round-leaved violet violet beargrass* meadow death-camas

AGRREPVG AGRSPIVG AGROPYVG AGRALBVG AGREXAVG AGRINTVG AGRSCAVG AGROSTVG ARILONVG BROBRTVG BROCARVG BROCILVG BROINEVG BROIAPVG BROMOLVG BRORIGVG BROMUSVG BROTECVG BROVULVG CALCANVG CALKOEVG CALMONVG CALPURVG CALRUBVG CALAMAVG CARCANVG CARCONVG CARCRAVG CARDEWVG CARGEYVG

Agropyron repens Agropyron spicatum Agropyron spp. Agrostis alba Agrostis exarata Agrostis interrupta Agrostis scabra Agrostis spp. Aristida longiseta Bromus brizaeformis Bromus carinatus Bromus ciliatus Bromus inermis Bromusjaponicus Bromus mollis Bromus rigidus Bromus spp. Bromus tectorum Bromus vulgaris Calamagrostis canadensis Calamagrostis koelerioides Calamagrostis montanensis Calamagrostis purpurascens Calamagrostis rubescens Calamagrostis spp. Carex canescens Carex concinnoides Carex crawei Carex deweyana Carex geyeri

GRASSES 22 24 20 17 18 19 23 21 71 114 115 116 118 119 120 122 121 123 124 135 137 139 142 143 132 147 148 149 151 153

quackgrass bluebunch wheatgrass* wheatgrass redtop spike bentgrass interrupted apera tickle-grass bentgrass red threeawn nodding brome mountain brome fringed brome smooth brome Japanese brome* soft brome ripgut cheatgrass* Columbia brome bhiejoint reedgrass fire reedgrass plains reedgrass purple reedgrass pinegrass* reedgrass gray sedge northwestern sedge* Craw’s sedge Dewey’s sedge elk sedge*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

154 155 156 157 158 159 152 160 185 223 224 227 229 228 254 255 283 285 286 287 288 290 289 316 317 321 322 364 365 367 363 368 417 418 419 426 429 460 461 466 491 497 502 530 531 533 532 534 535 529 617 654 656 657 691

CARHOOVG CARINTVG CARMICVG CARRETVG CARROIVG CARROSVG CAREX VG CARSTIVG CINLATVG DACGLOVG DANINTVG DESCESVG DESELOVG DESCHAVG ELYCAPVG ELYGLAVG FESIDAVG FESOCCVG FESOVTVG FESRUBVG FESSCAVG FESTUCVG FESSUBVG GLYELAVG GLYGRAVG GRASS VG GRASS 1VG JUNDRUVG JUNENSVG JUNPARVG JUNCUSVG KOECRTVG LUZCAMVG LUZHITVG LUZPARVG MELBULVG MELSUBVG ORYASPVG ORYZOPVG PANSCRVG PHAARUVG PHLALPVG PHLPRAVG POABULVG POACOMVG POAPRAVG POAPALVG POASANVG POASECVG POA SCIMICVG SPOCRYVG STIOCCVG STIPAVG TRICANVG

Carex hoodii Carex interior Carex microptera Carex retrorsa Carex rossii Carex rostrata Carex spp. Carex stipata Cinna latifolia Dactylis glomerata Danthonia intermedia Deschampsia cespitosa Deschampsia elongata Deschampsia spp. Elymus caput-medusae Eiymus glaucus Festuca idahoensis Festuca occidentalis Festuca ovina Festuca rubra Festuca scabrella Festuca spp. Festuca subulata Glyceria elata Glyceria grandis

Hood's sedge inland sedge small-winged sedge retrorse sedge Ross sedge beaked sedge sedge sawbeak sedge drooping woodreed orchard-grass* timber oatgrass tufted hairgrass slender hairgrass hairgrass medusahead wildrye blue wildrye* Idaho fescue* western fescue sheep fescue red fescue rough fescue* fescue bearded fescue tall mannagrass American mannagrass

grass spp. grass spp. Juncus drummondii Juncus ensifolius Juncus parryi Juncus spp. Koelaria cristata Luzula campestris Luzula hitchcockii Luzula parviflora Melica bulbosa Melica subulata Oryzopsis asperifolia Oryzopsis spp. Panicum scribnerianum Phalaris arundinacea Phleum alpinum Phleum pratense Poa bulbosa Poa compressa Poa pratensis Poa pulustris Poa sandbergii Poa secunda Poa spp. Scirpus microcarpus Sporobolus cryptandrus Stipa occidentalis Stipa spp. Trisetum canescens

Drummond's rush dagger-leaf rush Party's rush rush prairie Junegrass field woodrush smooth woodrush small-flowered woodrush oniongrass Alaska oniongrass roughleaf ricegrass ricegrass few-flowered panic-grass reed canarygrass alpine timothy common timothy bulbous bluegrass* Canada bluegrass Kentucky bluegrass* fowl bluegrass Sandberg's bluegrass Sandberg's bluegrass bluegrass small-flowered bulrush sand dropseed western needlegrass needlegrass tall trisetum

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

699

TRISPIVG

Trisetum spicatum

spike trisetum

ATHFILVE CRYCRIVE DRYFILVE EQUARWE FERN GYMDRYVE LYCCOMVE LYCOPOVE POLLONVE POLMUNVE PTEAQUVE SELDENVE SELAGIVE SELWALVE SELWATVE WOOOREVE

Athryriumfilix-femina Cryptogramma crispa Dryopteris jilix-mas Equisetum arvense

ladyfera* parsley-fem male fem field horsetail

ATRSELNM AULANDNM AULPALNM BRAALBNM BRAASPNM BRAERYNM BRAHYLNM BRALEINM BRASALNM BRACHYNM BRASTANM BRYCAENM BRYSANNM CERPURNM DICCRINM DICACUNM DICELONM DICFUSNM DICMUENM DICPOLNM DICSCONM DICRANNM DICTAUNM DICUNDNM DREUNCNM EURPULNM FUNHYGNM GRIAPONM GRIPULNM GRIMMINM HETMACNM

Atrichum selwynii Aulacomnium androgynum Aulacomnium palustre Brachythecium albicans* Brachythecium asperrimum Brachythecium erythrorrhizon Brachythecium hylotapetum Brachythecium leibergii Brachythecium salebrosum Brachythecium spp. Brachythecium starkei Bryum caespiticium Bryum sandbergii* Ceratodon purpureus Dicranella crispa Dicranum acutifolium Dicranum elongatum Dicranum fuscescens Dicranum muehlenbackii Dicranum polysetum Dicranum scoparium* Dicranum spp.* Dicranum tauricum * Dicranum undulatum Drepanocladus uncinatus Eurhynchium pulchellum Funaria hygrometrica Grimmia apocarpa Grimmia pulvinata Grimmia spp. Heterocladium macounii

FERNS 93 219 253 264 282 327 420 421 541 542 564 623 622 625 626 738

Fem spp. Gymnocarpium dryopteris Lycopodium complanatum Lycopodium spp. Polystichum lonchitis Polystichum munitum Pteridium aquilinum Selaginella densa Selaginella spp. Selaginella wallacei Selaginella wallacei Woodsia oregana

oak fem ground cedar clubmoss mountain hollyfera common Christmas-fem brackenfem* compact selaginella Wallace selaginella Watson's selaginella Oregon woodsia*

MOSSES 95 96 97 106 107 109 110 111 112 108 113 126 130 174 233 232 234 235 236 237 239 238 240 241 252 281 305 323 325 324 338

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

351 352 353 356 378 379 442 450 458 515 517 519 523 525 520 528 537 536 540 543 546 565 578 579 580 582 587 586 624 680 682 683 684 685 686

HOMAENNM HOMMEGNM HOMNEVNM HYLSPLNM LESINCNM LESRADNM MNISPINM MOSS ORTHOTNM PLACILNM PLADRUNM PLAINSNM PLAMEDNM PLARUGNM PLALAENM PLESCHNM POHNUTNM POHLIANM POLJUNNM POLPILNM POLYTRNM PTICRINM RHACANNM RHAHETNM RHAPATNM RHINUDNM RHYTRINM RHYROBNM SELDONNM TIMAUSNM TORBISNM TORPRINM TORRUANM TORRURNM TORTULNM

Homalothecium aeneum Homalothecium megaptilum Homalothecium nevadensis Hylocomium splendens Lescuraea incurvata Lescuraea radicosa Mnium spinulosum

moss spp. Orthothecium spp. Plagiomnium ciliare Plagiomnium drummondii Plagiomnium insigne Plagiomnium medium Plagiomnium rugicum Plagiothecium laetum Pleurozium schreber Pohlia nutans* Pohlia spp. Polytrichium juniperinum Polytrichum piliferum Polytrichum spp. Ptilium crista-castrensis Rhacomitrium canescens Rhacomitrium heterostrichum Rhacomitrium patens Rhizomnium nudum Rhytidiadelphus triquetrus* Rhytidiopsis robusta* Seligeria donniana Timmia austriaca Tortula bistratosa Tortula princeps Tortula ruraliformis Tortula ruralis * Tortula spp.

feather moss

big red stem Juniper moss knight's plume

LICHENS 27 28 29 26 125 129 175 176 191 358 361 359 380 381 385 398

ALEGLANL ALEJVINL ALESARNL ALECTONL BRYABBNL BRYORINL CETCANNL CETPLANL CLADONNL HYPIMSNL HYPPHYNL HYPOGYNL LETHARNL LETVULNL LICHENNL LOBPULNL

Alectoria glabra Alectoria jubata Alectoria sarmentosa Alectoria spp. Bryoria abbreviata Bryoria spp.* Cetraria canadensis Cetraria platyphylla Cladonia spp. Hypogymnia imshaugii Hypogymnia physodes Hypogymnia spp.* Letharia spp. Letharia vulpina

alectoria

wolf lichen

lichen spp. Lobaria pulmonaria

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

467 468 469 470 475 477 478 479 480 481 516 518 706

PARSUANL PARSULNL PARULONL PECSUBNL PELAPHNL PELCANNL PELMALNL PELRUFNL PELTIGNL PELVENNL PLACYNNL PLAGLANL USNEA NL

Parmelia subargentifera Parmelia sulcata Parmelia ulophyllodes Peccania subnigra Peltigera aphthosa Peltigera canina Peltigera malacea Peltigera rufescens Peltigera spp. Peltigera venosa Placynthium spp. Platismatia glauca Usnea spp.

studded leather lichen* dog lichen*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix 2. Species and Importance Scores

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

Species Number

Acronym

IMPVAL

IMPVAL

D 1V /

DIV/

10000

1000

Species Number

TRSK S

562 373 509 3 514 6 678 702 505 508 512 561 372 548 550 669 105 513 5 704 168 2 506 507 511 677 701 504 104 549 703

PSEMENVT LAROCCVT PINCONVT ABIGRAVT PINPONVT ABILASVT THUPLIVT TSUHETVT PICENGVT PINCONVD PINMONVT PSEMENVD LAROCCVD POPTREVT POPTRIVT TAXBREVT BETPAPVT PINPONVD ABILASVD TSUMERVT CELOCCVT ABIGRAVD PINALBVD PINALBVT PINMONVD THUPLIVD TSUHETVD PICENGVD BETPAPVD POPTRIVD TSUMERVD

SYMALBVS VACMYRVS MENFERVS PHYMALVS ALNSINVS LINBORVS SPIBETVS ARCUVAVS VACGLOVS AMEALNVS MAHREPVS RUBPARVS ACEGLAVS CHIUMBVS

IMPVAL

DIV/

DIV/

10000

1000

SHRUBS (c o n t)

1344.76 677.94 565.17 563.78 506.54 502.51 383.75 372.89 346.62 160.67 133.7 124.33 105.8 69.96 65.67 64.35 61.44 49.9 48.6 43.67 40.34 36.06 34.74 30.42 26.69 15.83 12.93 12.39 4.92 2.78 1.71

134.48 67.79 56.52 56.38 50.65 50.25 38.38 37.29 34.66 16.07 13.37 12.43 10.58 7 6.57 6.44 6.14 4.99 4.86 4.37 4.03 3.61 3 .47 3.04 2.67 1.58 1.29 1.24 0.49 0.28 0.17

579.52 491.19 464.3 463.64 436.47 401.46 374.23 364.75 323.4 314.29 292.44 241.07 201.85 188.3

57.95 49.12 46.43 46.36 43.65 40.15 37.42 36.47 32.34 31.43 29.24 24.11 20.18 18.83

SHRUBS

660 712 433 503 36 388 652 66 710 40 102 607 8 179

Acronym

IMFVAL

713 465 634 597 349 33 409 613 711 167 601 594 362 181 207 603 165 567 592 496 588 584 552 649 650 661 593 611 405 707 101 214 178 583 598 456 596 653 558 605 648 79 589 708 556 614 590 100

VACSCOVS PACMYRVS SHECANVS ROSGYMVS HOLDISVS ALNINCVS LONUTAVS SALSCOVS VACMEMVS CEAVELVS ROSWOOVS ROSAVS JUNCOMVS CHRNAUVS CORCANVS RUBIDAVS CEASANVS PURTRIVS RIBLACVS PHILEWVS RIBCERVS RHUGLAVS POTFRUVS SORSCOVS SORSITVS SYMOCCVS RIBVTSVS SALIX VS LONCILVS VACCAEVS BERBERVS CRADOUVS CHIMENVS RHOALBVS ROSNUTVS OPLHORVS ROSCANVS SPIDOUVS PRDVIRVS RUBLEUVS SORBUSVS ARTFRIVS RIBES VS VACCESVS PRUEMAVS SAMCERVS RIBIRRVS MAHAQUVS

179.8 164.08 159.41 131.35 129.09 128.1 127.31 118.22 115.45 105.6 101.4 93.88 74.15 61.5 59.08 56.84 55.68 51.58 47.76 47.34 44.78 43.67 41.05 37.89 33.69 33.02 32.6 31.4 29.58 27.31 26.86 23.82 21.84 21.37 20.69 17.39 15.25 14.72 14.06 13.97 12.79 12.26 12.06 11.72 10.24 10.24 9.17 8.94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17.98 16.41 15.94 13.14 12.91 12.81 12.73 11.82 11.54 10.56 10.14 9.39 7.42 6.15 5.91 5.68 5.57 5.16 4.78 4.73 4.48 4.37 4.1 3 .79 3.37 3.3 3.26 3.14 2.96 2.73 2.69 2.38 2.18 2.14 2.07 1.74 1.53 1.47 1.41 1.4 1.28 1.23 1.21 1.17 1.02 1.02 0.92 0.89

150 S p a c ia a N um ber

Acronym

IMPVAL

IMPVAL

DIV/

DIV/

10000

1000

S p a c ia a N um ber

SHRUBS (c o n t)

213 198 211 312 366 610 406 615 577 581 604 663 195 280 376 78 183 210 407 557 585 595 599

CRACOLVS CLEMATVS CORSTOVS GAUHUMVS JUNIPEVS SALBEBVS LONICEVS SAMRACVS RHAALNVS RHAPURVS RUBLACVS SYMOREVS CLECOLVS EURLANVS LEDGLAVS ARTEMIVS CHRYSOVS CORNUSVS LONINWS PRUNUSVS RHURADVS ROSACIVS ROSPISVS

XERTENVF ARNCORVF ARNLATVF EPIANGVF BALSAGVF ACHMILVF FRAVESVF HIEALBVF THAOCCVF FRAVTRVF CLIUNIVF G000BLVF VIOORBVF LUPSERVF MEDSATVF SMISTEVF MONPERVF ARNICAVF ARANUDVF ANAMARVF CENSOLVF LUPINUVF

IMPVAL

DIV/

DIV/

10000

1000

FORBS (c o n t)

8.94 8.24 7.79 5.03 5.03 5.03 4.92 3.85 3 .32 3.32 3 .32 3.32 2.78 2.78 2.78 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71

0.89 0.82 0.78 0.5 0.5 0.5 0.49 0.38 0.33 0.33 0.33 0.33 0.28 0.28 0.28 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17

376.13 375.85 326.77 300.47 222.15 214.6 150.17 149.01 138.4 130.85 126.92 117.72 108.87 104.91 104.84 104.57 102.63 101.83 101.59 92.56 92.02 89.99

37.61 37.59 32.68 30.05 22.21 21.46 15.02 14.9 13.84 13.08 12.69 11.77 10.89 10.49 10.48 10.46 10.26 10.18 10.16 9.26 9.2 9

PORBS

739 73 76 257 99 10 302 342 672 303 200 320 737 415 425 644 447 75 61 45 170 412

Acronym

IMPVAL

462 243 642 206 572 84 360 57 58 203 14 278 307 311 347 43 696 411 484 568 146 315 291 204 187 448 487 555 404 271 49 169 631 245 117 339 728 395 694 727 133 396 637 474 729 668 554

OSMCHIVF DISHOOVF SMIRACVF COPOCCVF PYRSECVF ASTCONVF HYPPERVF ANTRACVF APOANDVF TIATRIVF COLPARVF ADEBICVF ERYGRAVF GALAPAVF GALTRIVF HIERACVF AMSRETVF TRIOVAVF LUPCAUVF PENCONVF PYRASAVF CAMROTVF GEUTRIVF FILARWF CONARWF CIRARWF MONTIAVF PENSTEVF POTRECVF LOMTRIVF ERIHERVF ANEPIPVF CENMACVF SENTRIVF DISTRAVF BRODOUVF HEUCHEVF VICAMEVF LITHOPVF TRILONVF VERWORVF CALAPIVF LITPARVF SISALTVF PEDRACVF VICIA VF TAROFFVF POTGRAVF

89.35 85.47 78.85 78.09 72.31 70.24 68.86 68.1 67.97 58.81 54.4 48.72 47.8 46.38 44.56 43 .32 41.57 39.81 38.07 37.85 36.39 36.3 32.33 31.47 31.4 30.98 29.69 29 27.09 27 26.89 26.69 26.69 26.65 26.56 26.25 26.02 25.58 25.51 24.99 24.99 24.25 23.8 22.51 22.39 22.38 22.11 21.93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.93 8.55 7.88 7.81 7.23 7.02 6.89 6.81 6.8 5.7 5.44 4.87 4.78 4.64 4.46 4.33 4.16 3.98 3.81 3.79 3.64 3.63 3.23 3.15 3.14 3.1 2.97 2.9 2.71 2.7 2.69 2.67 2.67 2.66 2.66 2.62 2.6 2.56 2.55 2.5 2.5 2.42 2.38 2.25 2.24 2.24 2.21 2.19

151

Species Number

Acronym

IMPVAL

IMPVAL

DIV/

DIV/ 1000

10000

Species Number

FORBS (c o n t)

260 86 68 193 343 692 733 725 620 55 446 435 225 681 428 30 397 559 689 81 172 740 202 308 77 80 190 85 13 251 162 734 222 453 340 416 180 698 482 720 83 277 524 54 293 664 618 489

EPILOBVF ASTER VF AREMACVF CLAPULVF HIEALEVF TRIFOLVF VIOGLAVF VERTHAVF SEDSTEVF ANTNEGVF MONPARVF MICGRAVF DELBICVF TONFLOVF MELLINVF ALLCERVF LITRUDVF PRUVULVF TRADUBVF ASTADSVF CERARWF ZIGVENVF COLLINVF GALBORVF ARNSORVF ASACAUVF CIRVULVF ASTENGVF ACTRUBVF DRAVERVF CASLUTVF VIOLA VF CYNOFFVF MYOMICVF HEUCYLVF LOPWYEVF CHRLEUVF TRIREPVF PENALBVF VERCALVF ASTCHIVF EROCICVF PLAPATVF ANTMICVF F0RB1 VF SYNMISVF SCUANGVF PERGAIVF

Acronym

IMPVAL

IMPVAL

DIV/ 10000

DIV/ 1000

FORBS (c o n t)

21.88 21.53 21.44 21.44 20.69 20.38 20.38 19.22 18.91 18.77 18.55 18.24 18.15 18.02 17.49 17.4 17.4 17.17 17.09 16.97 16.42 16.42 15.88 15.71 15.04 15.04 14.95 14.51 14.19 13.86 13.57 13.45 13.44 13.44 13.13 13.12 12.79 12.37 12.26 12.26 12.06 12.06 11.72 11.44 11.44 11.44 10.75 10.68

2.19 2.15 2.14 2.14 2.07 2.04 2.04 1.92 1.89 1.88 1.86 1.82 1.82 1.8 1.75 1.74 1.74 1.72 1.71 1.7 1.64 1.64 1.59 1.57 1.5 1.5 1.5 1.45 1.42 1.39 1.36 1.35 1.34 1.34 1.31 1.31 1.28 1.24 1.23 1.23 1.21 1.21 1.17 1.14 1.14 1.14 1.08 1.07

326 473 575 647 242 216 217 163 459 136 314 355 400 630 495 735 91 62 69 144 194 196 522 715 714 730 65 346 48 70 348 226 53 221 89 103 333 390 399 441 639 726 37 189 192 304 328 619

GRISQUVF PEDICUVF RANUNCVF SOLMISVF DIPSYLVF CREATRVF CREPISVF CASMINVF ORTTENVF CALELEVF GEUMACVF HYDCAPVF LOMCOUVF SENINTVF PHALINVF VIONUTVF ASTRAGVF ARANUTVF ARE PUS VF CALTHAVF CLARKIVF CLEHIRVF PLAMAJVF VALERIVF VALERAVF VICVILVF ARCLARVF HIECYNVF ANEPATVF ARESERVF HIEUMBVF DELPHIVF ANTLUZVF CRYTORVF ASTMISVF BESRUBVF HABUNAVF LISCAUVF LOMATIVF MITSTAVF SISLOEVF VERVIRVF ALYALYVF CIRSIUVF CLALANVF FRIPDDVF HABELEVF SEDLANVF

10.65 10.65 10.65 10.65 10.55 10.37 10.37 9.61 9.61 9.3 9.3 9.3 9.3 9.3 9.19 9.19 9.03 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.88 8.86 8.24 8.24 8.24 8.12 7.48 7.48 7.17 7.17 7.17 7.17 7.17 7.17 7.17 7.17 7.05 7.05 7.05 7.05 7.05 7.05

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.07 1.07 1.07 1.07 1.05 1.04 1.04 0.96 0.96 0.93 0.93 0.93 0.93 0.93 0.92 0.92 0.9 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.82 0.82 0.82 0.81 0.75 0.75 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.71 0.71 0.71 0.71 0.71 0.71

152 S p a c ia a N um ber

Acronym

XMFVAL

IMPVAL

DIV/ 10000

DIV/ 1000

S p a c ia a N um ber

FORBS (c o n t)

658 265 443 444 527 716 719 12 15 161 247 337 410 445 553 627 628 641 731 31 42 164 231 274 500 563 636 67 276 350 389 455 609 655 659 666 50 182 249 258 262 430 438 454 472 569

STRAMPVF CRYLEUVF ERICORVF MONAREVF MONCORVF PLEMACVF VALLOCVF VERBLAVF ACOCOLVF AGOGLAVF CASHISVF DODECAVF HERLANVF LUPARGVF MONFISVF POTGLAVF SENCANVF SENCYMVF SMILACVF VIOADUVF ALLIUMVF AMSMENVF CASTILVF DIAARMVF ERIPUMVF PHLLONVF PTEANDVF SILMENVF ARECAPVF ERIOMBVF HOLUMBVF LINDALVF NEMBREVF RUMCRIVF STEOCCVF SWEPERVF TANVULVF ANGARGVF CALBULVF CHRVTLVF DODPAOVF EPICILVF EPIPANVF MENARWF MITELLVF MYOSOTVF PEDCONVF PYRCHLVF

Acronym

IMPVAL

IMPVAL

DIV/ 10000

DIV/ 1000

FORBS (c o n t)

7.05 6.41 6.41 6.41 6.41 6.41 6.41 6.41 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 5.98 5.98 5.98 5.98 5.98 5.98 5.98 5.98 5.03 5.03 5.03 5.03 5.03 5.03 5.03 5.03 5.03 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92

0.71 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49

544 90 82 501 705 56 173 208 244 275 369 449 471 621 646 667 674 675 717 16 46 184 272 309 318 345 377 414 422 431 439 485 499 574 608 616 670 688 334 693 94 98 140 141 145 177 186 246

POLPULVF ASTMODVF ASTATRVF PHLOX VF URTDIOVF ANTPAR VF CERASTVF CORMACVF DISPORVF ERISPEVF LACTUCVF MONUNIVF PEDBRAVF SEDUM VF SOLIDAVF TARAXAVF THLARWF THLFENVF VALSITVF AGOSERVF ANEMONVF CICINTVF ERIOGOVF GALTETVF GNAPHAVF HIECANVF LEPPERVF LUPLEUVF MALPARVF MENDISVF MITNUDVF PENELLVF PHLDIFVF RANMACVF RUMACTVF SAXFERVF THAALPVF TRACARVF HEDSULVF TRILEPVF ATHPUSVF BALINCVF CALNUTVF CALOCHVF CAMQUAVF CHEALBVF CIRALPVF DODCONVF

4.72 4.7 4.7 4.7 4.7 3.85 3 .85 3.85 3 .85 3 .85 3 .85 3 .85 3.85 3 .85 3 .85 3.85 3.85 3 .85 3.85 3.32 3.32 3 .32 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.01 3.01 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.47 0.47 0.47 0.47 0.47 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.3 0.3 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28

153

Species Number

Acronym

IMPVAL DIV/

IMPVAL DIV/

10000

1000

s p .ci e s H um ber

52 59 72 197 201 209 218 301 336 490 493 629 632 665 690 718 721 724 723 732 248 250 263 269

DODJEFVF DODPULVF EPIWATVF ERIGERVF HABENAVF HELANNVF HIEAURVF HYPERIVF LATHYRVF LISTERVF LITARWF MEDLUPVF MERLONVF OSMORHVF PHACELVF POLDOUVF POTCONVF SILCUCVF SOLCANVF THEMONVF ALYSSUVF ANEMULVF ANTCANVF ANTENNVF ARADRUVF ARNCHAVF BYRDOCVF CLEMACVF COLGRAVF CORMERVF CRUVULVF FRASPEVF HELUNIVF PETSAGVF PHAHASVF SENECIVF SHEARWF SYNTHYVF TRAGOPVF VERATRVF VERCATVF VERSERVF VERONIVF VXOCANVF DODJEFVF DODPULVF EPIWATVF ERIGERVF

IMPVAL

DIV/ 10000

DIV/ 1000

G R A SS IS

FORBS (c o n t)

248 250 263 269 329 335 344 357 374 392 393 424 434 463 492 539 551 635 645 673 38 47

Acronym

IMPVAL

2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.79 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 2.78 2.78 2.78 2.78

0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.28 0.28 0.28 0.28

143 123 24 283 288 153 148 223 533 255 530 532 119 152 418 124 654 132 135 285 21 254 535 224 158 121 120 159 502 491 460 316 71 20 17 142 122 368 23 139 699 534 18 290 321 116 286

CALRUBVG BROTECVG AGRSPIVG FESIDAVG FESSCAVG CARGEYVG CARCONVG DACGLOVG POAPRAVG ELYGLAVG POABULVG POAPALVG BROJAPVG CAREX VG LUZHITVG BROVULVG SPOCRYVG CALAMAVG CALCANVG FESOCCVG AGROSTVG ELYCAPVG POASECVG DANINTVG CARROIVG BROMUSVG BROMOLVG CARROSVG PHLPRAVG PHAARUVG ORYASPVG GLYELAVG ARILONVG AGROPYVG AGRALBVG FESMYUVG CALPURVG BRORIGVG KOECRIVG AGRSCAVG CALMONVG TRISPIVG POASANVG AGREXAVG FESTUCVG GRASS VG BROCILVG FESOVIVG

1231.8 303.99 300.25 231.04 127.12 125.64 113.26 102.95 101.9 94.78 94.6 79.1 76.82 69.99 68.09 60.24 58.01 57.1 56.68 50.21 46.08 42.82 42.25 40.47 39.36 35.18 33.02 28.69 26.51 24.99 23 .8 22 19.95 18.68 18.68 18.68 16.97 16.42 15.88 15.04 13.97 12.26 12.21 11.72 11.72 10.68 10.65 10.65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123.18 30.4 30.02 23 .1 12.71 12.56 11.33 10.3 10.19 9.48 9.46 7.91 7.68 7 6.81 6.02 5.8 5.71 5.67 5.02 4.61 4.28 4.23 4.05 3.94 3.52 3.3 2.87 2.65 2.5 2.38 2.2 1.99 1.87 1.87 1.87 1.7 1.64 1.59 1.5 1.4 1.23 1.22 1.17 1.17 1.07 1.07 1.07

154 Species Number

Acronym

XMFVAL

IMPVAL

DIV/ 10000

DIV/ 1000

Species Humber

GRASS1VG PHLALPVG CARSTIVG FESRUBVG MELBULVG BROBRIVG CARDEWVG LUZCAMVG JUNCUSVG POA VG AGRREPVG BROINEVG GLYGRAVG AGRINTVG CALK0EVG CARRETVG CINLATVG DESELOVG FESSOBVG LUZPARVG MELSUBVG BR0CARVG CARINTVG CARMICVG DESCESVG POACOMVG STI0CCVG AGRSTOVG CARCANVG CARCRAVG CARHOOVG DESCHAVG JUNDRUVG JUNENSVG ORYZOPVG PANSCRVG SCIMICVG STIPA VG TRICANVG

10.65 10.65 8.94 8.94 8.94 7.48 7.45 6.41 5.03 5.03 4.92 4.7 4.7 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32 2.78 2.78 2.78 2.78 2.78 2.78 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71

1.07 1.07 0.89 0.89 0.89 0.75 0.75 0.64 0.5 0.5 0.49 0.47 0.47 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.28 0.28 0.28 0.28 0.28 0.28 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17

92.48 68.54 57.72 52.7 51.13 50.92

9.25 6.85 5.77 5.27 5.11 5.09

TONS

564 264 738 93 622 327

PTEAQUVE EQUARWE WOOOREVE ATHFILVE SELAGIVE GYMDRYVE

IMPVAL

DIV/ 10000

DIV/ 1000

FM8NS (c o n t)

6RASSKS (c o n t)

322 497 160 287 426 114 151 417 363 529 22 118 317 19 137 157 185 229 289 419 429 115 155 156 227 531 656 25 147 149 154 228 364 365 461 466 617 657 691

Acronym

IMPVAL

623 625 420 253 282 542 219 421 541 626

SELDENVE SELWALVE LYCCOMVE DRYFILVE FERN VE POLMUNVE CRYCRIVE LYCOPOVE POLLONVE SELWATVE

33.4 11.72 6.1 4.7 3.85 2.78 1.71 1.71 1.71 1.71

3.34 1.17 0.61 0.47 0.38 0.28 0.17 0.17 0.17 0.17

444.54 354.24 300.8 127.54 109.94 102.74 81.47 80.38 72.82 60.88 52.7 45.28 45.25 43.98 35.65 33.36 32.01 29.92 29.75 27.96 26.84 23.38 21.66 18.88 17.8 16.97 15.01 14.82 14.72 12.26 11.4 11.4 10.65 10.65 10.65

44.45 35.42 30.08 12.75 10.99 10.27 8.15 8.04 7.28 6.09 5.27 4.53 4.53 4.4 3.56 3.34 3.2 2.99 2.98 2.8 2.68 2.34 2.17 1.89 1.78 1.7 1.5 1.48 1.47 1.23 1.14 1.14 1.07 1.07 1.07

MOSSSS

587 540 106 450 685 130 238 586 537 528 240 126 235 239 519 174 111 578 113 442 108 356 109 110 353 338 546 96 305 352 543 579 97 515 520

RHYTRINM POLJUNNM BRAALBNM MOSS NM TORRURNM BRYSANNM DICRANNM RHYROBNM POHNUTNM PLESCHNM DICTAUNM BRYCAENM DICFUSNM DICSCONM PLAINSNM CERPURNM BRALEINM RHACANNM BRASTANM MNISPINM BRACHYNM HYLSPLNM BRAERYNM BRAHYLNM HOMNEVNM HETMACNM POLYTRNM AULANDNM FUNHYGNM HOMMEGNM POLPILNM RHAHETNM AULPALNM PLACILNM PLALAENM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

Species Number

Acronym

IHFVAL

IM PVAL

DIV/ 10000

D IV /

1000

Species Number

TORTULNM DREUNCNM BRASALNM TIMAUSNM GRIPULNM EURPULNM PLAMEDNM DICMUENM HOMAENNM ATRSELNM BRAASPNM GRIAP0NM GRIMMINM LESRADNM 0RTH0TNM PLADRUNM POHLIANM SELDONNM TORBISNM PTICRINM RHAPATNM DICCRINM DICACUNM DICELONM DICPOLNM DICUNDNM LESINCNM PLARUGNM RHINUDNM TORPRINM MARJUNNM

IMPVAL

DIV/ 10000

DIV/ 1000

L IC H IN S (c o a t)

MOSSKS (c o a t)

686 252 112 680 325 281 523 236 351 95 107 323 324 379 458 517 536 624 682 565 580 233 232 234 237 241 378 525 582 683 423

Acronym

IMPVAL

10.65 7.45 6.41 6.41 6.1 5.03 5.03 4.7 4.7 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32 2.78 2.78 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71

1.07 0.75 0.64 0.64 0.61 0.5 0.5 0.47 0.47 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.28 0.28 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17

302.89 122.62 87.17 83.12 78.17 75.03 62.72 59.2 31.27 19.98 15.71 12.82 10.55 8.55

30.29 12.26 8.72 8.31 7.82 7.5 6.27 5.92 3.13 2 1.57 1.28 1.05 0.85

385 398 480 125 176 470 380 478 468 469 481 175 27 476 516

LICHENNL LOBPULNL PELTIGNL BRYABBNL CETPLANL PECSUBNL LETHARNL PELMALNL PARSULNL PARULONL PELVENNL CETCANNL ALEGLANL PELAVLNL PLACYNNL

8.55 7.17 7.17 6.1 5.98 5.03 4.92 4.7 4.5 3.43 3.32 2.78 1.71 1.71 1.71

LICHENS

129 477 29 358 359 381 475 191 706 26 518 479 28 361

BRYORINL PELCANNL ALESARNL HYPIMSNL HYPOGYNL LETVULNL PELAPHNL CLADONNL USNEA NL ALECT0NL PLAGLANL PELRUFNL ALEJVINL HYPPHYNL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.85 0.72 0.72 0.61 0.6 0.5 0.49 0.47 0.45 0.34 0.33 0.28 0.17 0.17 0.17

156

Appendix 3. Cover / Constancy Tables 3A. 3Aa. 3 B. 3 C. 3Ca. 3Cb. 3 D. 3 E. 3 F. 3 G. 3 H. 3 I. 3 J.

