LT1001 - Precision Operational Amplifier

4 downloads 622964 Views 198KB Size Report
The LT®1001 significantly advances the state-of-the- ... LT1001. 1001fb. LT1001AM/883. LT1001AC. LT1001M/LT1001C. SYMBOL PARAMETER.
LT1001 Precision Operational Amplifier DESCRIPTIO

U

FEATURES ■













The LT ®1001 significantly advances the state-of-theart of precision operational amplifiers. In the design, processing, and testing of the device, particular attention has been paid to the optimization of the entire distribution of several key parameters. Consequently, the specifications of the lowest cost, commercial temperature device, the LT1001C, have been dramatically improved when compared to equivalent grades of competing precision amplifiers.

Guaranteed Low Offset Voltage LT1001AM 15µV max LT1001C 60µV max Guaranteed Low Drift LT1001AM 0.6µV/°C max LT1001C 1.0µV/°C max Guaranteed Low Bias Current LT1001AM 2nA max LT1001C 4nA max Guaranteed CMRR LT1001AM 114dB min LT1001C 110dB min Guaranteed PSRR LT1001AM 110dB min LT1001C 106dB min Low Power Dissipation LT1001AM 75mW max LT1001C 80mW max Low Noise 0.3µVP-P

Essentially, the input offset voltage of all units is less than 50µV (see distribution plot below). This allows the LT1001AM/883 to be specified at 15µV. Input bias and offset currents, common-mode and power supply rejection of the LT1001C offer guaranteed performance which were previously attainable only with expensive, selected grades of other devices. Power dissipation is nearly halved compared to the most popular precision op amps, without adversely affecting noise or speed performance. A beneficial by-product of lower dissipation is decreased warm-up drift. Output drive capability of the LT1001 is also enhanced with voltage gain guaranteed at 10mA of load current. For similar performance in a dual precision op amp, with guaranteed matching specifications, see the LT1002. Shown below is a platinum resistance thermometer application.

U APPLICATIO S ■ ■ ■

Thermocouple amplifiers Strain gauge amplifiers Low level signal processing High accuracy data acquisition

, LTC and LT are registered trademarks of Linear Technology Corporation.

U



TYPICAL APPLICATIO

Typical Distribution of Offset Voltage VS = ±15V, TA = 25°C

Linearized Platinum Resistance Thermometer with ±0.025°C Accuracy Over 0 to 100°C 1MEG.** R plat. † 1k = 0°C

20k

330k*

10k*

2



1µf 2

6

LT1001 3



10k*

+

LT1001 3

LM129

200

GAIN TRIM

1.2k**

90k*

* ULTRONIX 105A WIREWOUND ** 1% FILM † PLATINUM RTD 118MF (ROSEMOUNT, INC.)

20k OFFSET TRIM

+

6

OUTPUT 200Ω

LINEARITY TRIM

0 TO 10V = 0 TO 100°C

NUMBER OF UNITS

+15

954 UNITS FROM THREE RUNS

150

100

50

10k*

‡ Trim sequence: trim offset (0°C = 1000.0Ω), trim linearity (35°C = 1138.7Ω), trim gain (100°C = 1392.6Ω). Repeat until all three points are fixed with ±0.025°C.

0 –60

–40 0 20 40 –20 INPUT OFFSET VOLTAGE (µV)

60 1001 TA02

1001 TA01

1001fb

1

LT1001 W W

U

W

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage ...................................................... ±22V Differential Input Voltage ...................................... ±30V Input Voltage ........................................................ ±22V Output Short Circuit Duration ......................... Indefinite

Operating Temperature Range LT1001AM/LT1001M (OBSOLETE) .. – 55°C to 150°C LT1001AC/LT1001C .............................. 0°C to 125°C Storage: All Devices.......................... – 65°C to 150°C Lead Temperature (Soldering, 10 sec.)................. 300°C

