introduction methodology results conclusion

3 downloads 0 Views 352KB Size Report
Mar 16, 2015 - the two parameters of viscosity Arrhenius-type equation, such as the energy ... statistical correlations, thus allowing us to rewrite the Arrhenius ...
17TH ARAB CHEMISTRY CONFERENCE HAMMAMET 16-18 MARCH 2015 TUNISIA

A. Messaâdia, N. Dhouibia, M. Dallelb, H. Hamdac, F.B.M. Belgacemd, N. Ouerfellib, A.H. Hamzaouia a)

Laboratoire de Valorisation des Matériaux Utiles, Centre National des Recherche en Sciences des Matériaux, B.P.95, 2050 Borj Cedria Hammam Lif, Tunisia ; Université de Tunis El Manar, Laboratoire Biophysique et de Technologies Médicales LR13ES04, Institut Supérieur des Technologies Médicales de Tunis, 9 Avenue Dr. Zouhaier Essafi 1006 Tunis, Tunisia. c) Laboratoire d’Ingénierie Mathématique, Ecole Polytechnique de Tunisie, Université de Carthage, Rue El Khawarizmi, B.P.743, 2078 La Marsa, Tunisia. ; d) Department of Mathematics, Faculty of Basic Education, PAAET, Al-Ardhyia, Kuwait. b)

RESULTS

INTRODUCTION

Correlation between the Arrhenius parameters 60

0

0

(c)

ln As

(b)

(a)

50

lnAs

ln(As / Pa.s)

-1

40

30

20

0

-10

-15

0

50

100

150

200

250

300

350

-15

-25

-25 0

TA / K

-10

-20

-20

10

lnAs

-5

ln(As / Pa.s)

-5

Ea / kJ.mol

In transport phenomena, precise knowledge or estimation of fluids properties are necessary, for mass flow and heat transfer computations. Viscosity is one of the important properties which are affected by pressure and temperature. In the present work, based on statistical techniques for non linear regression analysis, we propose a novel equation modeling the relationship between the two parameters of viscosity Arrhenius-type equation, such as the energy (Ea) and the preexponential factor (As). Empirical validations, using about 90 data set of viscosity of pure solvents studied at different temperature ranges are provided from literature, give excellent statistical correlations, thus allowing us to rewrite the Arrhenius equation using a single parameter instead of two. Then, taking some mathematical considerations, we try in the present work to suggest an empirical exponential law-type equation valid even for the very viscous fluids (Ea < 40 kJ· mol-1) and (-20 < ln(As /Pa·s)). In addition, we have tried to give some physical meaning of the proposed equation parameters. Also, the suggested model is very beneficial for engineering data since it would permit to estimate the missing parameter value, if a well established estimate of the other is readily available.

50

100

1 50

200

250

3 00

0

3 50

10

20

30

Ea / kJ.mol

TA / K

40

50

60

-1

Figure 2. Scatter plots for pair-wise correlations between Arrhenius parameters. The Arrhenius temperature (TA = -Ea / R.lnAs),

Equation of Messaâdi-Dhoubi

METHODOLOGY Relationship between the activation energy and the Arrhenuis entropic factor

Table : Arrhenius parameters of some pure liquids studied at previous works. TA

Tb

Tm

/ kJ.mol-1

/K

/ K

/ K 178.45

Acetone

894.9

-11.097

7.4406

80.643

329.20

Acetic acid

1348.6

-11.308

11.213

119.26

391.15

289.75

60

Aniline

2405.1

-13.564

19.997

177.32

457.28

266.85

50

Butyl Alcohol

2298.9

-13.689

19.114

167.94

390.85

183.35

Carbone tetrachloride

1242.3

-11.152

10.329

111.39

349.87

250.23

Ethyl acetate

1192.9

-11.728

9.9183

101.72

350.15

189.55

Diethyl ether

904.48

-11.446

7.5203

79.021

307.75

156.85

n-heptane

1036.7

-11.302

8.6196

91.723

371.15

182.55

n-pentane

733.64

-10.886

6.0998

67.393

309.25

143.45

Toluene

1085.2

-11.135

9.0229

97.461

383.75

180.15

1052.2

-10.975

8.7485

95.872

412.25

225.35

3001.4

-14.945

24.955

200.83

468.15

257.15

Propylene Glycol

5744.8

-22.128

47.765

259.62

461.35

214.15

Butane-1,2-diol

5281.1

-20.681

43.910

255.36

465.15

159.15

Butane-1,4-diol

4012.2

-16.210

-1

cal

cal

20

33.359

247.51

503.15

0

10

20

Ea

30

exp

40

50

/ kJ.mol-1

60

293.15

(a )

214.15

] /σ

159.15

- (Ea) [(Ea)

1 /T

b

-1

X = 1 /T (K ) 1 /T A

0.5 0 -0 .5 -1 -1 .5 -2

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

O bse r va ti on nu m b e r

Figure 4. Normalized deviation plot related to (a): the activation energy: [(Ea)exp – (Ea)calc]/s and (b): the entropic factor: [(lnAs)exp – (lnAs)calc]/s against the number of observation (solvent).

CONCLUSION & PERSPECTIVE

-1 2 0

0 .0 0 3 7 5

0 .0 0 7 5

0 .0 1 1 2 5

0 .0 1 5

Figure 1. Graphical representation of the logarithm of the dynamic viscosity (lnη) methanol as a function of (1 / T) 1 00 0 0

Tb

T*

Ti / K

1 00 0

Figure 2. Classification of different mean temperatures used in this statistical investigation.

Conclusion

ln A s

Perspectives

-8

m

(b )

1

S l o p e = T * = E a /R

-1 0

T

-1

O bser v a ti on nu m b er

m

0

-6

A

-0 .5

0

A r r h e n iu s T e m p e r a tu r e

-4

T

0

-2

1 /T

T

0. 5

-1 .5

ln ( η /m P a . s )

1 /T

100

calc

461.35 465.15

- (lnAs)

247.25 257.32

exp

37.551 46.763

0

-10

/ m Pa.s)

1.5

[(lnAs)

-18.266 -21.857

calc

4516.3

-2

-15

exp

2

5624.3

2

-20

ln(A s

2 1. 5

1,2-Butanediol

4

-25 -25

Figure 3. Comparison between the experimental activation energy values (Ea)exp and the estimated ones (Ea)calc from Messaâdi-Dhouibi equation; (b): Comparison between the experimental entropic factor values (lnAs)exp and the estimated ones (lnAs)calc from Messaâdi-Dhouibi equation.

Propylene Glycol

Y =

-20

10

1

ArrheniusViscosity behavior

1 00

30

-15

] /σ

m-xylene

(b)

40

0

n-octanol

-10

(a)

/ mPa.s)

Ea

-

ln(As

lnAs

/ kJ.mol

T* /K

exp

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Pure Component

Ea

#

In this work, using statistical methods, we found a significant correlation between non-parametric statistical power of activity energy (Ea), the entropy factor (ln (As)) and Arrhenius temperature (TA). Thus, for facilities f programming and computing in hydraulic calculations fluid transport, and energy transfer calculations, we reduced the model using only a single variable without significant loss of accuracy.

Giving an extension and validation of the proposed equation for binary Newtonian liquid mixtures obeying the Arrhenius type equation viscosity to the whole range of the composition. It will also be very important in fluid engineering.