Tsuga heterophylla - Thuja plicata Forest Alliance Tsuga heterophylla - Thuja plicata Woodland Alliance Pinus contorta Forest Alliance Abies lasiocarpa Forest and Woodland Alliance Abies lasiocarpa (early seral/open slope) Perennial Forb and Shrubland Alliance Abies lasiocarpa (high elevation) Perennial Forb Alliance Abies grandis Forest Alliance Alnus incana (wet) Shrubland Alliance Pinus contorta - Larix occidentalis (early serai) Woodland Alliance Larix occidentalis - Betula papyrifera (Populus tremuloides) mixed Forest / Woodland Alliance Larix occidentalis - Pseudotsuga menziesii Forest and Woodland Alliance Pseudotsuga menziesii - Pinus ponderosa Forest and Woodland Alliance Pinus ponderosa - Agropyron spicatum Shrubland Alliance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix 3 A. Tsuga heterophylla - Thuja plicata Forest Alliance PA1 - TSUHET-THUPLI/ /TIATRI-DISHOO Plots=3

PA2 - TSUHET-THUPLI/(ABIGRA)/PACMYR/CLIUNI

SubPA47 - THUPLI/ PACMYR-LINBOR/CLIUNI Plots=10

SubPA46- TSUHETTHUPLI (ABIGRA)/ COPOCC/RHYROB Plots=22 COV

COV

CON

Tree* ABIGRAVT LAROCCVT PICENGVD PICENGVT PINMONVD PINMONVT PSEMENVT TAXBREVT THUPLIVT TSUHETVT TSUMERVT

30 3 I 15 1 3 5 3 2 32 20

67 33 33 100 67 33 100 67 67 67 33

Shrubs ACEGLAVS CHIMENVS CHIUMBVS LONUTAVS MENFERVS PACMYRVS RIBVISVS ROSWOOVS RUBPARVS SORSCOVS VACMEMVS

2 1 1 1 3 1 1 I I I 5

67 33 67 67 33 100 33 67 67 33 100

Mosses BRYSANNM MOSS NM

15 7

67 33

Lichens ALESARNL BRYORINL HYPIMSNL PARULONL

1 I I 1

67 100 67 33

Grasses BROVULVG

1

33

Forbs ACTRUBVF ADEBICVF ARNCORVF ARNICA VF ASTCONVF CUUNIVF COPOCCVF

3 8 17 I I 2 2

33 100 67 33 33 100 67

COV

CON

Trees ABIGRAVT ABILASVT ABILASVD LAROCCVT LAROCCVD PICENGVT PINCONVT PINMONVD PINMONVT PINPONVT POPTREVT PSEMENVT TAXBREVT THUPLIVT TSUHETVT

3 4 3 6 I I 1 6 10 3 3 3 3 31 14

80 50 10 70 20 20 20 20 80 10 30 50 20 100 100

Shrubs ACEGLAVS ALNSINVS AMEALNVS BERREPVS CEASANVS CHIUMBVS LINBORVS LONUTAVS MENFERVS OPLHORVS PACMYRVS RHOALBVS RIBCERVS RIBLACVS ROSGYMVS ROSWOOVS RUBIDAVS RUBPARVS SALSCOVS SHECANVS SPIBETVS SYMALBVS VACGLOVS VACMEMVS

4 4 2 1 3 9 6 6 21 1 11 10 I 1 1 3 3 5 10 1 I I 6 20

70 40 40 10 10 40 90 40 40 10 80 10 10 40 20 20 20 70 20 20 20 10 50 10

Mosses AULANDNM AULPALNM BRAALBNM

I 10 20

10 10 20

CON

Trees ABIGRAVD ABIGRAVT ABILASVD ABILASVT BETPAPVD BETPAPVT LAROCCVD LAROCCVT PICENGVD PICENGVT PINCONVD PINCONVT PINMONVD PINMONVT PSEMENVD PSEMENVT THUPLIVD THUPLIVT TSUHETVD TSUHETVT

1 18 1 2 1 8 1 9 I 8 2 8 3 4 I 7 1 21 2 27

22.5 81 4.5 9 4.5 13.5 36 63 4.5 31.5 22.5 36 22.5 18 4.5 63 18 95 27 95

Shrubs ACEGLAVS AMEALNVS BERREPVS CHIMENVS CHIUMBVS CORCANVS GAUHUMVS LINBORVS LONUTAVS MENFERVS OPLHORVS PACMYRVS PHYMALVS ROSA VS ROSGYMVS ROSNUTVS ROSWOOVS RUBPARVS SALSCOVS SPIBETVS VACGLOVS VACMYRVS

2 1 I I 1 6 I 3 1 2 I I 3 1 I I 4 2 I I 4 I

18 4.5 27 18 86 9 4.5 86 18 13.5 4.5 68 4.5 9 9 4.5 13.5 13.5 4.5 27 40.5 13.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158 Appendix 3 A .

Tsuga heterophylla - Thuja plicata Forest A lliance, cont.

PA1 - TSUHET-THUPLI/ TIATRI-DISHOO (cont)___________

PA2 - TSUHET-THUPLI/(ABIGRA)/PACMYR/CLIUNI

SubPA46- TSUHETTHUPLI (ABIGRA)/ COPOCC/RHYROB Plots=22 COV Forbs (c o m ) DISHOOVF DISTRAVF GOOOBLVF HIEALBVF USTERVF OSMCHIVF PYRASAVF PYRSECVF SMIRACVF THAOCCVF TIATRTVF TRIOVAVF VIOGLAVF VIOORBVF XERTENVF

5 1 1 I I 6 1 2 3 2 10 1 10 6 2

COV

CON 100 33 100 33 33 67 67 67 67 67 100

too 33 100 67

(cont) SubPA47 - THUPLI/ PACMYR-LINBOR/CLIUNI Plots=10 COV

CON

Mosses ATRSELNM BRAALBNM BRACHYNM BRALEINM BRASALNM BRYSANNM DICRANNM D1CSCONM HYLSPLNM MNISPINM MOSS NM PLAINSNM PLESCHNM POUUNNM RHYROBNM RHYTR1NM T1MAUSNM

3 20 2 3 3 2 2 1 3 1 1 1 2 1 6 12 2

4.5 4.5 9 4.5 4.5 9 31.5 4.5 4.5 4.5 4.5 4.5 22.5 9 45 36 9

Lichens ALECTONL ALEJVINL ALESARNL BRYORINL CLADONNL HYPIMSNL HYPOGYNL LOBPULNL PELAPHNL PLAGLANL USNEA NL

I 3 I 1 I 1 2 2 1 1 1

13.5 4.5 63 45 13.5 22.5 40.5 9 27 22.5 9

Grasses AGRSPIVG BROVULVG CALRUBVG CARCONVG CARDEWVG LUZPARVG

1 I 1 1 3 3

4.5 13.5 4.5 4.5 4.5 4.5

Forbs ADEBICVF ANEPIPVF ANTRACVF ARANUDVF ARNLATVF ASACAUVF CUUNIVF

3 1 1 7 15 2 1

4.5 9 4.5 22.5 9 9 45

CON

Mosses (cont) BRYSANNM DICFUSNM D1CTAUNM DREUNCNM MNISPINM MOSS NM PLESCHNM POUUNNM RHYROBNM RHYTRINM

5 3 3 3 3 3 3 5 7 14

30 10 10 10 10 10 10 40 20 30

Lichens ALEJVINL ALESARNL BRYORINL CLADONNL HYPIMSNL HYPOGYNL LOBPULNL PELCANNL PLAGLANL PLAGLANL USNEA NL

3 2 5 1 2 8 1 I I 1 I

10 20 50 30 20 30 10 10 20 10 10

Grasses BROVULVG CALRUBVG CARCONVG

1 1 I

20 10 10

Forbs ACHMiLVF ACTRUBVF ADEBICVF ANAMARVF ARANUDVF ARNICAVF ARNLATVF CIRALPVF CUUNIVF COPOCCVF DISHOOVF EPIANDVF ERYGRAVF FORBPEVF GALTRTVF GOOOBLVF HEUCHEVF

I 1 2 I 6 4 I I 5 2 2 12 10 I 2 I 1

20 10 30 30 20 30 10 10 100 40 30 50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to

10 50 80 10

159 Appendix 3 A .

Tsuga heterophylla - Thuja plicata Forest Alliance, cont. PA2 - TSUHET-THUPLI/(ABIGRA)/PACMYR/CLIUNI (cont)

SubPA46 - TSUHETTHUPLI (ABIGRA)/COPOCC/RHYROB PIots=22 COV Forbj (con1) COPOCCVF CORMACVF DISHOOVF EPIANGVF FRAVESVF FRAVIRVF GALAPAVF GALBORVF GALTRIVF GOOOBLVF HIEALBVF HIERACVF UTRUDVF MONUNIVF OSMCHIVF PTEANDVF PYRASAVF PYRCHLVF PYRSECVF SMIRACVF SMISTEVF THAOCCVF TIATRIVF TRIOVAVF VIOGLAVF VIOORBVF XERTENVF Ferns ATHF1LVE EQUARVVE FERN VE GYMDRYVE LYCCOMVE POLMUNVE PTEAQUVE

SubPA47 - THUPLI/ PACMYR-LINBOR/CLIUNI Plots=10 COV

CON

11

1 1 I 4

27 4.5 18 4.5 4.5 9 9 4.5 4.5 58.5 4.5 13.5 4.5 4.5 13.5 4.5 13.5 13.5 45 13.5 13.5 9 13.5 36 9 45 18

3 1 1 I 2 1 2

4.5 4.5 4.5 4.5 9 4.5 9

1 30

1 1

I 1 I I 1 I I 1 1 I 1 1 I I

CON

Forbj (cont) HIEALBVF HIERACVF HUECRA USTERVF MITNUDVF OSMCHIVF PYRASAVF PYRSECVF SMIRACVF SMISTEVF STRAMPVF THAOCCVF TIATRIVF TRIOVAVF VIOORBVF XERTENVF

1 1 3

10 10 10 10 10 20 10 40 30 40 10 30 20 20 100 20

Ferns ATHFILVE GYMDRYVE

3 14

to 30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 1 1 1 I I 1 1 I

160 Appendix 3 A a.

Tsuga heterophylla - Thuja plicata W oodland A llian ce

PA3 - ALNSIN-PACMYR (RUBPAR)/EPIANG/ CARCON/POLJUN Plots=10 COV Trees ABIGRAVT ABILASVD ABILASVT BETPAPVT LAROCCVD LAROCCVT PICENGVT PINCONVT PINMONVT PINPONVT POPTREVT POPTRTVT PSEMENVT THUPLIVT TSUHETVT TSUMERVT

3 I

Shrubs ACEGLAVS ALNSINVS AMEALNVS ARCUVAVS CEASANVS CEAVELVS CHIUMBVS CORCANVS GAUHUMVS LINBORVS LONUTAVS MENFERVS PACMYRVS RIBLACVS RIBV1SVS ROSA VS RIJBIDAVS RUBPARVS SALBEBVS SALSCOVS SAMCERVS SHECANVS SPIBETVS SYMALBVS VACGLOVS

1 7 I 3 2 3 3 I 3 10 2 3 8 10 2 3 2 10 3 2 3 3 5 1 7

10 70 10 10 30 10 10 10 10 10 30 10 70 10 40 10 30 70 10 40 10 10 30 10 40

Mosses CERPURNM FUNHYGNM

3 7

20 20

3 2 3 1 3

COV

CON 40 10 50 20 10 80 70 40 80 40 10 30 50 50 40 10

I 3 4 7

PA3 - ALNSIN-PACMYR (RUBPAR)/EPIANG/ CARCON/POLJUN (cont)

PA3 - ALNSIN-PACMYR (RUBPAR)/EPIANG/ CARCON/POLJUN (cont)

COV

CON

Mosses (cont) MOSS NM POHNUTNM POUUNNM

3 30 11

10 10 70

Grasses AGREXAVG AGRSCAVG BROVULVG CALKOEVG CALRUBVG CARCONVG CARGEYVG CARROIVG ELYGLAVG FESTUCVG PHLALPVG

I 4 20 3 2 6 2 20 2 1 6

10 30 10 10 30 60 40 10 30 10 20

Forbs ACHMILVF ANAMARVF ARNICAVF ARNLATVF ASTCONVF ASTENGVF CENMACVF CHRLEUVF CIRVULVF CUUNIVF COPOCCVF CRYLEUVF DISHOOVF EPIANGVF EPILOBVF EPIWATVF FRAVESVF HIEALBVF HYPPERVF MONCORVF RUMACTVF SMISTEVF SOLCANVF TANVULVF THAOCCVF TRIOVAVF VALSITVF XERTENVF

I 5 1 3 1 1 1 I I 1 3 I 3 32 20 1 1 4 1 3 3 1 1 1 2 1 1 7

20 90 10 10 20 10 10 10 10 40 10 10 10 90 10 10 20 90 30 10 10 10 10 10 20 10 10 40

Ferns ATHFILVE PTEAQUVE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 3

CON

10

161 Appendix 3 B .

Pinus contorta Forest A lliance PA4 - PINCON-LAROCC VACMYR(ALNSIN)/ CALRUB (cont)

PA4 - PINCON-LAROCC VACMYR(ALNSEV)/ CALRUB Plots=7 COV

6

86

2 3 8 35 1

29 14 71

Shrubs ALNSINVS BERREPVS CHIUMBVS MENFERVS SALSCOVS SAMCERVS SORSCOVS SPIBETVS VACGLOVS VACMYRVS

38 1 2 3 I I 10 2 20 27

100 43 57 14 29 14 14 29 14

I 4 I

COV

CON

Trees ABILASVD ABILASVT LAROCCVD LAROCCVT PICENGVT PINALBVT PINCONVD PINCONVT PSEMENVT

14 71 14

86 14

86

Mosses BRACHYNM BRALEINM BRYCAENM BRYSANNM DICELONM DICRANNM MOSS NM POUUNNM RHYROBNM

3 I 40 1 I I 1 2 3

14 14 14 14 14 14 14 43 14

Lichens BRYORINL CETPLANL CLADONNL HYPIMSNL LETVULNL

2 I I I 1

72 14 14 14 14

Grasses BROVULVG CALRUBVG

3 25

14 72

Forbs ACHMILVF ANAMARVF

I I

14 43

CON

Forbs (con/) ARNCORVF ARNICAVF ARNLATVF CLIUNIVF DISHOOVF EP1ANGVF FRAVIRVF GALTRTVF GOOOBLVF HEUCYLVF HIERACVF OSMCHIVF PENSTEVF PYRASAVF PYRSECVF SMISTEVF THAOCCVF TRIOVAVF VIOLA VF VIOORBVF

2 3 1 2 3 2 1 1 I 1 I 1 1 I I 40 I I 1 2

43 14 14 29 14 29 14 14 57 14 29 43 14 29 29 14 14 14 14 43

Ferns ATHFILVE GYMDRYVE PTEAQUVE

2 3 3

29 14 14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

PA6 - ABILAS/VACGLO/XERTEN/RHYROB-BRYORI plots=9

PA5 - ABILAS/ALNSEVRUBPAR/ARNLAT THAOCC Plots=13

COV Trees ABIGRAVT ABILASVD ABILASVT LAROCCVD LAROCCVT PICHNGVD PICENGVT PINCONVD PINCONVT PSEMENVD PSEMENVT THUPLIVT TSUHETVT TSUMERVD TSUMERVT Shrubs ACEGLAVS ALNSINVS BERREPVS CHIMENVS CHIUMBVS HOLDISVS LONUTAVS MENFERVS OPLHORVS PACMYRVS RIBES VS RIBLACVS RIBVISVS ROSWOOVS RUBIDAVS RUBPARVS SALSCOVS SAMCERVS SAMRACVS SHECANVS SORSCOVS

6 I 13 1 11 1 11 2 2 1 16 3 2 1 30

8 8 77 31 69 8 62 23 54 15 54 8 23 8 8

SPIBETVS VACGLOVS VACMEMVS VACMYRVS

8 16 3 2 2 I 5 16 10 3 2 4 4 3 I 6 9 3 I I 6 11 2 16 25 15

23 77 8 15 IS 8 62 62 15 8 15 38 31 15 8 77 31 8 15 8 15 23 23 62 15 15

Mosses BRAALBNM BRACHYNM

6 6

38 15

sorsitvs

COV

CON

CON

Trees ABIGRAVT ABILASVD ABILASVT LAROCCVD LAROCCVT PICENGVT PINALBVT PINCONVD PINCONVT PINMONVD PINMONVT PSEMENVT THUPLIVT TSUHETVT

4 3 26 3 11 8 3 1 7 1 11 11 I 1

56 67 89 44 89 67 11 44 56 11 44 78 11 33

Shrubs ACEGLAVS ACEGLAVS ALNSINVS AMEALNVS BERREPVS CHIMENVS CHIUMBVS LONICEVS LONUTAVS MENFERVS PACMYRVS RIBVISVS ROSGYMVS ROSWOOVS RUBPARVS SHECANVS SORSITVS SPIBETVS VACGLOVS VACMYRVS

3 2 1 1 2 3 1 2 13 2 1 10 3 I I 3 6 13 I

11 22 11 11 22 56 11 44 44 67 11 11 It 11 11 11 22 89 22

Mosses BRAHYLNM BRALEINM BRYSANNM DICFUSNM DICMUENM MNISPINM PLALAENM POHLIANM POHNUTNM

3 I 3 3 3 I 10 3 10

11 11 11 11 11 11 11 II

SubPA40 - ABILASLAROCC/VACMYR ARNLAT Plots-11 COV Trees 1 ABIGRAVD ABIGRAVT 2 2 ABILASVD 14 ABILASVT 2 LAROCCVD 17 LAROCCVT 1 PICENGVD PICENGVT 11 PINCONVD 5 PINCONVT 3 PINMONVT 3 POPTRIVT 1 17 PSEMENVT THUPLIVT 5 TSUHETVT 2 Shrubs ACEGLAVS ALNSINVS AMEALNVS BERREPVS CHIMENVS CHIUMBVS CORCANVS UNBORVS LONUTAVS MENFERVS PHYMALVS ROSA VS RUBPARVS SALSCOVS SHECANVS SPIBETVS VACGLOVS VACMEMVS VACMYRVS VACSCOVS Mosses BRACHYNM BRAHYLNM BRASALNM BRYSANNM DICRANNM DICSCONM MOSS NM PLESCHNM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 5 3 3 2 II 2 11 3 3 4 3 2 3 17

3 10 3 4 3 3 17

CON 9 27 18 82 27 91 18 82 73 55 9 9 73 27 45

9 91 9 9 9 55 18 73 27 82 9 9 55 36 9 27 36 9 91 9

9 18 9 36 9 9 9 18

163 Appendix 3 C .

Abies lasiocarpa Forest and W oodland A llian ce, cont.

PA5 - ABELAS/ALNSINRUBPAR/ARNLATTHAOCC Plots=13

PA6 - ABELAS/VACGLO/XERTEN/RHYROB-BRYORI Plots=9 SubPA40 • ABILASLAROCC/VACMYR ARNLAT Plots=ll

(cont)

Lichens ALESARNL BRYORINL HYPIMSNL HYPPHYNL LETVULNL PELCANNL USNEANL Grasses BROMUSVG BROVULVG CALRUBVG CARDEWVG CARGEYVG CARROIVG ELYGLAVG LUZHITVG TRICANVG Forbs ACTRUBVF ANAMARVF ANEPIPVF ARNCORVF ARNLATVF ASTCONVF ASTENGVF CUUN1VF DISHOOVF DISTRAVF EPIANGVF FRAVESVF GALAPAVF GALBORVF GALTRIVF GOOOBLVF HABHYPVF HIEALBVF HIERACVF MONCORVF OSMCHIVF

COV

CON

COV Mosses (cont) MOSS NM POUUNNM RHINUDNM RHYROBNM

I 3 I 3

I 2 1 1 1 1 I

8 23 8 31

23 69 8 8 15 23 8

1 2 9 3 1 10 3 10

I

8 39 39 8 8 8 8 8 8

4 2 1 8 21 1 1 5 3 1 2 1 I 1 2 I 1 I I 3 1

31 15 15 23 62 8 8 54 15 15 31 8 8 8 23 39 8 15 8 8 54

COV

CON

Mosses (cont) POUUNNM RHYROBNM RHYTRINM

3 6 10

33 56 22

Lichens ALEIV1NL ALESARNL BRYORINL HYPIMSNL HYPOGYNL LETVULNL USNEA NL

3 I 4 1 3 1 1

22 67 100 11 11 U 22

Grasses BROVULVG CALRUBVG CARCONVG LUZHITVG

2 6 I 1

33 22 11 11

Forbs ADEBICVF ANEPIPVF AREMACVF ARNCORVF ARNICAVF ARNLATVF ASTCONVF CLIUNIVF ERYGRAVF FILARWF FRAVESVF GOOOBLVF HIEALBVF HIERACVF OSMCHIVF PEDRACVF PTEANDVF PYRASAVF PYRPICVF PYRSECVF SMIRACVF THAOCCVF TIATRIVF TRIOVAVF VIOORBVF XERTENVF

I I 1 1 11 10 I 2 1 3 3 1 1 1 I I I 3 I 3 3 4 I I 1 23

11 22 11 11 22 44 11 33 11 II 11 67 56 11 11 22 11 44 11 11 tl 44 22 11 44 89

Mosses (cont) POHNUTNM POUUNNM RHYROBNM RHYTRINM

CON

I I 3 2

9 45 9 27

2 1 2

Lichens ALECTONL ALESARNL BRYORINL CLADONNL HYPIMSNL HYPOGYNL HYPPHYNL LETVULNL PARSUANL PELCANNL PELTIGNL PLAGLANL

i 2 3 I 1 1 I 1

27 9 91 9 9 27 9 27 9 18 9 9

Grasses BROMUSVG CALRUBVG CARGEYVG FESOCCVG

I 5 1 1

9 45 9 9

1 9

9 27 18 91 9 36 9 9 9 9 9 9 55 9 9 9 9 36 9 27 55

Forbs ANAMARVF ARNCORVF ARNCORVF ARNLATVF CIRARWF CUUNIVF COPOCCVF DISHOOVF EPIANGVF FRAVESVF FRAVIRVF GALTRIVF GOOOBLVF HIEALBVF HIERACVF USCAUVF USCORVF OSMCHIVF PEDRACVF PYRASAVF PYRSECVF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i

3

31 I 2 I 3 1 I I 3 I 1 I 1 1 2 1 I 1

164 Appendix 3 C.

Abies lasiocarpa Forest and W oodland A lliance, cont.___________

PA5 - ABILAS/ALNSEVRUBPAR/ARNLATTHAOCC Plots=13

PA6 - ABELAS/VACGLO/XERTEN/RHYROB-BRYORI Plots=9

(cont)

SubPA40 - ABILASLAROCC/VACMYR ARNLAT P Iots= ll

COV

COV

CON

Forbs (c o n t ) PEDRACVF PYRSECVF SENTRIVF SMIRACVF SMISTEVF STRAMPVF THAOCCVF TIATRIVF TRACARVF TRIOVAVF VERATRVF VERCALVF VERVIRVF VIOGLAVF VIOORBVF XERTENVF

1 I 2 I I I 3 5 3 I 1 10 1 I 2 1

8 39 39 15 15 23 62 39 8 15 8 8 8 8 54 23

Ferns ATHFILVE GYMDRYVE PTEAQUVE

8 10 20

31 15 8

Forbs ( c o n t ) PYRUNIVF SMIRACVF THAOCCVF TIATRIVF TRIOVAVF VIOLA VF VIOORBVF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CON 1 1 2 1 3 I 1

9 18 27 9 9 9 36

165 A ppendix 3 C .

Abies lasiocarpa Forest and W oodland Alliance, cont.

PA6 - ABELAS/VACGLO/ XERTEN/RHYROB ( c o n t )

PA7 - ABILAS-PINCON/ VACMYR-ALNSIN/ ARNLAT Plots=8

PA8 - ABILAS-PICENG/ MENFER-RHOALB/ BRAERY Plots=6

SubPA41 - ABILAS-LAROCC /M ENFER-VACSCO Plots=17 COV 2 28 I 10 1 II 5 21 I 1 9 I 1

71 94 41 76 18 94 41 82 18 12 35 6 24

Shrubs ALNSINVS BERREPVS CHIUMBVS UNBORVS LONUTAVS MENFERVS PACMYRVS PHILEWVS RIBLACVS RIBVISVS RUBPARVS SALSCOVS SHECANVS SPIBETVS VACGLOVS VACMYRVS VACSCOVS

13 t 2 1 1 33 3 1 I 3 I 3 I 1 2 16 20

29 6 41 6 6 82 6 6 12 6 6 6 6 18 18 82 12

Mosses BRAALBNM BRAHYLNM BRALEINM BRASTANM BRYSANNM DICFUSNM DICRANNM DICSCONM PLALAENM POHNUTNM PO U U N N M POLPILNM RHYROBNM

2 I 20 10 13 5 I 6 I 5 3 10 5

COV

CON

T rees ABILASVD ABILASVT LAROCCVD LAROCCVT PICENGVD PICENGVT PINCONVD PINCONVT PINMONVT PSEMENVD PSEMENVT TAXBREVT TSUHETVT

12 6 6 6 24 18 12 12 6 18 24 6 35

T rees ABILASVT LAROCCVD LAROCCVT PICENGVT PINCONVD PINCONVT PINMONVT PSEMENVT THUPLIVT TSUHETVT

17 I 17 1 4 20 I 10 7 1

75 38 75 63 75 88 13 50 25 25

Shrubs ALNSINVS AMEALNVS CHIMENVS CHIUMBVS UNBORVS LONUTAVS MENFERVS PACMYRVS RIBLACVS ROSWOOVS RUBPARVS SALSCOVS SHECANVS SORSCOVS SPIBETVS VACGLOVS VACMYRVS

13 I I 1 I I 4 5 I I 3 4 11 1 I 4 28

63 13 13 63 13 25 38 38 13 25 25 50 25 13 63 50 100

Mosses BRAALBNM BRASTANM MOSS NM POHNUTNM POUUNNM RHYROBNM

I 1 1 1 3 2

13 13 13 13 63 38

U chens ALECTONL ALESARNL BRYORINL CLADONNL HYPIMSNL LETVULNL PELCANNL

1 I 2 I I 1 I

COV

CON

25 38 88 25 38 50 25

Trees ABILASVT PICENGVT PINALBVD PINALBVT PINCONVD PINCONVT PINMONVD PINMONVT

CON

40 7 3 10 3 3 I

2

83 100 33 17 33 33 17 67

Shrubs MENFERVS RHOALBVS SORBUSVS SORSITVS VACGLOVS VACMEMVS VACMYRVS VACSCOVS

62 8 I 3 20 14 13 3

100 67 17 17 17 67 67 17

Mosses BRAALBNM BRAERYNM BRASTANM BRYSANNM DICFUSNM DICRANNM* DICTAUNM MOSS NM POUUNNM RHYROBNM

10 20 11 1 20 11 10 10 6 1

17 17 33 17 33 33 33 33 33 33

Lichens ALECTONL BRYORINL CLADONNL LETVULNL

1 I I I

17 83 33 50

G rasses CARGEYVG LUZCAMVG

1 1

17 17

Forbs ANAMARVF ARNICA VF ARNLATVF CORMERVF EPIANGVF

I I 3 I I

17 17 17 17 17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166 Appendix 3 C .

Abies lasiocarpa Forest and W oodland Alliance, cont.