U

W

U

PACKAGE/ORDER INFORMATION ORDER PART NUMBER TOP VIEW OFFSET ADJUST 8 –

–IN 2

V+

7

1

6 OUT

+ 5

3 +IN

LT1001AMH/883 LT1001MH LT1001ACH LT1001CH

4

ORDER PART NUMBER

TOP VIEW VOS TRIM 1

VOS 8 TRIM

–IN 2



7 V+

+IN 3

+

6 OUT

V– 4

LT1001ACN8 LT1001CN8 LT1001CS8

5 NC

N8 PACKAGE 8 PIN PLASTIC DIP

S8 PACKAGE 8 PIN PLASTIC SO

S8 PART MARKING 1001

TJMAX = 150°C, θJA = 130°C/W (N) TJMAX = 150°C, θJA = 150°C/W (S)

NC

V– (CASE) H PACKAGE METAL CAN

ORDER PART NUMBER LT1001AMJ8/883 LT1001MJ8 LT1001ACJ8 LT1001CJ8

J8 PACKAGE 8 PIN HERMETIC DIP TJMAX = 150°C, θJA = 100°C/W (J)

TJMAX = 150°C, θJA = 150°C/W, θjc = 45°C/W

OBSOLETE PACKAGE

OBSOLETE PACKAGE

Consider the N8 and S8 Packages for Alternate Source

Consider the N8 and S8 Packages for Alternate Source

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS

The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = ±15V, unless otherwise noted

SYMBOL PARAMETER

CONDITIONS LT1001AM/883 Note 2 LT1001AC

LT1001AM/883 LT1001AC MIN TYP MAX 7 15

LT1001M/LT1001C MIN TYP MAX

UNITS

18

60

µV

1.0

0.3

1.5

µV/month

2.0

0.4

3.8

nA

±0.5

±2.0

±0.7

±4.0

nA

0.3

0.6

0.3

0.6

µVp-p

10.3 9.6

18.0 11.0

10.5 9.8

18.0 11.0

nV√Hz nV√Hz

VOS

Input Offset Voltage

∆VOS ∆Time IOS

Long Term Input Offset Voltage Stability

Ib

Input Bias Current

en

Input Noise Voltage

0.1Hz to 10Hz (Note 3)

en

Input Noise Voltage Density

fO = 10Hz (Note 6) fO = 1000Hz (Note 3)

AVOL

Large Signal Voltage Gain

RL ≥ 2kΩ, VO = ±12V RL ≥ 1kΩ VO = ±10V

CMRR

Common Mode Rejection Ratio

VCM = ±13V

114

126

110

126

dB

PSRR

Power Supply Rejection Ratio

VS = ±3V to ±18V

110

123

106

123

dB

Rin

Input Resistance Differential Mode

30

100

15

80

Notes 3 and 4

Input Offset Current

450 300

10

25

0.2 0.3

800 500

400 250

800 500

V/mV V/mV

MΩ 1001fb

2

LT1001

ELECTRICAL CHARACTERISTICS

The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = ±15V, TA = 25°C, unless otherwise noted

SYMBOL PARAMETER Input Voltage Range

CONDITIONS

LT1001AM/883 LT1001AC MIN TYP MAX ±13 ±14

VOUT

Maximum Output Voltage Swing

RL ≥ 2kΩ RL ≥ 1kΩ

±13 ±12

SR

Slew Rate

RL ≥ 2kΩ (Note 5)

0.1

0.25

GBW

Gain-Bandwidth Product

(Note 5)

0.4

0.8

Pd

Power Dissipation

No load No load, VS = ±3V

±14 ±13.5

46 4

LT1001M/LT1001C MIN TYP MAX ±13 ±14 ±13 ±12 0.1 0.4

75 6

UNITS V

±14 ±13.5

V V

0.25

V/µs

0.8 48 4

MHz 80 8

mW mW

LT1001M TYP MAX 45 160

UNITS µV

VS = ±15V, – 55°C ≤ TA ≤ 125°C, unless otherwise noted SYMBOL PARAMETER VOS Input Offset Voltage



