INVESTIGATION OF UNDERGROUND MINE PILLAR ...

0 downloads 0 Views 6MB Size Report
Design chart for "Inclined Pillars", Category 4. 50. 18. Heath Steele ...... were also chosen to take advantage of Allcot and Archibald (1981)1 1 pillar design study.
INVESTIGATION OF UNDERGROUND MINE PILLAR DESIGN PROCEDURES By YVES POTVIN B.Sc,

LAVAL U n i v e r s i t y , QUEBEC 1981

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF A«ii«MASTER OF^SCIENCE J

in THE FACULTY OF GRADUATE STUDIES Mining

and M i n e r a l Process

We accept

Engineering

t h i s t h e s i s as conforming

tq the required

standard

THE UNIVERSITY OF BRITISH COLUMBIA March

©

1985

Yves P o t v i n ,

1985

In p r e s e n t i n g

t h i s t h e s i s i n p a r t i a l f u l f i l m e n t o f the

requirements f o r an advanced degree a t the U n i v e r s i t y o f B r i t i s h Columbia, I agree t h a t t h e L i b r a r y s h a l l make it

f r e e l y a v a i l a b l e f o r reference

and study.

I further

agree t h a t p e r m i s s i o n f o r e x t e n s i v e copying o f t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by t h e head o f my department o r by h i s o r her r e p r e s e n t a t i v e s .

It i s

understood t h a t copying o r p u b l i c a t i o n o f t h i s t h e s i s f o r f i n a n c i a l gain

s h a l l n o t be allowed without my w r i t t e n

permission.

Department o f M i n i n g and M i n e r a l P r o c e s s

The U n i v e r s i t y o f B r i t i s h 1956 Main Mall Vancouver, Canada V6T 1Y3

DE-6 (3/81)

Columbia

Engineering

ABSTRACT

The p r i n c i p a l f u n c t i o n s o f underground mine p i l l a r s a r e to

s t a b i l i z e openings and t o c a r r y t h e l o a d o f o v e r l y i n g r o c k

s t r a t a . They a r e o f t e n ( p a r t i a l l y o r c o m p l e t e l y ) r e c o v e r e d a t a l a t e r s t a g e when t h e i r s t a b i l i z i n g e f f e c t i s no l o n g e r r e q u i r e d . For economic r e a s o n s , an optimum-sized p i l l a r i s t h e s m a l l e s t one s a t i s f y i n g s a f e t y r e q u i r e m e n t s . Thus t h e p i l l a r d e s i g n problem c o n s i s t s o f d e t e r m i n i n g the p i l l a r ' s

minimum dimensions

a s t h e l o a d approaches t h e u l t i -

mate p i l l a r s t r e n g t h . Because t h e p i l l a r ' s

s t r e n g t h and t h e l o a d a c t i n g upon

i t a r e b o t h f u n c t i o n s o f many i n t e r r e l a t e d f a c t o r s , which may vary as mining progresses, the determination o f p i l l a r

dimensions

i s a complex t a s k . Furthermore,

t h e m u l t i p l i c i t y o f p i l l a r shapes, s i z e s ,

r o c k m a t e r i a l and f u n c t i o n s add t o t h e d e s i g n e r s ' problem. Consequently,

p i l l a r d e s i g n programs a r e s t i l l g e n e r a l l y

performed a s a t r i a l - a n d - e r r o r p r o c e s s . In

o r d e r , t o improve t h e p r e s e n t p i l l a r d e s i g n p r a c t i c e s

(1) - A A p i l l a r c l a s s i f i c a t i o n i s proposed t o s t a n d a r d i z e the design (2)

procedure

The p r i n c i p a l d e s i g n methods, d i v i d e d i n t o f o u r groups, a r e summarized and t h e i r

is

i s defined

(3)

A f i v e - p h a s e d e s i g n procedure is

(4)

with design charts

developed

The d e s i g n p r o c e d u r e case

applicability

histories

i s a p p l i e d i n a n a l y s i n g two

TABLE OF CONTENTS

CHAPTER 1. CHAPTER 2.

Introduction The C l a s s i f i c a t i o n and D e f i n i t i o n o f P i l l a r s

2.1

Pillar

2.2

Category 1:

2.3

Classification

2.2.1

Description

2.2.2

Definitions

Category 2:

2.4

Description

2.3.2

Definitions

Description

2.4.2

Definitions

Category 4:

2.6

Discussion

3.1

"Stub

2.4.1

2.5

Pillars"

"Separation P i l l a r s "

2.3.1

Category 3:

CHAPTER 3.

"Plate

Pillars"

"Inclined

Pillars"

Review o f P i l l a r Design Methods Introduction

3.2

Group 1.

Experience Methods

3.3

Group 2.

Empirical

3.4

3.5

Methods

3.3.1

Empirical

strength

3.3.2

Empirical

s t r e s s formulas

3.3.3

Empirical

dimensioning formulas

Group 3.

Theoretical

formulas

Methods

3.4.1

Theoretical strength

3.4.2

T h e o r e t i c a l s t r e s s formulas

Group 4.

Computer Methods

formulas

Page

CHAPTER 4.

Pillar

Design

Procedure

4.1

Philosophy of P i l l a r Design

42

4.2

Design Procedure

42

4.3 CHAPTER 5. 5.1

4.2.1

Phase 1.

Experience Design

4.2.2

Phase 2.

P i l l a r Structural

Analysis

4.2.2.1

P i l l a r Transection V e r i f i c a t i o n

4.2.2.2

Shear S t a b i l i t y

4.2.3

Phase 3.

Empirical

4.2.4

Phase 4.

Theoretical

4.2.5

Phase 5.

Computer Design

Analysis

Design Design

46

Design Charts Heath S t e e l e Case H i s t o r y A n a l y s i s

53

Geology 5.1.1

Regional

Geology

5.1.2

Mine's

5.1.3

Structural

5.1.4

Jointing

Geology Geology

5.2

Mining Method and Underground S t r u c t u r e s Dimension

57

5.3

Rock Mechanics

59

Data

5.3.1

Rock S t r e n g t h

Parameters

5.3.2

Laboratory T e s t i n g

5.3.3

Rock Mass C l a s s i f i c a t i o n

5.3.4

V i r g i n Stress

5.4

P i l l a r Characteristics

63

5.5

Mining Sequence

63

5.6

F a i l u r e H i s t o r y and P i l l a r

Geometry

64

Page 5.7

5.8

68

P i l l a r Design Study 5.7.1

Phase 1.

Experience Design

5.7.2

Phase 2.

P i l l a r Structural

5.7.3

Phase 3.

E m p i r i c a l Methods

Analysis

5.7.3.1

E s t i m a t i o n of P i l l a r Load by the T r i b u t a r y Area Formula

5.7.3.2

Estimation of P i l l a r

5.7.4

T h e o r e t i c a l Methods

5.7.5

Computer Methods

Strength

90

D i s c u s s i o n o f the R e s u l t s

CHAPTER 6. 6.1

Geco Case H i s t o r y A n a l y s i s 98

Geology 6.1.1

Regional Geology

6.1.2

Mine Geology

6.1.3

Structural

Geology

6.2

Mining Method and Underground

6.3

Rock Mechanics Data

S t r u c t u r e Dimension

102 102

6.5.1

Rock S t r e n g t h Parameters

6.3.2

L a b o r a t o r y Test

6.3.3

Rock Mass C l a s s i f i c a t i o n

6.3.4

Virgin

Stress

6.4

P i l l a r Characteristics

108

6.5

Mining Sequence

108

6.6

F a i l u r e H i s t o r i e s and P i l l a r Geometries

113

6.7

Pillar

Design Study

120

6.7.1

Phase 1 .

Experience Design

6.7.2

Phase 2.

Pillar

Structural

Analysis

VI fa.ge

6.7.3

6.8

Phase 3.

E m p i r i c a l Methods

6.7.3.1

E s t i m a t i o n o f P i l l a r Load by the E x t r a c t i o n Ratio Formula

6.7.3.2

Estimation of P i l l a r Hoek's Method.

6.7.4

T h e o r e t i c a l Methods

6.7.5

Computer Methods

Strength;

Discussion of Results

CHAPTER 7.

^30

Summary and C o n c l u s i o n 135

7.1

Design Procedure

7.2

Case H i s t o r i e s

I36

7.3

Design Methods

137

APPENDIX A.

Review o f L i t e r a t u r e

APPENDIX B.

Determination o f the Geco s t r e s s regime a t 700 f t . depth

APPENDIX C.

I l l u s t r a t i o n of P i l l a r s

APPENDIX D.

"BITEM", 2-D, Boundary Element Program

vii

LIST OF

Figure

FIGURES

Description

Page 9

1

P i l l a r category

1 "Plate P i l l a r s "

2

P i l l a r category

2 "Separation

3

P i l l a r category

3 "Stub P i l l a r s "

4

P i l l a r category

4 "Inclined P i l l a r s "

5

Hard Rock P i l l a r s

(Appendix

C)

6

Hard Rock P i l l a r s

(Appendix

C)

7

Soft Rock P i l l a r s

(Appendix

C)

8

Influence o f P i l l a r Width to Height Ratio on Average P i l l a r Strength

26

9

Average V e r t i c a l P i l l a r Layouts.

28

Pillars"

P i l l a r Stresses

10 13 '

in Typical

15

10

Determination of Load on Chain P i l l a r s by the " F i r s t P a n e l " Load Concept

29

11

Observed Value o f W f o r Coal Seams 7 f t . Thick and having a Crushing Strength i n the

32

3 - i n . Cube of 3,000 p s i

±10%

12

P i l l a r transected

by a s i n g l e plane o f weakness

13

I n t e r s e c t i n g planes

14

Design c h a r t f o r " P l a t e P i l l a r s " ,

15

Design c h a r t f o r "Separation Category 2

16

Design c h a r t f o r "Stub P i l l a r s " ,

17

Design c h a r t f o r " I n c l i n e d P i l l a r s " ,

18

Heath S t e e l e Geology

54

19

Plan View of Heath S t e e l e Orebody

56

20

V i r g i n S t r e s s at Heath S t e e l e

62

21

L o n g i t u d i n a l View o f the Heath S t e e l e

65

of weakness

44 44

Category 1

Pillars",

Category 3 Category 4

I n v e s t i g a t e d Area at

47 ^

^9 50

viii Figure

Description

Page

22

E x t r a c t i o n Flowchart o f 77-89, 77-91, 77-93 and 77-95 Stopes

66

23

Estimated failed.