PA6 - ABIL AS/VACGLO/ XERTEN/RHYROB (cont)

PA7 - ABILAS-PINCON/ VACMYR-ALNSIN/ ARNLAT (cont)

PA8 - ABILAS-PICENG/ MENFER-RHOALB/ BRAERY (cont)

SubPA41 - ABILASLAROCC /MENFER-VACSCO

(cont) COV Mosses ( c o n t ) RHYTRINM Lichens ALECTONL ALESARNL BRYORINL CLADONNL HYPIMSNL HYPOGYNL LETVULNL UCHENNL PELAPHNL PELCANNL PLAGLANL USNEA NL G rasses BROMUSVG CALRUBVG CARCONVG ELYGLAVG POA VG Forbs ANEPIPVF ANTPARVF ARNCORVF ARNICA VF ARNLATVF DISHOOVF EPIANGVF GNAPHAVF GOOOBLVF HIEALBVF HIERACVF USCAUVF LUPSERVF OSMCHIVF PEDRACVF PYRASAVF PYRCHLVF PYRSECVF SENTRIVF SMIRACVF SMISTEVF TAROFFVF THAOCCVF

CON 9

18

I I

I I I I

24 24 88 29 24 6 24 6 6 6 6 6

2 3 10 3 3

18 6 6 6 6

1 I 5 I 7

6 6 18 6 59 6

1 1 I I

1

1 2 3 I I I I 3 I I 2 I I I t I 1 2

COV

CON

COV

12 6 47 6 6 6 6 18 6

12 6 35 6 6 6 6

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CON

167 A ppendix 3 C .

Abies lasiocarpa Forest and W oodland A lliance, cont. PA7 - ABILAS-PINCON/ VACMYR-ALNSEV/ ARNLAT (cont)

PA6 - ABILAS/VACGLO/ XERTEN/RHYROB (cont)

PA8 - ABILAS-PICENG/ M ENFER-RHOALB/ BRAERY (cont)

SubPA41 - ABILASLAROCC /M ENFER-VACSCO

(cont) COV

CON

Forbs (con/) TIATRIVF VIOORBVF XERTENVF

1 I I

6 35 12

Ferns ATHFILVE WOOOREVE

1 1

6 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168 A ppendix 3 Ca. Abies Shrubland A lliance

lasiocarpa (early seral/open slope) Perennial Forb and

PA9 - ABILAS-PINCON /VACGLOVACM YR/XERTEN E arly serai = 3 Plots O pen slope = 4 Plots E arty T rees ABILASVT LAROCCVT PICENGVT PINALBVD PIN ALB VT PINMONVT PSEMENVT

1 I 1 10 3 2 I

10 10 20 10 10 20 20

S h ru b s LONUTAVS VACGLOVS VACMYRVS VACSCOVS RIBLACVS

3 3 8 1 3

10 10 100 10 33

M osses PO U U N N M

4

100

G rasses CARCONVG CARGEYVG CARHOOVG CARROIVG

I 5 I I

20 100 10 10

Forbs ACHMILVF ANAMARVF APOANDVF CAM ROTVF EPIANGVF HIEALEVF LUPSERVF PENSTEVF XERTENVF

I I I I 3 3 3 3 40

20 10 10 10 10 10 to 10 100

O p en Slope T ree s ABILASVD ABILASVT PICENGVT PINALBVT PINCONVT

I 25 7 6 10

25 100 50 100 25

S h ru b s MENFERVS SORSCOVS SPIBETVS

COV

CON

COV

3 15 10

PA11 - ABILAS-P IN ALB/ VACSCO/LUZHIT Plots=2

PA10 - ABILAS-PINCON/ XERTEN Plots=5

25 50 25

COV

CON

T rees ABILASVD ABILASVT LAROCCVT PICENGVD PICENGVT PINALBVD PINALBVT PINCONVD PINCONVT PINMONVT PINPONVT PSEMENVT

3 19 1 I 6 20 10 1 20 I I 3

20 100 20 20 100 20 20 40 80 20 20 20

Shrubs ALNINCVS CHIUMBVS MENFERVS SALSCOVS VACGLOVS VACMYRVS VACSCOVS

3 I 3 1 1 20 40

40 20 80 20 20 80 20

Mosses BRAALBNM BRACHYNM CERPURNM DICRANNM DICTAUNM POUUNNM POLPILNM RHYTRINM

10 3 3 3 20 11 10 20

20 20 20 20 20 130 20 10

Lichens ALESARNL BRYORINL CLADONNL LETVULNL

1 2 I 1

20 80 40 20

G rasses CARROIVG LUZHITVG

3 20

20 20

Forbs ACHMILVF ANTLUZVF ARNCORVF EPIANGVF

I 3 3 3

20 20 40 20

CON

T rees ABILASVT PICENGVT PINALBVD PINALBVT

20 3 3 7

100 50 10 100

Shrubs RHOALBVS VACSCOVS

1 50

50 100

Mosses BRAALBNM POUUNNM

1 1

50 50

Lichens ALESARNL BRYORINL LETVULNL

I 1 I

50 100 50

G rasses CARGEYVG LUZHITVG

40 22

50 100

Forbs ARNCORVF ERYGRAVF LUPCAUVF PEDBRAVF PEDRACVF PENSTEVF VALSITVF XERTENVF

10 1 1 1 6 3 1 10

50 50 50 100 100 100 50 50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

Appendix 3 Ca. Abies lasiocarpa (early seral/open slope) Perennial Forb and Shrubland Alliance, cont. A ggradb^3_^^^6^^^w co^^^i^_elevation^PereM ial^^^lliM cej_£on£_ PA10 - ABILAS-PINCON/ XERTEN (cont)

PA9 - ABILAS-PINCON/ VACGLO-VACMYR/ XERTEN (cont)______ O p en slope = (cont)

COV

CON

O pen Slope (cont) S h ru b s (cont) VACCAEVS VACGLOVS VACMYRVS VACSCOVS

3 33 12 20

25 75 50 25

M osses POUUNNM RHACANNM

9 10

75 25

Lichens BRYORINL

1

50

G rasses CALRUBVG CARGEYVG CARMICVG FESOVIVG JUNDRUVG LUZHITVG

10 3 I 6 1 3

25 75 25 50 25 50

Forbs ACHMILVF ANGARGVF ARECAPVF ARNLATVF CALAPIVF ERYGRAVF HEUCYLVF HIEALBVF LUPSERVF PEDCONVF PEDRACVF PENELLVF PENSTEVF SEDSTEVF XERTENVF

t I 1 I t I I I I I I 3 1 1 26

25 25 25 25 25 50 25 50 25 75 50 25 25 25 100

COV Forbs ( c o m ) GOOOBLVF HIERACVF LUPCAUVF PYRSECVF TAROFFVF VIOORBVF XERTENVF

I 3 I I 3 2 34

CON 20 20 20 20 20 40 100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

PA12 - ABIGRA-PSEMEN(THUPLI)/ACEGLA/ARANUD

SubP A 32-A B IG R A PSEM EN /ACEGLA/LINBOR/ ARANUD Plots=12 COV

SubPA33 - ABIGRAPSEMEN (THUPLD/PACMYR/ Plots=18 COV

CON

T rees ABIGRAVD ABIGRAVT ABILASVT BETPAPVD BETPAPVT LAROCCVD LAROCCVT PICENGVD PICENGVT PINCONVD PINCONVT PINMONVT POPTREVT POPTRIVT PSEMENVD PSEMENVT THUPLIVT TSUHETVT

1 II 3 I 9 1 11 I 17 1 5 I I 1 1 17 3 3

8 67 8 17 50 67 83 17 47 33 25 8 8 8 33 100 17 8

Shrubs ACEGLAVS ALNSINVS AMEALNVS ARCUVAVS BERBERVS CHIUMBVS CORCANVS CORSTOVS UNBORVS LONCILVS LONUTAVS PHYMALVS RIBLACVS RIBVISVS ROSA VS ROSGYMVS ROSWOOVS RUBIDAVS RUBPARVS SALSCOVS SHECANVS SORSCOVS SPIBETVS SYMALBVS VACMYRVS

8 10 5 12 8 2 2 2 12 1 6 2 2 I 4 I 7 2 4 3 I 1 3 10 10

92 8 58 17 92 25 50 25 75 17 17 17 33 8 25 50 17 25 83 8 17 8 67 50 8

CON

Trees ABIGRAVD ABIGRAVT BETPAPVT LAROCCVD LAROCCVT PICENGVT PINCONVD PINCONVT PINMONVD PINMONVT PINPONVT POPTREVT POPTRIVT PSEMENVD PSEMENVT TAXBREVT THUPUVD THUPLIVT TSUHETVT

3 28 10 2 14 4 2 4 1 I 10 3 7 I 28 10 1 23 6

33 89 6 44 67 28 11 28 6 28 17 6 11 33 89 6 6 50 61

Shrubs ACEGLAVS ALNINCVS ALNSINVS AMEALNVS ARCUVAVS BERREPVS CEASANVS CEAVELVS CHIUMBVS CLEMATVS CORCANVS HOLDISVS UNBORVS LONCILVS LONUTAVS PACMYRVS PHILEWVS PHYMALVS RIBLACVS RIBVISVS ROSA VS ROSGYMVS RUBLEUVS RUBPARVS SALSCOVS SORBUSVS

6 20 3 2 3 I 3 3 3 I 1 2 4 I 6 4 I 12 I 1 9 3 I 5 2 I

44 6 22 39 6 44 II 6 72 6 11 22 72 II 33 50 6 17 11 6 22 44 6 44 17 6

COV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CON

171 Appendix 3 D .

Abies grandis Forest A lliance, cont.

PA12 - ABIGRA-PSEMEN(THUPLI)/ACEGLA/ARANUD

(cont) SubPA33 - ABIGRAPSEMEN (THUPLD/PACMYR/

SubPA32 - ABIGRAPSEMEN /ACEGLA/LINBOR/ ARANUD (cont) COV

(cont) COV

CON

Mosses AULANDNM BRAALBNM HETMACNM MNISPINM MOSS NM PLAINSNM POHNUTNM POUUNNM RHYTRINM

I 4 20 1 1 30 10 1 3

17 50 8 8 8 8 8 33 17

Uchens ALESARNL BRYORINL CLADONNL HYPIMSNL PELAPHNL PELCANNL PELRUFNL USNEA NL

1 I 1 I I 2 1 I

25 75 8 50 17 17 8 17

Grasses BROCARVG BROMUSVG BROVULVG CALRUBVG CARCONVG CARGEYVG ELYGLAVG FESOCCVG GLYGRAVG GRASS VG ORYASPVG

1 1 I 6 I 1 2 I 3 I 2

8 8 8 50 25 17 25 8 8 8 67

Forks ACHMILVF ADEBICVF ANAMARVF ANEPIPVF ANGARGVF ANTRACVF APOANDVF ARANUD VF ARNCORVF ARNLATVF ASTCHIVF ASTCONVF CENMACVF

I 2 2 I I I 1 12 9 2 I 6 5

8 33 17 17 8 8 8 83 33 17 8 33 17

CON

Sbrnbs (c o n t ) SPIBETVS SYMALBVS VACGLOVS VACMYRVS

1 3 9 1

50 22 50 6

Mosses BRAALBNM BRAASPNM BRALEINM BRYSANNM DICRANNM DICSCONM DICTAUNM DREUNCNM EURPULNM LES1NCNM MNISPINM MOSS NM PLAMEDNM POUUNNM RHYROBNM RHYTRINM

3 3 10 3 1 3 3 3 3 I 9 3 3 I 2 II

6 6 6 6 6 6 6 6 6 6 17 6 6 11 28 22

Lichens ALECTONL ALESARNL BRYORINL CETPLANL HYPIMSNL HYPOGYNL LETVULNL PELCANNL PLAGLANL

I I I 1 1 I I 2 1

6 50 50 6 22 17 6 11 17

G rasses BROCARVG BROMUSVG BROVULVG CALRUBVG CARCONVG CARGEYVG CARROIVG CARROSVG CINLATVG GLYELAVG

1 1 3 2 6 1 3 1 3 3

6 6 28 17 22 II 6 6 6 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

Appendix 3 D. Abies grandis Forest Alliance, cont. PA12 - ABIGRA-PS EMEN (THUPLI)/ACEGLA/ARANUD

(cont) SubPA32 - ABIGRAPS EMEN /ACEGLA/LINBOR/ ARANUD (cont) COV Forbs ( c o n t ) CIRVULVF CLEMACVF CUUNIVF CORSTRVF DISHOOVF DISPORVF DISTRAVF EPIANGVF EPICILVF FILAR VVF FORB VF FRAVESVF FRAVIRVF GALTRIVF GOOOBLVF HIEALBVF HIEALEVF HIEAURVF HIERACVF HYPPERVF MEDLUPVF OSMCHIVF PENCONVF PETSAGVF PRUVULVF PYRASAVF PYRSECVF SENTRIVF SMILACVF SMIRACVF SMISTEVF SOLMISVF THAOCCVF TRIOVAVF VICAMEVF VIOCANVF VIOGLAVF VIOLA VF VIOORBVF

I I 1 1 1 2

8 8 75 8 50 8 17 8 8 17 8 50 8 58 25 25 8 8 8 8 8 58 8 8 8 8 17 8 8 25 50 8 33 8 17 8 17 8 42

Ferns ATHFILVE EQUA RW E PTEAQUVE

10 20 3

17 8 25

1 I 1 I I I I 1 1 1 I I I 1 1 I I 1

I 1 1

(cont)

(cont) COV

CON 1 I

SubPA33 - ABIGRAPSEMEN (THUPLD/PACM YR/

SubPA33 - ABIGRAPSEM EN (THUPLQ/PACMYR/

Forbs ACOCOLVF ACTRUBVF ADEBICVF ANAMARVF ANEPIPVF ANGARGVF ANTRACVF ARANUDVF ARCLARVF ARNCORVF ARNLATVF ASTENGVF ASTER VF CIRALPVF CU U N IV F COPOCCVF DISHOOVF DISTRAVF EPIANGVF EPICILVF FRAVESVF FRAVIRVF GALAPAVF GALBORVF GALTRIVF GEUMACVF GOOOBLVF HABSACVF HIEALBVF HIEALEVF HIERACVF LUPIN UVF MENARVVF MIMGUTVF MITELLVF MITSTAVF MONUNIVF OSMCHIVF PRUVULVF PYRASAVF PYRSECVF SENCYMVF SMILACVF SMIRACVF SMISTEVF THAOCCVF TIATRIVF

I 1 2 I 2 1 3 8 1 2 30 1 1 I I 3 2 I 2 I I I I I 1 I I I 1 10 1 I I I I 1 1 I I I 1 1 3 2 1 I 1

COV

CON 6 6 44 6 11 6 6 28 11 11 6 11 6 6 67 28 33 II It 6 33 6 6 6 22 6 56 6 22 6 6 6 6 6 6 6 6 39 6 6 33 6 6 22 33 33 11

CON

Forbs (c o n t ) TRIOVAVF VERVIRVF VIOGLAVF VIOORBVF XERTENVF

I I 1 I 3

II 6 6 50 28

Ferns ATHFILVE GYMDRYVE POLLONVE PTEAQUVE

3 1 I 5

6 6 6 28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173 A ppendix 3 E.

Alnus incana (w et) Shrubland A lliance

PA13 - ALNINC(CORCAN)/SYMALB/CALCAN-ELYGLA PIots=3 (c o n t)

COV LAROCCVT PICENGVT PINCONVD PINMONVT POPTRTVD POPTRIVT PSEMENVT THUPUVD THUPLIVT TSUHETVT Shrubs ALNINCVD ALNINCVS AMEALNVS CORCANVS UNBORVS RIBLACVS ROSA VS ROSWOOVS RUBIDAVS RUBLACVS SALSCOVS SPIDOUVS SYMALBVS

COV

CON

CON

Forbs ( c o m )

Trees 10 6 2 I I 20 3 3 3

3 33 3 3 2 3 2 3 3 3 15

33 67 67 33 33 33 33 33 33 33

33 100 33 67 33 67 67 33 67 33 33 33 67

ANAMARVF ANEMONVF ARANUDVF ARNICA VF ASTMODVF C IR A R W F CLIUNIVF FORB VF GALAPAVF GALTRIVF GEUMACVF HERLANVF M EN A RW F OSMCHIVF PYRASAVF SENTRIVF SMISTEVF THAOCCVF TIATRIVF TRIOVAVF URTDIOVF VERVIRVF VIOGLAVF VIOLA VF

I 3 3 I 3 1 3 I I 2 1 3 I 3 I I 6 3 3 I 3 3 3 I

33 33 33 33 33 33 33 33 33 67 67 33 33 33 33 67 67 33 33 33 33 33 33 33

I 15 10

67 100 33

Ferns Mosses PLACILNM PLAINSNM

1 10

33 33

I

33

1 10 1 10 17 3 10 15 20

33 33 33 33 100 33 33 67 33

1 3

33 33

ATHFILVE EQUARVVE PTEAQUVE

Uchens BRYORINL

Grasses AGRALBVG AGREXAVG AGRREPVG BROCILVG CALCANVG CARDEWVG CARROSVG ELYGLAVG GLYELAVG

Forbs ACOCOLVF ACTRUBVF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174 Appendix 3 F. Pinus contorta - Larix occidentalis (early serai) Woodland Alliance PA14 - PINCON-LAROCC/ALNSIN-ARCUVA(LINBOR)/EPIANG SubPA 27 - PINCONLAROCC/ALNSIN-LINBOR /CALRUB Plots=8 COV

SubPA 2 8 -PIN C O N LAROCC(PSEMEN)/ VACMYR-SPIBET P!ots=15 COV

CON

Tree* ABIGRAVT ABILASVT BETPAPVD BETPAPVT LAROCCVT PICENGVT PINCONVD PINCONVT PINMONVT PINPONVD POPTREVT POPTRIVT PSEMENVD PSEMENVT THUPLIVT TSUHETVT

1 1 1 3 9 1 2 13 1 3 1 10 10 2 10 1

38 13 13 13 75 25 63 88 13 13 13 13 13 50 13 25

S h ru b s ACEGLAVS ALNSINVS AMEALNVS ARCUVAVS BERREPVS CEASANVS CHIUMBVS HOLDISVS UNBORVS LONUTAVS PHYMALVS RIBLACVS ROSA VS ROSGYMVS ROSWOOVS RUBIDAVS RUBPARVS SA U X V S SALSCOVS SHECANVS SORSITVS SPIBETVS SYMALBVS VACMYRVS VACSCOVS

I 18 1 3 2 3 6 I 20 1 10 10 I 2 I I 10 3 3 2 1 5 3 5 2

13 75 50 25 50 13 63 13 75 25 13 13 25 60 13 13 63 13 63 50 13 100 13 38 38

M osses BRAALBNM BRAHYLNM

I 3

25 13

Trees ABIGRAVT ABILASVT LAROCCVD LAROCCVT PICENGVT PINCONVD PINCONVT PINMONVT PINPONVT POPTREVT POPTRIVT PSEMENVD PSEMENVT Shrubs ACEGLAVS ALNSINVD ALNSINVS AMEALNVS ARCUVAVS BERREPVS CEAVELVD CEAVELVS CHIMENVS CHIUMBVS CORCANVS HOLDISVS JUNCOMVS LINBORVS LONCILVS LONUTAVS MENFERVS PACMYRVS PHILEWVS RIBLACVS RIBVISVS ROSGYMVS ROSNUTVS ROSWOOVS RUBIDAVS RUBPARVS SA UXV S SALSCOVS SAMRACVS SHECANVS SPIBETVS SYMALBVS

2 2 2 10 2 5 11 3 3 I 3 I 8

3 I 13 1 2 3 3 3 3

2 3 2 3 1 1 3 3 I 1 3 2 1 6 4 I

SubPA 2 9 - PINCONLAROCC(PINPON)/ AMEALN/CALRUB Plots=5 COV

CON 20 33 13 87 20 20 100 13 27 7 7 7 67

6 6 47 13 53 44 6 20 6 13 6 6 13 33 13 13 6 20 6 13 13 13 6 6 6 13 6 40 6 33 87 6

CON

Tree* ABIGRAVD ABIGRAVT ABILASVT LAROCCVT PINCONVT PINMONVT PINPONVT POPTREVT POPTRIVT PSEMENVT THUPLIVT TSUHETVT

1 5 1 5 5 1 11 I 11 4 I 2

20 60 20 100 100 20 80 20 40 100 40 40

Shrubs ALNSINVS AMEALNVS ARCUVAVS BERREPVS CEASANVS CEAVELVS CHIUMBVS CORNUSVS HOLDISVS JUNCOMVS LINBORVS LONUTAVS PACMYRVS PHYMALVS ROSA VS ROSGYMVS RUBIDAVS RUBLEUVS RUBPARVS SALBEBVS SALSCOVS SAMCERVS SHECANVS SPIBETVS SYMALBVS

11 7 18 4 5 3 1 I 2 I 5 3 2 3 1 I 30 3 2 1 6 3 5 3 I

40 80 100 80 60 40 20 20 40 20 80 20 60 20 40 60 20 20 40 20 40 20 60 80 20

M osks POUUNNM MOSS NM

7 I

40 20

G rasses AGRSPIVG BROMUSVG

I 1

20 20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175 A ppendix 3 F.

Pinus contorta - Larix occidentalis (early serai) W oodland A lliance,

cont. PA14 - PINCON-LAROCC/ALNSIN-ARCUVA(LINBOR)/EPIANG

(cont)

SubPA 27 - PINCONLAROCC/ALNSIN-LINBOR /CALRUB (cont)

SubPA 2 9 - PINCONLAROCC(PENPON)/ AMEALN/CALRUB (cont)

COV

SubPA 28 - PINCONLAROCC(PSEMEN)/ VACMYR-SPIBET (cont) COV

CON Shrubs

Mosses (cont) 10 3 6

13 13 50

VACGLOVS VACMYRVS VACSCOVS

4 6 15

20 53 33

Lichens BRYORINL CLADONNL PELCANNL USNEANL

2 1 1 I

50 13 13 25

Mosses BRAALBNM DICSCONM MOSS NM POHNUTNM POUUNNM

3 3 I 1 6

13 13 6 6 87

G rasses CALCANVG CALRUBVG CARCONVG CARGEYVG ELYGLAVG FESOCCVG PHLPRAVG

3 16 2 3 3 7 2

13 100 25 13 13 25 25

Lichens BRYORINL CLADONNL HYPIMSNL LETVULNL PELAPHNL PELCANNL PELRUFNL

2 1 1 1 3 1 3

20 6 6 6 13 6 6

7 I 1 1

38 13 13 13 38 13 13 13 13 13 13 13 50 13 75 13 25 25 13 13 38 25 13 13 13 13 25

Grasses AGRINTVG BROMUSVG CALRUBVG CARCONVG CAREXVG CARGEYVG ELYGLAVG FESIDAVG FESOCCVG FESRUBVG

3 I 41 4 1 11 7 2 3 10

6 6 100 33 6 20 13 13 6 6

1 1 1 I 1 1 1 1 I 1 I I I I I I 1 I

Forbs ACHMILVF ANAMARVF ANTNEGVF APOANDVF ARNCORVF ARNLATVF ASTATRVF ASTCHTVF ASTCONVF CALBULVF CAMROTVF CIRSIUVF CIRVULVF COLPARVF

CON

G rasses (cont)

FUNHYGNM POHNUTNM POUUNNM

F orbs ANAMARVF ANEPIPVF ANTRACVF APOANDVF ARNCORVF ARNICA VF ASTCONVF ASTER VF ASTRAGVF CALAPIVF CHRLEUVF CIRSIUVF C U U N IV F COLPARVF EPIANGVF FORB VF FRAVESVF FRAVIRVF GALTRIVF GOOOBLVF HIEALBVF HIERACVF HYP PER VF M ELLIN VF PYRSECVF SENCYMVF SMISTEVF

COV

CON

(c o n t)

CALRUBVG CARCONVG CARGEYVG CARROIVG GRASS VG POAPALVG

20 3 I 10 1 3

80 40 20 20 20 20

Forbs ACHMILVF ANAMARVF ANTNEGVF APOANDVF ARNICA VF ASTCONVF CUU NIVF EPIANGVF FRAVESVF FRAVIRVF HIEALBVF HIEAURVF LUPINUVF MELUNVF OSMCHIVF PTEANDVF SMIRACVF SOLCANVF TRADUBVF TRIFOLVF VERTHAVF VIOORBVF

1 2 3 3 I 1 1 1 I I 2 1 3 1 1 1 3 I 1 1 I 1

40 40 20 40 20 20 20 40 20 20 60 20 20 20 20 20 20 20 20 20 20 20

25

40

Ferns PTEAQUVE 1 I 1 3 3 2 3 3 I 1 1 I 1 I

60 33 6 20 47 13 6 6 13 6 13 6 13 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176 A ppendix 3 F. Pinus contorta - Larix occidentalis (early serai) W oodland A lliance, cont._________________________________________________________________________ PA14 - PINCON-LAROCC/ALNSCV-ARCUVA(LINBOR)/EPIANG

(cont) S ubPA 2 7 -PIN C O N LAROCC/ALNSIN-LINBOR /CALRUB (cont) COV Forbs ( c o m ) SOLMISVF THAOCCVF VERTHAVF VIOLA VF VIOORBVF Ferns FERN VE LYCCOMVE PTEAQUVE

SubPA 28 - PINCONLAROCC(PSEMEN)/ VACMYR-SPIBET (cont)

CON

10 1

1 I 1

1 I 3

13 25 13 13 25

13 13 13

COV Shrubs ( c o m ) CYNOFFVF EPIANGVF ERYGRAVF FILARVVF FORB VF FRAVESVF FRAVIRVF GALAPAVF GALTRIVF HABELEVF HEDSULVF HEUCHEVF HEUGROVF HIEALBVF HIECANVF HIERACVF HYPPERVF LUPINUVF LUPSERVF MELLINVF MITBREVF OSMCHIVF PENCONVF PYRASAVF SMIRACVF SMISTEVF TANVULVF TRIOVAVF VERTHAVF VICAMEVF VICIA VF VIOLA VF VIOORBVF XERTENVF

CON 3 3 3 3 3

1 2 I

1 I 3 1 1 5 3

1 3 I 3

1 1 I I I 2

1 3 3 2 I 3 I I 3

6 73 13 6 6 33 33

6 6 6 6

6 6 40 6 33 6 6 6 6

6 13 13

6 13 6 6 6 20 13 6 6 6

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177 A ppendix 3 G. Larix occidentalis - Betula papyrifera Forest / Woodland A llia n c e

(Populus tremuloides) m ixed

PA15 - LAROCC-BETPAP(POPTRE)/ACEGLA-ALNSIN Plots=7

(cont)

(cont) COV T re e s ABIGRAVD ABIGRAVT ABILASVT BETPAPVT LAROCCVD LAROCCVT PICENGVT PINCONVD PINCONVT PINMONVT PINPONVD PINPONVT POPTREVT PSEMENVD PSEMENVT T H U PU V D THUPLIVT TSUHETVT S h ru b s ACEGLAVS ALNSINVS AMEALNVS ARCUVAVS BERREPVS CHIUMBVS CORCANVS HOLDISVS JUNCOMVS JUNIPEVS LINBORVS LONCILVS L O N IN W S LONUTAVS MENFERVS OPLHORVS PACMYRVS PHYMALVS RIBLACVS ROSA VS ROSGYMVS ROSWOOVS RUBPARVS SALSCOVS SHECANVS SPIBETVS SYMALBVS

COV

CON

3

14 57 14 29 29

10

100

2 3 4 1 7 26 I 15 1 9 5

43 57 71 29 14 29 29 14 100 14 43 43

9 3 3 I 1 5 4 30 3 1 17 2 1 2 2 I I 7 I 4 I 30 2 6 6 2 I

71 57 71 14 71 100 57 14 14 14 100 43 14 43 29 14 14 43 14 71 14 14 100 29 57 100 29

I 14

10 20

2

Shrubs ( c o n t ) VACGLOVS VACMYRVS

I

2

14 29

Mosses AULANDNM DICSCONM DICTAUNM EURPULNM HOMNEVNM HYLSPLNM MOSS NM PLADRUNM POHNUTNM POUUNNM RHYTRINM

I I 1 1 1 3 I 2 26

29 29 14 14 14 14 43 14 14 29 29

Lichens ALESARNL BRYORINL CLADONNL HYPIMSNL PELAPHNL PELCANNL

1 1 3 1 3 I

29 57 14 43 14 57

Grasses BROMUSVG BROVULVG CALRUBVG ELYGLAVG ORYASPVG

1 I 15 I I

43 43 86 14 29

I 1 1 4 3 I I 1 2 I

14 14 29 43 14 29 14 14 57 14 43 57 29 14 43

Forbs ACHMILVF ADEBICVF ARANUDVF ARNCORVF ARNLATVF ASTCONVF ASTER VF CASTILVF CUUNIVF DISHOOVF DISTRAVF FRAVESVF FRAVIRVF GALTRIVF GOOOBLVF

COV

CON

2 2

2 2 I 1 1

Forbs ( c o i n ) HIEALBVF HIERACVF LUPINUVF OSMCHIVF PYRASAVF PYRSECVF SMIRACVF SMISTEVF THAOCCVF TIATRIVF TRIOVAVF VIOORBVF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CON 1 I 1 I I I

2

I 3 1 I 1

43 14 14 57 14 14 86 14 29 14 14 29

178 Appendix 3 H .

Larix occidentalis - Pseudotsuga menziesii Forest and W oodland

Alliance PA17 - LAROCC-PSEMEN (PINCON)/VACGLO/ XERTEN/CALRUB PIots=5

PA16 - LAROCC-PSEMEN (ABILAS)/VACMYR/ CALRUB Plots=6 COV I 14 2 12 4 4 3 2 20 10

17 50 33 83 83 100 17 33 100 17

Shrubs ACEGLAVS ALNSINVS AMEALNVS ARCUVAVS BERREPVS CHIMENVS CHIUMBVS JUNCOMVS LINBORVS LONUTAVS MENFERVS PACMYRVS ROSA VS ROSGYMVS ROSWOOVS RUBPARVS SALSCOVS SHECANVS SPIBETVS VACGLOVS VACMYRVS

3 2 2 2 2 2 3 2 13 5 1 I I 3 3 I I 2 3 3 22

17 33 33 67 33 33 67 33 83 50 17 33 17 33 17 17 17 33 83 17 100

Mosses BRYSANNM DICCRINM DICSCONM DICTAUNM MOSS NM POUUNNM RHYTRINM

3 I 3 3 I 7 10

17 33 33 17 17 33 17

Lichens BRYORINL CLADONNL HYPOGYNL

2 I 1

COV

CON

T rees ABIGRAVT ABILASVT LAROCCVD LAROCCVT PINCONVD PINCONVT POPTRIVT PSEMENVD PSEMENVT THUPLIVT

100 33 17

PA18 - LAROCC-PSEM EN (PINCON)/SHECANSPIBET/CALRUB Plots=6 COV

CON

T rees ABILASVT LAROCCVT PINCONVD PINCONVT PSEMENVD PSEMENVT

2 7 2 21 I 16

60 80 80 100 20 100

Shrubs ALNSINVS AMEALNVS BERREPVS CHIMENVS CHIUMBVS HOLDISVS JUNCOMVS LONUTAVS PACMYRVS RIBVISVS ROSGYMVS SALSCOVS SPIBETVS VACGLOVS VACMYRVS

10 3 6 3 I 1 3 I I 1 2 2 5 13 2

20 20 40 20 60 20 20 40 60 20 40 60 100 100 40

Masses BRAALBNM BRASTANM DICTAUNM POUUNNM RHYROBNM

3 I I 6 I

20 20 20 40 20

Lichens BRYABBNL BRYORINL CLADONNL HYPIMSNL LETVULNL

1 1 I 1 I

20 80 20 40 40

Grasses AGRSPIVG CALRUBVG CARCONVG CARGEYVG FESIDAVG

3 9 3 10 7

20 100 20 20 40

Forbs ACHMILVF

I

40

CON

T rees ABIGRAVT BETPAPVT LAROCCVD LAROCCVT PICENGVT PINCONVD PINCONVT PINMONVT PINPONVT POPTREVT PSEMENVT THUPLIVT TSUHETVT

1 10 I 22 I 4 13 2 3 3 5 II 2

33 17 50 83 17 67 100 50 17 17 100 33 50

Shrubs ACEGLAVS ALNINCVS ALNSINVS AMEALNVS ARCUVAVS BERBERVS CHnJMBVS CORCANVS HOLDISVS JUNCOMVS LINBORVS LONCILVS LONICEVS PACMYRVS PHYMALVS ROSA VS ROSGYMVS RUBPARVS SALSCOVS SHECANVS SORSCOVS SPIBETVS SYMALBVS VACCAEVS VACGLOVS VACMYRVS

2 3 7 I 23 4 5 6 2 2 22 I 1 2 I 2 2 5 I 12 1 5 3 3 4 11

33 17 33 67 67 100 83 33 50 33 100 17 17 50 33 50 50 83 17 100 17 100 17 17 67 50

Moisea BRACHYNM DICTAUNM

3 1

17 17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179 Appendix 3 H .