LT1001AM/883 MIN TYP MAX 30 60 0.2

CONDITIONS

MIN

µV/°C

∆VOS ∆Temp IOS

Average Offset Voltage Drift



Input Offset Current



0.8

4.0

1.2

7.6

nA

IB

Input Bias Current



±1.0

±4.0

±1.5

±8.0

nA

AVOL

Large Signal Voltage Gain

RL ≥ 2kΩ, VO = ±10V



300

700

200

700

V/mV

CMRR

Common Mode Rejection Ratio

VCM = ±13V



110

122

106

120

dB

PSRR

Power Supply Rejection Ratio

VS = ±3 to ±18V



104

117

100

117

dB



±13

VOUT

Output Voltage Swing

RL ≥ 2kΩ



±12.5 ±13.5

Pd

Power Dissipation

No load



Input Voltage Range

0.6

±14 55

0.3

1.0

±13

±14

V

±12.0

±13.5

V

90

60

100

mW

LT1001C TYP MAX 30 110

UNITS µV

VS = ±15V, 0°C ≤ TA ≤ 70°C, unless otherwise noted SYMBOL PARAMETER VOS Input Offset Voltage

CONDITIONS

MIN ●

LT1001AC TYP MAX 20 60

MIN

∆VOS ∆Temp IOS

Average Offset Voltage Drift



Input Offset Current



0.5

3.5

0.6

5.3

nA

IB

Input Bias Current



±0.7

±3.5

±1.0

±5.5

nA

AVOL

Large Signal Voltage Gain

RL ≥ 2kΩ, VO = ±10V



350

750

250

750

V/mV

CMRR

Common Mode Rejection Ratio

VCM = ±13V



110

124

106

123

dB

Power Supply Rejection Ratio

VS = ±3V to ±18V



120

dB

PSRR

Input Voltage Range

106 ±13

±12.5 ±13.8

Output Voltage Swing

RL ≥ 2kΩ



Pd

Power Dissipation

No load



0.6

120



VOUT

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Note 2: Offset voltage for the LT1001AM/883 and LT1001AC are measured after power is applied and the device is fully warmed up. All other grades are measured with high speed test equipment, approximately 1 second after power is applied. The LT1001AM/883 receives 168 hr. burn-in at 125°C. or equivalent. Note 3: This parameter is tested on a sample basis only.

0.2

103

±14 50

0.3

85

±13

±14

±12.5

±13.8 55

1.0

µV/°C

V V 90

mW

Note 4: Long Term Input Offset Voltage Stability refers to the averaged trend line of VOS versus Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in VOS during the first 30 days are typically 2.5µV. Note 5: Parameter is guaranteed by design. Note 6: 10Hz noise voltage density is sample tested on every lot. Devices 100% tested at 10Hz are available on request. 1001fb

3

LT1001 U W

TYPICAL PERFORMANCE CHARACTERISTICS Typical Distribution of Offset Voltage Drift with Temperature

Offset Voltage Drift withTemperature of Representative Units

OFFSET VOLTAGE (µV)

60

40

LT1001

VS = ±15V

30 20

CHANGE IN OFFSET VOLTAGE (µV)

40

265 UNITS TESTED

80

NUMBER OF UNITS

Warm-Up Drift

50

100

LT1001A

10 0

LT1001A

–10 –20

20

LT1001

–30

VS = ±15V TA = 25°C

4

3 METAL CAN (H) PACKAGE 2 DUAL-IN-LINE PACKAGE PLASTIC (N) OR CERDIP (J)

1

–40 –50 –50

–0.6 –0.2 0 +0.2 +0.6 +1.0 OFFSET VOLTAGE DRIFT (µV/°C)

–25

50 0 75 25 TEMPERATURE (°C)