Layout when 77-92 Rib P i l l a r

69

24

Estimated failed

Layout when 77-94 Rib P i l l a r

70

25

S

26

The E f f e c t of S F r a c t u r e s on 30 m. wide Rib P i l l a r s

(100 f t )

27

The E f f e c t o f S F r a c t u r e s on 60 m. wide Rib P i l l a r s

(200 f t )

28

S

29

Combined E f f e c t of S

30

77-90 Rib P i l l a r S l i d i n g

77

31

77-90 Rib P i l l a r Deformation versus Time

78

32

P i l l a r s E x t r a c t i o n Numbers f o r the 77-90 p i l l a r f a i l u r e geometry.

0

1

33

P i l l a r s E x t r a c t i o n Numbers f o r the 77-92 p i l l a r f a i l u r e geometry.

8

2

34

P i l l a r s E x t r a c t i o n Numbers f o r the 77-94 p i l l a r f a i l u r e geometry

35

The E f f e c t of the Width to Height average p i l l a r s t r e n g t h

36

Computer Output of the 77-90 p i l l a r f a i l u r e geometry. (Stress simulation)

87

37

Computer Output o f the 77-92 p i l l a r f a i l u r e geometry. (Stress simulation)

88

38

Computer Output of the 77-94 p i l l a r f a i l u r e geometry. (Stress simulation)

8

39

P i l l a r Deformation versus E x t r a c t i o n Number (N)

^3

40

S a f e t y F a c t o r versus

9^

41

S a f e t y F a c t o r versus E x t r a c t i o n Ratio

42

Schematic S t r a t i g r a p h i c Columns i l l u s t r a t i n g g e n e r a l i z e d r e l a t i o n s h i p s of s u l p h i d e zones, Geco Mine

3

72

F r a c t u r e System 3

3

5

73

^

7

75

F r a c t u r e System 3

and

S

5

76

Fractures

Ratio on

E x t r a c t i o n Number (N) (e)

^

8

84

?

96 99

ix

Figure

Description

Page 107

43

Assumed S t r e s s Regime at Geco

44

Longitudinal at Geco

45

E x t r a c t i o n Flowchart o f 10-19.5, 10-21, 10-22 and 10-23.5 stopes

46

Estimated Layout when 10-21.5 P i l l a r

47

Estimated Layout when 10-23 P i l l a r F a i l e d

H8

48

Estimated Layout when 10-20 P i l l a r F a i l e d

H9

49

P i l l a r s E x t r a c t i o n Numbers f o r the 10-21.5 p i l l a r f a i l u r e geometry

122

50

P i l l a r s E x t r a c t i o n Numbers f o r the 10-23 p i l l a r f a i l u r e geometry

123

51

P i l l a r s E x t r a c t i o n Numbers f o r the 10-20 p i l l a r f a i l u r e geometry

l

52

Computer Output o f the 10-21.5 P i l l a r F a i l u r e Geometry ( S t r e s s s i m u l a t i o n )

53

Computer Output o f the 10-23 P i l l a r Geometry ( S t r e s s s i m u l a t i o n )

Failure

54

Computer Output o f the 10-20 P i l l a r Geometry (Stress s i m u l a t i o n )

Failure

55

Safety

56

Comparison o f Heath S t e e l e , Geco Case h i s t o r i e s a n a l y s i s r e s u l t s

View o f the I n v e s t i g a t e d

Area

109

Failed

F a c t o r versus E x t r a c t i o n Ratio

H?

i

7

2

i

i

2 l +

2

2

8

9

133 138

X

LIST OF TABLES Table

Description

Page

1

Rock Mechanic S t u d i e s i n Noranda Underground Mines

3

2

P i l l a r and Opening D e s i g n i n g Methods used by Noranda Underground Mines

4

3

P i l l a r C l a s s i f i c a t i o n Summary

17

4

Constants A and B used i n the " S i z e E f f e c t Formula"

22

5

Constants a and b used i n the "Shape E f f e c t Formula"

23

6

Characteristic

38

7

Summary o f Computer Methods

39

8

Mining Sequence

of the Panel

64

9

Approximate Stope and P i l l a r Dimensions when 77-92 P i l l a r F a i l e d

6?

10

Approximate Stope and P i l l a r Dimension when 77-94 P i l l a r F a i l e d

68

11

Heath S t e e l e P i l l a r A n a l y s i s R e s u l t s

91

12

Summary o f the Geology at Geco

13

Stope 10-19.5 Mining Sequence

14

Stope 10-21 Mining Sequence

15

Stope 10-22 Mining Sequence

16

Stope 10-23.5 Mining Sequence

17

Approximate Stope and P i l l a r Dimensions when 10-21.5 P i l l a r F a i l e d

18

Approximate Stope and P i l l a r 10-23 P i l l a r F a i l e d

19

Approximate Stope and P i l l a r Dimensions when 10-20 P i l l a r F a i l e d

20

Geco P i l l a r A n a l y s i s R e s u l t s

Input Data f o r Computer Methods

-'-00 HO 1

1

0

HI 112

Dimensions when

'

H5 -^6

xi

ACKNOWLEDGEMENTS The author f i r s t Group, who

wishes to thank Noranda Research

Mining

Division

have made t h i s p r o j e c t f e a s i b l e by f i n a n c i n g the r e s e a r c h , pro-

v i d i n g an impressive amount of i n f o r m a t i o n and f o r t h e i r o u t s t a n d i n g cooperation.

The

involvement

of the f o l l o w i n g Noranda mines and

a s s i s t a n c e of t h e i r employees was

also appreciated:

Brunswick Mining and -

Heath S t e e l e Mine

-

Geco D i v i s i o n Goldstream

the

Smelting

Mine.

As w e l l , s p e c i a l acknowledgements to Dr. H.D.S. M i l l e r f o r h i s s u p e r v i s i o n of the r e s e a r c h p r o j e c t , the p e r t i n e n t advice given, and f o r h i s s t i m u l a t i n g approach towards rock mechanics. The author wishes to thank the f o l l o w i n g s c h o l a r s h i p funds f o r financial

support: -

Cy and

Emerald

Keyes

F r e d e r i c k Armand McDiarmid George E. In a d d i t i o n , thanks

Winkler to the members o f the Department of Mining

and

M i n e r a l Process E n g i n e e r i n g f o r t h e i r h e l p f u l a t t i t u d e , to W. M. Cumming f o r p r o o f r e a d i n g , and f i n a l l y t o Jacques and Jeannine tinuous encouragement and

support.

Potvin f o r their

con-

1

CHAPTER

1

Introduction

2

The p r i n c i p a l f u n c t i o n s o f underground mine p i l l a r s openings,

and t o c a r r y the l o a d o f o v e r l y i n g s t r a t a .

t i a l l y o r completely)

are t o s t a b i l i z e

They are o f t e n (par-

recovered a t a l a t e r stage when t h e i r

stabilizing

e f f e c t i s no l o n g e r necessary. For economic reasons, an optimum-sized p i l l a r i s the s m a l l e s t one t h a t s a t i s f i e s s a f e t y requirements. Thus, t h e p i l l a r design problem c o n s i s t s o f determining the p i l l a r ' s minimum dimension

as the l o a d reaches

Because t h e p i l l a r ' s

the u l t i m a t e p i l l a r s t r e n g t h .

s t r e n g t h , and l o a d a c t i n g upon i t are both

t i o n s o f many i n t e r r e l a t e d f a c t o r s , which vary as mining p r o g r e s s e s , dimensioning

is a difficult

Furthermore,

funcpillar

task.

the m u l t i p l i c i t y o f p i l l a r shapes, s i z e s , rock m a t e r i a l

and a p p l i c a t i o n s add t o the d e s i g n e r s ' c o n f u s i o n . Consequently,

p i l l a r design programs are s t i l l

generally a t r i a l - a n d -

error process. In

September 1982, a research p r o j e c t was undertaken,

under the super-

v i s i o n o f Dr. H. D. S. M i l l e r , with the c o l l a b o r a t i o n and f i n a n c i a l o f Noranda Research, design procedure.

Mining D i v i s i o n , t o develop a comprehensive

support

pillar

The p r o j e c t ' s f i r s t y e a r was e n t i r e l y d e d i c a t e d t o a com-

p l e t e review o f the p i l l a r design methods a v a i l a b l e . T h i s i s reproduced

i n appendix A.

Another o f the p r o j e c t design procedures

tasks was to i n v e s t i g a t e the c u r r e n t p i l l a r

and the r o l e o f rock mechanics techniques i n mine p i l l a r

design. To achieve t h i s g o a l , a q u e s t i o n n a i r e was mailed to seven Noranda underground o p e r a t i o n s .

The i n f o r m a t i o n was completed

mines i n New Brunswick, Quebec, O n t a r i o and B r i t i s h

by v i s i t i n g

four

Columbia.

Table 1 shows t h a t a f a i r amount o f rock mechanic s t u d i e s had been com-

3

X

X

X

i n Noranda Underground

PARAMETER STRENGTH INVESTIGATIONS STRESS LABORATORY TEST

Matagami

Mattabi

u

X

X

X

X

Poisson's Ratio

?

X

X

X

X

In-Situ

X

Measurement

P h o t o - E l a s t i c Model Computer M o d e l l i n g

X

Compress. S t r e n g t h



X

X

X

Tensile Strength

•-4 C O T r i a x i a l Strength

o ID

Shear S t r e n g t h

X

X

X

X

X

X

^

X

X

X

X

X

X

N G I

X

X

Criterion

X

X

X

X

X

X

C S I R

X

Laubscher

Extensom.

X

X

X

Compression Pad Closure S t a t i o n

X

X

X

L e v e l l i n g Survey S t a t i o n

X

Piezometer

X

X

Multi-Wire

X

Mapping

X

Structural

X

MONITORING

X

X

Boroscope Observ.

5.

X

E l a s t i c Mod

Failure R Q D ROCK MASS CLASSIFICATION

X

U n i t Weight

X

4.

3.

2.

1.