Larix occidentalis - Pseudotsuga menziesii Forest and W oodland PA17 - LAROCC-PSEM EN (PINCON)/VACGLO/ XERTEN/CALRUB (cont)

PA16 - LAROCC-PSEM EN (ABILAS)/VACMYR/ CALRUB (cont)

COV Lichens (c o n t ) LETVULNL PELAPHNL PELCANNL PELRUFNL

COV

CON I I I 1

17 33 17 17

G rasses CALRUBVG CARCONVG CARGEYVG DANINTVG FESOCCVG

13 2 1 3 I

100 50 17 17 17

Forbs ACHMILVF ANTRACVF ARNCORVF ARNLATVF ASTCONVF CALELEVF CLIUNIVF COLPARVF CORMACVF DISHOOVF EPIANGVF ERYGRAVF FRAVESVF FRAVIRVF GOOOBLVF HABENAVF HEUCHEVF HIEALBVF HIERACVF LUPSERVF PEDBRAVF PEDRACVF PENSTEVF PYRSECVF SEDUM VF SMIRACVF SMISTEVF STEOCCVF THAOCCVF VIOLA VF VIOORBVF

I 7 5 6 I I 1 I 1 3 I I 2 1 I I 2 I 1 1 I I 1 I 1 I 1 2 I I I

17 50 83 33 17 33 33 17 17 17 17 50 33 17 50 17 33 50 33 17 17 17 17 17 17 17 17 33 17 17 50

Ferns WOOOREVE

I

33

Forbs ( c o n t ) ACHMILVF ANTRACVF ARNCORVF ARNLATVF ASTCONVF ASTENGVF CALELEVF CAMROTVF CYNOFFVF ERIUMBVF FORB VF FRAVIRVF GALAPAVF GOOOBLVF HABELEVF HEUCHEVF HEUCYLVF HIEALBVF HIERACVF HIEUMBVF LOMCOUVF LUPCAUVF LUPINUVF OSMCHIVF PENSTEVF PYRSECVF SEDLANVF SEDSTEVF SMISTEVF THAOCCVF

PA18 - LAROCC-PSEM EN (PINCON)/SHECANSPIBET/CALRUB (cont)

XERTENVF

1 1 3 7 2 3 1 1 3 3 1 10 1 I I I 3 I I 3 1 I I 3 1 I I I 10 10 1 19

40 40 60 40 60 40 20 20 20 20 20 20 20 20 20 20 20 40 20 20 20 20 20 20 20 40 20 20 20 20 20 80

Ferns SELDENVE

3

20

v a l s it v f

COV

CON Lichens BRYORINL HYPOGYNL G rasses AGRREPVG BROMUSVG BROVULVG CALRUBVG CARCONVG CARGEYVG ELYGLAVG FESOCCVG Forbs ACHMILVF ADEBICVF ALLCERVF ANAMARVF ANEPIPVF ANTNEGVF ARANUDVF ARNCORVF ARNICA VF ARNLATVF ASTRAGVF CALAPIVF CASMINVF CENMACVF C U U N IV F COPOCCVF EPIANGVF FRAVESVF FRAVIRVF GOOOBLVF HABORBVF HABUNAVF HIEALBVF USCAUV F LUPINUVF MALPARVF MELLINVF MONUNIVF OSMCHIVF PEDRACVF PYRSECVF SMIRACVF SMISTEVF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CON I 1

83 17

1 1 1 31 t

17 17 17 83 33 17 17 17

1 1

I 1 1 I 1 1 I 20 I t I I I I I 1 I I 1 1 1 I I 3 3 3 I 2 1 I 2 I

33 17 17 17 17 17 17 17 17 17 17 17 17 17 100 17 33 33 50 50 17 17 100 17 17 17 17 17 50 17 17 33 33

180 A ppendix 3 H . A lliance, cont.

Larix occidentalis - Pseudotsuga menziesii Forest and W oodland PA18 - LAROCC-PSEM EN (PINCON)/SHECANSPEBET/CALRUB (cont)

COV

CON

Forbs (c o m ) THAOCCVF TIATRIVF TRIFOLVF VIOLA VF VIOORBVF

3 I 1 1 1

17 17 17 17 50

Ferns PTEAQUVE

20

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181 A ppendix 3 H .

Larix occidentalis - Pseudotsuga menziesii Forest and W oodland

Alliance, cont. PA18 - LAROCC-PSEM EN (PINCON)/SHECANSPIBET/CALRUB (coat) SubPA23 - LAROCC-PSEMEN (PINCON)/SPIBETAMEALN/CALRUB PIots=14 COV Tree* ABIGRAVT ABILASVT LAROCCVD LAROCCVT PICENGVT PINCONVD PINCONVT PINMONVT PINPONVT POPTRIVT PSEMENVD PSEMENVT THUPLIVT

5 2 2 6 2 3 9 6 6 5 I 14 I

PA19 - LAROCC-PSEMEN/MAHREP/CALRUB Plots=20 SubPA25 - LAROCC-PSEM EN (ABIGRA)/ACEGLA/ARNCOR URYORI Plots=10 COV

CON 43 21 14 93 29 36 86 14 29 21 7 100 7

COV

CON

Trees ABIGRAVT ABILASVT LAROCCVD LAROCCVT PICENGVT PINCONVD PINCONVT PINMONVT PINPONVD PINPONVT POPTRIVD POPTRIVT PSEMENVD PSEMENVT

4 20 2 15 10 4 2 1 1 7 I 12 4 34

20 5 35 95 10 20 25 5 10 20 5 10 60 95

Shrub* ACEGLAVS ALNSINVS AMEALNVS ARCUVAVS BERBERVS CEAVELVS CHIMENVS CHIUMBVS CORCANVS HOLDISVS JUNCOMVS LINBORVS LONCILVS LONUTAVS MENFERVS PACMYRVS PHYMALVS ROSA VS ROSGYMVS ROSWOOVS RUBPARVS SALSCOVS SHECANVS SPIBETVS SYMALBVS VACCAEVS VACGLOVS VACMYRVS VACSCOVS

5 3 4 11 3 16 3 2 I 1 2 4 1 I I 1 10 3 3 1 4 4 5 10 10 7 6 I 21

29 14 79 71 71 14 7 29 7 7 21 50 36 7 7 7 36 14 64 7 36 29 50 100 71 36 36 7 14

Shrubs ACEGLAVS ALNSINVS AMEALNVS ARCUVAVS BERBERVS CEASANVS CHIUMBVS CLEMATVS CORCANVS JUNCOMVS LEDGLAVS UNBORVS LONCILVS OPLHORVS PHYMALVS RIBLACVS ROSA VS ROSACIVS ROSGYMVS ROSNUTVS RUBPARVS SHECANVS SPIBETVS SYMALBVS VACCAEVS VACCESVS VACGLOVS VACMYRVS

4 10 3 6 7 I 2 1 1 2 1 8 1 1 1 3 I 1 2 2 2 3 3 5 1 10 1 9

25 5 30 50 8S 5 40 5 5 15 10 65 15 5 10 5 25 5 35 10 20 35 90 70 10 5 5 20

M osses BRAALBNM

10

57

Mosses AULANDNM

3

5

T rees ABIGRAVD ABIGRAVT ABILASVT LAROCCVD LAROCCVT PINCONVD PINCONVT PINPONVT PSEMENVD PSEMENVT THUPLIVT

CON

3 25 I 3 10 1 5 1 2 39 10

10 20 10 50 90 20 60 20 70 100 10

9 2 6 2 5 2 3 3 4 1 1 I

Shrubs ACEGLAVS ALNSINVS AMEALNVS ARCUVAVS BERBERVS CHIUMBVS CLEMATVS CORCANVS LINBORVS LONCILVS LONUTAVS PACMYRVS PHILEWVS PHYMALVS PRUVIRVS RIBVISVS ROSGYMVS ROSWOOVS RUBPARVS SALSCOVS SHECANVS SPIBETVS SYMALBVS VACGLOVS VACMEMVS

1 1 10 2 3 8 20 10

90 20 60 20 50 60 10 10 50 10 20 10 10 60 10 10 70 10 30 10 20 90 40 20 10

Mosses AULANDNM BRAALBNM BRYSANNM DICRANNM DREUNCNM MOSS NM PLESCHNM

3 2 2 3 3 3 I

10 20 30 10 10 10 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

II 1 I

182 Appendix 3 H .

Larix occidentalis - Pseudotsuga menziesii Forest and W oodland

Alliance, cont. PA18 - LAROCC-PSEM EN (PINCON)/SHECANSPIBET/CALRUB (cont) SubPA23 - LAROCC-PSEM EN (PINCON)/SPIBETAMEALN/CALRUB Plots=14 COV M oues ( c o n t ) DICSCONM MARJUNNM POUUNNM RHYTRINM Lichens ALESARNL BRYORINL CETCANNL CETPLANL CLADONNL HYPIMSNL HYPOGYNL LXHENNL PELAPHNL USNEANL Grasses BROMUSVG CALRUBVG CARCONVG CARGEYVG ELYGLAVG FESOCCVG GRASS VG Forbs ACHMILVF ALLCERVF ANAMARVF ANEPIPVF ANTMICVF ANTNEGVF ANTRACVF APOANDVF ARNCORVF ARNICA VF ARNLATVF ASTCONVF ASTER VF ASTLAEVF CALAPIVF CALELEVF CALNUTVF CAMROTVF CASHISVF CASMINVF

PA19 - LAROCC-PSEMEN/MAHREP/CALRUB

(cont) SubPA25 - LAROCC-PSEM EN (ABIGRA)/ACEGLA/ARNCOR URYORI Plots=10 COV

CON 2 I 5 7

14 7 79 14

I I I 1

14 64 7 7 29 29 14 7 7 7

I I 1 1

1 41 1 15 1 3

2 I I I I I I 12 5 3 3 5 3 1 I 3 1 I I 2

7 100 36 14 14 7 7

64 7 14 7 7 7 7 14 36 14 7 43 14 7 14 14 7 36 7 21

COV

CON

Mosses (c o m ) BRAALBNM BRYSANNM DICACUNM DICSCONM DICTAUNM MOSS NM PLAMEDNM PLESCHNM POUUNNM RHYTRINM

17 3 I 3 2 1 1 5 2 2

15 5 5 5 10 15 5 20 40 15

Lichens ALEIVINL ALESARNL BRYORINL CLADONNL HYPIMSNL HYPOGYNL HYPPHYNL LETVULNL PECSUBNL PELAPHNL PELCANNL USNEANL

1 I 2 1 I 2 3 1 2 4 2 I

5 15 75 5 30 15 5 20 10 30 30 5

Grasses BROMUSVG CALRUBVG CARCONVG ELYGLAVG FES IDA VG FESOCCVG FESSCAVG GLYELAVG ORYASPVG

3 23 1 1 3 I 30 I 2

5 95 20 15 5 10 5 5 15

Forbs ACHMILVF ACTRUBVF ALLCERVF ANAMARVF ANEPIPVF ANTNEGVF ANTRACVF APOANDVF ARANUDVF ARCLARVF

I 1 1 1 1 I 2 2 3 3

30 5 5 10 10 5 25 15 5 5

CON

Mosses ( c o m ) POHNUTNM POUUNNM PTICRINM RHYROBNM RHYTRINM TORRURNM

10 3 1 2 2 3

10 40 10 20 50 10

Lichens ALECTONL ALETVINL ALESARNL BRYORINL CLADONNL HYPIMSNL HYPOGYNL LETVULNL PELAPHNL PELCANNL PELVENNL

1 3 1 2 2 I 2 2 3 2 3

10 10 10 100 50 10 60 40 50 60 10

Grasses BROMUSVG BROVULVG CALRUBVG CARCONVG CARGEYVG ELYGLAVG FESIDAVG ORYASPVG

I 1 13 2 2 3 1 I

10 10 100 30 20 20 10 10

Forbs ACHMILVF ACTRUBVF ADEBICVF ALLCERVF ANEPIPVF ARANUDVF AREMACVF ARNCORVF ARNICAVF ARNLATVF ASTCONVF ASTENGVF CALELEVF CAMROTVF CUUNIVF COLPARVF

1 1 3 I 1 3 1 12 5 1 3 3 I I 2 1

40 10 10 10 10 10 10 60 30 10 50 10 10 20 20 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183 A ppendix 3 H . A lliance, cont.

Larix occidentalis - Pseudotsuga menziesii Forest and W oodland

PA18 - LAROCC-PSEMEN (PINCON)/SHECANSPIBET/CALRUB (cont) SubPA23 - LAROCC-PSEMEN (PINCON)/SPIBETAMEALN/CALRUB PIots=14 COV Forbs (cont) CENMACVF CUU NIVF CRYLEUVF DISTRAVF EPIANGVF ERYGRAVF FIL A R W F FRAVESVF FRAVIRVF GALAPAVF GALBORVF GOOOBLVF HABUNAVF HIEALBVF HIEALEVF LUPCAUVF LUPINUVF MELLINVF OSMCHIVF PENCONVF PYRSECVF SMIRACVF SO LID A VF THAOCCVF TRIOVAVF VEROFFVF VICAMEVF VIOGLAVF XERTENVF

3 I 3 2 1 1 I 4 5 I 1 I 2 2 1 20 1 10 I I I 1 I 3 I I 3 1 2

PA19 - LAROCC-PSEMEN/MAHREP/CALRUB

(cont) 5ubPA25 - LAROCC-PSEM EN (ABIGRA)/ACEGLA/ARNCOR BRY ORI Plots=10

CON

COV 7

21 7 14 29 14 7 64 64 7 14 7 14 50 7 7 7 7 14 14 7 36 7 36 7 7 14 7 14

Forbs (c o m ) AREMACVF ARNCORVF ARNICA VF ARNLATVF ASTCHIVF ASTCONVF ASTER VF ASTRAGVF CALAPIVF CENMACVF CIRSIUVF CIRVULVF CUUNIVF COLPARVF CYNOFFVF DISHOOVF DISTRAVF EPIANGVF EPILOBVF ERIGRAVF ERYGRAVF FIL A R W F FRAVESVF FRAVIRVF GALTRIVF GOOOBLVF HABELEVF HIEALBVF HIEALEVF HIERACVF HIEUMBVF LITARVVF LUPINUVF LUPSERVF ORTTENVF OSMCHIVF PENCONVF PENSTEVF PYRSECVF SENTRTVF SMIRACVF SMISTEVF STRAMPVF TAROFFVF THAOCCVF TRILEPVF TRIREP VF

COV

CON

I 8 20 2 I I I 1 1 1 1 I I I 1 I I 1 1 I I I I I I 1 1

I I 1 1 1

I I 3 3 I

5 60 5 to 5 10 5 5 15 5 5 5 15 10 5 5 5 5 5 5 5 5 45 45 10 15 10 20 5 5 10 5 10 25 5 15 5 5 5 5 15 15 5 15 50 5 5

Forbs (c o m ) DISHOOVF DISTRAVF EPILOBVF ERYGRAVF FRAVESVF FRAVIRVF GALAPAVF GOOOBLVF HEUCHEVF HIEALBVF LATHYRVF LUPSERVF OSMCHIVF PENCONVF PYRSECVF SMIRACVF SMISTEVF THAOCCVF VIOORBVF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CON 2

1 I 1 2 1 1 1 1 I I 2 I 3 1 2 3 6 I

40 10 10 10 70 20 10 30 10 30 10 40 10 10 10 40 10 50 20

184 Appendix 3 H . A lliance, cont.

Larix occidentalis - Pseudotsuga menziesii Forest and W oodland PA19 - LAROCC-PSEMEN/MAHREP/CALRUB

______________________________ (coat)

COV Forbs (cant) VERTHAVF VICAMEVF VIOADUVF VIOLA VF

CON

t

1 1

Ferns ATHFILVE

EQUARVVE GYMDRYVE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

185 A ppendix 3 I. A llian ce

Pseudotsuga menziesii - Pinus ponderosa Forest and W oodland

PA20 - PSEMEN-PINPON/MAHREP-SYMALB-ARCUVA/CALRUB SubPA14 - PSEMEN-PINPON 'AM EALN-PURTRIfD-/; PfflLEW tfW V A G RSPI Plots=12 COV Tree* ABIGRAVD ABIGRAVT LAROCCVD LAROCCVT PINCONVD PINCONVT PINPONVD PINPONVT POPTREVT POPTRIVT PSEMENVD PSEMENVT Shrubs ACEGLAVS AMEALNVS ARCUVAVS BERAQUVS BERBERVS CEASANVS CEAVELVS CHIUMBVS CLEMATVS HOLDISVS JUNCOMVS JUNIPEVS UNBORVS LONCILVS PACMYRVS PHYMALVS PURTRIVS RIBCERVS ROSA VS ROSGYMVS ROSNUTVS ROSPISVS ROSWOOVS RUBPARVS SALSCOVS SHECANVS SPIBETVS SYMALBVS VACCAEVS VACCESVS VACMYRVS

I 7 I 8 1 4 2 16 10 3 3 27

10 6 11 10 8 3 6 1 1 7 6 3 2 1 1 10 10 I 1 2 1 1 5 3 2 3 5 8 2 1 1

COV

CON 3 6 3 38 3 22 22 97 3 3 34 97

6 72 81 3 72 3 13 3 3 6 22 3 9 3 3 34 3 3 13 28 6 3 9 6 6 40 78 72 6 3 3

T rees ABIGRAVT ABILASVD ABILASVT PICENGVT PINALBVD PINALBVT PINPONVD PINPONVT PSEMENVD PSEMENVT Shrubs ACEGLAVS AMEALNVS ARTFRIVS CHRNAUVS CLEMATVS HOLDISVS JUNCOMVS LONUTAVS PACMYRVS PHILEWVS PHYMALVS PRUEMAVS PRUVIRVS PURTRIVS RIBCERVS ROSA VS ROSWOOVS SPIBETVS SYMALBVS SYMOCCVS VACGLOVS Mosses BRYSANNM MOSS NM POUUNNM RHACANNM RHYROBNM TORRURNM Lichens ALESARNL BRYABBNL BRYORINL CETPLANL

Plots=32

SubPA15 - PSE MEN-PINPON /MAHREP-ARIZUVAJ CALRUB/POL.FUN Plots=15 COV

CON

I 1 2 1 3 3 10 11 10 12

10 7 7 17 1 3 3 1 7 4 3 1 1 13 3 3 1 7 1 40 20

8 8 17 8 8 8 8 67 8 83

8 67 17 17 8 25 8 8 17 33 8 8 8 33 8 8 8 42 8 8 17

10 12 2 20 3 1

8 17 25 17 8 8

I 1 I 1

17 8 50 8

CON

T rees LAROCCVD LAROCCVT PICENGVT PINCONVD PINCONVT PINPONVD PINPONVT PSEMENVD PSEMENVT

l 6 l I I i ii 2 19

13 60 7 7 7 13 80 53 93

Shrubs ACEGLAVS AMEALNVS ARCUVAVS BERREPVS CEAVELVS CHIUMBVS HOLDISVS JUNCOMVS LINBORVS LONICEVS PACMYRVS PHYMALVS PURTRIVS ROSA VS ROSGYMVS ROSNUTVS ROSWOOVS SALSCOVS SHECANVS SPIBETVS SYMALBVS

1 3 9 9 1 I 2 I I 1 2 11 7 1 2 1 3 I 2 4 5

7 53 93 87 7 7 13 13 13 7 13 20 13 7 13 7 40 7 20 60 67

Mosses AULANDNM BRAALBNM CERPURNM DICFUSNM D1CPOLNM DICSCONM DICTAUNM PLESCHNM POHNUTNM POUUNNM TORPRINM TORRURNM

I 5 7 1 1 7 6 7 3 7 I 1

7 73 13 7 7 27 13 13 7 67 7 13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186 Appendix 3 I. Pseudotsuga menziesii - Pinus ponderosa Forest and W oodland A lliance, cont._____________________________________________________________________ PA20 - PSEMEN-PINPON/MAHREP-SYMALB-ARCUV A/C ALRUB (cont) SubPA14 - PSEMEN-PINPON /AMEALN-PURTRIfD-/; PH ILEW tfM J/A GRSPI (cont) COV

COV

CON

Mosses BRAALBNM DICRANNM DICSCONM DICTAUNM HOMAENNM HOMNEVNM MOSS NM PLESCHNM POHNUTNM POUUNNM PTICRINM RHAHETNM TORRURNM

I I 1 10 3 6 I I 20 3 I 10 1

16 3 3 3 6 6 3 3 3 47 3 3 6

Lichens ALHSARNL BRYORINL CETPLANL CLADONNL HYPIMSNL HYPOGYNL LETVULNL PELAPHNL PELCANNL PELRUFNL PELTIGNL

1 3 1 I I 3 1 I 2 I 1

3 59 3 13 22 28 16 9 38 3 3

G rasses AGROPYVG AGRSPIVG BROTECVG CALMONVG CALRUBVG CARCONVG CARGEYVG CARROIVG DANINTVG ELYGLAVG FES IDA VG FESOCCVG FESSCAVG FESTUCVG GRASS VG ORYASPVG POACOMVG POAPRAVG STIOCCVG

1 1 3 10 26 2 2 2 3 3 2 2 8 1 3 I I I 1

3 13 6 3 94 28 13 6

3 16 16 9 19 3 3 3 3 3 3

SubPA lS - PSE MEN-PINPON /MAHREP-ARI2UVA/ CALRUB/POL.FUN PIots=15 COV

CON

Lichens (cant) CLADONNL HYPIMSNL LETVULNL PELAPHNL PELCANNL USNEA NL

3 1 I 1 1 1

8 17 25 8 25 8

Grasses AGRSCAVG AGRSPIVG BROTECVG BROVULVG CALAMAVG CALPURVG CALRUBVG CARGEYVG FESIDAVG FESSCAVG GRASS VG KOECRIVG LUZCAMVG MELSUBVG POASECVG

3 13 1 I 70 20 12 1 9 1 I 1 3 3 1

8 100 25 8 8 8 42 42 83 8 17 25 8 8 8

Forbs ACHMILVF ALLCERVF ANEPATVF ANTMICVF ANTRACVF APOANDVF ARAHOLVF AREPUSVF ARNCORVF ARNICA VF ARNSORVF ASTCHIVF ASTENGVF ASTMISVF ASTSTEVF BALSAGVF CALELEVF CAMROTVF CASLUTVF CHRVILVF CLAPULVF COLPARVF

4 1 1 1 7 7 I 10 3 1 3 1 I 2 1 4 I 2 1 I I 1

58 8 8 17 17 17 8 8 8 17 8 8 8 17 8 33 8 25 8 8 17 25

CON

Lichens ALECTONL BRYORINL CETCANNL CLADONNL HYPIMSNL HYPOGYNL HYPPHYNL LETVULNL PELAPHNL PELCANNL PELMALNL PELRUFNL PELTIGNL USNEA NL

I 1 I I 7 4 3 2 3 1

7 67 7 20 13 20 7 13 13 53 7 13 7 13

G rasses AGRSPIVG BROTECVG CALMONVG CALRUBVG CARCONVG ELYGLAVG FESIDAVG FESOCCVG FESSCAVG GRASS VG KOECRIVG ORYASPVG ORYZOPVG POAPRAVG STIOCCVG STIPAVG TRISPIVG

1 6 3 26 5 7 2 3 5 1 3 I 1 2 1 I 10

7 13 7 93 27 13 20 33 27 7 7 7 7 13 8 8 8

Forbs ACHMILVF ALLCERVF ANAMARVF ANEPATVF ANTMICVF ANTNEGVF ANTRACVF APOANDVF ARESERVF ARNCORVF ARNICA VF ASTCHIVF

1 I 3 I I 2 2 I I 9 3 I

67 7 13 13 13 13 33 13 7 40 7 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 I 1

187 Appendix 3 I. Pseudotsuga A lliance, cont.

menziesii - Pimis ponderosa Forest and W oodland

PA20 - PSEMEN-PINPON/MAHREP-SYMALB-ARCUVA/CALRUB SubPA14 - PSEMEN-PEVPON /AM EALN-PURTRIflM ) PHILEW (D-5)/AGRSPI (cont) COV Forbs ACHMILVF ALLCERVF ALLIUM V F ANAMARVF ANEMULVF ANEPATVF ANTMICVF ANTNEGVF ANTPARVF ANTRACVF APOANDVF ARNCORVF ARNICA VF ARNLATVF ASTCHIVF ASTCONVF ASTER VF BALSAGVF CALAPIVF CALNUTVF CAMROTVF CASLUTVF CASTILVF CENMACVF CHEALBVF C 1R A R W F CIRVULVF CLAPULVF CLIUNIVF COLLIN V F COLPARVF CREATRVF CREPISVF CYNOFFVF EPICILVF EPIPANVF ERICORVF ERIGERVF ERIPUMVF ERYGRAVF F IL A R W F FORB V F FRAVESVF FRAVIRVF GALAPAVF GALBORVF GALTRIVF

COV

CON 2 2 t I 1 I I

1 1 4 5 4 2 3 2 3 I I I I 1 1 10 1 1 I 1 I

1 I 1 I 1 1 I I

1 1 I I I 1

69 9 3 3 3 3 3 13 3 25 22 41 13 13 3 13 6 19 9 3 16 9 3 3 3 3 3 3 3 3 13 3 6 3 3 3

3 3 3 3

3 3 28 38

3 6

3

Forbs (cont) CREPISVF CRYTORVF DISHOOVF EPIANGVF EPILOBVF EPIMINVF ERIFILVF ERIPUMVF ERISPEVF ER1UMBVF FORB VF FRAVESVF FRAVIRVF FRIPUDVF GALAPAVF GALBORVF GEUTRIVF HABENAVF HEUCHEVF HEUCYLVF HIEALBVF HIEALEVF HIECYNVF LACTUCVF LOMTRIVF LUPARGVF LUPCAUVF LUPINUVF LUPSERVF MEND1SVF MONFISVF MONPARVF PEDCONVF PENALBVF PENCONVF PENERIVF PENSTEVF PHALINVF PHLOX VF POLYGOVF SAXFERVF SEDSTEVF SEDUMVF TAROFFVF THAOCCVF TRADUBVF VERTHAVF

(cont)

SubPA15 - PSEMEN-PINPON /M AHREP-ARCUVA/ CALRUB/POLJUN Plot s= 15 COV

CON 1 I I I I 1 1 I 1 I 1 I 1 1 1 1 I I

1 I I 1 1 1 1 1 I I 1 1 1 1 10 I I 1 1 1 1 1 1 I 1

8 8 8 8 8 8 8 17 8 8 17 8 8 8 8 17 8 8 17 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 25 8 17 33 8 8 8 8 8 8 8 17 8

Forbs (cont) ASTCONVF ASTER VF ASTRAGVF CALAPIVF CAMROTVF CASLUTVF CIRVULVF COLUNVF COLPARVF CREATRVF CREPISVF CYNOFFVF DISTRAVF DRAVERVF EPILOBVF EPIPANVF FIL A R W F FORBANVF FORBPEVF FRAVESVF FRAVIRVF GALAPAVF GALBORVF GALTRIVF GEUTRIVF GOOOBLVF HEUCHEVF HIEALBVF HIERACVF HYPERTVF LTTPARVF LITRUDVF LOMTRIVF LUPCAUVF LUPINUVF LUPSERVF MICGRAVF MONCORVF MONPARVF MYOMICVF PENCONVF PENSTEVF PHALINVF POLPULVF SEDSTEVF SILMENVF SMISTEVF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CON I 1 1 I I I

I 1 1 1 1 1 I I I I 1 1 I I I 1 1

1 1 I I I 1 I I I I 1 1 I

13 13 7 27 13 13 7 7 40 7 7 7 7 7 7 7 7 7 7 40 47 7 7 7 33 13 7 33 13 7 7 13 7 33 27 33 7 7 13 7 40 7 7 7 7 13 13

Appendix 3 I. Pseudotsuga menziesii - Pinus ponderosa Forest and W oodland A llian c e , cont. ____ PA20 - PSEMEN-PEVPON/MAHREP-SYMALB-ARCUVA/CALRUB (cont)

SubPA14 - PSEM EN-PINPON /A M EA LN -PU RTR IflM ) PfflLEW (D-5VAGRSPI ( cont) COV GEUTRIVF GOOOBLVF HEUCHEVF HEUCYLVF HIEALBVF HIERACVF HIEUMBVF HYDCAPVF HYPERIVF HYPPERVF LOMTRIVF LUPARGVF LUPCAUVF LUPINUVF LUPLAXVF LUPSERVF LUPWYEVF OSMCMVF PENALB VF PENCONVF PENSTEVF PHALINVF POTCONVF POTGLAVF PYRSECVF SCUANGVF SEDSTEVF SENCANVF SILMENVF SMIRACVF SMISTEVF SOLIDAVF TARAXAVF TRADUBVF TRIFOLVF VERTHAVF VICAMEVF VIOADUVF VIONUTVF

COV

CON

CON

I I I 2 2 2 3 I

6 3 3 3 19 6 3 3 3 6 3 3 9 22 3 9 3 3 3 19 9 3 3 3 3 3 6 3 6 6 3 3 3 3 6 6 6 3 3

3 2

3 9

I 1 I 1 I I I 1 1 I I I I 1 t 1 I I I I 1 1 I I I 1 1

VIONUTVF XERTENVF ZIGVENVF

1 7 3

8 17 8

I 20 t 10 3

8 8 8 8 8

Ferns

CRYCRIVE SELAGIVE SELDENVE SELWALVE WOOOREVE

SOLIDAVF TAROFFVF THAOCCVF TRADUBVF TRIOVAVF VICIAVF VIONUTVF VIOORBVF

1 I 1 1 I I 1 I

7 7 13 7 7 7 7 7

1 I

7 13

Ferns

SELWALVE WOOOREVE

Ferns

PTEAQUVE WOOOREVE

CON

COV Forbs (cont)

Forbs (cont)

F orbs (cont)

SubPA15 - PSEM EN-PINPON /MAHREP-ARCUVA/ CALRUB/POLJUN Plots=15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

189 Appendix 3 L Pseudotsuga A lliance, cont.

menziesii - Pinus ponderosa Forest and W oodland .. ..........