1001 G01

0

125

100

0.1Hz to 10Hz Noise

Long Term Stability of Four Representative Units

100

10

10

VOLTAGE NOISE nV/√Hz

3

1/f CORNER 4Hz VOLTAGE

10

1.0

1/f CORNER 70Hz

3

0.3

CURRENT NOISE pA/√Hz

TA = 25°C VS = ±3 TO ±18V 30

5

1001 G03

Noise Spectrum

NOISE VOLTAGE 100nV/DIV

1 3 4 2 TIME AFTER POWER ON (MINUTES)

1001 G02

OFFSET VOLTAGE CHANGE (µV)

–1.0

5

0

–5

CURRENT 2

6 4 TIME (SECONDS)

8

10

1 1

0.1 1000

10 100 FREQUENCY (Hz)

Input Bias and Offset Current vs Temperature

0.6 BIAS CURRENT 0.4

–50 –25

0.5 0

125

1001 G07

DEVICE WITH POSITIVE INPUT CURRENT VS = ±15V TA = 25°C

–.5 DEVICE WITH NEGATIVE INPUT CURRENT –1.0

100

Ib

– +

VCM

OFFSET CURRENT 50 25 75 0 TEMPERATURE (°C)

4

–1.5 –15

5

30

1.0 INPUT BIAS CURRENT (nA)

INPUT BIAS AND OFFSET CURRENTS (nA)

1.2

0.8

3 2 TIME (MONTHS)

Input Bias Current vs Differential Input Voltage

1.5

1.4

VS = ±15V

1

1001 G06

Input Bias Current Over the Common Mode Range

1.0

0

1001 G05

1001 G04

0.2

–10

INVERTING OR NON-INVERTING INPUT BIAS CURRENT (mA)

0

20

10

IB ≈ 1 nA to VDIFF = 0.7V

COMMON MODE INPUT RESISTANCE = 28V = 280GΩ 0.1nA 10 –5 0 5 –10 COMMON MODE INPUT VOLTAGE

VS = ±15V TA = 25°C

15

1001 G08

0 0.1

0.3 1.0 3.0 10 ± DIFFERENTIAL INPUT (V)

30 1001 G09

1001fb

4

LT1001 U W

TYPICAL PERFORMANCE CHARACTERISTICS Open Loop Voltage Gain Frequency Response

Gain, Phase Shift vs Frequency

VS = ±15V, VO = ±12V

800k

VS = ±3V, VO = ±1V

600k 400k 200k

120

16

TA = 25°C 100 80

VOLTAGE GAIN (dB)

1000k

OPEN LOOP VOLTAGE GAIN (dB)

OPEN LOOP VOLTAGE GAIN (V/V)

140

1200k

VS = ±15V

60 40

VS = ±3V

20

50 25 75 0 TEMPERATURE (°C)

100

–20 0.1

125

1

10

100 1k 10k 100k 1M 10M FREQUENCY (Hz)

V + = 12 to 18V

V – = –12 to –18V V – = –1.2 to –4V

50 25 75 TEMPERATURE °C

100

80

VS = ±15V TA = 25°C

60 40

1

10

100k

100 1k 10k FREQUENCY (Hz)

–8 0.1

0.5

POSITIVE SWING

VS = ±15V TA = 25°C

1001 G16

NEGATIVE SUPPLY

80 POSITIVE SUPPLY

60 40 20

1

10 100 1k FREQUENCY (Hz)

10k

100k

1001 G15

Output Short-Circuit Current vs Time SHORT CIRCUIT CURRENT (mA) SOURCING SINKING

8

4

± 6 ± 9 ± 12 ± 15 ± 18 ± 21 SUPPLY VOLTAGE (V)

100

50

12 OUTPUT SWING (V)

SUPPLY CURRENT (mA)

1.0

VS = ±15V ±1V p-p TA = 25°C

120

0 0.1

1M

NEGATIVE SWING

2.0

125°C

220 2

1 0.5 FREQUENCY (MHz)