ROCK

Goldstream

Mines

Heath Steele

Brunswick (BM 5 S)

Rock Mechanic S t u d i e s

Geco

1

Mines Gaspe ,

T A B L E

X

X

pleted. to

However, i t must be emphasized t h a t these experiments

are

related

the o p e r a t i o n s ' s i z e and age, as w e l l as the s t a b i l i t y problems encoun-

tered. T a b l e 2 confirms that the mines r e l y mainly upon p r e v i o u s for

experience

design, l e a v i n g the more s o p h i s t i c a t e d methods to mining c o n s u l t a n t s .

•Table

2

P i l l a r and Opening Designing Methods Used by Noranda Underground Mines Experience Methods Group 1 t/1 M CO

Empirical Methods Group 2

OO

in

•fi c c

rt

C

o

M

Analytical Methods Group 3

in

c

•H

t/1

u

rt

c a. o M

c •H

Computer Methods Group 4 in

u

TO

in

M C

c

ID

c

CL,

O

o

Goldstream

M

Mattabi

M

M

Matagarni

M

M

Mines Gaspe

M

M

C

c

Brunswick

M

M

C

c

Heath S t e e l e

M

M

Geco

M

M

Note:

M

M

-

The mine's s t a f f performed

C

-

C o n s u l t a n t performed

the d e s i g n .

the d e s i g n .

In o r d e r to improve the a c t u a l p i l l a r design p r a c t i c e s : a pillar classification design

system i s proposed

t o s t a n d a r d i z e the

procedure

the p r i n c i p a l design methods are summarized and t h e i r i s defined

applicability

a f i v e - p h a s e design procedure with design charts i s developed the procedure i s a p p l i e d i n a n a l y s i n g two

case h i s t o r i e s .

6

CHAPTER 2 The

C l a s s i f i c a t i o n and

Definition

of

Pillars

7 2.1

Pillar The

Classification

l i t e r a t u r e p r o v i d e s no standard d e f i n i t i o n f o r the term, "under-

ground p i l l a r . "

I f one

attempts to e l a b o r a t e a general d e f i n i t i o n , i t

should be borne i n mind t h a t the p i l l a r may be permanent o r temporary, but i n any notion o f s t a b i l i t y Regardless

and

o r may

not be m i n e r a l i z e d ,

may

event r e f e r e n c e must be made to the

security.

o f which mining method i s used, every mine must leave

l a r s to s t a b i l i z e underground s t r u c t u r e s . However, because o f the

pil-

vari-

able ground c o n d i t i o n s , s t r e s s , and the m u l t i p l e p i l l a r a p p l i c a t i o n s r e l a t e d to mining methods and orebody geometry, no two

pillars

are i d e n -

tical . In the documents reviewed, kinds o f p i l l a r s

more than twenty names d e s c r i b i n g v a r i o u s

were encountered.

T h i s wide v a r i e t y o f p i l l a r s

e l a b o r a t i o n o f a standard design procedure

a difficult

The p i l l a r shape, the l o a d a c t i n g on the p i l l a r , the p i l l a r m e t e r i a l are the three most important

makes the

task. and the s t r e n g t h o f

f a c t o r s to be

considered

when d e s i g n i n g a p i l l a r . A simple c l a s s i f i c a t i o n

( f o r p i l l a r design purposes) i s

regrouping under the same " c a t e g o r y " p i l l a r s submitted

to s i m i l a r l o a d i n g s i t u a t i o n s .

suggested,

of s i m i l a r shape which are

In t h i s manner, every p i l l a r i n

each category can be designed u s i n g i d e n t i c a l equations

and a given metho-

dology . Because the behaviour

o f hard rock d i f f e r s g r e a t l y from t h a t o f s o f t

rock, each category i s broken i n t o two l a r s , and Note:

(b) s o f t rock

sub-categories:

(a) hard rock

pil-

pillars.

The width, h e i g h t and l e n g t h o f the p i l l a r s

w i t h i n a category, but the general shape must be

may

similar.

vary g r e a t l y

8

2.2

Category 1. 2.2.1

"Plate

Pillars"

Description

Figure

1 shows that " P l a t e P i l l a r s " are submitted t o a b i a x i a l h o r i -

zontal stress f i e l d . However, t h i s i s not

The

top and

the bottom o f the p i l l a r s

to s u r f i c i a l

overburden.

of t h i s f a c t when dimensioning a s u r f a c e

T h i s i s due

which r a r e l y r e q u i r e p l a t e

2.2.2

The

designer

should be aware

pillar.

cases of s o f t rock " P l a t e P i l l a r s "

the l i t e r a t u r e .

(Category IB) were found i n

p r i n c i p a l l y to the s o f t rock mining methods

pillars.

Definitions Category 1A:

Hard Rock

- Crown P i l l a r s , Roof P i l l a r s , Horizontal P i l l a r s :

Level P i l l a r s ,

Strike

These are h o r i z o n t a l s l i c e s of v a r y i n g t h i c k n e s s , the excavated area

to p r o v i d e

t h e i r support f u n c t i o n i s no o f t e n used to d e f i n e the den

load

support. longer

shallowest

Pillars,

l e f t above

They are g e n e r a l l y recovered

required.

The

after

term "crown p i l l a r " i s

h o r i z o n t a l p i l l a r c a r r y i n g the

overbur-

(surface p i l l a r ) . - Sill Sill

Pillars:

pillars

s i t u a t e d underneath the

2.3

loaded.

t r u e i n the case of s u r f a c e p i l l a r s , which must bear

the v e r t i c a l load due

No

are not

Category 2. 2.3.1

are very

s i m i l a r to crown p i l l a r s but they are

stopes at each s u b l e v e l .

"Separation

Pillars"

Description

Separation h o r i z o n t a l load.

pillars

(Category 2) are subjected

to a v e r t i c a l

They are open on t h e i r l o n g i t u d i n a l s i d e

and

(Figure 2).

It

9

CATEGORY "plate

category CROWN ROOF

I

(hard rock)

pillar"

cotegory

PILLARS PILLARS

LEVEL

PILLARS

STRIKE

PILLARS

HORIZONTAL SILL

Q.

P.

PILLARS

SURFACE

FIGURE 1

PILLARS

Pillar

Category

1

" Plate

I

Pillars"

I b.

Isoft

rock)

10

CATEGORY 11

category 2 a

separation

(hard

rock

2

pillar category

RIB

PILLARS

BARRIER

DIP

PILLARS

ENTRY

TRANSVERSE ABUTMENT

FIGURE 2

PILLARS PILLARS

P i l l a r Category 2

"Separation P i l l a r s '

2b

PILLARS PILLARS

uoft

rock

should be noted t h a t the hard rock pillars

(Category 2A) and

(Category 2B) do not possess

s o f t rock p i l l a r s

s o f t rock s e p a r a t i o n

i d e n t i c a l c h a r a c t e r i s t i c shapes, s i n c e

are u s u a l l y lower and wider

(Figure 2).

In the case of a v e r y long s e p a r a t i o n p i l l a r dimensions) lem may

the h o r i z o n t a l s t r e s s may

be c o n s i d e r e d to be two

2.3.2

(compared to the other

have a n e g l i g i b l e e f f e c t and the

dimensional.

Definitions Category

2A:

Hard Rock

- Rib P i l l a r s ,

Dip P i l l a r s ,

Transverse

Pillars:

A r i b p i l l a r i s a s e p a r a t i n g w a l l between two the r i b i s u s u a l l y i n the orebody d i p d i r e c t i o n and pillars

t r a n s f e r the v e r t i c a l

They may

The

l e n g t h of

i s continuous.

The r i b

stabilizing

be recovered at a l a t e r

stage

mining. Category

2B:

- Barrier

S o f t Rock

Pillars:

Barrier p i l l a r s

are used t o i s o l a t e c o a l mine p a n e l s .

u s u a l l y permanent p i l l a r s which c o n t r o l r o o f s t a b i l i t y in

stopes.

load from the r o o f to the f l o o r ,

the rock o v e r l y i n g the stoped area. of

prob-

They are

and p l a y a major r o l e

ventilation. - Entry These p i l l a r s

Pillars: r e f e r to the l o n g w a l l mining method.

They p r o v i d e a

p r o t e c t i o n t o the panel e n t r i e s and are recovered d u r i n g the panel's e x p l o i t a t i o n stage.

final

12 2.4

Category 2.4.1 The

lar to

3. "Stub

Pillars"

Description shape o f "stub p i l l a r s "

(Figure 3).

They are open on the f o u r v e r t i c a l

a u n i a x i a l compressive 2.4.2

stress

- Centre These p i l l a r s

s i d e s and are s u b j e c t e d

field.

3A:

Hard Rock

Pillars: have the same f u n c t i o n as r i b p i l l a r s , but are

ated i n the middle of the stopes. c a r r y the r o o f l o a d .

the c e n t r e p i l l a r s

They reduce the span of openings

C o n t r a r y to the r i b p i l l a r s which are

are t r a n s e c t e d by c r o s s - c u t s or

- (Room and The

be square or rectangu-

Definitions Category

to

(Category 3) may

stub p i l l a r s

Pillar] may

Pillars,

Stub

and

help

continuous,

drifts.

Pillars:

r e f e r to a uniform room and p i l l a r panel or

simply be l e f t randomly wherever s t a b i l i z a t i o n

i s needed.

Their length,

width, h e i g h t , shape and composition vary a c c o r d i n g t o the s i t e ments.

situ-

They support the v e r t i c a l

and r e q u i r e -

l o a d o f o v e r l y i n g rock, and may

be perma-

nent or r e c o v e r a b l e . - Post P i l l a r s , These p i l l a r s

Yielding

Pillars:

r e f e r to the "post p i l l a r " mining method.

v i d e temporary support to the immediate r o o f . bottom up, the post p i l l a r s

s t a r t to y i e l d

the bottom, where they are c o n f i n e d by Category - Panel

3B:

As mining progresses from

the

and f i n a l l y c o l l a p s e " g e n t l y " at

backfill.

S o f t Rock

Pillars:

These temporary p i l l a r s panel.