PA20 - PSEMEN-PINPON/MAHREP-SYMALB-ARCUVA/CALRUB SubPA16 - PSEMEN-PINPON /SPIBET/BALSAG/ FESIDA Plots=17

Shrubs ACEGLAVS ALNSINVS AMEALNVS ARCUVAVS BERREPVS HOLDISVS JUNCOMVS LINBORVS LONCILVS PHYMALVS PRUVIRVS PURTRIVS RIBVISVS ROSA VS ROSGYMVS ROSWOOVS RUBPARVS SALIX VS SHECANVS SPIBETVS SYMALBVS SYMOREVS VACCAEVS VACGLOVS Mosses BRAALBNM BRYCAENM GRIAPONM POHNUTNM PO UUN NM RHAPATNM TORB1SNM TORRURNM TORTULNM

COV

CON

COV T rees ABIGRAVT ABILASVT LAROCCVD LAROCCVT PINPONVD PINPONVT POPTREVT PSEMENVD PSEMENVT

SubPA16 - PSEMEN-PINPON /SPIBET/BALSAG/ FESIDA (cont)

1 20 I 2 2 16 1 3 12

6 6 6 12 24 76 6 40 100

1 I 5 10 3 7 10 1 I 6 3 3 I I 1 6

12 6 67 41 40 12 6 6 12 47 12 6 6 12 12 24 6 6 6 59 29 6 6 6

I 1 I 9 5 3 I 10

5 3 3 10 3 I 3 2 1

29 6 6 6 47 6 6 20 6

Uchens ALESARNL BRYORINL CLADONNL HYPIMSNL HYPOGYNL LETVULNL PELCANNL PELRUFNL PELTIGNL G rasses AGRSPIVG BROTECVG CALMONVG CALRUBVG CARCONVG CARGEYVG DESELOVG ELYGLAVG FESIDAVG FESOCCVG FESSCAVG FESTUCVG KOECRIVG MELBULVG POAPRAVG TRISPIVG Forbs ACHMILVF AGOGLAVF AGOSERVF ALLCERVF ALUUMVF ANAMARVF ANEPATVF ANTLUZVF ANTMICVF ANTNEGVF ANTPARVF ANTRACVF APOANDVF ARESERVF ARNCORVF ARNICA VF ARNLATVF ARNSORVF

PIots=32

SubPA16 - PSEM EN-PI NPON /SPIBET/BALSAG/ FESIDA (cont) COV

CON 1 2 I I 1 2 1 1 I

6 41 12 12 6 24 12 12 6

4 I 1 26 3 5 3 15 8 5 II

53 24 6 94 6 24 6 12 65 18 41 6 18 6 6 6

to 2

10 3 3

2 3 3

2 1

2 3 I 3 1 1 2 3 I

1 1 6 10

too 6 6 18 6 12 6 6 6 6 6 29 6 6 12 12 12 6

Forbs (cont) ASTCHIVF ASTCONVF ASTENGVF ASTMISVF BALSAGVF CALAPIVF CALOCHVF CAMROTVF CASLUTVF CASMINVF CASTILVF CLAPULVF COLLIN VF COLPARVF CREATRVF CREPISVF CYNOFFVF DELBICVF DODECAVF EPIANGVF ERICORVF ERIFLAVF ERIGERVF ERYGRAVF RLARVVF FRAVESVF FRAVIRVF FRIPUDVF GALBORVF GEUTRIVF HABUNAVF HEUCHEVF HEUCYLVF HIEALBVF HIEALEVF HIECYNVF HIERACVF HIEUMBVF HYPPERVF UTRUDVF LOMDISVF LOMTRIVF LUPCAUVF LUPINUVF LUPLEUVF LUPSERVF LUPWYEVF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CON 1 I I I 6 2 1 1 I 1 I 2 2 I 2 1 3 I 1 3 3 I I

I 1 3

2 1

I 3 I 1

2 4

2 3

1 I 3

2 1 1

2 12 3

7 10

6 12 6 6 65 12 6 12 12 6 6 18 29 24 24 12 6 6 12 24 6 6 6 12 6 35 41 6 6

6 6 6 12 18 12 24 6 6 6 12 6 53 12 18 6 41 6

190 Appendix 3 I. Pseudotsuga A lliance, cont.

menziesii - Pinus ponderosa Forest and W oodland _____________________________

PA20 - PSEMEN-PINPON/MAHREP-SYMALB-ARCUVA/CALRUB (cont) SubPA16 - PSEM EN-PINPON /SPIBET/BALSAG/ FESIDA

(cont) COV Forbs ( c o m ) MONF1SVF MONPARVF MONPERVF ORTTENVF PENCONVF PENSTEVF PHAHASVF PHAHETVF PHLCAEVF PHLOX VF POLDOUVF PRUVULVF SEDLANVF SEDSTEVF SENCANVF SENTRTVF SILMENVF SMIRACVF SMISTEVF THAOCCVF TRADUBVF TRIFOLVF VICAMEVF ZIGVENVF Ferns SELAGIVE

CON 1 I

6

1

12

I I I

35

1

6

I

6

6

6

6 6

6

I

6 6

I

6

1

35 12

I I

6

1

6

2

12

6

1

6

2 10 3

18

6

12

3

6

6 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

191 Appendix 3 I. Pseudotsuga menziesii - Pirns ponderosa Forest and W oodland A lliance, cont._____________________________________________________________________ PA21 - PSEMEN-PINPON(LAROCC)/PHYM AL-SYM ALB/RHYTRI Plots=14

SubPAll - PSEMEN-PINPON /ACEGLA-PHYMAL/ BRYORI spp. P I o t s = 3 __________ COV

COV

CON

Trees ABIGRAVD LAROCCVD LAROCCVT PINCONVD PINCONVT PINPONVD PINPONVT PSEMENVD PSEMENVT

3 2 II 3 2 7 12 3 37

7 29 79 7 29 14 86 71 100

Shrubs ACEGLAVS AMEALNVS ARCUVAVS BERBERVS CHIUMBVS CLECOLVS CRADOUVS HOLDISVS JUNCOMVS LIN BOR VS LONCILVS LONUTAVS PACMYRVS PHYMALVS ROSA VS ROSGYMVS ROSWOOVS SALSCOVS SHECANVS SPIBETVS SYMALBVS VACGLOVS

1 8 2 5 1 I 10 6 I 2 1 1 I 21 2 1 2 2 2 2 8 I

7 71 29 79 7 7 7 50 7 14 7 7 7 86 21 36 29 14 21 93 86 7

Mosses AULANDNM BRAALBNM BRAHYLNM BRYSANNM DICRANNM DICSCONM DICTAUNM HOMEGNM HOMNEVNM HYLSPLNM PLESCHNM POUUNNM

I 9 I 2 3 2 1 7 3 3 5 1

7 29 7 14 7 21 7 14 14 7 21 21

CON

Trees ABIGRAVT ABILASVT PINPONVT PSEMENVD PSEMENVT

11 I 10 2 50

66 33 33 100 100

Shrubs ACEGLAVS AMEALNVS BERREPVS CHIUMBVS HOLDISVS JUNCOMVS UNBORVS LONCILVS LONUTAVS PACMYRVS PHYMALVS PYRSECVF ROSA VS ROSGYMVS RUBPARVS SPIBETVS SYMALBVS

10 4 2 1 1 3 3 1 1 1 11 1 1 3 1 2 5

100 100 66 100 33 33 33 33 33 33 100 33 33 33 33 100 100

Mosses AULANDNM BRAALBNM BRAERYNM DICSCONM DICTAUNM DREUNCNM LESRADNM MOSS NM POUUNNM RHYROBNM RHYTRINM

3 3 3 I 3 3 3 I 3 I I

33 33 33 33 33 33 33 33 66 33 33

Lichens A LEG LAN L BRYORINL CLADONNL HYPIMSNL LETVULNL PELAPHNL PELCANNL

I 2 2 2 3 2 I

33 100 66 100 33 66 66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

192 Appendix 3 I. Pseudotsuga A lliance, cont.

menziesii - Pinus ponderosa Forest and W oodland

PA21 - PSEMEN-PINPON(LAROCQ/PHYMAL-SYMALB/RHYTRI (coat) SubPAll - PSEMEN-PINPON /ACEGLA-PHYMAL/ BRYORI spp. (cont) COV Mosses (e o n 1) RHAPATNM RHYROBNM RHYROBNM RHYTRINM SELDONNM

COV

CON

1 to 7 11 3

7 7 14 43 7

Lichens ALESARNL BRYORINL CLADONNL HYPIMSNL HYPOGYNL LETVULNL PELAPHNL PELCANNL PELMALNL USNEA N L

1 3 I I 3 1 2 2 3 1

36 93 21 14 21 29 29 86 7 7

G rasses BROMUSVG CALRUBVG CARCONVG CARGEYVG CARROIVG ELYGLAVG FESIDAVG FESOCCVG FESSCAVG ORYASPVG

2 12 1 3 I I I 2 10 I

14 100 14 14 7 14 14 36 7 14

Forbs ACHMILVF ADEBICVF ANEPIPVF ANTNEGVF ANTRACVF APOANDVF ARNCORVF ARNICA V F ARNLATVF ASTCONVF ASTER VF CAMROTVF COLPARVF COPOCCVF DISHOOVF DISTRAVF

I 1 3 I 2 3 6 1 6 I I I 1 I 2 I

14 7 7 7 21 14 29 29 14 7 7 21 7 7 14 21

Grasses (cont) CALRUBVG CARCONVG CARGEYVG CARROIVG ORYASPVG Forbs ACHMILVF ANTRACVF APOANDVF ARANUDVF ARNCORVF ASTENGVF ASTER VF CAMROTVF DISHOOVF DISTRAVF FRAVESVF FRAVIRVF GOOOBLVF HIEALBVF OSMCHIVF SMIRACVF SMISTEVF THAOCCVF

CON

3 1 10 1 I

100 33 33 33 33

1 1 1 I

33 33 33 33 66 33 33 33 33 33 100 33 33 too 66 66 33 33

1 1 1 I 1 1 I 1 1 1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

193 Appendix 3 L Pseudotsuga A lliance, cont.

menziesii - Pinus ponderosa Forest and W oodland __________________

PA21 - PSEMEN-PINPON(LAROCC)/PHYMAL-SYMALB/RHYTRI (cont)

COV F o rts (coat) FORB VF FRAVESVF FRAVIRVF GALAPAVF GALTRIVF GOOOBLVF HABELEVF HEUCHEVF HIEALBVF HIERACVF UTRUDVF LUPINUVF LUPSERVF MONPERVF OSMCHIVF SEDLANVF SMIRACVF SMISTEVF THAOCCVF VIOORBVF Ferns PTEAQUVE WOOOREVE

CON

I

21

I

71 14 7 14

1 1 1 1 I 1 2 I 3 7

1 1 I 1 3 1 2 I

50 7 14 21

14 7 14 7 29 7 7 7 36 29 7

14 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

194 and Alliance PA25 - PINPON/BALSAG /AGRSPI-FESSCA

PA25 - PINPON/BALSAG /AGRSPI-FESSCA Plots=4

COV

(c o n t)

I 18 7

25 100 50

Shrubs AMEALNVD AMEALNVS PHILEWVS PHYMALVS RIBCERVS ROSGYMVS SALSCOVS

1 8 10 30 3 I 1

25 75 50 25 25 25 25

1

25

Lichens BRYORINL

COV

CON

Trees PINPONVD PINPONVT PSEMENVT

Grasses AGRSPIVG BROTECVG CALRUBVG FESIDAVG FESSCAVG

20 9 1 I 20

100 100 25 50 75

Forbs ACHMILVF APOANDVF ASTER VF BALSAGVF CENMACVF CLAPULVF COLLIN VF COLPARVF CREACUVF CREPISVF DELBICVF ERIHERVF ERISPEVF FRAVESVF FRAVIRVF GEUTRIVF HIEALEVF LEWREDVF UTPARVF UTRUDVF LOMDISVF LUPINUVF LUPSERVF

2 1 1 9 2 10 I 1 1 1 1 3 I I I I I 1 I I I I 12

75 25 25 100 50 25 25 25 25 25 25 25 50 25 25 25 25 25 25 25 25 25 50

CON

Forbs ( c o i u ) MONFISVF MONPERVF ORTTENVF PENCONVF PENWILVF PHLDIFVF SEDSTEVF SENINTVF SISALTVF TAROFFVF TRADUBVF TRAGOPVF VERONIVF

1 1 1 1 I I I

25 25 25 25 25 25 25 25 25 25 25 25 25

Ferns SELAGIVE SELDENVE WOOOREVE

3 10 1

25 50 25

1 I I I 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

COV

CON

195

Appendix 4. Descriptions and Characterizations for Plant Associations and Sub-Plant Associations

Includes: 1.

Definitions of terms for upper level classification

(Based on the US National Vegetation Classification System - Grossman, et al. 1998)

2. Keys for Alliances, Associations, and Sub-Plant Associations 3. Descriptions and Characterizations for Plant Associations and Sub-Plant Associations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

196

DEFINITIONS OF TERMS FOR UPPER LEVEL CLASSIFICATION (Based on the US National Vegetation Classification System - Grossman, et aL 1998) T h e following are definitions for upper level, physiographic classes for tem perate zone form ations, version: September 25,1996. Classes defined are O rder, Class, and Subclass. G roup, Subgroup, an d Form ation classes a re not defined here, but are used in the Description and C haracterization sections of this Appendix. Consult the USNVCS, Grossman, et aL 1998. V egetated -

Greater than 1% vegetation cover.

F orest -

Trees with crowns overlapping (generally forming 60-100% cover.

E vergreen Forest -

Evergreen species generally contribute >75% of the total tree cover.

Deciduous Forest -

Deciduous tree species generally contribute >75% of the total tree cover.

W oodland -

Open stands o f trees with crowns not usually touching (generally forming 2560% cover). Canopy tree cover (rarely) may be less than 25% in cases when the cover of each of the other life forms present (Le. shrub, dwarf-shrub, forb, nonvascular) is less than 25% and tree cover exceeds the cover of the other life forms.

M ixed EvergreenDeciduous Forest -

Evergreen and deciduous species each generally contribute 25-75% o f total tree cover. (Includes semi-deciduous, semi-evergreen, mixed evergreen-deciduous xeromorphic, and mixed needle-leaved evergreen - cold-deciduous woody vegetation).

Evergreen Woodland -

Evergreen species generally contribute >75% of the total tree cover.

Deciduous Woodland -

Deciduous tree species generally contribute to >75% of the total tree cover.

M ixed EvergreenDeciduous Woodland -

Evergreen and deciduous species each contribute 25-75% of total tree cover (includes semi-deciduous, semi-evergreen, mixed evergreen-deciduous xeromorphic, and mixed needle-leaved evergreen - cold-deciduous woody vegetation.

S hrubland •

Shrubs generally greater than 0.5 m tall with individuals or chimps not touching to overlapping (generally forming >25% canopy cover - tree cover generally >25%). Shrub cover (rarely) may be less than 25% in cases when the cover of each of the other life forms present (Le. tree, dwarf-shrub, forb, nonvascular) is less than 25% and shrub cover exceeds the cover of the other life forms.

Evergreen Shrubland -

Evergreen species generally contribute >75% of the total shrub cover.

Deciduous Shrubland -

Deciduous species generally contribute >75% of the total shrub cover.

M ixed evergreen Deciduous shrubland -

Evergreen and deciduous specks each generally contribute 25-75% o f total shrub cover (includes facultatively deciduous, extremely xeromorphic mixed evergreen-deciduous woody plams).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

197

Dwarf-Shrubland

Deciduous dwarfS hrubland M ixed evergreenDeciduous dwarf* S hrubland •

Herbaceous Vegetation

Perennial gram inoid Vegetation (grasslands) -

Perennial forb Vegetation •

Low growing shrubs usually under 0.S m talL Individuals or chimps not touching to overlapping (dwarf-shrubs generally forming >25% cover - trees and shrubs generally forming >25% cover) dwarf-shrub cover (rarely) may be less than 25% in cases when the cover of each of the other life forms present (Le. tree, shrub, forb, nonvascular) is less than 25% and dwarf-shrub cover exceeds the cover of the other life forms. Deciduous species generally contribute >75% of the total dwarf shrub cover.

Evergreen and deciduous species each generally contribute 25-75% of total dwarf shrub cover (includes facultatively deciduous shrubs and other mixed xeromorphic evergreen-deciduous shrubs). Forbs (graminoids, forbs, and ferns) dominant (generally forming at least 25% canopy cover). Trees, shrubs, and dwarf-shrubs generally with less than 25% in cases when the cover of each of the other life forms present (Le. tree, shrub, dwarf-shrub, nonvascular) is less than 25% and herbaceous cover exceeds the cover of the other life forms.

Perennial graminoids generally contribute to >50% o f total herbaceous canopy cover. Perennial forbs (including ferns and biennials) generally contributing to >50% o f total herbaceous canopy cover.

N onvascular vegetation Nonvascular cover (bryophytes, lichens, and algae) dominant (generally forming

at least 25% cover). Trees, shrubs, dwarf-shrubs, and forbs generally with less than 25% cover. Nonvascular cover (rarely) may be less than 25% in cases when the cover of each of the other life forms present (tree, shrub, dwarf-shrub, and forb) is less than 25% and nonvascular cover exceeds the cover of the other life forms. Crustose lichen-dominated areas should be placed in the Sparsely Vegetated class. Sparse Vegetation -

Vegetation is scattered or nearly absent; total vegetation cover, excluding crustose lichens (which can sometimes have greater than 10% cover) is generally 1% to 10%.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

198

KEY TO ALLIANCES AND ASSOCIATIONS

Development and use of these identification keys for the first approximation of current vegetation on the Kootenai are the first step toward validation and refinement of the classification. The classification o f current vegetation on the Kootenai is based on sample plots placed to capture the coarse-level variability of vegetation and environment. These keys are limited to the extent of variability covered by die placement of sample plots from which the classification was derived. The full range of successional variability was not covered in the original sample design and therefore, neither will the keys. Riparian and wetland communities were not sampled, as were neither fine-scale sensitive nor rare communities. That does not lessen the importance of these communities at all, but does indicate the practical limitation placed on the original sample. These keys are not the classification. They are merely tools to aid in the identification of the alliance, plant association, and sub-association. Some communities cannot be identified due to limitations in the data or because of complexities in the vegetation and environment not covered in the initial classification. Instructions 1. Use these keys with plant communities having relatively stable, uniform vegetation assemblages. 2. Avoid communities in riparian areas, ecotones, and in communities less than 10 to 15 years from the most recent disturbance. 3. Select a site that is representative of the community in question. Record plant data on the field form in accordance with Ecosystem Inventory and Analysis Guide (1992). Plot size should be fixed-area and either 375 square meters or 1/10“*acre. The radius of this plot is 11.3 meters (37 feet). 4. Complete the Plant Composition form before trying to key out the community. Identify and list all grass, shrub, tree, forb, moss, and lichen species and do an ocular estimation of cover for each species. Cover is estimated to the nearest one percent up to 10%, and to the nearest 5% thereafter. 5. Enter the keys and work through the keys step by step, first for the alliance and then plant association and sub-association. In addition to the keys, consult Appendix 4 (Descriptions and Characterizations) for specifics pertaining to the identification of associations and sub-associations. The Cover/Constancy tables (Appendix 3) will also aid in identifying associations and sub­ associations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

199

KEY TO ALLIANCES Forests with 2 10% canopy cover of Western redcedar and Western hemlock............................................. ................................................................Western hemlock/Western redcedar Forest Alliance, p. 172 Early serai woodland communities with either Western redcedar or Western hemlock reproducing successfully................................................................................................................................................. .......................................................... Western hemlock/Western redcedar Woodland Alliance, p. 186 Forests with 2 10% canopy cover of Lodgepole pine and Sitka alder and > 1,600 meters in elevation........... ................................................................................................... Lodgepole pine Forest Alliance, p. 193 Forests with 2 10% canopy cover of Subatpine fir......................................................................................... ........................................................................................

Subalpine fir Forest Alliance, p. 202

Forests with 2 10% canopy cover of Grand fir............................................................................................... .............................................................................................................. Grand fir Forest Alliance, p. 276 Shrubland with > 10% canopy cover of Mountain alder................................................................................ ........................................................................................... Mountain alder Shrubland Alliance, p. 292 Early serai woodland communities with 2 5% canopy cover o f Lodgepole pine, Larch, and Sitka alder and < 1,600 meters in elevation........................................................................................................................... .................................................................................. Lodgepole pine/Larch Woodland Alliance, p. 301 Mixed forest/woodland with 2 10% canopy cover of Larch, Paper birch, and Aspen..................................... ........................................................ Larch and Paper birch Mixed Forest/Woodland Alliance, p. 324 Forests or woodlands with 2 5% canopy cover of Larch and Douglas-fir, and 2 10% canopy cover of Pinegrass....................................................................................................................................................... ......................................................................Larch/Douglas-fir Forest and Woodland Alliance, p. 332 Forests or woodlands with 2 10% canopy cover of Douglas-fir, Ponderosa pine, and Pinegrass.................... ..................................................... Douglas-fir/Ponderosa pine Forest and Woodland Alliance, p. 374 Shrubland with +/- 10% canopy cover o f Ponderosa pine and > 10% canopy cover o f Btuebunch wheatgrass, cheatgrass, and Arrowleafbalsamroot....................................................................................... . ...................................................... Ponderosa pine/BIuebunch wheatgrass Shrubland Alliance, p. 417

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200

KEY TO ASSOCIATIONS AND SUB-ASSOCIATIONS Western Hemlock/Western redcedar Forest and Woodland Associations and Sub-Associations: Forest:

Grand fir and Englemann spruce > 20%, Trefoil foamflower and Hooker’s fairy-bell > 5%............ PA1 - TSUHET-THUPLLTIATRI-DISHOO Association Grand fir and Larch > 10%, Western goldthread and Rhytidiopsis triquetrus > 5%......................... PA2_SPA46 - TSUHET-THUPLI/COPOCC/RHYROB Sub-Association Western white pine > 5%, Mountain lover > 10%, Twinfiower and Queen’s cup beadlilly > 5%..... PA2_SPA47 - TSUHET/PACMYR-LINBOR/CLIUNI Sub-Association Woodland:

Western hemlock and Western redcedar reproducing successfully. Sitka alder and Mountain lover > 5%, Thhnbleberry >10%, Fireweed > 20%, Northwestern sedge > 5%, Juniper moss > 10%....... PA3 - ALNSIN-PACMYR/EPIANG/CARCON/POLJUN Sub-Association Lodgepole pine Forest Association: Forest:

Elevatiou > 1600 meters. Lodgepole pine > 20%, Larch > 5 %, Sitka alder and Dwarf bilberry > 20%, Pinegrass > 20%, Bryoria present.......................................................................................... PA4 - PINCON-LAROCC/VACMYR/CALRUB Association Subalpine fir Forest, Woodland, Shrubland, and Perennial forb Associations and sub-Associations: Forest:

Subalpine fir > 10%, Sitka alder > 10%, Thimbleberry > 5%, Broadleaf arnica > 20%, Western meadowrue>2%........................................................................................................................... PA5 - ABILAS/ALNSIN-RUBPAR/ARNLAT-THAOCC Association Fool’s huckleberry > 10% Subalpine fir and Larch > 10%, Globe huckleberry > 10%, Beargrass > 20%, Rhytidiopsis > 5%, Bryoria > 3%..................................................................................... PA6 - ABILAS/VACGLO/XERTEN/RHYROB-BRYORIA Association

Subalpine fir, Larch, and Englemann spruce > 10%, Dwarf bilberry > 15%, Broadleaf arnica > 30% .................................................................................................. PA6_SPA40 - ABILAS-LAROCC/VACMYR/ARNLAT Sub-Association Subalpine fir, Englemann spruce, and Lodgepole pine > 10%, Fool’s huckleberry > 30%.. PA6_SPA41 - ABILAS-PINCON/MENFER-VACSCO Sub-Association

Subalpine fir > 30%, Englemann spruce > 5%, Fool’s huckleberry > 60%, White rhododendron > 6%, Brachythecium present....................................................................... PA8 - ABILAS-PICENG/MENFER-RHOALB/BRAERY Association

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

201

Subalpine fir and Larch > 10%, Lodgepole pine > 20%, Sitka alder > 10%, Dwarf bilberry > 20%, Heart-leaf arnica > 20%................................................................................................................ PA7 - ABELAS-PINCON/VACMYR-ALNSIN/ARNLAT Association

Woodland:

Subalpine fir > 15%, Lodgepole pine > 20%, Englemann spruce > 5%, Dwarf bilberry > 20%, Beargrass > 30%, Juniper moss > 10%.......................................................................................... PA10 - PINCON/XERTEN Association Shrubland:

Subalpine fir > 20%, Whitebark pine > 3%, Globe huckleberry > 30%, Beargrass > 25%.............................................................................................................................................. PA9 (Open) - ABILAS-PINALB/VACGLO/XERTEN Association Perennial Forb:

Whitebark pine > 2%, Dwarf bilberry > 5%, Elk sedge > 5%, Beargrass > 40%, Juniper moss present........................................................................................................................................... PA9 (Early Serai) - ABILAS-PINALB/VACGLO/XERTEN Association Subalpine fir > 20%, Whitebark pine > 5%, Whortleberry > 50%, Smooth woodrush > 20%......... PA11 - ABILAS-PENALB/VACSCO/LUZHTT Association Grand fir Forest Sub-Associations: Forest:

Grand fir > 10%, Larch and Douglas-fir > 10%, Rocky Mountain maple and Creeping Oregongrape > 5%, Thimbleberry > 3%, Twinflower > 10%, Wild sarsaparilla > 10%, Roughleaf ricegrass > 67%, Lady-fern > 10%................................................................................................ PA12_SPA32 - ABIGRA-PSEMEN/ACEGLA-LINBOR/ARANUD SubAssociation Grand fir, Western redcedar, Douglas-fir > 20%, Mountain lover > 3% ............................................ PA12JSPA33 - ABIGRA-PSEMEN(THUPLI)/PACMYR Sub-Association Mountain alder Shrubland Association: Shrubland:

Black cottonwood > 20%, Mountain alder > 30%, Common snowberry, Bluejoint reedgrass, Blue wildrye, and Field horsetail > 15%................................................................................................. PA13 - ALNINC-SYMALB/CALCAN-ELYGLA Association Lodgepole pine/Larch (Early Serai) Woodland Sub-Associations: Woodland:

Lodgepole pine > 10%, Larch > 5%, Sitka alder > 15%, Twinflower > 20%, Fireweed > 5%, Pinegrass > 15%............................................................................................................................ PA14_SPA27 - PINCON-LAROCC/ALNSIN-LINBOR/CALRUB SubAssociation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

202

Lodgepole pine and Larch > 10%, Shiny-leaf spirea > 3%, Dwarf bilberry > 5%, Pinegrass > 40%, Jumiper moss > 5%........................................................................................................................ PA14_SPA28 - PINCON-LAROCC/VACMYR-SPIBET Sub-Association Lodgepole pine and Grand fir > 5%, Ponderosa pine > 10%, Western serviceberry > 5%, Kinnikinnick > 15%, Twinflower > 5%, Buflaloberry > 5%, Pinegrass > 20%................................ PA14_SPA29 - PINCON-LAROCC(PINPON)/AMEALN/CALRUB SubAssociation Larch/Paper birch Mixed Forest and Woodland Sub-Association: Mixed Forest and Woodland:

Larch and Douglas-fir > 10%, Paper birch and Quacking aspen present, Rocky Mountain maple > 10%, Twinflower > 15%, Queen’s cup beadlilly and False spikenard > 2%, Pinegrass > 15%......... PA15 - LAROCC-BETPAP/ACEGLA-ALNSIN Association Larch and Douglas-fir Forest and Woodland Associations and Sub-Associations: Forest:

Larch > 20%, Lodgepole pine > 10%, Douglas-fir > 5%, Twinflower > 20%, Buflaloberry > 10%, Shiny-leaf spiraea > 5%, Pinegrass > 30%...................................................................................... PA18 - LAROCC-PSEMEN(PINCON)/SHECAN-SPIBET(CALRUB) Association Larch > 15%, Douglas-fir > 30%, Creeping Oregon-grape and Common snowberry > 5%, Pinegrass > 20%............................................................................................................................. PA 19 - LAROCC-PSEMEN/MAHREP/CALRUB Association Larch > 10%, Douglas-fir > 35%, Grand fir > 25%, Rocky Mountain maple > 9%, Baldhip rose > 5%, Heart-leaf arnica > 10%, Bryoria > 2%, Hypogymnia and Peltigera present............................. PA19_SPA25 - LAROCC-PSEMEN(ABIGRA)/ACEGLA/BRYORIA SubAssociation Woodland:

Larch and Subalpine fir > 12%, Douglas-fir > 20%, Dwarf bilberry > 20%, Twinflower > 10%, Heart-leaf arnica > 5%, Pinegrass > 10%, Bryoria > 2%................................................................. PA16 - LAROCC-PSEMEN(ABILAS)/VACMYR/CARCON Association Larch > 5%, Douglas-fir > 15%, Lodgepole pine > 20%, Globe huckleberry > 10%, Shiny-leaf spiraea > 5%, Beargrass > 15%....................................................................................................... PA17 - LAROCC-PSEMEN(PINCON)/VACGLO/XERTEN Association Larch and Lodgepole > 5%, Douglas-fir > 12%, Shiny-leaf spiraea > 10%, Western serviceberry > 4%, Pinegrass > 40%, Juniper moss > 5%....................................................................................... PAI8_SPA23 - LAROCC-PSEMEN(PINCON)/SPIBET-AMEALN/CALRUB Sub-Association

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

203 Douglas-fir and Ponderosa pine Forest and Woodland Associations and Sub-Associations: Forest:

Douglas-fir > 20%, Ponderosa pine > 15%, Kinnikinnik > 10%, Common snowberry > 5%, Pinegrass > 25%.............................................................................................................................. PA20 - PSEMEN-PINPON/MAHREP-SYMALB-ARCUVA/CALRUB Association Ponderosa pine and Grand fir > 10%, Douglas-fir > 50%, Rocky Mountain maple and Mallow ninebark > 10%, Bryoria > 2%.................................................................................................................... PA21JSPAII - PSEMEN-PINPON/ACEGLA-PHYMAL/BRYORI SubAssociation Woodland:

Ponderosa pine and Douglas-fir > 10%, Western serviceberry > 5%, Antelope bitter-brush > 10% (on the Rexford Ranger District), Mockorange > 4% (on the Libby Ranger District), Bluebunch Wheatgrass > 12%........................................................................................................................... PA20_SPA14 - PSEMEN-PINPON/AMELAN-PURTRI-PHILEW/AGRSPi Sub-Association Ponderosa pine > 10%, Douglas-fir > 20%, Kinnikinnik and Creeping Oregon-grape > 7%, Pinegrass > 25%, Juniper moss > 5%.............................................................................................. PA20_SPA15 - PSEMEN-PINPON/MAHREP-ARCUVA/CALRUB/POLJUN Sub-Association Ponderosa pine > 15%, Douglas-fir >12%, Shiny-leaf spiraea > 9%, Arrowleaf balsamroot > 5%, Pinegrass > 25%, Idaho fescue > 7%............................................................................................... PA20_SPA16 - PSEMEN-PINPON/SPIBET/BALSAG/FESIDA SubAssociation Ponderosa pine > 10%, Douglas-fir > 35%, Larch > 10%, Mallow ninebark > 20%, Common snowberry > 5%, Pinegrass > 10%, Cat-tail moss > 10%................................................................. PA21 - PSEMEN-PINPON(LAROCC)/PHYMAL-SYMALB/RHYTRI Association Ponderosa pine Shrubland Association: Shrubland:

Ponderosa pine > 15%, Western serviceberry > 5%, Arrowleaf balsamroot > 5%, Bluebunch wheatgrass and Rough fescue > 20%............................................................................................... PA25 - PINPON/BALSAG/AGRSPI-FESSCA Association

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

204

Appendix 4 (cont.) Descriptions and Characterizations for Plant Associations and Sub-Plant Associations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

205

TSUGA HETEROPHYLLA - THUJA PLICATA FOREST/WOODLAND ALLIANCE

PAl, PA2 SUB-PA46, PA2 SUB-PA47, PA3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

206 Physiognomic: IA8Nc TSUGA HETEROPHYLLA - THUJA PLICATA FOREST ALLIANCE (n=3) Tsuga heterophylla - Thuja plicata / Tiarella trifoliata / Disporum hookeri Western Hemlock - Western Redcedar / Trefoil Foamflower / Hooker's Fairy-bells
-“ . ^ ‘*iTroutCrpek

-i

• Plot locations

SITE ATTRIBUTES Elevation Slope Aspect ■ Precipitation Solar Insolation

UNITS ft deg direction in eal/enp/yr

AVG 4367 42 SB 57.33 158057.6T

MIN - 4200 30 ’■s e . 57 27771 ;

MAX 4500 60 NW 58 225265

STB BEV 152.75 16 —

.91 112850.44

Landtypes

Kuermen & Nielsen-Qartwdt 1985

357 - Andie Cryochrepts-Lithic Cryochrepts complex, dissected glaciated mountain slopes 381 -Typic Ustochrepts-Uthic Ustochrepts complex, dissected glaciated mountain slopes, diy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

207

INDICATOR SPECIES SCIENTIFIC NAME

Abies grandis Picea engelmannii Pseudotsuga menziesii Thuja plicata Tsuga heterophylla Taxus brevifolia Tsuga mertensiana

COMMON NAMECOVER

Grand fir Engelmann spruce Douglas-fir Western redcedar Western hemlock Pacific yew Mountain hemlock

CONSTANCY

%

%

30 15 5 2 32 3 20

67 100 100 67 67 67 33

8 17 5

100 67 100

m m Adenocaulon bicolor Arnica cordifolia Disporum hookeri

Trail-plant Heart-leaf arnica Hooker's fairy-bell

Number of Plots

Habitat Types

TSHE/

CUINCLUN

Pfisteretal. 1977& Cooperetal. 1991

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

208

PROCESS ATTRIBUTES

AVG/MODE

MAX

STD DEV

Overstory Leaf Area Index Stand Replacing Fire Interval (Sampled on plots)

Structure Class *

§

CL

B I E

0-^*O'Hara &Latham. 1996 .-As.-

AVG

MIN

MAX

STD DEV

Net Primary Production (kgCm2) Maintenance Respiration (kgCm2) Autotrophic Respiration Heterotrophic Respiration

i fc

Soil Respiration (kgCm2)

£eafGabbm£ Dead Stem Carbon (kgCm2)

fbVsoflk

*irttedSlfc

^aT0Q$uc

viamiiKl

r^nrfffr*: Turt

S^Ug-4-i^i

rfv;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

209

DOWN WOOD SUMMARY STD DEV

MAX 3 Transect Minimum Measurements 3 Transect Maximum Measurements

0.04 0.18

0.0 0.02

0.12

3 Transect Minimum Measurements 3 Transect Maximum Measurements

0.25 1.40

0.0 0.18

0.30 0.74

3 Transect Minimum Measurements 3 Transect Maximum Measurements

0.39 6.64

0.0 1.45

4.39 13.22

3 Transect Minimum Measurements 3 Transect Maximum Measurements tOO&iFour Timelag - rotfan?(jFons/acre) 3 Transect Minimum Measurements 3 Transect Maximum Measurements All Woody Material'(Tons/acre) 3 Transect Minimum Measurements 3 Transect Maximum Measurements

0.06 5.25

0.0 0.0

0.84 24.04

0.22

0.98 12.59

0.0 0.0

3.90 39.07

1.45 13.64

3.71 21.57

0.0 4.40

14.80 51.64

3.90 13.64

0.93 2.80

0.0 1.00

3.00 5.00

1.03 1.32

2.21 8.08

0.0 4.00

5.00 14.50

2.18 3.36

0.05

rr-

1.17 4.19

Lr 6.81

J^ n B erofEo^CCount). 3 Transect Minimum Measurements 3 Transect Maximum Measurements &)gE>iameter>(fiiehes) 3 Transect Minimum Measurements 3 Transect Maximum Measurements

Fuel Models Anderson Fuel Model* 8

10

S £ ow 4> A

E3 z

I

HSR Q NFDRS Fuel M odel* •A n d erso n , 1962

"V

F D R S

i

1978

DERIVED OUTPUT •i. -

Species Diversity (H1) Vertical Diversity

AVG

MIN

1.15 m .59

.89 ih . - m m -.04

MAX 1.33 ■■■* .87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

210

DERIVED OUTPUT, cont.