1001 G12

16

±3

0.2

Output Swing vs Load Resistance

Supply Current vs Supply Voltage

1.5

200

PHASE MARGIN –55°C = 63° 125°C = 57°

1001 G14

1001 G13

25°C

180

VS = ±15V

140

100

125

–55°C

160

Power Supply Rejection Ratio vs Frequency

120

20 0

GAIN 125°C

140

GAIN 25°C & –55°C

0

POWER SUPPLY REJECTION (dB)

COMMON MODE REJECTION (dB)

COMMON MODE LIMIT (V) REFERRED TO POWER SUPPLY

4

140 V + = 1.2 to 4V

25°C PHASE MARGIN = 60°

8

Common Mode Rejection Ratio vs Frequency

Common Mode Limit vs Temperature

+1.0 +0.8 +0.6 +0.4 +0.2 V– –50 –25

120

1001 G11

1001 G10

V+ –0.2 –0.4 –0.6 –0.8 –1.0

100

PHASE 25°C

12

–4

0

0 –50 –25

80

20

PHASE SHIFT (DEG)

Open Loop Voltage Gain vs Temperature

0 100

300 1000 3k LOAD RESISTANCE (Ω)

10k 1001 G17

40

–55°C

30 20

25°C 125°C

10

VS = ±15V

–10

125°C

–20

25°C

–30

–55°C

–40 –50 0

1 3 4 2 TIME FROM OPUTPUT SHORT (MINUTES) 1001 G18

1001fb

5

LT1001 U W

TYPICAL PERFORMANCE CHARACTERISTICS Voltage Follower Overshoot vs Capacitive Load

Small Signal Transient Response 100

VS = ±15V TA = 25°C VIN = 100mV RL > 50k

80

PERCENT OVERSHOOT

Small Signal Transient Response

60

40

20

0 100

AV = +1, CL = 50pF

10,000 1000 CAPACITIVE LOAD (pF)

100,000

AV = +1, CL = 1000pF

1001 G19

1001 G21

1001 G20

Maximum Undistorted Output vs. Frequency

Large Signal Transient Response

Closed Loop Output Impedance 100

VS = ±15V TA = 25°C

24

OUTPUT IMPEDANCE (Ω)

OUTPUT VOLTAGE, PEAK-TO-PEAK (V)

28

20 16 12 8

10 AV = 1000 1 AV = +1 0.1 IO = ±1mA VS = ±15V TA = 25°C

0.01

4 0

0.001

10 100 FREQUENCY (kHz)

1

1

1000

1001 G22

10

1k 100 FREQUENCY (Hz)

U

W

U

U

Application Notes and Test Circuits The LT1001 series units may be inserted directly into OP-07, OP-05, 725, 108A or 101A sockets with or without removal of external frequency compensation or nulling components. The LT1001 can also be used in 741, LF156 or OP-15 applications provided that the nulling circuitry is removed. The LT1001 is specified over a wide range of power supply voltages from ±3V to ±18V. Operation with lower supplies is possible down to ±1.2V (two Ni-Cad batteries). However, with ±1.2V supplies, the device is stable only in closed loop gains of +2 or higher (or inverting gain of one or higher).

100k 1001 G24

1001 G23

APPLICATIONS INFORMATION

10k

Unless proper care is exercised, thermocouple effects caused by temperature gradients across dissimilar metals at the contacts to the input terminals, can exceed the inherent drift of the amplifier. Air currents over device leads should be minimized, package leads should be short, and the two input leads should be as close together as possible and maintained at the same temperature. Test Circuit for Offset Voltage and its Drift with Temperature *50k +15V 2 100Ω

*

50k

*

– +

3

7 LT1001

6

VO

4 –15V

VO = 1000VOS

* RESISTORS MUST HAVE LOW THERMOELECTRIC POTENTIAL. ** THIS CIRCUIT IS ALSO USED AS THE BURN-IN CONFIGURATION FOR THE LT1001, WITH SUPPLY VOLTAGES INCREASED TO ±20V. 1001 F01

