latihan-soal-perbandingan-trigonometri-bidang-cartesian

11 downloads 4070 Views 5KB Size Report
Topik : Perbandingan Trigonometri Bidang Cartesian, Persamaan Trigonometri dan Identitas Trigonometri. Kerjakan soal-soal di bawah ini pada tempat yang ...

LATIHAN SOAL Topik : Perbandingan Trigonometri Bidang Cartesian, Persamaan Trigonometri dan Identitas Trigonometri Kerjakan soal-soal di bawah ini pada tempat yang telah disediakan! 1. Tentukan nilai dari: a. sin 1200 b. cos 1350 c. tan 1500 d. sin 1800 e. cos 2100 f. tan 3000 ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... 2. Tentukanlah penyelesaian persamaan berikut untuk 00 < x < 3600! 1 a. sin x = 3 2 1 b. cos x = − 2 c. cos 2x = cos x ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... 3. Buktikan: a. tan x sin x + cos x = sec x b. tan x + cot x = sec x csc x c. sin x sec x = tan x ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... ....................................................................................................................................... .......................................................................................................................................