Vertical Diversity Preffla

{-

'

jp cciu in d cover^rthln^lrstratifTcatfoiecraMe^ rh d « vafues range from .4toI:49. M ori ipecieswitlr mortcvenly distributed cover move tbe bar for each*strata further to tie rfgbt rndervafiieswiHdecreaieM cover andevenneis decrease »n(Tthe strata banw illm overfurtber t&tbereft: spedeswithaneven dbtributfonof cover w K bfttbe^fis^

4S feet (;iyto.75^m )and30foot+ (9 J4m>;strata. W ildllfecoverls bascdori'Lyod’altfbEJprogram (Lyon 1997); Thermal and hidingebVerTbirovrf^^ .. definition ofTbdm asetai. 1979). Numbers arebasebon averages for eacE plot for eacli PA ahP£ Ije^ b seis to compare tfaepealc and ipread ofeacEcurvenrrcra'tfve comparlsonto other PA *s andSulHPA’s.

Shannon-Weiner Diversity Index

(ratio of richness to equitability)

a. i.o

a. i.o

1.0

2 0.5

0 .0. HIDING COVER PERCENT

THERMAL COVER - 12+M(40+FT)

0.3 0.4 0.5 0 .8 0 .7 0.8 0.9 1.0 1.1 SHADE THERMAL COVER - SUMMER

1.5

3

1'° sE

£ 1.0

3

WINTER THERMAL COVER - PROTECTION

0.05 0.10 WIND BLOCKAGE

0.15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

211

DERIVED OUTPUT, cont.

1.5

0J1.Q

0.5

0.0 200

250

300

350

BASAL AREA (fP/ac)

HEIGHT & AGE DISTRIBUTION FOR DOMINANT TREE SPECIES M ountain Hemlock

G rand Fir

160 140

140

£ 120

«

120

UJ

0 100 200 300 400 500 600700 800 AGE (years)

rotittnan SDEcoa

0 100 200 300 400 500 600 700 800 AGE (years)

reciter density, itoe oean

«£

'mH e ro n N oxon

kT ro u/st C ree • k

*4^

e

P lot lo c atio n *

SITE ATTRIBUTES

Elevation; Slope Aspect Precipitation Solar Insolation

UNITS

AVG

MIN

MAX

ft deg

nn

196ft 3

4560 80

37

directum in cai/cm?/yr

43.24

L an d ty p e s*

A I Q £ (9

850 708

see425

0 1 E

3

2B3 141 ■

I

F l

103 108 3SZ 363

*Kuennen A NMsen-Gertardt 1985

t

|

365 367 380 386 408

:



'

54 197765

25

k

STD DEV 620.87 26

; . 7.34 54395.7

103 - Andie Dystrochrepts, alluvial terraces IG8 - Andie Dystric Eutrochrepts, lacustrine tenaces-Andic Dystrochrepts, glacial outwash terraces, complex 352 - Andie Dystrochrepts, glaciated mountain slopes 353 • Andie Cryochrepts-Rock outcrop-Lithic Cryochrepts complex, glaciated mountain ridges 355 - Andie Dystrochrepts-Rock outcrop complex, glaciated mountain slopes 357 - Andie Cryochrepts-Lithic Cryochrepts complex, dissected glaciated mountain slopes 360 - Rock outcrop-Lithic Cryochrepts complex, glaciated mountain ridges 365 - Andie Dystrochrepts, dissected glaciated mountain slopes, steep 408 - Andie Cryochrepts-Rock outcrop complex, glaciated mountain slopes, very steep

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

214

INDICATOR SPECIES SCIENTIFIC NAME

COMMON NAME

Abies grandis Larue occidentalis Thuja plicata Tsuga heterophylla

Grand fir Western larch Western redcedar Western hemlock

Coptis occidentalis

Western Goldthread

T“in§

COVER

CONSTANCY

%

%

18

27

81 63 95 95

11

27

6 12

45 36

9

21

-■ U

Rhytidiopsis robusta Rhytidiopsis triquetrus

— —

Habitat Types* 14 13 12 11

a. B

IE

10

9 8 7

6 5 4 3 2

1 0 Tt-PL/

TSH B

TSH B TSHE/ T SH B

CLUN- ASCA- CLUN CLUN ARNU

CUUN- CLUNARNU CLUN

T SH B

MEFE

*Pfisteretal.1977A Cooper etal. 1991

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Structure C la s s '

§

a. Shi 5

E

*O'Hara & Latham. 1996

AVG ^Production:

&V1^*- ■^ - --

Net Primary Production (kgCm2)

MIN ---------X25

MAX ,.. . Vv,i--

1.57

.87

.15

.1

.22

.04

.64

.38

.88

.16

.08

.05

.1

.01

41437.56

22369.14

62649.01

10594.41

■hi Maintenance Respiration (kgCm2) Autotrophic Respiration Heterotrophic Respiratiion Soil Respiration(kgCm2) Dead Stem Carbon (kgCm2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

216

DOWN WOOD SUMMARY MAX 3 Transect Minimum Measurements 3 Transect Maximum Measurements 3 Transect Minimum Measurements 3 Transect Maximum Measurements 3 Transect Minimum Measurements 3 Transect Maximum Measurements

“sS

3 Transect Minimum Measurements 3 Transect Maximum Measurements

0.86

10.21

7.48

34.54 -

r

.

3 Transect Minimum Measurements 3 Transect Maximum Measurements IVlnTvriftF11. 3 Transect Minimum Measurements 3 Transect Maximum Measurements

s i:v '

3 Transect Minimum Measurements 3 Transect Maximum Measurements

1.55 2.23

3 Transect Minimum Measurements 3 Transect Maximum Measurements

4.39 9.58

9.34 72.60

2.10

18.69 7.75

293

Fuel Models

s

Anderson Fuel Model*

a

10

NFDRS Fuel Model** *A n d e r s o n , -N F D R S ,

1982 1978

DERIVED OUTPUT

pfVS .. .

.

; .

-

Species Diversity (H‘) Vertical Diversity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

STD DEV

DERIVED OUTPUT, cont.

VERTICAL DIVERSITY PROFILE

! 3 A .5 a I B a t.0 1.1 12 1J 1.4 1.5 S h a n n o n -W e in e r D ive rsity In d e x (ra tio o f richn e ss to equita b ility)

i •6

I 1 3

z

Z

10 20 30 40 HIDING COVER PERCENT

0.1 0.2 0.3 0.4 0.i THERMAL COVER - 12+M (40*FT)

5.0

SHADE THERMAL COVER • SUMMER

«•

I

o

3

z

0.0 WINTER THERMAL COVER«PROTECTION

0.1 WIND BLOCKAGE

0.4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

218

DERIVED OUTPUT, com.

9

7

1 $ i

i

e

E s

■s

4 3

Z

3 2 t 0,

200

300

SQUARE FT 8ASALAREA (per acre p e r plot)

HEIGHT & AGE DISTRIBUTION FOR DOMINANT TREE SPECIES Douglas-Fir

Engelmann Spruce

Grand Fir

Lodgepole Pine

200

too

to o »

OIOO

100 200 300 AGE ( y t a n )

P aper Birch

4 00

100

400 AGE (y aa rs)

W estern R edcedar

W estern Larch

too

o8° 1 200 300 AQE (y a a r t]

200

AGE

S'OO•

3 200 AGE ( y a r n )

m 130

? ts o

S ’ 130 ►

400

tOO 200 3 00 AGE ( y a m )

400

W estern Hemlock

&».

400

NARRATIVE

The PA2 SPA46 plant association is found primarily on the west side of the Kootenai Forest within the higher precipitation, maritime influence zone. This is a mid­ elevation plant association with annual precipitation ranging from 43 to 54 inches. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

219

plant association is on the moderately cool - moderately moist end of the environmental gradient. The water holding capacity for this association is predominantly moderate. Soil volumetric water content is the lowest compared to other plant associations. Amount of carbon fixed within dead stems, gross primary productivity, evapotranspiration, and overall respiration rates are among the highest of all plant associations. Historic fire intervals (determined by on-site fire scar analysis) indicate standreplacing fires every 150 to 300 years (average approximately 200 years), with mixed lethal fires every 30 to 50 years. In general, this is a species-poor plant association due primarily to closed canopies and shading to the understory. Shrubs and forbs are neither common nor abundant. Gross primary production and leaf area index is on the higher end of the gradient. Dense overstory canopy conditions indicate a high, but sporadic level of disease and insect-related damage occurrence. For the Kootenai, this plant association falls within the VRU 5 Vegetation Response Unit (Moderately Cool and Moist) description. Consult Vegetation Response Unit Characterizations and Target Landscape Prescriptions (1999) for generalized descriptions and characterizations of this VRU.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

220 Physiognomic: IA8Nc TSUGA HETEROPHYLLA - THUJA PLICATA FOREST ALLIANCE

(n=lO) Thuja plicata/Pachistima myrsinites - Linnaea borealis / Clintonia uniflora Western Redcedar / Mountain-Lover - Twinflower / Queen's Cup Beadlily

SITE ATTRIBUTES UNITS ft deg direction in cal/cm*/yr

Elevation Slope Aspect Precipitation Solar Insolation

321 3B7 214 -

i

160 107

*Kuennen A Nlelsen-Gertiardt 1985

AVG

MIN

MAX

3740.1 38 N¥ 43.24 1240123

2809 0 N 34 2I70S

4600 75 N 57.8 188406

STD DEV 612.92 27 7.21 6S59S.06

108 • Andie Dystric Eutrochrepts, lacustrine tenaces-Andic Dystrochrepts, glacial outwash terraces, complex 302 • Typic Ustochrepts, glaciated mountain slopes, steep 322 • Eutric Glossoboralis. moraines 323 - Typic Eutroboralfs, moraines 3S2 - Andie Dystrochrepts, glaciated mountain slopes 357 - Andie Cryochrepts-Lithic Cryochrepts complex, dissected glaciated mountain slopes 381 - Typic Ustochrepts-Lhhic Ustochrepts complex, dissected glaciated mountain slopes, dry 406 - Andie Cryochrepts, glaciated mountain ridges 408 - Andie Cryochrepts-Rock outcrop complex glaciated mountain slopes, very steep

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

221

INDICATOR SPECIES SCIENTIFIC NAME

COMMON NAME

COVE

CONSTANCY

Western white pine Western redcedar Western hemlock

10 31 14

80 100 100

Pachistima myrsinites

Common prince's pine Twinflower Mountain-Iover

9 6 11

40 90 80

Clintonia uniflora

Queen's cup beadlily

5

100

Pirtus monticola Thuja plicata Tsuga heterophylla Chimaphila umbellata Linnaea borealis

Bryoria spp.

50 30

Hypogymnia spp.

Habitat Types *

« £ 5

I O-L THPty CLUN- CLUN CLUN * P O s te r e t a l. 1 9 7 7 &

C o o p er e ta i

T5HB TSHB TSHE/ CLUN- CLUN- CLUNARNU CLUN MERE 1991

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

222

PROCESS ATTRIBUTES

AVG/ MODE Overstory Leaf Area Index w m sm i

Stand Replacing Fire Interval (Sampled on plots)

--

120

400

161.93

Structure Class *

*0'Hara & Latham. 1996

Net Primary Production (kgCm2) Maintenance Respiration (kgCm2) Autotrophic Respiration Heterotrophic Respiration

STD

1.15

.41

.83

.2

.7*

.17

.07

.01

.11

.04

.33

.07

.47

.17

.04

.02

.06

.01

30258.01

11720.08

it--.

'cs-vf'

■t'rfr-

Soil Respiration (kgCm2) Dead Stem Carbon (kgCm2)

MAX

19002

4274.19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

223

DOWN WOOD SUMMARY MAX

STD DEV

3 Transect Minimum Measurements 3 Transect Maximum Measurements 3 Transect Minimum Measurements 3 Transect Maximum Measurements LpTaaf*.

3 Transect Minimum Measurements 3 Transect Maximum Measurements

*aSi3r« 'tiJ sL

3 Transect Minimum Measurements 3 Transect Maximum Measurements

0.0

28.59

92.84

3 Transect Mmimum Measurements 3 Transect Maximum Measurements

35

23.54 124.35

5.06 41.14

3 Transect Mmunum Measurements 3 Transect Maximum Measurements a s p ,‘?i*v*. :

i r r 1?

3 Transect Minimum Measurements 3 Transect Maximum Measurements 3 Transect Minimum Measurements 3 Transect Maximum Measurements Fuel Models A n d e rs o n F u e l M o d e l*

5

B

10

1—

0-I—I *A n d e r s o n ,

i

i

r

0

HSR N F D R S F u e l M o d e l* *

Q

1982

" N F D R S , 1978

DERIVED OUTPUT ’

Species Diversity (IT) Vertical Diversity

- 'A -

MIN

TYi

.84

.67

S ilid iii

r

AVG

-.04

MAX

I -3 3

STD DEV

^

~

_

:r';| ....... .82 ~

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.16

fc-:

26

DERIVED OUTPUT, cont.

VERTICAL OtVERSiTY PROFILE

i

S h a n n o n -W e in e r D iv e rs ity Index (ra tio o f ric h n e s s to e q u ita b ility )

i

o z

z

z

0 10 20 X 40 50 60 70 80 90100 HIDING COVER PERCENT

THERMAL COVER * 12+M (40+FT)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 SHADE THERMAL COVER • SUMMER

«

I o

Z

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 .7 0.8 WINTER THERMAL COVER*PROTECTION

WIND BLOCKAGE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

225

DERIVED OUTPUT, cont.

1 ©

a

i

o

z3

0 100200 300400500600 700800 SQUARE FT BASALAREA (p«rtcmptrpfo()

H EIG H T & AGE DISTRIBUTION FOR DOMINANT TR EE SPECIES

Western Hemlock

30a

200

White Pine

Western Larch 3001

i

r

r - r

Western Redcedar r

I



r ou j X

i- i 0

100 200 300 400 500 600

AGE(yMrs)

0

100 200 300 400 500 600 AGE (yMfs)

0

i

i

100 200 300 400 500 600

0

100 200 300 400 500 600

AGE (ytars)

AGE (yrart)

NARRATIVE

This plant association is found on mid-slopes and within a mid-elevation band. Water holding capacity is moderate. Leaf area index is the highest of all plant associations. Soil volumetric water content and evapotranspiration rates are also high when compared to other plant associations. Fire history sampling indicates underbums occurred 60 to 120 years before present, partial stand-replacing events 90 to 200 years before present and stand-replacing events approximately 400 years before present. Remote sensing texture is coarse grain, lower slope.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

226

Relative foliage cover is primarily in the tree and shrub lifeform, with some distribution in the forb layer. Grass, fern and bryophyte relative foliage cover is negligible. Heart rot and blister rust is common throughout the sample plots. This plant association is found primarily within Vegetation Response Unit 5 (Moderately Cool and Moist). Consult the Vegetative Response Unit Characterizations and Target Landscape Prescriptions document (1999) for further generalized descriptions and characterizations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in

Physiognomic: IIA4Nb TSUGA HEREROPHYLLA - THUJA PLICATA WOODLAND ALLIANCE

(n = l 0) Alnus sinuata - Pachysdma myrsinites (Rubus parviflorus) /Epilobium angustifolium / Carex concinnoides / Polytrichum juniperinum

Sitka Alder - Mountain-Lover (Thimbleberry) / Fireweed / Northwestern Sedge / Juniper Moss

SITE ATTRIBUTES UNITS

AVG

MIN

MAX

Elevation

ft

4093

2080

5821

Slope Aspect Precipitation Solar Inaohtfon.

deg direction „■ in ca&tcaPlyt:

29 NW 42.48 137730t2

10 N 23 83491

49 - N 68 f: 227331

STD DEV 1124.4 9 13 12 48599

Landtypaa* A

SOB

?

«4

BE (9

33B

I

254

a

z if 1

z

16B

84 4

dloo o=-=r 0

10B

361

362

366

367

380

108 • Andie Dystric Eutrochrepts. lacustrine terraces-Andic Dystrochrepts. glacial outwash terraces, complex 351 - Andie Dystrochrepts, dissected glat-iarert mountain slopes 352 - Andie Dystrochrepts, glarian-rf mountain slopes 355 - Andie Dystrochrepts-Rocic outcrop complex, glaciated mountain slopes 357 - Andie Cryochrepts-Lithic Cryochrepts complex, dissected glaciated mountain slopes 360 - Rock outcrop-Lithic Cryochrepts complex, glaciated mountain ridges

•Kuennen A Nfe/san-GeihanJt 1985

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

228 INDICATOR SPECIES SCIENTIFIC NAME

COMMON NAME

COVER

CONSTANCY

Alnussinuata Pachistima myrsinites Rubtis parviflorus

Sitka alder Mountain-lover Thimbleberry

7 8 10

70 70 70

Anaphalus margaritacea Epilobium angustifolium

Pearly-everlasting

5

90

Fireweed

32

90

Hieracium albiflorum

White-flowered hawkweed

90

Carex concinnoides

Northwestern sedge

60

Funaria hygrometrica Polytrichum juniperinum

Juniper moss

7

20

11

70

Habitat Types

£

o S a E

ABLA/ THPL/ THPU TSHE/ TSHB TSHE/ TSHB CARU ATR- CLUN ASCA CLUN CLUN- MEFE ATR CLUN

Pfister et al. 1977& Cooper et al. 1991

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

229

PROCESS ATTRIBUTES

m£MM s±2\-.

AVG/ MODE Overstory Leaf Area Index

3.23

Stand Replacing Fire Interval (Sampled on plots)

55.56

MIN

MAX

.8 ■'^nmsSSSa -

I-.

113.04

Structure Class

a. o

5 E

*O'Hara & Latham. 1996

AVG

MIN

MAX

M'.'.

Net Primary Production (kgCm2)

■Sz;-:'-'

.31

.05

2S

.01

.56

J*

.03

0

.07

.02

.12

.01

.25

.08

.02

.02

.04

.01

14658.42

4317.67

!•• J .

Maintenance Respiration (kgCm2) Autotrophic Respiration Heterotrophic Respiration Soil Respiration (kgCm2) Dead Stem Carbon (kgCm2)

5591.45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T-''

23 0

DOWN WOOD SUMMARY MAX

STD DEV

1.55 14.12

0.73 3.70

m m vx -l:-.

gasaSjL, 3 Transect Minimum Measurements 3 Transect Maximum Measurements 3 Transect Minimum Measurements 3 Transect Maximum Measurements 3 Transect Minimum Measurements 3 Transect Maximum Measurements 3 Transect Minimum Measurements 3 Transect Maximum Measurements

0.0 0.0

27.01 47.74

8.50 18.23

3 Transect Minimum Measurements 3 Transect Maximum Measurements

0.0 6.05 r ;

14.61 8522

5.59 23.87

0.0 15.47

28.78 8826

21.86

2.40 4.60

0.0 3.00

4.00 7.00

1.35 1.51

5.17 9.80

0.0 5.67

9.00 15.00

2.60 2.95

t,

3 Transect Minimum Measurements 3 Transect Maximum Measurements

9.12

NbmBter o f to g s (Count}

3 Transect Minimum Measurements 3 Transect Maximum Measurements iajg*Biam eter (Inches)

3 Transect Minimum Measurements 3 Transect Maximum Measurements

Fuel Models Anderson Fuel Model*

2

5

CS.T

D

8

10

11

HSR G K NFDRS Fuel Model**

12

J

‘ A nderson, 1982 “ N F D R S, 1978

DERIVED OUTPUT

AVG Species Diversity (H')

1.05

Vertical Diversity

.43

L& I -.55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DERIVED OUTPUT, cont.

V E R T IC A L D IV E R S IT Y P R O F ILE

9.14m 30.0ft

1.37m

o

2 3 a s .0 J a » t o i.i 12 S h a n n o n - W e in e r D iv e rs ity In d e x (ratio o f r ic h n e s s t o eq u itab ility )

i

u 1.4 is

f

o

z

HIDING COVER PERCENT

.0 0.05 0 1 0 0.15 0 2 0 0 2 5 THERMAL COVER - 12+M (40+FT)

0.35 0.30 020 025 SHADE THERMAL COVER - SUMMER

§3

0.0 0.01 0l02 0.03 0.040.050.06 0.07 WINTER THERMAL COVER - PROTECTION

0.1 WIND BLOCKAGE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

232

DERIVED OUTPUT, cont.

£ 1

BASAL AREA (fP/ac)

HEIGHT & AGE DISTRIBUTION FOR DOMINANT TREE SPECIES

Subalpine Fir 1101

(D

£ 70 60 □ 50 X 40

100

150

200

AGE (years) NARRATIVE

This is an early serai plant association - an early serai variation of PA 2 [Tsuga heterophylla - Thuja plicata (Abies grandis) / Pachistima myrsinites / Clintonia uniflora].

Water holding capacity is moderate. Soil volumetric water content and outflow rates are the highest of all other plant associations. Species richness, gross primary productivity,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

233

carbon storage, respiration rates, canopy conductance sensible heat are all low when compared to other plant associations. Fire history sampling indicates stand-replacing fires occurred 200 years before present. Remote sensing texture is geometric mix and/or herbaceous. Relative cover percent is concentrated within the forb lifeform layer. This plant association is found primarily within Vegetation Response Unit 5 (Moderately cool and moist). Consult the document, Vegetation Response Unit Characterizations and Target Landscape Prescriptions (1999) for more generalized information concerning these VRU's.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

234

PINUS CONTORTA FOREST ALLIANCE

PA4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

235

Physiognomic: IA8Nb PINUS CONTORTA FOREST ALLIANCE (n=7) Paws contorta - Larix occidentals / Vaccinium myrtillus (Abuts sinuata) / Calamagrostis rubescens Lodgepole Pine - Western Larch / Dwarf Bilberry (Sitka Alder) / Pinegrass E u re ka

TTby

N oxon

T ro u t C ree k

• Plot location*

SITE ATTRIBUTES UNITS Elevation Slope Aspect Precipitation Solar Insolation

ft deg direction in cailcoPfyt:

AVG

MIN

MAX

5186 32 ■: NW . 37.03 13197&29

4800 9 N 31 73476

574ft 50 N 51 228211

;

STD DEV 29838 12 7 54988

Landtypas *

322 - Eutric Glossoboralfs, moraines 3S2 - Andie Dystrochrcpts, glaciated mountain slopes 355 - Andie Dysnochrepts-Rock outcrop complex, glaciated mountain slopes 40S - Lithic Cryochtepts-Andie CryochreptsRock outcrop complex, glaciated mountain ridges

*

Kuennen t Nletsen-Gerhardt 1985

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

236

INDICATOR SPECIES SCIENTIFIC NAME

COMMON NAME

COVER %

CONSTANCY % :*SLas

Larix occidentals Pinus concolor

Western larch Lodgepole pine

Ainas sinuata Vaccinium myrtillus

Sitka alder Dwarf bilberry

86 2SEH&L1

* V ’ p . ...

38 27

too 86

■vv'.'

:vflssk

Calamagrostis rubescens

Pinegrass

25

Bryoria spp.

72

Habitat Types

i

£ I

l

1

E a

72

I I ASLA/ ALS1

ABDV

CLUNCLUN

ABLA/

VASC

pica

CARU

*Pfi$teretal. 1977& Cooper e ta i 1991

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

237

PROCESS ATTRIBUTES

AVG/ MODE

MAX

Overstory Leaf Area Index Stand Replacing Fire Interval (Sampled on plots)

Structure C lass *

fi CL

5 ■O E 3

z

0 -i

I D

*O'Hara & Latham. 1996

SIMULATED P M q^ A tP y& B V $E S

AVG . Net Primary Production (kgCm2) Maintenance Respiration (kgCm2) Autotrophic Respiration Heterotrophic Respiration

STD DEV

..f

.76

.06

.54

.04

3

.03

.05

0

.22

.02

.03

.02

26 Sou Respiration (kgCm2)

MIN

i

m

*U*r

.02

.01

11768.79

397.65

fcs Joi. Dead Stem Carbon (kgCm2)

23077.65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9419.24

238

DOWN WOOD SUMMARY MAX

STD DEV

3 Transect Minimum Measurements 3 Transect Maximum Measurements 3 Transect Minimum Measurements 3 Transect Maximum Measurements

0.50 0.61

3 Transect Minimum Measurements 3 Transect Maximum Measurements 3 Transect Minimum Measurements 3 Transect Maximum Measurements 3 Transect Minimum Measurements 3 Transect Maximum Measurements 3 Transect Minimum Measurements 3 Transect Maximum Measurements yl^lEOB£yjgS*tUQUnt)r,; . ■”;iSffi •; 3 Transect Minimum Measurements 3 Transect Maximum Measurements 3 Transect Minimum Measurements 3 Transect Maximum Measurements

4.85 17.05 ’v * r--v ‘ * •.

9.65 25.33

3.45 8.09

0.86

0.0 0.43 iPv 0.0

2.00

3.43

0.0

7.00

0.69 223

2.55 5.57

0.0

4.50 11.00

1.82 3.27



it

0.0

Fuel Models

5

Anderson Fuel Model*

6

a

10

N F D R S F u e l M o d e l**

*A n d e r s o n ,

1982 -N F D R S , 1978

DERIVED OUTPUT

MAX Specie^Diversity (HP) Vertical Diversity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

239

DERIVED OUTPUT, cont.

V E R T IC A L D IV E R S IT Y P R O R L E

rjTm-

4.5ft

tfim Shannon-Weiner Diversity Index (ratio of richness to equitability)

•WiWtjU jaS^& SfinSi. :

1

n !3

3

z

z

0 10 20 30 40 50 60 70 80 90100 HIOING COVER PERCENT

THERMAL COVEH - 12+M (40+FT)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 SHADE THERMAL COVER • SUMMER

Z 13 z

0.0 0.1 0 2 0.3 0.4 0 5 0.6 0 7 WINTER THERMAL COVER - PROTECTION

8.00.1 0 2 0 3

0.4 0 .5 0.8 0.7 0J 0.9

WIND BLOCKAGE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

240

DERIVED OUTPUT, cont.

w

0

.a

E

3

Z

100

150

200

BASAL A REA (fP/ac)

HEIGHT & AGE DISTRIBUTION FOR DOMINANT TREE SPECIES

Lodgepole Pine

Western Larch

100|

100|

ODO

f-

x

uj

o

60

LU

-o

X

90 100 110 120 130 140 150

AGE (years)

90

100 110 120 130 140 150

AGE (years)

NARRATIVE

This plant association is found within mid- to upper elevations. Water holding capacity is moderate. Most process attributes measure low for this association. Gross primary productivity, amount of carbon fixed, respiration, and evapotranspiration rates are low when compared to other associations. Outflow rates are also low. Species richness is low.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

241

Fire history indicates no underbum evidence. Partial stand replacing fire events occurred 30 years before present. Stand-replacing fire events were the most commonly sampled at 60 to 200 years before present. Remote sensing texture is hummocky, tall shrub thickets, and ragged patches of shrubs. Relative cover is comprised of trees and shrubs, evenly distributed. Mountain pine beetle mortality in Pinus contorta was common. This plant association is found within Vegetation Response Unit 7 (Cool and Moist). Consult the document, Vegetation Response Unit Characterizations and Target Landscape Prescriptions (1999) for more generalized information concerning this VRU.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

242

ABIES LASIOCARPA FOREST ALLIANCE

PA5, PA6, PA6 SUB-PA40, PA6 SUB-PA41, PA7, PA8

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.