1001fb

6

LT1001

U

U

W

U

APPLICATIONS INFORMATION Offset Voltage Adjustment The input offset voltage of the LT1001, and its drift with temperature, are permanently trimmed at wafer test to a low level. However, if further adjustment of Vos is necessary, nulling with a 10k or 20k potentiometer will not degrade drift with temperature. Trimming to a value other than zero creates a drift of (Vos/300)µV/°C, e.g., if Vos is

adjusted to 300 µV, the change in drift will be 1 µV/°C. The adjustment range with a 10k or 20k pot is approximately ±2.5mV. If less adjustment range is needed, the sensitivity and resolution of the nulling can be improved by using a smaller pot in conjunction with fixed resistors. The example below has an approximate null range of ±100 µV. 0.1Hz to 10Hz Noise Test Circuit 0.1µF

Improved Sensitivity Adjustment VOLTAGE GAIN = 50,000

100kΩ

7.5k

(PEAK-TO-PEAK NOISE MEASURED IN 10 SEC INTERVAL)

+15V

1k 1 2 INPUT 3

2kΩ

7.5k

– +



10Ω

+

8 LT1001

7

OUTPUT

6

+

4.3k

22µF

LT1001 4.7 µF

DEVICE UNDER TEST

4 –15V

LT1001

100k

1001 F02

SCOPE ×1 RIN = 1MΩ

– 2.2µF

110k

0.1 µF

24.3k

1001 F03

The device under test should be warmed up for three minutes and shielded from air currents. DC Stabilized 1000v/µsec Op Amp 2.2µF TANTALUM

+15V

+ 300Ω

3.9k 1N914

2N5486

0.1µF 200Ω*

200pF

2N5160

0.01µF

22µF TANTALUM

+

2N3866 33Ω 1k RIN 1k

10k

INPUT

3

+ LT1001

15pF 2

2N4440

1.8k

30k

–15V 6

– 30k

2N3904

390Ω 2N3904

0.001µF

0.5Ω OUTPUT

470Ω 0.5Ω 22Ω 2N5160

2N3906

0.01µF 2N3866

2N4440 22µF TANTALUM

200pF

15-60pF TUSONIX # 519-3188



1.2k

3.9k

+

200Ω* 1N914

300Ω 0.1µF –15V 1001 F04

1k Rf

FULL POWER BANDWIDTH 8MHz

*ADJUST FOR BEST SQUARE WAVE AT OUTPUT 1001fb

7

LT1001

U

TYPICAL APPLICATIONS Photodiode Amplifier

Microvolt Comparator with TTL Output

100pF

5V

39.2Ω 1%

1.21M 1% NON INVERTING INPUT

2

INVERTING INPUT

3

7



5k 5%

4.99k 1%

8

500k 1% OUTPUT

2

LT1001

+

20k 5%

4

λ

2N3904

6

LT1001 3

IN914

–5V POSITIVE FEEDBACK TO ONE OF THE NULLING TERMINALS CREATES 5µ TO 20µV OF HYSTERESIS. INPUT OFFSET VOLTAGE IS TYPICALLY CHANGED BY LESS THAN 5µV DUE TO THE FEEDBACK.

– OUTPUT 1V/µA

+

500k 1%

100pF

1001 TA03

1001 TA04

Precision Current Sink

Precision Current Source

V + = 2V to 35V

5k R

5V 3

VIN

+

RC ≈ 10 –4

7 LT1001

5k

2



0 to (V – + 1V)

VIN

3

2N3685

LT1001 2

2N2219

4

7

+

0 to (V + – 1V)

6



6

2N3685 2N2219

4 10K

–5V

10k

1000pF

V IOUT = IN R

C

V – = –2 to –35V

V IOUT = IN R

R 1001 TA05 1001 TA06

Strain Gauge Signal Conditioner with Bridge Excitation 15V 15V 8.2k 2k*

LM329

3 4.99k*

100Ω

+ LT1001

2

6



REFERENCE OUT TO MONITORING A/D CONVERTER

2k 2N2219 IN4148

350Ω BRIDGE

3 * 301k

10k ZERO

+ LT1001

2

6

– 1µF

2



IN4148 LT1001

3

+

6

0V TO 10V OUT 340k*

1.1k* 2N2907 GAIN TRIM

2k 100Ω 5W

*RN60C FILM RESISTORS 1001 TA07

–15V 1001fb

8

LT1001

U

TYPICAL APPLICATIONS rejections. Worst-case summation of guaranteed specifications is tabulated below.