They pro-

are u n i f o r m l y d i s t r i b u t e d w i t h i n a longwall

They support the panel's immediate r o o f and w i l l be removed at a

13

CATEGORY

3

"stub p i l l a r s "

H EIGHT

category CENTER

3a

PILLARS

(ROOM S PILLAR) POST

category

(hard roc k )

PANEL PILLARS

SPLIT

PILLARS

FIGURE 3

P i l l a r Category 3

PILLARS PILLARS

REMNANT CHAIN

"Stub

Pillars"

3 b

PILLARS

PILLARS

(soft

rock'

later

stage. - Split

Pillars:

During longwall split

are the r e s i d u a l p o r t i o n o f s p l i t p i l l a r s .

r e t r e a t s , they e i t h e r c o l l a p s e or are completely - Chain

continuous p i l l a r . pillars

may

This provides

"Inclined

i n s t e a d of a long, massive,

the highest

extraction ratio.

The

Pillars"

Description

Inclined p i l l a r s mitted

small p i l l a r s

but they are

be designed to y i e l d , p e r m i t t i n g the r o o f to deform.

Category 4. 2.5.1

As min-

recovered.

p l a y the same r o l e as b a r r i e r p i l l a r s ,

composed o f a s e r i e s o f a l i g n e d

do not have a p a r t i c u l a r shape or are not

to a p a r t i c u l a r l o a d i n g s i t u a t i o n .

i n t o the three preceding

a t i o n f o r design

sub-

However, because they do

c a t e g o r i e s , and

they T e q u i r e

because of t h e i r i n c l i n a t i o n ,

f o u r t h category o f the p i l l a r c l a s s i f i c a t i o n

2.6

two

Pillars:

These p i l l a r s

fit

are cut i n t o

Pillars:

Remnant p i l l a r s

2.5

the panel p i l l a r s

pillars. - Remnant

ing

p i l l a r recovery,

special

inclined pillars

not

consider-

form

the

(Figure 4 ) .

Discussion The

illustrated

author i s aware t h a t p i l l a r s

i n the forementioned c a t e g o r i e s

with i d e a l i z e d shapes, which i s not

ground p i l l a r s .

In a d d i t i o n , i t should

the case f o r r e a l under-

be r e a l i z e d that the

a p i l l a r i s a f u n c t i o n of s e v e r a l f a c t o r s : - Virgin stress - S t r e s s induced by mining

are

load a c t i n g on

15

CATEGORY inclined

4

pillar

11

I HEIGHT

category

FIGURE 4

4a

(hard

rock)

P i l l a r Category -

"Inclined

category

Pillars"

4b

(soft

rock)

- Geological - Pillar

features

shape and

- Openings and

orientation

general

mine s t r u c t u r e s

- Ground water. However, i t i s b e l i e v e d that every p i l l a r may above f o u r c a t e g o r i e s , l o a d i n g mechanism and

i n t o one

of

the

even though the c l a s s i f i c a t i o n o v e r s i m p l i f i e s the the p i l l a r geometry.

F i n a l l y , because s h a f t p i l l a r s other p i l l a r s ,

fall

they are not

included

are fundamentally d i f f e r e n t from

in this classification.

Nevertheless,

the f o l l o w i n g d e f i n i t i o n i s proposed: Shaft

Pillars:

These are permanent p i l l a r s system. pillars

The

s h a f t and

the

s h a f t p i l l a r may

become l a r g e r with i n c r e a s e d

Because the

shaft i s a v i t a l

are designed with a high

p r o v i d i n g p r o t e c t i o n to the mine s h a f t be v e r t i c a l or i n c l i n e d .

depth, and

t h e i r shapes are v a r i a b l e .

component i n underground mines, these

and

pillars

safety factor.

Table 3 summarizes the p i l l a r c l a s s i f i c a t i o n . ogy

Shaft

design

methodol-

dimensioning formulas a p p l i c a b l e to each category w i l l be

developed

i n the f o l l o w i n g

chapters.

Most o f the p r e v i o u s Mines A s s o c i a t e s "

The

p i l l a r d e f i n i t i o n s were taken from "Roche

(1984)^ as w e l l as F i g u r e s

5,

Appendix C, which i l l u s t r a t e the d i f f e r e n t kinds

6, and

7 reproduced i n

of p i l l a r .

TABLE 3 PILLAR CLASSIFICATION SUMMARY Category 1 Plate P i l l a r s A Hard Rock

B Soft Rock

Category 2 Separation P i l l a r s

Category 3 Stub P i l l a r s

Category 4 Inclined P i l l a r s

A Hard Rock

B Soft Rock

A Hard Rock

B S o f t Rock

A Hard Rock

B S o f t Rock

Crown

Rib

Barrier

Centre

Panel

Inclined

Inclined

Roof

Dip

Entry

Stub

Split

Level

Transverse

"Pillar"

Remnant

Strike

(R+P)

Abutment

Horizontal

Chain

Post

Sill Surface

/

4 ^



—-* t

1

/

+

/ t

III

CHAPTER 3 Review of P i l l a r Design Methods

19 3.1

Introduction The p r i n c i p l e f o r d e s i g n i n g any underground s t r u c t u r e i s strength stress Thus, a p i l l a r w i l l

long term load b e a r i n g pillar's

simple:

^

>

remain s t a b l e i f the load a p p l i e d i s l e s s than i t s

capability.

Difficulties

a r i s e i n estimating

the

u l t i m a t e s t r e n g t h as w e l l as the p r e c i s e load a c t i n g upon i t .

Pillar

strength:

Because of the rock m a t e r i a l ' s complexity t i o n o f rock mass s t r e n g t h i s p e r p l e x i n g .

and

variability,

the

evalua-

Furthermore, the t r u e s t r e n g t h

a p i l l a r can o n l y be c a l c u l a t e d a f t e r c o n s i d e r i n g the s t r e n g t h o f the m a t e r i a l together

p r o b a b i l i t y o f i n c l u d i n g a weakness zone

i n the - The

pillar

deformation and

pillar

triaxial

s t r e n g t h of

the

material

- The

geometry of the

- The

p i l l a r as p a r t o f the general

A l s o , environmental f a c t o r s may pillar

pillar

with:

- The

pillar rock

structure.

cause a time dependent a l t e r a t i o n of the

strength.

Pillar

load:

As mentioned i n Chapter 2, the load a c t i n g on a p i l l a r of: - The

v i r g i n stress

- The

s t r e s s induced

- Geological - Pillar

by mining

features

shape and

- Openings and - Ground water.

orientations

general mine s t r u c t u r e

of

i s a function

20 Hence, the s t r e s s l e v e l induced i n p i l l a r s

( p i l l a r l o a d ) , changes as mining

progresses. Although s e v e r a l techniques can be used t o measure i n s i t u

stress,

these a r e expensive, and the r e s u l t s a r e not always r e l i a b l e . Because t h e r e are so many f a c t o r s i n v o l v e d i n the complex mechanism o f p i l l a r l o a d i n g (and deformation) as w e l l as p i l l a r

s t r e n g t h , the d e s i g n e r

must depend upon numerous methods t o account f o r these

factors.

The f o l l o w i n g summarizes the most important d e s i g n i n g methods. are d i v i d e d

i n t o f o u r groups,

They

according to t h e i r l e v e l o f s o p h i s t i c a t i o n .

Group 1 - Experience Methods Group 2 - E m p i r i c a l Methods Group 3 - T h e o r e t i c a l Methods Group 4 - Computer Methods. It should be noted that every method, i f used c o r r e c t l y , i s capable o f producing adequately s i z e d p i l l a r s with r e s p e c t t o s a f e t y .

3.2

Group 1.

Experience Methods

T h i s i s by f a r the most widely used and the l e a s t s o p h i s t i c a t e d method. Based on o b s e r v a t i o n s , h i s t o r y , and on the d e s i g n e r ' s " f e e l i n g " f o r the rock, i t a l s o r e l a t e s to s i m i l a r work completed situations.

A c o n s e r v a t i v e dimensioning

i n corresponding geological is first

may have t o be made a c c o r d i n g t o the requirements signed

l a i d out and m o d i f i c a t i o n s and performance

o f the de-

structure.

No s p e c i f i c

experience method i s proposed,

but i t i s s t r o n g l y

recommended

that d e t a i l e d a c t i v e f i l e s be kept on i n f o r m a t i o n concerning the mine ity:

failures,

s l a b b i n g , squeezing, c a v i n g , convergence,

et c e t e r a .

stabil-

This w i l l empirical

3.3

improve the f u t u r e experience

design and may lead to an

approach.

Group 2.

E m p i r i c a l Methods

An e m p i r i c a l method i s the q u a n t i f i c a t i o n o f experience formulas or curves.

into designing

Because most o f these methods do not take i n t o account

many important f a c t o r s , one should be aware o f the c o n d i t i o n s i n which they were developed. While the m a j o r i t y o f e m p i r i c a l p i l l a r design methods

considers

s t r e n g t h and s t r e s s s e p a r a t e l y , some do i n c o r p o r a t e s t r e n g t h and s t r e s s i n t o a dimensioning

formula.

The f o l l o w i n g i s a review o f the most important e m p i r i c a l methods. b r i e f d e s c r i p t i o n , the formula(s)

and the parameters are given.

( r e f e r r i n g to Chapter 2's p i l l a r c l a s s i f i c a t i o n ) , the p i l l a r

As w e l l

categories

which can be designed by each method a r e i n d i c a t e d .

3.3.1

E m p i r i c a l Strength

Formulas.

E m p i r i c a l p i l l a r s t r e n g t h formulas e s s e n t i a l l y i n v o l v e e x t r a p o l a t i n g the r e s u l t s o f l a b o r a t o r y t e s t s on rock

specimens, t o f u l l - s i z e mine

pillars. A)

S i z e E f f e c t Formula

a

p

= a

where:

(Appendix A.

S e c t i o n 3.1)

[A + B(£)]

c

Op

=

Pillar

o

=

U n i a x i a l compressive s t r e n g t h o f a cube o f p i l l a r m a t e r i a l

W

=

Pillar

width

h

=

Pillar

height

A, B

=

Constants given i n u n i t s o f p i l l a r s t r e n g t h (Table 4 ) .

c

strength (psi)

A

Description: Rocks have a n a t u r a l s t r e n g t h a n i s o t r o p y which i s predominantly due t the

presence o f d i s c o n t i n u i t i e s

( i . e . j o i n t s , c l e a t s , b l a s t f r a c t u r e s , et

c e t e r a ) but can a l s o be a t t r i b u t e d to v a r i a t i o n s i n rock f a b r i c ( i . e . f o l i a t i o n , bedding p l a n e s , et c e t e r a ) and mineralogy.