243 Physiognomic: IA8Nc ABIES LASIOCARPA FOREST ALLIANCE PLANT ASSOCIATION 5 (PA5) AB1LAS/ALNSIN-RUBPAR/ARNLAT-THAOCC (n = 1 3 )

Abies lasiocarpa /Abuts sinuata - Rubusparviflorum /Arnica latifolia - Thalictrum occidentale Subalpine Fir / Sitka Alder -Thimbleberry /Broad-Leaf Arnica - Western Meadowrue ^Eureka %

Yaak

^Foctifle

^S ylyanite

Noxon Trout Creek • P lo t lo c a tio n s

SITE ATTRIBUTES UNITS

AVG

M IN

MAX

5030

4600 6

5500

Slope

ft deg

STD DEV 21831

70

20

Aspect

direction

Precipitation

in

Solar Insolation

cal/bntfSscfi :< i2 7 « R 3 »

Elevation

32 .

nw

N

N

44.96

31

71

14

2368?

215040

61545

;

L an d ty p es*

*

I 0 1 S 1

E

3

79 —

o_i 252

Mi n n 329

362

365

367

403

404

406

252 - Andie Dystrochrepts, breaklands 329 - Andie Cryochrepts, moraines, dense, brittle substratum 352 - Andie Dystrochrepts, glaciated mountain slopes 355 - Andie Dystrochrepts-Rock outcrop complex, glaciated mountain slopes 357 • Andie Cryochrepts-Lithic Cryochrepts complex, dissected glaciated mountain slopes 403 - Rock outcrop-Lithic Cryochrepts-Andie Cryochrepts complex, cirque headwalls and alpine ridges 406 - Andie Cryochrepts, glaciated mountain ridges

*Kuennen & Ntolsen-Gerhardt 1985

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

244

INDICATOR SPECIES COMMON NAME

SCIENTIFIC NAME

$&£!&£+£& Alnus sinuata Lonicera utahensis Ribes lacustre Ribes viscosissimum Rubus parviflorus Salix scouleriana Sorbus sitchensis Vaccinium globulare Arnica latifolia Clintonia uniflora Senecio triangularis Tiarella trifoliata Thalictrum occidentale

COVER %

CONSTANCY %

16 5 4 4 6 9 II 16

77 62 38 31 77 31 23 62

21

62

5

54

2

39

5

39

3

62

'

i.i

12

is

1.4

1.5

S h a n n o n - W e in e r D iv e rs ity In d e x

N umbwotPU*

( r a tio o f r i c h n e s s to e q u ita b ility )

.0 0.1 02 OS 0.4 0.5 0.6 0.7 0.8 THERMAL COVER • 12+M (40+FT)

HIDING COVER PERCENT

SHAOE THERMAL COVER - SUMMER

NumtxrotPtoU

m

0.0 0.1 0 2 OS 0 4 0 5 0.8 0 7 0 8 WINTER THERMAL COVER - PROTECTION

I 3

Z

0.1 WIND BLOCKAGE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

276

DERIVED OUTPUT, cont.

50

100

150

BASAL AREA (ft2/a c )

HEIGHT & AGE DISTRIBUTION FO R DOMINANT TREE SPECIES

Subalpine Fir

Western Larch

Lodgepole Pine 1501

1501

I

i 100-

10C -

x

X

UJ

ui

g

£h- 100oX uxi

g

x

X

50-

50 *

100

150 AG E (ye a rs)

200

100

150 AG E (years)

200

100

150 A G E (ye a rs)

200

NARRATIVE

This is a mid- to upper elevation plant association. Water holding capacity is low to moderate. Gross primary productivity, evapotranspiration, respiration, and volume of water per unit of soil are in the upper third of values compared to other plant associations. There was no evidence of underbums in the fire history sampling. Partial stand fire events were uncommon, but did occur 80 years before present at 100-year intervals. Stand-replacing fire events occurred 100 to 400 years before present at 150 to 400 year intervals. Remote sensing texture is mixed and highly dissected.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

277

Relative cover is concentrated within trees and shrubs. Tree mortality is high, with mountain pine beetle on Pinus contorta and root rot present. Stress from competition is high. This plant association is found within Vegetation Response Unit 9 (Cool and Moderately Dry). Consult the document, Vegetation Response Unit Characterizations and Target Landscape Prescriptions (1999) for more generalized information concerning this VRU.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

278

Physiognomic: IA8Nc ABIES LASIOCARPA FOREST ALLIANCE PLANT ASSOCIATION 8 (PAS) ABILAS-PICENG/MENFER-RHOALB/BRAERY (n=6) Abies lasiocarpa - Picea engelmennii/Menziesiaferruginea - Rhododendron albiflorum/ Brachythecium erythrorhizon Subalpine Fir - Engelm ann Spruce / Fool's Huckleberry - White Rhododendron / Brachythecium

_

* YMk'

*Syl)->3'iiy ♦ .. :■Jr.-''

Festuca ovina Luzula hitchcockii

Sheep fescue Smooth woodrush

50 50

;FERNr MdSS^LICHEN

Habitat Typas *

« £ o

S

E 3

ABUV LUH

ABUV VACA

ABUV XETE

"P fistereta l 1977& Cooperated. 1991

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

295

PROCESS ATTRIBUTES

AVG/ MODE Overstory Leaf Area Index Stand Replacing Fire Interval (Sampled on plots)

Structure Class *

ao

& 0

1

E 3

Z

*O'Hara &Latham. 1996

AVG Gross Primairy Production Net Primary Production (kgCm2) Maintenance Respiration (kgCm2) Autotrophic Respiration Heterotrophic Respiration Soil Respiration (kgCm2)

"'

......... liSv'adigr

Dead Stem Carbon (kgCm2)

134

-

0.95

MIN

MAX

036

1.7

0.26 ! ;/ JP*

1.2 ?-“• V -

STD DEV

;

.

0.65

9 f l S i I S iM ii;

0.1

0.03

0.13

0.07

0.39

0.11

0.5

0.27

0.04

0.02

0.07

0.03

om

0.12

0*55

0.02

0.01

0.03

0.01

14045.75

4340426

14096.57

26877 4 ~

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

296

DOWN WOOD SUMMARY MIN

MAX

3 Transect Minimum Measurements 3 Transect Maximum Measurements

0.0 0.02_

0.0 0.30

3 Transect Minimum Measurements 3 Transect Maximum Measurements

oxST 0.82

“0.6T 3.31

3 Transect Minimum Measurements 3 Transect Maximum Measurements

0.0 1.53

0.0 7.27

0.0 0.0

0.0 11.32

12.84

0.0 0.0

' 0.0 34.40

15.20

0.54 16.545

0.0 4.84

1.47 34.40

0.70 13.36

0.0 ---0.0 - y^J-. "

1.00 4.00

AVG

0.0

3 Transect Minimum Measurements 3 Transect Maximum Measurements

3.21

0.25 2.00

3 Transect Minimum Measurements 3 Transect Maximum Measurements

0.0 5.46 .

0.0

3 Transect Minimum Measurements 3 Transect Maximum Measurements AIEWboty Material (Tons/acre) 3 Transect Minimum Measurements 3 Transect Maximum Measurements NiimlferofLogKGount) 3 Transect Minimum Measurements 3 Transect Maximum Measurements

STD DEV

1.00

7.25

0.0 0.0

4.00 10.50

Fuel Models A n d e rs o n Fuel Model*

2

8

§ 0 1

C&T H&R N F D R S Fuel Model** * Anderson,

1982 -N F D R S, 1978

DERIVED OUTPUT

MAX Species Diversity (H') Vertical Diversity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.0

DERIVED OUTPUT, cont.

jW^'w VERTICAL DIVERSITY PROFILE

0

.1

2

3 .4

5

8

7

.8

3

18 1.1 18 13 1.4 18

S hannon-W einer Diversity Index (ratio of richness to equitability)

£ * 3

0 .5 -

a Z

Z

io o .i 0.2 o.a a 4 0.5 o.e a 7 0.8 0.9 HIDING COVER PERCENT

THERMAL COVER * 12*M (40+FT)

0.180.190.200.210.220.230.240.250.26 SHADE THERMAL COVER * SUMMER

*

I

0

1a Z

0.07 0.08 0.09 0.10 a i t 0.12 WINTER THERMAL COVER • PROTECTION

I 13

Z

02.

0.4 WIND BLOCKAGE

0.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

298

DERIVED OUTPUT, con:.

1.5

1.0

0 20 30 40 50 60 70 80 90 100110

BASAL AREA (ft2/ac)

HEIGHT & AGE DISTRIBUTION FOR DOMINANT TREE SPECIES S u b a lp in e Fir

W h ite b a rk P ine

I

tx 5ID2 r

x 20

0" 100

AGE (years)

150

200

100

150

AGE (years)

200

NARRATIVE

This is a high elevation plant association. Water holding capacity is low to moderate. Species richness is low. Evapotranspiration and volume of water per unit volume of soil is high when compared to other plant associations. Fire sampling indicates stand-replacing fires have occurred at 250-year intervals. Remote sensing texture is open, blasted ridge with rocks and low shrubs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

299

Relative cover is concentrated in shrubs. There is blister rust present on Pinus monticola. This plant association is found within Vegetation Response Unit 10 (Cold and Moderately Dry). Consult the document Vegetation Response Unit Characterizations and Target Landscape Prescriptions (1999) for more generalized information concerning these VRU's.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

300

ABIES LASIOCARPA (HIGHELEVATION) WOODLAND/PERENNIAL FORB ALLIANCE

PA10, PA11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

301

Physiognomic: ILA4Nb ABIES LASIOCARPA (HIGH ELEVATION) WOODLAND ALLIANCE PLANT ASSOCIATION 10 (PA10) PINCON/XERTEN (n=5) Pinus contorta / Xerophyllum tenax Lodgepole Pine / Beargrass Eureka .Fodttle

• Plot locationa

SITE ATTRIBUTES

Elevation Slope Aspect Precipitation Solar Insolation

UNITS ft deg direction in cal/cmVyr

MIN 5760 15 SE 40 194888

AVG 6212 21 W 50.7 208412.4

MAX 6500 28 SW 75 226782

STD DEV 284.11 6 —

16 12344

L a n d ty p a a* M

* s I Q

O

s

i

fit* 511 400 307 204 102 8 0 366

‘ Kuennen &NMsmn-Garturdt ism s

970

406

406

352 - Andie Dystrocbrepts, glaciated mountain slopes 355 - Andie Dystrochrepts-Rock outcrop complex, glaciated mountain slopes 370 - Andie Dystrochrepts, glaciated mountain slopes, granitic substratum 405 - Lithic Cryochrepts-Andie CryochreptsRoclc outcrop complex, glaciated mountain ridges 406 - Andie Cryochrepts, glaciated mountain ridges

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

302

INDICATOR SPECIES SCIENTIFIC NAME

COM M ON NAM E

l ip s is l

COVER %

CONSTANCY %

■ S "fV ^ I9 6 20

Abies lasiocarpa Picea engelmannii Pinus contorta

Subalpine fir Engelmann spruce Lodgepole pine

Alnus incana Vaccinium myrtiilis

Mountain alder Dwarf bilberry

3 20

40 80

Hieracium spp. Xerophyllum tenax

Hawkweed Beargrass

** J 34

20 100

— ~

3 20 11

100 100 80

FERN,MOSS^IiICHEN Ceratodon purpureus Dicranum tauricum Polytricum juniperinum

Juniper moss

H abitat T y p e s *

I £ S nft E

ASIA LUH

ASIA XETE

* Pfister et al. 1977& Cooper etai. 1991

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20 20 60

303

PROCESS ATTRIBUTES

iasui:

AVG/ MODE

MAX

Overstory Leaf Area Index Stand Replacing Fire Interval (Sampled on plots)

200 yrs

97.47

STD DEV

Structure Class *

1 —i

* 0 ‘Hara & Latham. 1996

Net Primary Production (kgCm2)

AVG

MIN

MAX

H ot

.17

1.94

.71

.12

1.36

'M Maintenance Respiration (kgCm2) Autotrophic Respiration Heterotrophic Respiration

*r

.07

.01

.15

.06

.29

.05

.57

.21

.02

.01

.04

.01

.65

M

Soil Respiration (kgCm2) Dead Stem Carbon (kgCm2)

. . ; t .:

.03 22373.41

1558.38

41875.6

.

.01

aiJi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17413.35

304

DOWN WOOD SUMMARY MAX 3 Transect Minimum Measurements 3 Transect Maximum Measurements

v p g m

.02 .22

3 Transect Minimum Measurements 3 Transect Maximum Measurements Sf5*‘rScfft* '

STD DEV

.09

.26 .66

.03 .46

42’

49~

1.20

.41

.88

0 4.38

2.94 8.79

1.96 2.40

0 0

0 0

0 0

fn'n~nee~P~TTriiTiiiiiHi« iTMTBt ni~ --*[■ •

3 Transect Minimum Measurements 3 Transect Maximum Measurements

6.24

0 0 K

3 Transect Minimum Measurements 3 Transect Maximum Measurements

i^burTngieltfe-'tipti

0 "

3 Transect Minimum Measurements 3 Transect Maximum Measurements

8.49 19.82

7.85

16.54 26.42

7.31 7.15

3 Transect Minimum Measurements 3 Transect Maximum Measurements

10.48 24.61

0.03 13.36

16.83 31.36

7.05 7.06

3 Transect Minimum Measurements 3 Transect Maximum Measurements

2.6

0

3.2

4

3 4

1.51 .45

3 Transect Minimum Measurements 3 Transect Maximum Measurements

4.88 8.53

8.33

5.67 9.67

3.17 1.63

0

Fuel M odels 5

A n d e rs o n F u el M odel* 8

[) - u 4 u

p

o 40

a.

0 1

OA)

E

D

H&R N F D R S F u e l M odel**

Q

1982 -N FD RS, 1978

•A n d e rs o n ,

DERIVED OUTPUT

MAX Species Diversity (H') Vertical Diversity

STD DEV 2m . .09

rim

T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■m.12

305

DERIVED OUTPUT, cont.

VERTICAL DIVERSITY PROFILE

a Mm

O I5 J

./B in

o . .

r W 0

0

.1

-r—

2

‘" 1—



*...

i .7 8 a 1.0 1.1 1 2 Shannon-Weiner Diversity index a

A

.5

_—

U

M

1.5

Iratio oi ttc h n e s s to aquitabtnty)

1.5

1.0

1.0

0 . t.Q

0.0

HIDING COVER PERCENT

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 WINTER THERMAL COVER - PROTECTION

0.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 t.1 THERMAL COVER - 12+M (40+FT)

0.0 ‘0.2 0.3 0.4 0.5 0.6 0.7 0.8 Q.9 1.0 1.1 SHADE THERMAL COVER * SUMMER

0J0

0.05 WIND BLOCKAGE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

306

DERIVED OUTPUT, cont.

1-5f

1.0

eP -90.5

0.0

50 100 150 BASAL AREA (ft2/ac)

200

HEIGHT & AGE DISTRIBUTION FOR DOMINANT TREE SPECIES M ountain Hemlock

G rand Fir

160

160

140

140

o 120

100

0 100 200 300 400 500 600 700 800 AGE (years)

0 100 200 300 400 500600700 800 AGE (years)

NARRATIVE

PA 10 is a plant association typified by a dense, fine-grained remote-sensed image. Basal areas are generally high and diameters of overstory trees small. Many snags are present and incidence of disease is high. Eighty to 90+% of the foliar volume is in the overstory tree component with a couple of sample plots having 10+% of foliar volume in the shrub component. Species richness is in the lower third for all plant associations. There are rock outcrops present throughout. Stands generally have thin soils. Elevations range from 5700 to 6400 feet. Disturbance has been mainly stand

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

307

replacement, with frequencies at 60 to 100 years. Water holding capacity is moderate to high. This plant association will be found primarily within Vegetation Response Unit (VRU) 9 (Cool and Moderately Dry). Please consult the Vegetation Response Unit Characterizations and Target Landscape Prescription (1999) document for general information. Leaf area index on the average is the highest for all plant associations. Gross primary productivity is in the lower third for all plant associations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

308

Physiognomic: VB2Nb ABIES LASIOCARPA (HIGHELEVATION) PERRENNIAL FORB ALLIANCE

PLAtTFASSOOATION

AKIAS-PINALBA^AC^O/LUZHrr (n=2)

Abies lasiocarpa - Pinus albicauiis/ Vaccinium scoparium /Luzuia hitchcockii Subalpine Fir - White-bark Pine / Whortleberry / Smooth Woodrush

I T ^ A f t E u rek a t * Y aakJ *9

//

&

^ F o c tirte

\ f

:

3 Transect Minimum Measurements 3 Transect Maximum Measurements

3 Transect Minimum Measurements 3 Transect Maximum Measurements

0

0 0

7 7

7 7

0 0

7

0

8

.7

Fuel Models A n d e rs o n F u e l M odel*

i £ Z

IE 3

Z

N F D R S F u e l M odel** * Anderson,

1982 -N F D R S, 1978

DERIVED OUTPUT

Species Diversity (If)

MKf;

Vertical Diversity

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.

312

DERIVED OUTPUT, cont.

VERTICAL DIVERSITY PROFILE

9.14m 30QR

.4.72m

i&sn

O)

19m

S hannon-W efner Diversity Index

(ratio of richness to equitabitity)

1

1.5

3 >4

Ia

1.5

2

1.0

1J 0 5 00301----1 ----'----'----1 ----55 35 40 45 SO

zI a s

0.0 Q 9 o im 4 n .o M .io i4 e i.H i.« u .o n .iis

HIDING COVER PERCENT

THERMAL COVER * 12fM {40*PT)

1.5

1.0

z

b20 021 022 023 0 24 025 026 SHAOE THERMAL COVER * SUMMER

1.5

1.0

3 05

00* - ■I-----1---- 1 aoe

aio

0.11

a i2

I

aia

WINTER THERMAL COVER - PROTECTION

a o 1---------- *-----------«----------■---------

020

025

020

025

OM

WIND BLOCKAGE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

313

DERIVED OUTPUT, cont.

1.5

eP

•9 0.5

BASAL AREA (fl2/ac)

HEIGHT & AGE DISTRIBUTION FOR DOMINANT TREE SPECIES

Whitebark Pine

Subalpine Fir

MO

Iso

200 250 AGE (years)

300

350

2?00

150

200

250

300

350

AGE (years)

NARRATIVE

High elevations (6700 ft+), thin soils, and rocky outcrops typify this plant association. Predominant species is white bark pine (Pinus albicaulis). Stands have a dense and patchy distribution of overstory with 80+% of foliar volume in the tree component and the rest evenly distributed among shrubs, forbs and grass. Water holding capacity is low. Leaf area index is in the upper third of all plant associations, with rate o f evapotranspiration also in the upper third.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

314

The plant association is found within Vegetation Response Unit (VRU) 10 (Cold and Moderately Dry). Consult the Vegetation Response Unit Characterizations and Target Landscape Prescriptions document (1999) for more details. Primary disturbance is stand-replacing, with intervals up to 150 years.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

315

ABIES GRANDIS FOREST ALLIANCE

PA12 SUB-PA32, PA12 SUB-PA33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

316 Physiognomic: LA8Nc ABIES GRANDIS FOREST ALLIANCE

PLANT ASSOCIATION 12 SUB-PLANT ASSOCIATION 32 (PA12-SPA32) ABIGRA-PSEMEN/ACEGLA-LINBOR/ARANUD (eastside, calcareous) (n=12) Abies grandis - Pseudotsuga menziesii/Acerglabrum - Linnaea borealis/Aralia nudicauiis Grand Fir - Douglas-Fir / Rocky Mountain Maple - Twinflower / Wild Sarsaparilla

Trout C reek

• Plot locations

SITE ATTRIBUTES UNITS Elevation Slope Aspect Precipitation Solar Insolation

ft deg direction in cal/ctnVyr

AVG

MIN

MAX

2997 16 E 21.59 167920.93

2500 0 N 15 90082

4200 56 N 30 209782

L a n d ty p M '

«

I

219 * 194 170146

I *

I I 101

I 102

I 103

M 100

301

I 94

I 305

»

366

36?

• K tm tm n S N hlnn-Q m tm dt 1965

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

STD DEV 408.84 14 — 5 34699

317 Legend for Landtmes prank 101 - Fluvents, flood plains 102 • Andie Dystric Eutrochrepts, lacustrine terraces 103 - Andie Dystrochrepts, alluvial terraces 108 • Andie Dystric Eutrochrcpts, lacustrine terraces-Andic Dystrochrepts, glacial outwash terraces, complex 301 • Dystric Eutrochrepts, glaciated mountain slopes 324 - Typic Eutrochrepts, moraines 325 - Aerie Calciaquolis, somewhat poorly drained 328 - Andie Cryochrepts, glaciated mountain slopes 329 - Andie Cryochrepts, moraines, dense, brittle substratum 352 - Andie Dystrochrepts, glaciated mountain slopes 355 • Andie Dystrochrepts-Rock outcrop complex, glaciated mountain slopes 357 - Andie Cryochrepts-Lithic Cryochrepts complex, dissected glaciated mountain slopes

INDICATOR SPECIES SCIENTIFIC NAME

COMMON NAME

COVER

CONSTANCY

%

%

9

Betula papyrifera Larix occidentalis Picea engelmannii Pseudotsuga menziesii

Paper birch Western larch Engelmann spruce Douglas-fir

17 17

50 83 47 100

Acer glabrum Amelanchier alnifolia Mahonia repens Cornus canadensis Cornus stolonifera Linnaea borealis Rosa woodsii Rubus parviflorus Symphoricarpus albus

Rocky mountain maple Western serviceberry Creeping Oregon-grape Bunchberry Red-osier dogwood Twinflower Wood's rose Thimbleberry Common snowberry

8 5 8 2 2 12 7 4 10

92 58 92 50 25 75 17 83 50

Aralia nudicaulis Arnica cardifolia Aster conspicuus Clintonia uniflora Disporum hookeri Disporum trachycarpum Galium triflorum Osmorhiza chilensis Smilacina stellata Viola orbiculata

Wild sarsaparilla Heart-Ieaf arnica Showy aster Queen's cup beadlilly Hooker's fairy-bell Wartberry fairy-bell Sweetscented bedstraw Mountain sweet-cicely Starry Solomon-plume Round-leaved violet

12

83 33 33 75 50 17 58 58 50 42

Oryzopsis asperifolia

Roughleaf ricegrass

67

AthyryiumJilix-femina

Lady-fern

75

11

9

6 2 8 3

2 2 3

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

318

INDICATOR SPECIES SCIENTIFIC NAME

COMMON NAME

COVER

CONSTANCY

%

%

4

50

Brachythecium albicans

Habitat Typaa *

1 £ afe E 3

2

1-H

1 1 1 1 1 ABGFV ABGR/ PIENf P1EN/ PSME/ THPL/ CLUN CLUN- BOAR UBO Pt-MA CLUNARNU ARNU

0-1

*Piisteretal. 1977& Cooperetal. 1991

PROCESS ATTRIBUTES

Structm e Class

Overstory Leaf Area Index

Stand Replacing Fire interval (Sampled on plots)

AVG/ MODE 3(C) 3.66 2: IT

MIN

MAX

— .68

m 5.87 ' W v

107.69

-

300

STD DEV M9 1.34 . &£2r ;

Structura Class *

Q. 0 1 E 3

Z

"O'Hara &Latham. 1996

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.

125.58

319

AVG

MAX

•not sPV.fc

■-J m k & & S B S g !5

Net Primary Production (kgCm2)

SIMULATED PROCESS ATTRIBUTES, cont. Maintenance Respiration (kgCm2) Autotrophic Respiration Heterotrophic Respiration EcosystemRespvation (kgCm2> Soil Respiration (kgCm2) LeafCarbon (kgCm2) Dead Stem Carbon (kgCm2)

AVG

MIN

MAX

STD DEV

.1

o

.19

.06

.39

0

.74

.22

.05

.02

.09

.02

.83

24

.04 58,49 46363.26

.01 18.37 14330.75

.44

.v

.02 36 3 22919.05

: *-

.01 l 178.92

.i >-

DOWN WOOD SUMMARY 1 HourTimelag:(Tbns/acre> 3 Transect Minimum Measurements 3 Transect Maximum Measurements IDHour Timelag (Tons/acre) 3 Transect Minimum Measurements 3 Transect Maximum Measurements IQOfHour Timelag (Tons/acre) 3 Transect Minimum Measurements 3 Transect Maximum Measurements IGCKLHour Timelag - sound (Tons/acre) 3 Transect Minimum Measurements 3 Transect Maximum Measurements 1000 Hour Timelag - rotten-(Tons/acre) . * 3 Transect Minimum Measurements 3 Transect Maximum Measurements AllWoody Material' (Tans/acre) ■ 3 Transect Minimum Measurements 3 Transect Maximum Measurements N&mberofLog^(Gount> 3 Transect Minimum Measurements 3 Transect Maximum Measurements 3 Transect Minimum Measurements 3 Transect Maximum Measurements

AVG

MIN

MAX

STD DEV

0.01 0.18

0.0 0.10

0.05 0.30

0.02 0.08

0.23 1.48

0.0 0.28

0.65 2.79

0.27 0.71

0.73 6.63

0.0 1.46

2.93 17.43

1.17 4.56

0.64 5.57

0.0 0.0

4.60 20.98

1.38 6.91

2.07 28.89

0.0 1.75

10.75 89.70

3.43 28.96

7.99 36.39

0.0 9.10

17.30 91.21

5.06 27.29

1.67 3.08

0.0 2.00

3.00 7.00

1.37 1.31

3.67 10.52

0.0 4.50

8.00 21.00

2.95 5.1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

320

Fuel Models A n d e rso n F u e l M o d e l*

5

8

10

N FD R S F u e l M o d e l**

*A n d e r s o n ,

1982 "N F D R S, 1978

DERIVED OUTPUT

SpeciesRichness (#ofspecies) Species Diversity (H')

AVG

MIN

y i/a

25 1.03 ■5 .44

1.17 -

Vertical Diversity

.71

MAX 40

1.38 m .86

VERTICAL DIVERSITY PROFILE

r r T

i a a

s

i

j

i

I

10 i.i

1.2 i j 1.4 i i

S h a r n o n -W e in e r Diversity In d ex

(ratio of richness to equitability)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

STD DEV 433 .1 ■ m .11

321

WILDLIFE COVER

toCL A

iCL

o2

u

it E

1 L 00 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .a0 .9 1 0 THERMALCOVER - \M A (40^fT,

HIDING COVER PERCENT

«t _ 75 0 *

*«■ 1*' !



3 ‘

WINTER THERMAL COVER - PROTECTION

0.1 0 2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SHAOE THERMAL COVER *SUMMER

I

75 16 3 II 02 03 04 WIND BLOCKAGE

06

GROWTH A YIELD SUMMARY

300

«•»

o

w

® ■Q E 3 Z

100

200

BASAL AREA (fP/ac)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

300

322

HEIGHT & AGE DISTRIBUTION FOR DOMINANT TREE SPECIES

150

Douglas-Fir

Engelmann Spruce I5q

G rand Fir 1501

too •

X sc

X

too 200 AGE (y « M )

300

to o 200 AGE ( y a m )

TOO 20 0 AGE (y aart)

300

Western Larch

Paper Birch I SOI

X 50

X

TOO 200 AGE (y ta rt)

U J X 50

50

300

Lodgepole Pine

tsq

isq

’TOC "

•too *

SO

X

to o

300

300

50

too 200 AGE (y«ar«)

300

NARRATIVE

This is found on low to mid-elevations and warm, dry slopes. Water holding capacity is primarily moderate. Gross primary productivity, outflow, evapotranspiration, carbon storage, and respiration rates are within mid-level values for all plant associations. Soil volumetric water content is within the lower third. Remote sensed image texture is varied between coarse overall with fine scattered throughout to a mosaic of open and dense with low relief. Fire history indicates underbum fire events 15 to 100 years before present and partial stand-replacing fire events at 80 to 300 years before present. Intervals sampled indicate underbum fire events at 10 to 20 and partial stand-replacing at 40 to 150 years. No stand replacing fire evidence was sampled. Relative foliar cover is evenly distributed between trees, shrubs and grass. Forbs and bryophytes are also evenly distributed with a lessor amount of cover than the other lifeforms. This plant association is found primarily within Vegetation Response Unit 2 (Moderately Warm and Dry). Consult the document Vegetation Response Unit Characterizations and Target Landscape Prescriptions (1999) for more generalized information concerning these VRU's.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

323 Physiognomic: IA8Nc ABIES GRANDIS FOREST ALLIANCE

PLANT ASSOCIATION 12 SUB-PLANT ASSOCIATION 33 (PA12-SPA33) ABIGRA-PSEMEN (THUPLI)/PACMYR (westside) (n=I8) Abies grandis - Pseudotsuga menziesii (Thuja pUcata) /Pachistima myrsinites Grand Fir - Douglas-Fir (Western Redcedar) / Mountain-Iover

Libby

• P lot locations

SITE ATTRIBUTES UNITS Elevation Slope Aspect Precipitation Solar Insolation

ft deg direction in cal/cm*/yr

AVG

MIN

MAX

3613.13 31 SE 40.54 168079.44

1940 0 N 25 50344

4900 62 N 59 233868

STD DEV 745.24 18 10 63097

Landtypes *

M 1 3 5

i

504 423 336 252

68------- m ------------ 1

168

i

.

i

V

ills 103

106

328

329

362

*Kuennen A Nielaen-Gertiardt 1985

365

357

406

103 - Andie Dystrochrepts, alluvial terraces 108 - Andie Dystric Eutrochrepts, lacustrine terraces-Andic Dystrochrepts, glacial outwash terraces, complex 328 - Andie Cryochrepts, glaciated mountain slopes 329 - Andie Cryochrepts, moraines, dense, brittle substratum 352 - Andie Dystrochrepts, glaciated mountain slopes 355 • Andie Dystrochrepts-Rock outcrop omplex, glaciated mountain slopes 357 - Andie Cryochrepts-Lithic Cryochrepts complex, dissected glaciated mountain slopes 408 • Andie Cryochrepts-Rock outcrop complex, glaciated mountain slopes, very steep

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

324

INDICATOR SPECIES SCIENTIFIC NAME

COMMON NAME

COVER %

CONSTANCY

%

Abies grandis Larix occidentalis Pseudotsuga menziesii Thuja plicata Tsuga heterophylla

Grand fir Western larch Douglas-fir Western redcedar Western hemlock

28 14 28 23 6

89 67 89 50 61

Chimaphila umbellate Pachistima myrsinites Physacarpos malvaceous Rosa gymnocarpa Vaccinium globulare

Common prince’s pine Mountain-lover Mallow ninebark Baldhip rose Globe huckleberry

3 4 12 3 9

72 50 17 44 50

Bromus vulgaris Carex concinnoides

Cheatgrass Northwestern sedge

3

28

6

22

Brackenfem

9 5

17 28

11

22

FERN, MOSS, LICHEN Mnium spinulosum Pieridium aquilinum Rhytidiadelphus triquetrus

Habitat T ypes'

a. 5

1

E

II I II III I III

ABGfV ABGfV ABGfV ABGFV ABGfV ABGfV THPU THPU TSHE/ TSHE/ T SH B TSHE/ TSHE/ CLUN CLUN- CLUN- CLUN- UBO- XETB CLUN CLUN- CLUN CLUN CUJN- CLUN- CLUNAflNU ARNU CLUN PHUA UBO COOC a U N XETE

*PfisteretaI. 1977& Cooperetal. 1991

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

325

PROCESS ATTRIBUTES

-.VS'. ...-.r.-'-

■t-~irl-=>?-•v ‘:

.