Large Signal Voltage Follower With 0.001% Worst Case Accuracy

OUTPUT ACCURACY

12V TO 18V 2

INPUT –10V TO 10V

RS 0k TO 10k

LT1001 3

LT1001AM /883

LT1001C

LT1001AM /883

LT1001C

Error

25°C Max.

25°C Max.

–55 to 125°C Max.

0 to 70°C Max.

Offset Voltage Bias Current Common Mode Rejection Power Supply Rejection Voltage Gain

15µV 20µV 20µV 18µV 22µV

60µV 40µV 30µV 30µV 25µV

60µV 40µV 30µV 36µV 33µV

110µV 55µV 50µV 42µV 40µV

Worst-case Sum Percent of Full Scale (=20V)

95µV

185µV

199µV

297µV

0.0005%

0.0009%

0.0010%

0.0015%

7

– +

6

OUTPUT –10V TO 10V

4 1001 TA08

–12V TO –18V

The voltage follower is an ideal example illustrating the overall excellence of the LT1001. The contributing error terms are due to offset voltage, input bias current, voltage gain, common mode and power-supply

Thermally Controlled NiCad Charger

15V

+ – *

BATTERY

– +

7

3

+

AMBIENT

LT1001

620k

2

–15V

10V, 1.2A HR NICAD STACK

IN4001 6

2k



2N6387 IN4148

4 CIRCUIT USES TEMPERATURE DIFFERENCE BETWEEN BATTERY PACK MOUNTED THERMOCOUPLE AND AMBIENT THERMOCOUPLE TO SET BATTERY CHARGE CURRENT. PEAK CHARGING CURRENT IS 1 AMP.

0.1µF

–15V

43k

0.6Ω 5W

10Ω 1µF *

* SINGLE POINT GROUND THERMOCOUPLES ARE 40µV/°C CHROMEL-ALUMEL (TYPE K)

*

1001 TA09

Precision Absolute Value Circuit 10k 0.1%

INPUT –10V TO 10V

10k 0.1%

2

IN4148

– LT1001

3

10k 0.1%

10k 0.1%

2



6

LT1001 3

+

6

OUTPUT 0V TO 10V

+

IN4148 10k 0.1% 1001 TA10

1001fb

9

LT1001 U

TYPICAL APPLICATIONS Precision Power Supply with Two Outputs (1) 0V to 10V in 100µV STEPS (2) 0V to 100V in 1mV STEPS 22k* 43k* 100Ω (SELECT)

2

15V 100Ω 5W



2k LT1001

15V

3

2N2219

6

+

IN914

OUTPUT 1 0V-10V 25mA

8.2k TRIAD TY-90

VN-46

LM399

DIODES = SEMTECH # FF-15

KVD 00000 – 99999 + 1 VN-46

KELVIN-VARLEY DIVIDER ESI#DP311

–15V

4µF

10k* (SELECT)