As rock samples o f

constant shape i n c r e a s e i n s i z e , the s t r e n g t h o f the specimen decreases. T a b l e 4 g i v e s the c o n s t a n t s proposed by d i f f e r e n t authors t o model t h i s be haviour.

TABLE 4 CONSTANTS A AND B USED IN THE "SIZE EFFECT FORMULA"

SOURCE Bunting

FORMULA

(1911)

+ 0,.222

Obert et a l (1960)

0,.778

Bieniawski

0,.556 + 0,.444

(1968)

Van Heerden (1973)

0..704

Sorensen 5 P a r i s e a u (1978)

0..693 + 0..307

- Applicable to p i l l a r

B)

0..700 + 0..300

categories:

Shape E f f e c t Formula

where:

+ 0,.296

W/H w h w h w h w h w h

3.

Stub

4.

Inclined

0,.5

- 1 .0

0,.5

- 2..0

1 .0

- 3,.1

1 .14 - 3 .4 0 .5

- 2,.0

Pillars Pillars.

(Appendix A, S e c t i o n 3.2)

Op

=

P i l l a T strength (psi)

K

=

Constant r e l a t e d t o the p i l l a r

W

=

Pillar

h

=

P i l l a r height

a, b

=

Dimensionless c o n s t a n t s

width

material

23

Description: The shape e f f e c t denotes a d i f f e r e n c e i n the u n i t strength o f d i f f e r e n t shape but equal c r o s s - s e c t i o n . one apparent cause o f shape e f f e c t . of a l i m i t e d number o f f r a c t u r e s .

A change i n mode o f f a i l u r e i s

Slender p i l l a r s tend t o f a i l by means For wide p i l l a r s the p r o b a b i l i t y o f

d e v e l o p i n g a s i n g l e continuous f r a c t u r e plane i s l e s s . p i l l a r r e s u l t s from c r u s h i n g pillar

strength.

core a l s o c o n t r i b u t e s

Thus, f a i l u r e o f the

of the p i l l a r m a t e r i a l , thereby

The t r i a x i a l

for pillars

increasing

s t a t e o f s t r e s s i n a squat p i l l a r ' s

t o an i n c r e a s e

i n p i l l a r strength.

inner

Table 5 gives the

c o n s t a n t s a and b proposed by d i f f e r e n t authors to model t h i s behaviour. TABLE 5 CONSTANTS a AND b USED IN THE "SHAPE EFFECT FORMULA" SOURCE Streat

FORMULA

(1954)

Holland-Gaddy

(1962)

kh"

1

. o o

kh'

1

.oo o.

w

a

o . 5

w

b

0,.5

1. 00

5

0,.5

1. 00

Greenwald et a l (1939)

kh-°

. 6 3

5

0,.5

0.833

Hedley 6 Grant

kh-°

.75 0- S

0,.5

0.75

Salamon § Munro (1967)

kh"

.66 0. » S

0..46

0.66

Bieniawski

kh-° • w ° -

16

0..16

0.,55

(1972)

(1968)

0

w

0 .

w

w

5 5

M o r r i s o n et a l

kh"°

.5

w

0 . 5

0..5

0.5

Zern (1926)

kh"°

.5

w

0 . 5

0..5

0.,5

Hazen d, A r t i e r (1976)

kh"°

•5

w

0 . 5

0,.5

0..5

Holland

kh

.5

w

0 . 5

0..5

0..5

(1956)

- Applicable

- 0

to p i l l a r categories:

3.

Stub

Pillars

4.

Inclined

Pillars

C)

Salamon " M o d i f i e d " Shape E f f e c t Formula

o

p

=

K —£• , h

where:

where We

(Appendix A, S e c t i o n 3.3.4)

= /W .W a

2

Op

=

Pillar

K

=

Constant r e l a t e d t o the p i l l a r compressive s t r e n g t h

Wi,W

=

C r o s s - s e c t i o n s i d e s o f the p i l l a r s

We

=

The e q u i v a l e n t pillar

h

=

Pillar

a,b

=

Dimensionless

2

strength ( p s i ) material

width f o r a r e c t a n g u l a r

height constants

Description: 2 The

r e s u l t s o f underground t e s t s (Wagner, 1974)

shown that p i l l a r s square p i l l a r s

on c o a l p i l l a r s

have

o f r e c t a n g u l a r c r o s s - s e c t i o n s a r e about 40% stronger

o f the same width and h e i g h t .

the s t r e n g t h o f r e c t a n g u l a r p i l l a r s

A reasonably

can be obtained

than

good estimate o f

by s u b s t i t u t i n g the

square r o o t o f the c r o s s - s e c t i o n a l area o f the p i l l a r f o r W, i n t h e shape effect

formula.

- Applicable to p i l l a r categories:

D)

3.

Stub

4.

Inclined

Sheorey and Singh " M o d i f i e d " Shape E f f e c t Formula

°P whe r e :



Pillars Pillars

(Appendix A, S e c t i o n 3.3.4)

.b h Op

=

Pillar

K

=

Constant r e l a t e d t o the a x i a l compressive s t r e n g t h o f the p i l l a r m a t e r i a l

=

C r o s s - s e c t i o n s i d e s o f the p i l l a r

=

Pillar

Wi,W

2

h

strength (psi)

height

a,b

=

Dimensionless constants

(Table 5)

Description: This method as the Salamon m o d i f i e d e q u i v a l e n t width.

formula uses the concept o f an

However, Sheorey and Singh recommend u s i n g the average

value o f the r e c t a n g u l a r c r o s s - s e c t i o n s i d e s as e q u i v a l e n t - A p p l i c a b l e to p i l l a r c a t e g o r i e s :

E)

3.

Stub

4.

Inclined P i l l a r s

Heek and Brown Curves (Appendix A, S e c t i o n

Ci

=

a

+ v ma a /

3

c

3

o

3.3.7)

stress at f a i l u r e

= Minor p r i n c i p a l s t r e s s at f a i l u r e

3

o"

c

= The u n i a x i a l compressive strength o f i n t a c t rock m a t e r i a l

m and s a r e constants

which depend upon the p r o p e r t i e s o f

the rock and upon the extent f o r e being

Pillars

+ sa£

0\ = Major p r i n c i p a l

where:

width.

subjected

t o which i t has been broken be-

t o the s t r e s s e s o*i and a . 3

Description: 3 The

Hoek and Brown

the o v e r a l l

curves were developed based on the assumption that

strength o f a p i l l a r

s t r e n g t h across

i s approximately equal

the c e n t r e o f the p i l l a r .

t o the average

Figure 8 shows the r e s u l t s o f a

s e r i e s o f c a l c u l a t i o n s u s i n g s t r e s s d i s t r i b u t i o n from computer together

with Hoek's f a i l u r e c r i t e r i o n .

f i n e d , one may determine the p i l l a r

modelling,

Once the rock mass q u a l i t y i s de-

strength f o r d i f f e r e n t p i l l a r

- Applicable to p i l l a r categories:

2.

Separation

3.

Stub P i l l a r s

4.

Incl-ined P i l l a r s .

dimensions.

Pillars

26

-p

3.0r

so

E (D U +»

I n t a c t samples o f f i n e g r a i n e d igneous c r y s t a l l i n e rock m=l? , s = l

W

> -H W W bD P

Good q u a l i t y rock mass m=1.7 , s=0.004

w

F a i r q u a l i t y rock mass m=0.34 , s=0.0001

ft

Poor q u a l i t y rock mass m=0.09 , s=0.00001

rt >

Pillar

FIGURE 8

width/height

;

W^/h

I n f l u e n c e o f P i l l a r Width t o Height r a t i o on Average P i l l a r

Strength.

A f t e r Hoek and Brown

(1980)^

27

3.3.2 A)

E m p i r i c a l S t r e s s Formulas

The E x t r a c t i o n Ratio Formula o r T r i b u t a r y Area

_

°p -

(Appendix A, S e c t i o n 1.3.4)

TH (W+BHL+B)

inn—

where:

a

=

Pillar

Y

=

U n i t weight o f the rock

H

=

Depth below s u r f a c e

B

=

Width o f the opening

L

=

Pillar

length

W

=

Pillar

width.

p

load

Description: I f a l a r g e area i s mined out with a reasonably pillars,

uniform p a t t e r n o f

i t can be s a i d t h a t n e a r l y the whole weight o f the overburden

be c a r r i e d by the p i l l a r s

i n equal p r o p o r t i o n s .

(1980)^ g i v e s the e x t r a c t i o n r a t i o formula

F i g u r e 9, Hoek and Brown

f o r d i f f e r e n t p i l l a r shapes.

should be noted t h a t the t r i b u t a r y area theory r e p r e s e n t s the average p i l l a r

stress.

(Overestimates

will

It

the upper l i m i t o f

the load on p i l l a r s

by about 4 0 % ) .

4 Bieniawski ing

(1983) .

The t r i b u t a r y area does not take i n t o account the a r c h -

e f f e c t , o r any other mechanical behaviour o f the o v e r l y i n g s t r a t a . - Applicable to p i l l a r categories:

B)

Chain P i l l a r Formula

U

= -1

P

where:

Separation

3.

Stub

(Appendix A, S e c t i o n Swilski

a

2.

2

yH

v

(1983)

1.3.8)

5

vh

' (Lp+S)(Wp+2W +3S) p

Op

=

Pillar

load ( p s i )

Y

=

Unit weight o f the rock

Pillars

Pillars.

RIB

PILLARS

crp- = / M l +

FIGURE 9

SQUARE PILLARS W o

/w

}

Average V e r t i c a l P i l l a r Layouts. After

crp =y z { l +

w

Vw )

Stresses i n Typical

I l l u s t r a t i o n s are a l l p l a n views.

Hoek and Brown (1980)-

3

p

Pillar

29

H

=

w = p

L

P "

S

=

w = F

Depth below s u r f a c e P i l l a r width Pillar

length

Spacing

between chain

Width o f the f a c e .

Z

y

IL T -J-s

COAL

I P

RIBSIDE

pillars

I a r e a

o f

strata load

- J

i

\

'

\

COAL FACE

COAL PANEL w Ch§in p i l l d t s

FIGURE 10.