AVG/ MODE Overstory Leaf Area Index Stand Replacing Fire interval (Sampled on plots)

MAX

STD DEV

m m m m

.37

" ~ 3.59 —

IM

:•

41.25 (mixed lethal fires)

" 5.5 4tm 300 (stand replacing)

1.34 ;*

M B' 94.01

Structure Class * 43-

E 2—



1—

I

i

E a

0-- i

i

A

* O'Hara &Latham.

Gross. Primary Production ®gGSni2X Net Primary Production (kgCm2)

C

1996

AVG

MIN

MAX

1.74

.63

2.57

123

.45

1.83

l it

.43

L77 .

.12

.04

.18

.06

.51

.18

.74

.23

.06

.02

.09

.02

JST

•2 .01

.8

as

- 0 4 ..

01

Maintenance Respiration (kgCm2) Autotrophic Respiration Heterotrophic Respiration EcosystemRespiration Soil Respiration (kgCm2)



Dead Stem Carbon (kgCm2)

" 32496.18~

’03

_

5750.11

STD DEV .

f:S ■,# • ;•

.56 r. '

51817.11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i .

17794.31

326

DOWN WOOD SUMMARY

3 Transect Minimum Measurements 3 Transect Maximum Measurements

AVG

MIN

0.04 023

^ " o iT 0.02



£ ? ? vJ p .;

MAX '

STD DEV R r & i0.04 0.14 i. 0.34 0.98

0.11 0.53



3 Transect Minimum Measurements 3 Transect Maximum Measurements

029 1.77

0.0 0.53

3 Transect Minimum Measurements 3 Transect Maximum Measurements

1.12 7.02 -. 021 6.03

0.0 1.45

17.47

2.32 4.067

0.0 0.0

3.39 36.01

0.85 9.47

227 21.23

0.0 2.45

9.53 97.49

3.02 24.09

8.31 30.81

0.0 6.63

21.46 11224

6.89 25.67

1.63 2.25

0.0 1.00

3.00 4.00

0.96 0.93

4.55 11.60

0.0 4.33

9.00 36.00

2.44 7.57

L 3 TransectM inim i Me^mements 3 Transect Maximum Measurements 1000 Hour Timelag -rotten*(Tons/acre); 3 Transect Minimum Measurements 3 Transect Maximum Measurements m iw o o a y Maieriu ons/acrej 3 Transect Minimum Measurements 3 Transect Maximum Measurements Ninf^erofLogs (Count) 3 Transect Minimum Measurements 3 Transect Maximum Measurements fcqgiIMameter(Inches) 3 Transect Minimum Measurements 3 Transect Maximum Measurements

0.83 3.6° 9 l5 -

Fuel Models A n d e rso n F uel M odel'

HftR N F D R S F u e l M odel** *A n d erso n , -N F D R S ,

1982 1978

DERIVED OUTPUT

i S P M B S ? '. . . AVG

MIN

S^es:R £ctiiiess:($ofspecies) Species Diversity (If)

1.08

m 0.17

Vertical Diversity

0.64

0.18

MAX

:

SS 1.47 &SL] 0.9

STD DEV

vjjpsife: ^

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.82 • ifflgg,027...



DERIVED OUTPUT, cont.

VERTICAL DIVERSITY PROFILE

I

r

Shannon-Weiner Diversity Index (r a tio o f r i c h n e s s t o e q u ita b ility )

W

2 o

Z 3

z

0

10 20 X 40 50 60 70 S HIDING COVER PERCENT

2a S z

0 .0 0 1 0 2 0 3 0 4 0 5 0 6 0 .7 0 .8 0 .9 1 .0 WINTER THERMAL COVER - PROTECTION

z

0.1 0 .2 0 3 0.4 0.5 0.6 0.7 O J 0.9 1.0 THERMAL COVER ♦ 12+M (40+FT)

SHADE THERMAL COVER ♦ SUMMER

w

3

CL

*s

* 1 z

WIND BLOCKAGE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

328

DERIVED OUTPUT, cont.

3-

z2 100

200

300

400

BASAL AREA (fP/ac)

HEIGHT & AGE DISTRIBUTION FOR DOMINANT TREE SPECIES

Douglas-Fir

Grand Fir

1501

I K X o

tsq

I

too ■

H X G

o cP

LU

LU

X

X

300

AGE (years)

400

500

(years)

W estern R edcedar

AGE (years)

W estern Larch

tsq

100

Lodgepole Pine

tsq

tsq

toe *

*

so

X

2 00

300

41 400

A G E (years)

S00

50-

200 3Q0 400 41 500

A G E (years)

NARRATIVE

Mid-elevation plant association with primarily moderate water holding capacity and high gross primary productivity when compared to other plant associations. Many

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.

329

sample plots were located within stream bottoms. Moist, cool air drainages and northerly aspects (when above stream bottom locations) characterize this plant association. Shrubs have a high diversity and abundance overall, with that component making up to 30 to 40% of the foliar volume and increasing up to 70% of the foliar volume within early serai stands. Remote sensed image texture varies, but primarily coarse with small openings scattered throughout. Historic disturbance characterized by primarily mixed-lethal fire events at 30 to 50 year intervals and stand replacing events at 200 to 300 year intervals (determined from fire scars taken on plots). This plant association can occur within Vegetation Response Units 4 and 5 (Moderately Warm and Moist and Moderately Cool and Moist). Please consult the Vegetation Response Unit Characterizations and Target Landscape Prescriptions (1999) document.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

330

ALNUS INCANA (WET) SHRUBLAND ALLIANCE

PA13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

331 Physiognomic: IIIBZNb ALNUS INCANA (WET) SHRUBLAND ALLIANCE

PLANT ASSOCIATION 13 (PA13) ALNINC (CORCAN>SYMALB/CALCAN-ELYGLA (n=3) Alnus incana (Cornus canadensis) - Symphoricarpos albus / Calamagrostis canadensis -Elymus glaucus Mountain Alder (Bunchberry) - Common Snowberry / Bluejoint Reedgrass - Blue Wildrye ^

E u re k a

■it Y aak .tl

■Cr S y lv an ite

* Libby

*

SITE ATTRIBUTES Elevation Slope Aspect Precipitation Solar Insolation

UNITS ft deg direction in cai/ctnTyr

AVG 3350 2 E 31.93 18142833

MIN 2000 0 N 31 176252

MAX 4300 7 S 33 191781

STD DEV 1201.04 4 1 8966

Landtype*' M I

212

i

%

1

•Kummon 8 Niotsan-Qmtmnil 1085

105 - Aquic Udifluvents, poorly drained 106 - Andie Dystrochrepts, glacial outwash terraces 352 • Andie Dystrochrepts, glaciated mountain slopes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

332

INDICATOR SPECIES SCIENTIFIC NAME

COMMON NAME

COVER

CONSTANCY

%

%

Populus mchocarpa

Black cononwood

20

33

Alnus incana Symphoricarpos albus

Mountain alder Common snowberry

33 15

100

67

•t-w Jr

Calamagrostis canadensis Elymus glaucus

Bluejoint reedgrass

17

100

Blue wildrye

15

67

Equisetum arvense

Field horsetail

15

100

Habitat Typas*

8

P IB V C U JN

*Plisteretal.

1977&

C oo p er e t

P IB Y EQ A R

at.

TSHB CUUN

1991

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

333

PROCESS ATTRIBUTES ■n--------------------— ...

...

— — •-■!..

,.;b i

MAX

AVG/ MODE Overstory Leaf Area Index

1.3

4.15

m

&

v SM*

Stand Replacing Fire Interval (Sampled on plots)

STD DEV

152.75

166.67

Structure C la ss1

« *

' O'Hara & Latham. 1996

Gross Primary Production (kgCm2) Net Primary Production (kgCm2) N et RxwystemPrbdiictibn Maintenance Respiration (kgCm2) Autotrophic Respiration Heterotrophic Respiration

AVG

MIN

MAX

.83

fC » Iv

11 . 0s

STD DEV mOK IV

.59

.1

1.07

.68

S5

.08

1.03

.06

.0 1

.1

.07

24

.04

.44

.28

.03

.02

.04

.02

.0 1

.02

.01

r ;'4.45- : 1365.81

31718.56

21462.64

.0* Soil Respiration (kgCm2) aEea£C^BdtfflqiiiS^f ' Dead Stem Carbon (kgCm2)

.02 j ij

^

16542.19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

334

DOWN WOOD SUMMARY

3 Transect Minimum Measurements 3 Transect Maximum Measurements 3 Transect Minimum Measurements 3 Transect Maximum Measurements - ■;; 3 Transect Minimum Measurements 3 Transect Maximum Measurements

AVG

MIN

^ " 0 05 0.18

0.02 0.17

m

0.12 1.24 m m 0.48 8.24

m

m

0.0 0.79

MAX

m

tl.

... 0.10 0.19

w

m

0.24 2.01

STD DEV •_i

m

m

,. V w _... ..*• 0.05 0.01 ffim

0.12 0.67

r.l'~

’ 0.0 5.81

1.45 11.62

0.84 3.02

0.0 0.84

0.0 11.37

0.0 5.57

;|C |^ K (M T m eIag - sound(Tons/acre)

3 Transect Minimum Measurements 3 Transect Maximum Measurements

0.0 5.06

A, W

'ICpKHdur T im elag -ro tito (Tons/acre)

3 Transect Minimum Measurements 3 Transect Maximum Measurements

L-.

0.0 25.24

0.0 1.12

0.0 72.08

0.0 40.57

1.97 36.64

0.23 10.53

2.95 84.83

1.51 41.78

0.33 3.67

0.0 2.00

1.00 6.00

0.58 2.08

1.33 7.40

0.0 6.00

4.00 1020

2.31 2.43

AlKWoodyMateria&(T(ms/acre)

3 Transect Minimum Measurements 3 Transect Maximum Measurements Ntnnber o f Logs (Count) 3 Transect Minimum Measurements 3 Transect Maximum Measurements iBdjgDiameter (Inches) 3 Transect Minimum Measurements 3 Transect Maximum Measurements

FimI Models A n d e rs o n F u e l M o d e l* 5

NFDRS Fuel Model** * Anderson,

1982 "N FD RS, 1978

DERIVED OUTPUT

STD DEV Species Diversity (HO Vertical Diversity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

335

DERIVED OUTPUT, cont.

VERTICAL DIVERSITY PROFILE

f-

o

2 i a s

A .7 a a i.b i .i 12 u S h a n n o n -W e in e r D iv e rs ity In d e x

i

1.4 1.5

(ratio o f richness to equitability)

1.5

« 1.0

i

I3

!3 z

0.5

z

0.0

0.1 0.5 THERMAL COVER - 12+M (40+FT)

HIDING COVER PERCENT

i

1.5

1.5

1.0

1.0

i

3

z

*0.0 0.1 0.2 0.3 0.4 0.5 a s 0.7 WINTER THERMAL COVER - PROTECTION

.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 OS 1.0 SHADE THERMAL COVER • SUMMER

B

I 3

z

0.1 04 0.3 WIND BLOCKAGE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

336

DERIVED OUTPUT, cont.

0L © w m & Y m m sm m /m

- m

.

: -v

- ■

-

«j 1.0

0.5

0.0, BASAL AREA (ft*/ac)

HEIGHT & AGE DISTRIBUTION FOR DOMINANT TREE SPECIES

Western Redcedar 1501

f

100"

£

50-

400

NARRATIVE

This plant association is characterized by streamside, riparian, and wet meadow habitats. Water holding capacity is high. Evapotranspiration rates and leaf area index are high; gross primary productivity and respiration rates low; and canopy conductance the lowest when compared to other plant associations. Shrub foliar cover dominates (50 to 60%) and is also evenly distributed with forb, grass, and fern cover. Historic fire frequency for stand-replacing fires was sampled at 200 + years.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

337

This plant association is found within Vegetation Response Unit 7 (Cool and Moist). Consult the Vegetation Response Unit Characterizations and Target Landscape Prescriptions document (1999) for further generalized descriptions and characterizations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

338

PINUS CONTORTA-LARIX OCCIDENTALIS (EARLYSERAL) WOODLAND ALLIANCE

PA14 SUB-PA27, PA H SUB-PA28, PA H SUB-PA29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

339 Physiognomic: LA8Nc PINUS CONTORTA-LARIX OCCIDENTALIS (EARLY SERAL) WOODLAND ALLIANCE

PLANT ASSOCIATION 14 SUB-PLANT ASSOCIATION 27 (PA14_SPA27) PINCON-LAROCC/ALSIN-LINBOR/CALRUB (n=8) Pinus contorta - Larix occidentals /Ainus sinuata - Linnaea borealis / Calamagrostis rubescens Lodgepole Pine - Western Larch / Sitka Alder - Twinflower / Pinegrass E u re n a .

■w



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

356

DOWN W O O D SUMMARY

MAX 3 Transect Minimum Measurements 3 Transect Maximum Measurements 3 Transect Minimum Measurements 3 Transect Maximum Measurements Transect Minimum Measurements 3 Transect Maximum Measurements j

3 Transect Minimum Measurements 3 Transect Maximum Measurements 3 Transect Minimum Measurements 3 Transect Maximum Measurements 3 Transect Minimum Measurements 3 Transect Maximum Measurements Nnmbter o£Log^(Gount)

3 Transect Minimum Measurements 3 Transect Maximum Measurements

0.83 3.17

3 Transect Minimum Measurements 3 Transect Maximum Measurements

2.08 8.67

Fuel Models A nderson Fuel Model*

5

e

a

12

i_

«

£

1

I

I

I I FA Q

I H SR

N FD RS Fuel Model**

*Anderson, 1982 -NFDRS, 1978

DERIVED OUTPUT

Species Diversity (HO Vertical Diversity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

STD DEV

357

DERIVED OUTPUT, cont.

VERTICAL DIVERSITYPRORLE

2

3

.4

S

a

.7 »

a 1.0 I.I \2 1.3 1.4 1.5

Shannon-Weiner Diversity Index

Number ot Plots

(ratio o f rich n ess to equitability)

£ z z 2

Number ot Plots

0 10 20 30 40 SO eo 70 80 90100 HIDING COVER PERCENT

o.o aos o .io a is 020 WNTER THERMAL COVER - PROTECTION

z

.0 0.1 02 0.3 THERMAL COVER - 12+M (40*FT)

0.0 0.1 02 0.4 SHADE THERMAL COVER - SUMMER

z

.0 0.1 02 0.3 0.4 0.5 (LB 0 .7 (LB WIND BLOCKAGE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

358 DERIVED OUTPUT, con/.

t

I

IQ.

so

O k_ ® -Q E

3

Z

10 20 30 40 50 00 70 80 90 100110

BASAL AREA (R2/ac)

HEIGHT & AGE DISTRIBUTION FOR DOMINANT TREE SPECIES

Ponderosa Pine

I

100 -

Western Larch

100"

I— I o LU X

ui 50

30 40 50 60 70 80 90100110120

AGE (years)

30 40 50 00 70 80 90100110120

AGE (years)

NARRATIVE

One of three early succession plant associations making up this Alliance, PA14 SPA 29 is characterized by recent harvest disturbance of regeneration-type silvicultural prescriptions. Water holding capacity is moderate. Outflow rate is predictably higher than most plant associations. Canopy conductance, gross primary productivity, evapotranspiration, respiration rates, and stem carbon are lower than other plant associations, although gross primary productivity on average is higher than PA14 SPA28.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

359

Species richness is low for an early serai plant association. Shrub cover either dominates or is of consistent foliar cover with grasses, forbs and certain bryophytes. Habitat types have very little correlation with this and other early serai plant associations. This plant association can be found within Vegetation Response Units 2,4, and 5 (Moderately Warm and Dry, Moderately Warm and Moist, and Moderately Cool and Moist). Consult the document Vegetation Response Unit Characterizations and Target Landscape Prescriptions (1999) for more generalized information concerning these VRU's.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

360

LARIX OCCIDENTALS - BETULA PAPYRIFERA (POPULUS TREMULOIDES) MIXED FOREST/WOODLAND ALLIANCE

PAI5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

361 Physiognomic: IA8Nc LARIX OCCIDENTALIS - BETULA PAPYRIFERA (POPULUS TREMULOIDES) MIXED FOREST/WOODLAND ALLIANCE PLANT ASSOCIATION 15 (PA15) LAROCC-BETPAP(POPTRE)/ACEGLA-ALNSIN (n=7) Larix occidentalis - Betula papyrifera (Poputus tremuloides) /Acer glabrum -Alnus sinuata Western Larch - Paper Birch (Quaking Aspen) / Rocky Mountain Maple - Sitka Alder

* Yaak Sylvaruie

Libby

Trout C reek

• Plot locations

SITE ATTRIBUTES UNITS Elevation Slope Aspect Precipitation Solar Insolation

ft deg direction in cal/cmVyr

AVG

MIN

MAX

3180 28 NW 28.31 117536

2700 5 N 21 36653

3750 55 N 33 186382

STD DEV 314.7 20 5 60899

Landtypas* a 1 Q E 0

202 -

s

I0I

B

134-

V

1 0- I

I 300

■ 32D

*Kuarmon itNfdaan Gcrtardt 19(15

■ 382

■ 385

387

328 - Andie Cryochrepts, glaciated mountain slopes 329 - Andie Cryochrepts, moraines, dense, brittle substratum 352 - Andie Dystrochrepts, glaciated mountain slopes 355 - Andie Dystrochrepts-Rock outcrop complex, glaciated mountain slopes 357 - Andie Cryochrcpts-Lithic Cryochrepts complex, dissected glaciated mountain slopes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

362

INDICATOR SPECIES SCIENTIFIC NAME

COMMON NAME

COVER %

CONSTANCY %

Larix occidentalis Betula papyrifera Populus tremuloides Pseudotsuga mensiesii

Western larch Paper birch Quacking aspen Douglas-fir

10 20 26 15

100

Acer glabrum Alms sinuata Chimaphila umbellata Linnaea borealis

Rocky mountain maple Sitka alder Common prince's pine Twinflower

9 3 5 17

71 57 100 100

Clintonia uniflora Smilacina racemosa

Queen's cup beadlily False spikenard

Calamagrostis rubescens

Pinegrass

29 29 100

57 86

15

Habitat Types *

f

ABGFVABGfV PSMB THPU TSHBTSHB CLLJN- L10O- VACA OPHO CLUN-CLUNARNU L1BO ARMJaUN 'Piister et at. 1977& Cooper et al. 1991

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

363

PROCESS ATTRIBUTES

AVG/ MODE Overstory Leaf Area Index Stand Replacing Fire Interval (Sampled on plots)

Structure Class 1



£ 0

I

I

I

1

E 3

z

o —i

I

D

*

I

E

I

F

O'Hara & Latham. 1996

Net Primary Production (kgCm2)

AVG

MIN

MAX

STD DEV

1.35

.94

1.99

.45

1-29

St

.05

.19

.06

.34

.81

.19

.03

.1

.03

.01

.05

Maintenance Respiration (kgCm2) Autotrophic Respiration Heterotrophic Respiration ...

Sou Respiration (kgCm2) Dead Stem Carbon (kgCm2)

33912.88

15524.01

w T

53669.17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15649.35

364

DOWN WOOD SUMMARY MAX 3 Transect Minimum Measurements 3 Transect Maximum Measurements 'V1 3 Transect Minimum Measurements 3 Transect Maximum Measurements

I '’ .

■-

' ~ -

STD DEV >r! aSg»SiSl

■ 0.15 028

3 Transect Minimum Measurements 3 Transect Maximum Measurements 3 Transect Minimum Measurements 3 Transect Maximum Measurements

0.70 11.40

0.0 1.51

3.37 30.51

3 Transect Minimum Measurements 3 Transect Maximum Measurements *WOOffl^]^CfwPfefcQH 3 Transect Minimum Measurements 3 Transect Maximum Measurements Number of Log&(Count) 3 Transect Minimum Measurements 3 Transect Maximum Measurements fiOgDiameter(Inches) 3 Transect Minimum Measurements 3 Transect Maximum Measurements

2.46 10.32

0.0 0.0

8.18 28.51

2.90 9.59

8.72

2.84 10.80

15.17 41.65

4.81 11.84

20.00

2.14

1.00

2.86

2.00

3.00 3.00

0.90 0.38

5.26 9.05

4.00 5.00

7.50 18.00

1.32 4.63

Fuel Models Anderson Fuel Model*

8 £ o * xt £ 3 z HSR NFDRS Fuel Model**

G

*Anderson, 1982 -NFDRS, 1978

DERIVED OUTPUT UIHIsMJuXt

AVG

MIN s;.—■-'’-'^SSSST•

Species Diversity (H*) Vertical Diversity

122

104

.8

' .74 "

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DERIVED OUTPUT, cont.

VERTICALDIVERSITYPROFILE

S i]

!*7an1 il&S* f

I Am .78m r

,

251 fc * > — • i,'l

if- ;^ .tSm f ' J 51

o

0 .1 i

J J i s .7 i a t.o 1.1 \2 i i tj»Tk Shannon-Weiner Diversity Index

(ratio of richness to equitability)

2a. *5

I z

1 23

z

.0 0.1 0.2 0 .3 a 4 0.5 0 ^ 0.7 a s 0 9

THERMAL COVER - 12*M{40*FT)

HIDING COWER PERCENT

o

0.0 0.10.20.30.40.50.60.70.80.91.0 SHADE THERMAL COVER - SUMMER

iZ

2 0 .3 0 4 0.5 OB 0 7 oa

WINTER THERMAL COVER- PROTECTION

WIND BLOCKAGE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

366

DERIVED OUTPUT, cont.

ICL O © a E 3

Z

100

300

200

BASAL AREA (fP/ac)

HEIGHT & AGE DISTRIBUTION FOR DOMINANT TREE SPECIES

Western Larch

Douglas-Fir 1501 ■■■ r

f

n

Lodgepole Pine 150

tSOf

_ too •

too •

^ too

oo

0

too

200

300

400

100

■■■

300

400

100

200

300

400

AGE (years)

Western Redcedar

Subalpine Fir tSOf

200 AGE (years)

AGE (ytars)

| ■

150

100 •

too A

g so

0

to o

200 300 AGE (years)

400

too

300

400

NARRATIVE

This is a mid-elevation plant association found consistently between 2700 and 3700 feet in elevation. Water holding capacity is moderate and soil volumetric water content is the lowest of all other plant associations. Outflow rate is in the lower third

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

367

when compared to other plant associations. Evapotranspiration, gross primary productivity, stem carbon, and respiration rates are in the upper third in comparison to other plant associations. Species richness is one of the highest. This is a shrub-rich association. Remote-sensed image texture is primarily coarse (conifers) with small openings (deciduous hardwoods). This plant association is found within Vegetation Response Units 4 and 5 (Moderately Warm and Moist and Moderately Cool and Moist). Consult the document, Vegetation Response Unit Characterizations and Target Landscape Prescriptions (1999) for more generalized information concerning these VRU's. Relative foliar cover is evenly distributed between trees, shrubs and grass. Forbs and bryophytes are also evenly distributed with a lesser amount of cover than the other lifeforms. This plant association is found primarily within Vegetation Response Unit 2 (Moderately Warm and Dry). Consult the document Vegetation Response Unit Characterizations and Target Landscape Prescriptions (1999) for more generalized information concerning these VRU's.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

368

LARIX OCCIDENTALIS - PSEUDOTSUGA MENZIESH WOODLAND/FOREST ALLIANCE

PA 16, PA17, PA 18, PA18 SUB-PA23, PA19, PA19 SUB-PA25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

369 Physiognomic: IIA4Nb LAREX OCCIDENTALIS - PSEUDOTSUGA MENZIESII WOODLAND ALLIANCE PLANT ASSOCIATION 16 (PA16) LAROCC-PSEMEN (ABELAS) /VACMYR/ CALRUB (n=6) Larix occidentalis-Pseudotsuga menziesii (Abies lasiocarpa) / Vaccinium myriillis / Calamagrostis rubescens Western Larch-Dougias-fir (Subalpine Fir) / Dwarf Bilberry / Pinegrass

Libby

• P lo t location*

SU E ATTRIBUTES UNITS Elevation Slope Aspect Precipitation Solar Insolation

ft deg direction in cal/cmVyr

AVG

MIN

!

MAX

4888 34 W 34.03 157720.83

3800

1

15 E

i 1

31 81679

i J

5560 45 N 39 205662

STD DEV 585.8 11 — 3 47107

Landtypts' A

8 a S f 5 | 13

X

322

241 101 f» n

*Kuvrinori AN idsai Q txlixidl 1985

3S2 - Andie Dystrochrepts, glaciated mountain slopes 3S5 - Andie Dystrochiepts-Rock outcrop complex, glaciated mountain slopes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

370

INDICATOR SPECIES SCIENTIFIC NAME

COMMON NAME

..... .ai S ZJ t h j n t y.

COVER %

CONSTANCY %

iillillilS

Abies lasiocarpa Larix occidentalis Pseudotsuga menziesii

Subalpine fir Western larch Douglas-fir

14 12 20

50 83 100

Chimaphda umbellaia Linnaea borealis Lonicera utahensis Vaccinium myrtillis

Common prince's pine Twinflower Utah honeysuckle Dwarfbilberry

3 13 5 22

67 83 50 100

Antennaria racemosa Arnica cordifolia Erythronium grandiflorum Heucheria spp.

Raceme pussy-toes Heart-Ieaf arnica

7 5

50 83

Glacier-lilly

1

50

Alumroot

2

33

Pinegrass

13

100

Timber oatgrass

3

17

2 3

100 33 17

Calamagrostis rubescens Danthonia intermedia

Bryoria spp. Dicranum scoparium Dicranum tauricum

Habitat T ypes *

I

a *

1

E

MUM PSMB PSMB CUJN- UBO CARU UBOCUJN CARU

ABLM

THV CLUNCUJN

*Pfisteretal. 1977& Cooper at a!. 1991

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

371

PROCESS ATTRIBUTES

AVG/ MODE

MAX

Overstory Leaf Area Index Stand Replacing Fire Interval (Sampled on plots)

Structure Class *

*O'Hara & Latham. 1996

(Kg,Gn&) Net Primary Production (kgCm2) \ ' f --“i Maintenance Respiration (kgCm2) Autotrophic Respiration Heterotrophic Respiration

AVG

MIN

I-M

.82

2m

1.16

.56

1.92

.51

.13

.07

23

.06

.49

26

.82

.22

.06

.04

.07

.01

33420.73

12839.13

MAX

STD DEV

Soil Respiration (kgCm2) Dead Stem Carbon (kgCm2)

43669

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11901.48

372

DOWN WOOD SUMMARY AVG

MAX

MIN ; ■

*^ .... 3 Transect Minimum Measurements 3 Transect Maximum Measurements

0.0 0.03 0.18 .::.r ; - -r... , • I>rK24!i2r-iirJ; jjp p s p i^ 3 Transect Minimum Measurements 0.0 0.0 1.40 3 Transect Maximum Measurements 2.14 f " 0.0 3 Transect Minimum Measurements 0.0 4.39 3 Transect Maximum Measurements 8.83 f’T-■"t1■ - •• 3 Transect Minimum Measurements 0.39 " o.o 3 Transect Maximum Measurements 0.0 4.12

STD DEV »;

0.0 0.34 0.0 3.43 0.0 18.19 i, %. „•,;; gir;* r - - : '' "T.^r '* 2.33 15.74

0.0 0.12 ‘

0.0

0.74 "o.o" 5.67

0.95 5.77

3 Transect Minimum Measurements 3 Transect Maximum Measurements

0.42 12.71

0.0 0.0

2.51 44.79

1.03 17.02

3 Transect Minimum Measurements 3 Transect Maximum Measurements

3.81 22.92

0.0 8.28

"..... 9.97 44.79

4.33 14.78

3 Transect Minimum Measurements 3 Transect Maximum Measurements

0.83 1.33

0.0 1.00

2.00 2.00

0.75 0.52

3 Transect Minimum Measurements 3 Transect Maximum Measurements

2.92 10.92

0.0 5.00

6.00 25.00

2.42 7.59

-

Fuel Models 8

A n d erso n Fuel M odel*

10

f

£ B S A E a

8

HSR N FD R S Fuel Model**

*Anderson, 1982 -NFDRS, 1978

DERIVED OUTPUT

MAX Species Diversity (H') Vertical Diversity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DERIVED OUTPUT, c o m .

VERTICALDIVERSITYPRORLE \

Shannon-Weiner Diversity Index (ratio o f richness to equitability)

2

Q.

z

i3

Z

Z2

0.2 as o.< as as 0.7 as as 1.0 HIDING COVER PERCENT

THERMAL COVER - 12+M (40+FT)

SHADE THERMAL COVER - SUMMER

75

I3

3

Z

z

0.0 a i a a a s 0.4 a s a s a 7 a s WINTER THERMAL COVER - PROTECTION

at

as

WIND BLOCKAGE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

374

DERIVED OUTPUT, cont. SLhsSamus ft

1

-r- _. —; ^j.':ji.-..>»i‘-:*:Aui..L-3C4.•&>■'.

tn

o a. o

9

100 150 BASAL AREA (ft2/ac)

200

HEIGHT St AGE DISTRIBUTION FOR DOMINANT TREE SPECIES Douglas-Fir

Western Larch

Subalpine Fir 110T -

nop

100-

ioo-

80-

I

! ► x o

► X- 8 0 a iu X 30100 200 300 400 500 600 700

AQE(y«M)

0

100 200 300 400 500 800 700

AQC

0

100 200 300 400 500 600 700

AGE(years]

NARRATIVE

This is a mid- to upper elevation plant association covering xeric to subalpine habitats. Water holding capacity is moderate to low. Gross primary productivity, stem carbon content and species richness are in the upper third of all plant associations. Rate of outflow is one of the lowest of all plant associations. Species richness and foliar cover percent is primarily distributed between trees and shrubs. Remote sensed image texture is coarse to discontinuous with rock outcrops and openings when moving upslope.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

375

Fire history taken on plots indicate partial stand-replacing fires common approx. 150 years before present, frequent underbums and mixed lethal fires at 100 to 200 year intervals. This plant association is found primarily within Vegetation Response Unit 7 (Cool and Moist). Consult the document, Vegetation Response Unit Characterizations and Target Landscape Prescriptions (1999) for more generalized information concerning this VRU.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

376 Physiognomic: IIA4Nb LARIX OCCIDENTALIS - PSEUDOTSUGA MENZIESII WOODLAND ALLIANCE PLANT ASSOCIATION 17 (PA17) LAROCC-PSEMEN (PINCON) / VACGLO / XERTEN (n=6) Larix occidentals - Pseudotsuga menziesii (Pinus contorta) / Vaccinium globulare/ Xerophyllum tenax Western Larch - Douglas-Fir (Lodgepole Pine) / Globe Huckleberry / Beargrass

£ E ureka

/ \

. T ro y A

*Fop

( ’&

S ytya n ite