¥

Tail

Entry

Determination o f Load on Chain P i l l a r s by the " f i r s t p a n e l " Load Concept. A f t e r S z w i l s k i (1983)

5

Description: The it

c h a i n p i l l a r formula

i s based on the e x t r a c t i o n r a t i o formula but

c o n s i d e r s the e x t r a load a c t i n g on the c h a i n p i l l a r s by the c a n t i l e v e r

a c t i o n o f the immediate r o o f .

However, t h i s s i m p l i f i e d procedure

ignores

the e f f e c t o f the gob support, gob

t o the nearest -

C)

solid

creating a pressure

coal panel.

A p p l i c a b l e t o p i l l a r category:

Subsidence Formula

arch from the compacted

3B

-

(Appendix A, S e c t i o n 10.3)

Chain

Pillars.

Whittaker and Singh (1981) 6

0

p

imrp

=

For W/D and

a

= 9.81 y

p

(

p

+

w

)



D



1

/

4

w

2

+

c

o

t

*

-

p

< 2 t a n

For W/D where:

2

PfP.D +

Dtancf0 2

> 2 t a n

o"p

=

Pillar

load (psi)

Y

=

Average d e n s i t y o f the overburden



=

Angle o f shear o f r o o f s t r a t a at edge o f longw a l l e x t r a c t i o n and measured t o v e r t i c a l

P

=

Width o f b a r r i e r

W

=

Width o f longwall e x t r a c t i o n

D

=

Depth below s u r f a c e .

pillar

Description: The to

subsidence theory has been a p p l i e d t o the b a r r i e r p i l l a r

a s c e r t a i n the extent

of s t r a t a pressure

t r a c t i o n t o produce l o a d i n g o f the adjacent

situation

a r c h i n g a c r o s s a longwall exbarrier

pillars.

B a s i c a l l y , t h i s approach assumes that the goaf area behind

the longwall

i s loaded by a t r i a n g u l a r roof mass which shears at an angle 4> t o the vertical.

The l o a d i n g developed by the mass o f r o o f s t r a t a o u t s i d e the

t r i a n g u l a r r e g i o n i s presumed t o be t r a n s f e r r e d t o the b a r r i e r -

A p p l i c a b l e t o p i l l a r category:

2B - B a r r i e r

pillars.

Pillars

3.3.3

E m p i r i c a l Dimensioning

Formulas.

Other e m p i r i c a l formulas do not c o n s i d e r s t r e s s and s t r e n g t h P i l l a r dimensioning formulas are o f t e n used to d e s i g n c o a l b a r r i e r

A)

Mines' I n s p e c t o r Formula

W

=

(Appendix A, S e c t i o n 10.2)

20 + 4T +

where:

separately pillars.

A s h l e y (1930)

3

0.1D

W

=

Width o f p i l l a r

(feet)

T

=

Bed Thickness

(feet)

D

=

Thickness o f the overburden

(feet)

Description: The Ashley formula was developed from experiments i n the P e n n s y l v a n i a coal f i e l d s .

It i s based on the c o n s e r v a t i v e assumption that an a r c h o f

height equal to h a l f the panel width w i l l t i o n s based on the above assumption r e s u l t

stabilize.

Simple hand c a l c u l a -

in pillar

s i z e s with width to

height r a t i o s of approximately three t o f i v e depending upon depth,

pillar

height and panel width. - A p p l i c a b l e to p i l l a r

B)

H o l l a n d Formula

D

category:

(Appendix A, S e c t i o n

=

1ST

or

=

2B

-

Barrier

Pillars

10.2)

±%L™JL

K log e where:

D

=

Width o f B a r r i e r P i l l a r

(feet)

T

=

Thickness o f p i l l a r

W2

=

The estimated convergence on the h i g h s t r e s s s i d e o f the p i l l a r (mm). (W may be estimated with F i g . 11)

(feet)

2

K

=

Constant = 0.09 i f c a v i n g f o l l o w i n g mining i s permitted = 0.08 i f s t r i p packs are b u i l t = 0.07 i f h y d r a u l i c stowage i s c a r r i e d out.

32 Description: The H o l l a n d f o r m u l a i s based on t h e convergence s t u d i e s by B e l i n s k i and B o r e c k i (1964) . Compared w i t h A s h l e y ' s f o r m u l a , i t g i v e s a more r e a l i s t i c p i l l a r w i d t h and c o n s i d e r s p i l l a r t h i c k n e s s , a s w e l l a s o t h e r p e r t i n e n t f a c t o r s . H o l l a n d ' s f o r m u l a , however, i s i n c o m p l e t e i n t h a t i t d i s r e g a r d s t h e p r o p e r t i e s o f the p i l l a r r o c k . Consequently,

t h i s method s h o u l d be a p p l i e d

o n l y i n c o n d i t i o n s s i m i l a r t o those i n which H o l l a n d

experimented.

(Figure l l )

HS: H y d r a u l i c Stowage

1000 700 5 00 400 300

C : Caved SP: S t r i p Packed

0

PJ?s Room & P i l l a r

200

L : Longwall

100 60

40 30 20 0 0

400 800 1200 1600 2000 T h i c k n e s s o f Overburden ( F t . )

FIGURE 11

Observed Value o f W

2

2400

2800

f o r C o a l seams

7 f t . T h i c k and Having a C r u s h i n g S t r e n g t h i n the 3 i n . Cube o f 3000 p s i . + 10%

- Applicable to p i l l a r

category:

2b - B a r r i e r

Pillars.

33 C)

Morrison,

C o r l e t t and W

=

Rice.

j D

where:

(Appendix A, S e c t i o n

10.2)

f o r D < 4000 f e e t

W

=

Width of p i l l a r

(feet)

D

=

Depth below s u r f a c e

(feet)

Description: The

two

previous

formulas were developed s p e c i f i c a l l y f o r c o a l .

Morrison,

C o r l e t t and

o f rock.

Nonetheless, i t o v e r s i m p l i f i e s the problem and

Rice formula g i v e s s a t i s f a c t o r y r e s u l t s i n most kinds

a guide or p r e l i m i n a r y e s t i m a t i o n

2a)

-

b)

D)

Not

a p p l i c a b l e to Rib E n t r y and

B a r r i e r P i l l a r Formula W

=

I

i

where:

D

+

should

be used

as

only.

- A p p l i c a b l e to p i l l a r c a t e g o r i e s :

Note

The

(Appendix A,

Dip

Section

Abutment Barrier

Pillars Pillars

Pillars.

10.2)

15

W

=

Width of p i l l a r

(feet)

D

=

Depth below s u r f a c e

(feet)

Description: T h i s formula i s c i t e d

i n the l i t e r a t u r e as a t r a d i t i o n a l r u l e of thumb

approach to d e s i g n i n g b a r r i e r p i l l a r s . should -

be used as a rough e s t i m a t i o n

Again i t i s o v e r s i m p l i f i e d and

only.

A p p l i c a b l e to p i l l a r category:

2B

- Barrier

Pillars

34 3.4

Group 3.

T h e o r e t i c a l Methods

The t h e o r e t i c a l methods attempt

to evaluate mathematically

f a c t o r s a f f e c t i n g the s t r e s s and s t r e n g t h o f p i l l a r s . i s then proposed.

the p r i n c i p a l

A more r e a l i s t i c

However, the behaviours of p i l l a r s

are very

model

complicated

and t o be c o n s i s t e n t with the theory, the methods need a f a i r number o f i n put parameters.

C o l l e c t i n g data i n a mining

e a r l y stage o f a mine's l i f e ) are too expensive

environment

( e s p e c i a l l y at the

i s not an easy t a s k , and o f t e n the techniques

or not adequately advanced to p r o v i d e a c c u r a t e data.

Because the t h e o r e t i c a l methods are complex and d i f f i c u l t s u l t s are o f t e n not r e l i a b l e .

They are u s e f u l

to apply, the r e -

i n f u r t h e r comprehending the

mechanism i n v o l v e d i n p i l l a r d e s i g n . 3.4.1

T h e o r e t i c a l S t r e n g t h Formulas

At l e a s t f o u r t h e o r e t i c a l methods have been reviewed

i n the

literature

research: Appendix A

It was

- Coates

( S e c t i o n 3.3.3)

- Grobbelaar

( S e c t i o n 3.5.1)

- Wilson

( S e c t i o n 3.5.2)

- Panek

( S e c t i o n 3.5.3)

noted t h a t o n l y Wilson's method has been used by designers, and

a b r i e f d e s c r i p t i o n of t h i s method i s g i v e n below. A)

Confined Core Method Y h

"

(Wilson)

1 (tan B ) - = (tan B - l ) u

y =

where:

u

i _

'

n

c^ a. o J

The depth o f y i e l d zone from r i b s i d e (feet)

the

h

=

Seam h e i g h t

(feet)

Ov

=

The maximum p i l l a r s t r e s s ( p s i ) ( s i t u a t e d at the y i e l d zone/confined core i n t e r f a c e )

Oo

=

Unconfined

compressive

strength (psi)

•Tan 3 =

Triaxial

stress coefficient

1 + s i n (j) 1 - sin $

I

M

E

T

H

O

tributary

H

O

area

1

Hoek's

curves

j

modified

'

S h e o r e y ft S i n g h

pillar

D

methods)

D

Salomon

chain

T

>

E M P I R I C A L

REMNANT

E

'

->-

C

O

R D

FIGURE

PILLAR

1?

CATEGORY

inclined category 4 P H A S E

PHASE

pillar

2

squore

4

II

PHASE 3

pillar

PHASE

4

PHASE 5

EMPIRICAL METHOD

INCLINED

P.

EXPERIENCE

STRUCTURAL

METHOD

ANALYSIS

—J J

I

Hoek's curves shape effect size effect

pil)ar

COMPUTE R

METHOD

METHOD

Panseau

Hedley

EMPIRICAL rectongular

THEORETICAL

METHOD Hoek's curves Salomon modified Sheorey 8 S i n g h

I

CHAPTER 5 HEATH STEELE CASE HISTORY ANALYSES

INTRODUCTION During the summer o f 1984,

f o u r Noranda underground

seeking p i l l a r f a i l u r e case h i s t o r i e s . the Bray

e a r l y 60's, was (1967) . 1 0

s e l e c t e d because

mines were v i s i t e d

The Geco "B-Block", mined out i n

the f a i l u r e s were w e l l documented by

The 77-92 and 77-94 r i b p i l l a r f a i l u r e s at Heath

were a l s o chosen to take advantage

o f A l l c o t and A r c h i b a l d

Steele

(1981)

11

pillar

d e s i g n study. The examination of case h i s t o r i e s may information f o r future designs. ter

generate p e r t i n e n t and

Geco (Chapter 6) and Heath

5) case h i s t o r i e s are analyzed u s i n g the f o l l o w i n g procedure: Review of General Information

1.

Steele

Geology 1.1

Regional geology

1.2

Mine geology

1.3

Structural

geology

2.

Mining method and underground

3.

Rock Mechanics

structures

dimensions.

Data

3.1

Rock s t r e n g t h

parameters

3.2

Laboratory t e s t s

3.3

Rock Mass C l a s s i f i c a t i o n

3.4

Virgin

stress

Review o f P i l l a r Information 4.

Pillar

Characteristics

5.

Mining

sequence

6.

Failure

h i s t o r y and p i l l a r

geometry

useful (Chap-

53 P i l l a r Design 7 .1

Phase 1

Experience method

7 .2

Phase 2

P i l l a r structural

7 .3

Phase 3

E m p i r i c a l methods

7 .4

Phase 4

T h e o r e t i c a l methods

7 .5

Phase 5

Computer methods

5.1

Study

analysis

Geology ( A f t e r A l l c o t t and A r c h i b a l d ( 1 9 8 1 ) ) 11

5.1.1

Regional

Geology

The massive s u l p h i d e s t r a t i f o r m d e p o s i t s of n o r t h e r n New hosted by the Tetagouche rock group.

Brunswick are

T h i s rock group i s h i g h l y f o l d e d ,

middle O r d o v i c i a n i n age and covers a c i r c u l a r area approximately

56

km.

(35 m i l e s ) i n diameter. The Tetagouche rock group i s broken i n t o three l i t h o l o g i c a l Sedimentary, Metabasalt, and

5.1.2

units:

Rhyolitic.

Mine Geology

The massive s u l p h i d e d e p o s i t s l i e w i t h i n the r h y o l i t e u n i t i n c l o s e p r o x i m i t y to the quartz f e l d s p a r c r y s t a l t u f f , which i s a l s o known as Augen S c h i s t and The

Porphyry.

s t r a t i g r a p h i c rock u n i t s i n the ore zone area top towards the

n o r t h , which i s i n d i c a t e d by the metal bedding

i n the sediments.

as f o l l o w s : 1.

zoning i n the s u l p h i d e s and

These u n i t s l i s t e d from youngest

graded

to o l d e s t are

( F i g u r e 18)

Banded Quartz

Feldspar C r y s t a l Tuff

T h i s rock u n i t i s banded i n p l a c e s with 5-10

cm.

bands,

interlaid

with v a r y i n g g r a i n s i z e and p r o p o r t i o n s o f quartz and f e l d s p a r phenocrysts.

7800 LEVEL

5. A c i d T u f f 6. Sediments

FIGURE 18

Heath S t e e l e Geology

Banded Quartz

Crystal Tuff

The

quartz c r y s t a l t u f f occurs as a 9 to 15 m.

bed

on the hanging w a l l s i d e o f the massive s u l p h i d e s .

phyry

The por-

i s q u i t e competent and f r e s h i n appearance, with a com-

p r e s s i v e s t r e n g t h o f 56.5 MPa (8200 p s i ) .

However, the f r a c t u r i n g

tends t o be b l o c k y when exposed on the stope's

Iron

(30-50 f t . ) t h i c k

wall.

Formation

T h i s zone i s present as a d i s c o n t i n u o u s t h i n band along the upper margin o f the massive s u l p h i d e f o r m a t i o n . i n small patches zone.

along the f o o t w a l l c o n t a c t and w i t h i n the s u l p h i d e

T h i s i s a competent bed, but i s too t h i n and d i s c o n t i n u o u s

to be r e l i e d upon as a s t a b i l i z i n g

Massive

However, i t a l s o occurs

unit.

Sulphides

The massive s u l p h i d e s a r e v e r y f i n e g r a i n e d , with a

compressive

s t r e n g t h o f 177 MPa (22,917 p s i ) , and form the most competent u n i t i n the mine.

Very l i t t l e

rock

sloughing occurs where the w a l l s o f

the stopes c o n s i s t o f massive s u l p h i d e s .

Acid Tuff T h i s i s the l e a s t competent rock u n i t

i n the mine, and tends to be

s o f t and sloughs r e a d i l y when exposed on the w a l l s o f stopes.

It

forms a 1.5 t o 21 m. (5-70 f t . ) t h i c k bed on the f o o t w a l l o f the s u l p h i d e s and becomes d i s c o n t i n u o u s i n p l a c e s .

C l a s t i c Sedimentary Rocks The

sedimentary

rocks i n the f o o t w a l l below the a c i d t u f f are i n t e r -

c a l a t e d with quartz f e l d s p a r c r y s t a l t u f f s and form a band a p p r o x i mately 366 m. (1200 f t . ) t h i c k .

56 5.1.3

S t r u c t u r a l Geology

The B Zone i s a t a b u l a r shaped v e r t i c a l or steep n o r t h e r l y d i p p i n g massive s u l p h i d e body, which s t r i k e s a t N 73°E. a s t r i k e l e n g t h o f a p p r o x i m a t e l y 1150 m. from a few c e n t i m e t e r s depth o f 1097 m.

to 75 meters

The massive s u l p h i d e s

have

(3,800 f t . ) , v a r y i n t h i c k n e s s

(250 f t . ) and have been t r a c e d to a

(3,600 f t . ) .

F o l d i n g i s the primary s t r u c t u r a l c o n t r o l and although there

i s minor

f a u l t i n g , f a u l t s have had no major i n f l u e n c e on the shape o f displacement o f the ore zone.

The orebody

has undergone

f i v e p e r i o d s o f f o l d i n g which a r e

numbered one to f i v e i n time sequence as they o c c u r r e d .

(Figure

19)

FIGURE 19. .Diagramatical P l a n View o f Heath S t e e l e Orebody, Si:

Showing O r i e n t a t i o n o f F o l d i n g

The f i r s t p e r i o d o f f o l d i n g l e f t the massive s u l p h i d e . f o l d i n g i s a few f l a t

very l i t t l e

i f any imprint

on

The o n l y r e a l evidence f o r t h i s p e r i o d o f lying relict

cleavage planes

i n the host

rocks. S2:

The second p e r i o d o f f o l d i n g had the g r e a t e s t e f f e c t on the shape of the orebody.

T h i s p e r i o d has shaped the orebody i n t o a number

o f shaped i s o c l i n a l f o l d s which plunge at approximately 60° i n a S 73° W d i r e c t i o n .

S3:

The t h i r d p e r i o d o f deformation produced f o l d s which plunged

s t e e p l y northwest

open or t i g h t c o n c e n t r i c

or southeast.

This folding-

leads to some d i l u t i o n problems i n mining as the f o l d s are d i f f i c u l t to d e f i n e with the normal f i f t e e n meters (SO f t . ) spaced d e f i n i t i o n diamond S4:

drilling.

The f o u r t h p e r i o d o f deformation r e s u l t e d i n a s e r i e s of open, conc e n t r i c f o l d s , which plunged t o the northwest

and appeared

as not

more than g e n t l e warps. Sj:

The f i f t h p e r i o d of f o l d i n g produced in a northeasterly direction.

open f o l d s which plunged

T h i s p e r i o d o f deformation

70°

produced

o n l y r a r e f o l d s i n the mine a r e a . - JOINTING

Golder A s s o c i a t e s

There are two major j o i n t s t e e p l y d i p p i n g , with one

(1981)

1 2

s e t s evident throughout

h o r i z o n t a l j o i n t s appeared

d i r e c t i o n and

Both are

set approximately p a r a l l e l t o the s t r i k e o f the

orebody and one approximately t r a n s v e r s e to the s t r i k e .

The j o i n t

the mine.

set p a r a l l e l

to be more prominent

A t h i r d set o f near

i n the s u l p h i d e s .

to the s t r i k e i n d i c a t e d a spread i n s t r i k e

i s p r o b a b l y a combination

o f two

joint

sets.

J o i n t s are u s u a l l y p l a n a r or s l i g h t l y u n d u l a t i n g and spaced at about 1 B . to 3 a .

5.2

(3.3 - 9.8

ft.).

Mining Method and Underground S t r u c t u r e s Dimension A f t e r A l l c o t t and A r c h i b a l d

(1981)

11

Mining o f Heath S t e e l e B Zone orebody proceeded s t o p i n g method, with l a t e r s e l e c t e d area f i l l i n g . from the upper l e v e l s t o the lower maintained

on two

with b l a s t hole open

E x t r a c t i o n progressed

l e v e l s and east t o west with p r o d u c t i o n

to three l e v e l s s i m u l t a n e o u s l y .

The p r o d u c t i o n r a t e

was

3000 tons per day from 1970 to 1976, i n c r e a s e d to 3,500 tons per day i n 1977,

and f i n a l l y reached 4,200 tons per day i n 1982. Mining

of 8600 p r o d u c t i o n

completed without

level,

110 m.

(360 f t . ) below s u r f a c e , was

any s e r i o u s s t a b i l i t y problems and a d i l u t i o n f a c t o r o f

10% was adequate compensation f o r overbreak or minor f a l l s o f waste. centimeters

(2 inches) diameter b l a s t h o l e r i n g s were used, and underground

ore haulage was by Track equipment. 30 m.

(40 f t . ) r i b p i l l a r s were l e f t

low

Stope dimensions were g e n e r a l l y about

(100 f t . ) on s t r i k e and up t o 45 m.

Mining

(150 f t . ) h i g h .

to separate

advanced to the 8300 p r o d u c t i o n

s u r f a c e , u s i n g the same method.

l e v e l , a t 200 m.

the 10% d i l u t i o n was s t i l l

sloughing

(650 f t . ) be-

Stope height was i n c r e a s e d to 60 m. introduced.

Although i t had been easy to mine adjacent stopes with an i n t e r v e n i n g 15 m.

Twelve meters

the stopes.

(200 f t . ) and t r a c k l e s s load-haul-dump was

and

Five

f o o t w a l l and hanging w a l l

(50 f t . ) p i l l a r of low grade s u l p h i d e s

s a t i s f a c t o r y , at t h i s stage

s t a r t e d from the west s i d e o f 83-78 r i b p i l l a r .

small s c a l e The cause was

a s c r i b e d to the i n t e r s e c t i o n o f j o i n t s at the face o f the p i l l a r , but not to

loading. Mining

from s u r f a c e .

s t a r t e d on 8050 p r o d u c t i o n

I t was decided

to remove s i l l

level,

p i l l a r s under 8300 l e v e l so

t h a t the new stope h e i g h t s would be i n c r e a s e d t o 140 m. time the s t r i k e l e n g t h was 45 m.

275 m (900 f t . )

(450 f t . ) .

At t h i s

(150 f t . ) and the r i b p i l l a r s were 15 m.

(50 f t . ) wide. Real

s t a b i l i t y problems occurred when r e c o v e r i n g r i b p i l l a r s between

primary stopes.

In the f i r s t

b l a s t e d caused the adjacent back extending

over a 150 m.

i n s t a n c e a r i b p i l l a r t h a t was

instantaneously

r i b p i l l a r to b u r s t and i n i t i a t e d a cave i n the (500 f t . ) s t r i k e l e n g t h .

After this,

stope

lengths were l i m i t e d to 43 m. rib pillar

(140 f t . ) , and 85 m.

l e n g t h s were i n c r e a s e d to 18 m.

(280 f t . ) h e i g h t .

The

(60 f t . )

Ground problems were encountered with i n c r e a s i n g frequency as the depth from s u r f a c e

increased.

The l a s t procedure u t i l i z e d b a c k f i l l i n g the c r i t i c a l

area and removing

r i b p i l l a r s o n l y between f i l l e d stopes. At

l e v e l 7430 the stope dimensions were presumed to be 30 m.

l o n g , 60 m.

5.3

(200 f t . ) h i g h and separated by 30 m.

Rock Mechanics 5.3.1

(100 f t . )

(100 f t . ) r i b p i l l a r s .

Data

Rock S t r e n g t h Parameters - Density

Ore:

Waste:

y

= 4581

k g / 3 (286

|p-)

y = 2883 k g / 3 ( 1 7 9

i|f)

m

m

- E l a s t i c Modulus F-W C h l o r i t e T u f f

E = 68,536 MPa

(9.9 M. p s i )

Ore Massive Sulphide E =119,284 MPa

(17.3M. p s i )

H-W

(9.9 M. p s i )

Q t z . Porphyry

E = 68,743 MPa

- Poisson's Ratio v =

0.25

Ore Massive S u l p h i d e v =

0.24

v =

0.19

F-W C h l o r i t e T u f f

H-W

5.3.2

Q t z . Porphyry

Laboratory T e s t i n g - Unconfined Compressive S t r e n g t h F-W C h l o r i t e T u f f

o

c

=

Ore Massive Sulphide H-W

Qtz. Porphyry

o

84 MPa 176.5 MPa

c

=

91 MPa

(12,182 p s i ) (25,598 p s i ) (13,198 p s i )

60

5.3.3

Rock Mass C l a s s i f i c a t i o n

The f o o t w a l l , hanging wall and orebody rocks were c l a s s i f i e d by

Golder

12 A s s o c i a t e s (1981)

u s i n g the NGI

system.

R e s u l t s are given below as well

as an estimated CSIR r a t i n g f o r comparison purposes. 77-92 Cross-.Cut Footwall - C h l o r i t e T u f f NGI RQD Jn Jr Ja Jw SRF Q

95 3 2 0..75 1..0 1..0

90 6 2 0..75 1..0 1..0

84

40

CSIR I n t a c t Strength RQD Spacing o f J o i n t s Condition of Joints Ground Water

7 20 25 6 1_0 68

77-92 Cross-Cut

Sulphides NGI

RQD Jn Jr Ja Jw SRF

85 6 1 0.75 1.0 1.0

95 6 1 0.75 1.0 1.0

Q

18.9

21 CSIR

Intact Strength RQD Spacing J o i n t s C o n d i t i o n of J o i n t s Ground Water

12 17 25 6 7 67

61

I

77-92

Gross-Gut H a n g i n g w a l l P o r p h y r y NGI RQD Jn Jr Ja Jw SRF

95 6

95 3.0 1.0

2.0 0.75 1.0 1.0

0.75 1.0 1.0

42

42 GSIR 7

Intact Strength RQD Spacing o f J o i n t s Condition o f J o i n t s Ground Water

5.3«4

Virgin

20

25 6 10

w

Stress

No v i r g i n s t r e s s measurements have been made a t t h e mine.

Measurements

have been a c h i e v e d a t Brunswick M i n i n g , which i s located, i n t h e same r o c k f o r m a t i o n about

50

km

depth a r e a s f o l l o w s :

( 3 0 miles)

away. The r e s u l t s a t

7 0 0 m. ( 2 3 0 0

ft.)

(Figure 2 0 )

- To determine t h e v i r g i n s t r e s s a t Heath S t e e l e , t h e f o l l o w i n g assumpt i o n has t o be made: "The r a t i o o f s t r e s s e s ( v e r t i c a l and h o r i z o n t a l s ) a t Brunswick i s comp a r a b l e w i t h the r a t i o o f s t r e s s e s a t Heath Thus, the s t r e s s regime o

vv

= a, = v ^ waste 1

= o

Note:

3

2883

= 8.79

KPSF = k i l o

Steele".

3 0 0 m. ( 1 0 0 0 f t . )

x

(depth below r

kg/m x 10

5

3

below s u r f a c e a t Heath

surface)

x 305 m = 8.79 x 1 0 kg/m

2

= 8.62 MP a

pounds p e r square f o o t

5

kg/m

2

(180 KPSF)*

Steele

62

FIGURE 20

V i r g i n S t r e s s at Heath S t e e l e

63

°H

(north-south)

° '

=

a'i = °H

(east-west)

0 2

0

5.4

Pillar

2

=

2

17.24 MPa 1-Sxa

=

=

° '

x

8

12.93 MPa

=

2 x 8.62 MPa (360 KPSF)

= 1 . 5 x 8 . 6 2 MPa (272 KPSF)

Characteristics

- Ribs: O r i g i n a l l y 12 m.

(40 f t . ) x 61 m. (200 f t . ) h i g h x ore width

Laterally

(90 f t . ) x 76 m.

27 m.

(250 f t . ) h i g h x ore width

- Sills/Crowns: P r o d u c t i o n l e v e l up c o n t a i n s cones o r trough u s u a l l y extending up

15 meters

(50 f t . ) above l e v e l .

Below l e v e l u s u a l l y 15 t o

23 meters (50 to 75 f e e t ) depending on ore widths and l o c a l geometry. - Pillar

Support: G e n e r a l l y no systematic support

i s given.

areas some c a b l e b o l t i n g has been used.

In s p e c i f i c problem In some small

pillars

i n the room and p i l l a r o v e r c u t s , some perimeter s t r a p p i n g has been done i n i s o l a t e d problem areas. of

( 5 or 8 f t . ) 1.5 t o 2.5 m.

use mechanical

The

E a r l y p r a c t i c e was to

b o l t s and s t r a p s o r p l a t e s .

anchored r e b a r p i n s a r e almost

Mining

support

development w i t h i n p i l l a r areas has been the use o f standard

rock b o l t s

5.5

Otherwise l o c a l

Latterly

resin

e x c l u s i v e l y used.

Sequence

i n v e s t i g a t e d area c o n s i s t s o f f o u r open stopes

77-89) separated by three r i b p i l l a r s from 245 m. (800 f t . ) t o 366 m.

(77-95, 77-93, 77-91,

(77-94, 77-92, 77-90).

The depth v a r i e s

(1200 f t . ) below s u r f a c e , and a 300 m.

(1000

f t . ) depth was assumed f o r c a l c u l a t i o n

purposes.

F i g u r e 21 i s a l o n g i t u d i n a l view o f the s t o p e / p i l l a r panel l a y o u t , and Table 8 summarizes the mining

sequence (from B l a s t i n g

Record).

TABLE 8 MINING SEQUENCE OF THE PANEL STOPE

5.6

START DATE

FINISH DATE

77-95

May, 1977

Nov. 1978

77-93

Dec. 1976

May, 1978

77-91

Apr. 1976

Apr. 1978

77-89

May, 1975

Dec. 1977

77-92 ( P i l l a r Recovery)

Apr. 1978

Apr. 1978

F a i l u r e H i s t o r y and P i l l a r Geometry - November 1977:

77-92 Rib P i l l a r

It was d i s c o v e r e d t h a t t h e r e was e x c e s s i v e wedge type sloughing from the w a l l s o f t h i s p i l l a r

i n t o the stopes on each s i d e t o the extent

that i t was c o n s i d e r e d not t o be p r o v i d i n g

any support.

Accordingly, i t

was decided t o b l a s t out t h i s p i l l a r and t o stop f u r t h e r mining west i n 77-93 stope to i n c r e a s e the 77-94 p i l l a r . - A p r i l 1978:

The 77-92 r i b was b l a s t e d , and r e c o v e r e d .

- September, 1978:

77-94 Rib P i l l a r

A f t e r the 77-92 r i b was b l a s t e d , mining continued i n 77-95 stope. On September 23/78, a b l a s t i n 77-95 stope appeared

t o have t r i g g e r e d a

v i o l e n t r e a c t i o n i n 77-94 r i b c a u s i n g s e i s m i c i t y and b u c k l i n g o f t r a c k rails

i n t h i s p i l l a r on both 7950 and 7800 l e v e l s . - J u l y 1980:

77-96 Rib P i l l a r ,

(supplementary

A c t i v i t y i n t h i s r i b on 7700 l e v e l developed

information) i n J u l y 1980 and was

65

FIGURE 21

Schematic Longitudinal View of the Investigated Area at Heath Steele. (Mining method: Blast hole Open stoping)

Scale: 1 i n . = 100 f t .

8200

66

- 77-9^ P i l l a r deteriorates

77-92

Pillar

recovered

w