+

680pF

TRIM–100V 100Ω

2.2µF



D CLK

6

LT301A 3

90k*

0.1µF

*JULIE RSCH. LABS #R-44 25k

2

OUTPUT 2 0V-100V, 25mA

+

Q

2N6533

+

6

22µF

33k

+

74C74

2

LT1001

IN914

+

3

15Ω

33k

33k



2k

Q

1.8k

15V

15V

15V

2N2907 CLAMP SET

5k

IN914 1001 TA11

Dead Zone Generator BIPOLAR SYMMETRY IS EXCELLENT BECAUSE ONE DEVICE, Q2, SETS BOTH LIMITS INPUT Q4 100k** 100k**

2

10k*

6

LM301A 3

8

+

100k

Q3

Q2



VSET DEAD ZONE CONTROL INPUT 0V TO 5V

2k

1 2 30pF

2N4393 Q1

47pF

10k*

4.7k

10k**

– LT1001

3

6

+

IN914

10k**

2

10k

3

15V 100k

15pF

2

– LM301A

3

+

6

4.7k

6

VOUT

+

2N4393 Q6 3.3k

Q5

LT1001

10k

4.7k

15pF



IN914

VSET

VOUT

1k

VIN

–15V

* 1% FILM ** RATIO MATCH 0.05% Q2, 3, 4, 5 CA 3096 TRANSISTOR ARRAY

VSET 1001 TA12

1001fb

10

LT1001

U

TYPICAL APPLICATIONS Instrumentation Amplifier with ±300V Common Mode Range and CMRR > 150dB 15V

820Ω

820Ω 3

+

10k

6

LT1001 2



OUTPUT

+

330k*

0.1µF S1

S3 1µF**

INPUT

0.2µF** 909Ω*

S2

200Ω GAIN TRIM

S4

(ACQUIRE)

(READ)

01

02 OUT

OUT

A

74C906 IN

IN

74C04

2k*

74C86

2k* 1

C 4022 EN

2 6

CLK

R 10k

1k

+

3



2

LM301A

5.6k* R1

0.1µF

1k

LM329

1) ALL DIODES IN4148 2) S1–S4 OPTO MOS SWITCH OFM-1A, THETA-J CORP. 3) *FILM RESISTOR 4) **POLYPROPYLENE CAPACITORS 5) ADJUST R1 for 93 Hz AT TEST POINT A

A FLYING CAPACITOR CHARGED BY CLOCKED PHOTO DRIVEN FET SWITCHES CONVERTS A DIFFERENTIAL SIGNAL AT A HIGH COMMON MODE VOLTAGE TO A SINGLE ENDED SIGNAL AT THE LT1001 OUTPUT.

1001 TA13

1001fb

11

LT1001

W

W

SCHE ATIC DIAGRA

V+ 7 6k

6k 8

1 40k

Q29

Q27 40k

Q25

Q13

Q11 Q5

Q24

Q28

Q14

1.5k

Q12

25k

Q6 3k

Q8

Q7

Q31

Q4

Q3

55pF

20pF

Q33 20Ω

+

500

Q1A

Q1B

Q2B

30pF

Q2A

3k Q21



20Ω

Q15

2

180Ω Q9 V– 4

Q19

Q32

Q22

T1 2k Q20

Q17

2k Q18

6

Q34

Q16

Q10 500

OUT

Q26

3

Q23

Q30 8k

120Ω

240Ω 1001 SS

1001fb

12

LT1001

U

PACKAGE DESCRIPTION

H Package 8-Lead TO-5 Metal Can (.200 Inch PCD) (Reference LTC DWG # 05-08-1320)

0.335 – 0.370 (8.509 – 9.398) DIA 0.305 – 0.335 (7.747 – 8.509) 0.040 (1.016) MAX

0.050 (1.270) MAX

SEATING PLANE

0.165 – 0.185 (4.191 – 4.699) GAUGE PLANE

0.010 – 0.045* (0.254 – 1.143)

REFERENCE PLANE 0.500 – 0.750 (12.700 – 19.050)

0.016 – 0.021** (0.406 – 0.533)

0.027 – 0.045 (0.686 – 1.143) PIN 1

45°TYP 0.028 – 0.034 (0.711 – 0.864)

0.200 (5.080) TYP

0.110 – 0.160 (2.794 – 4.064) INSULATING STANDOFF

*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE AND 0.045" BELOW THE REFERENCE PLANE 0.016 – 0.024 **FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS (0.406 – 0.610) H8(TO-5) 0.200 PCD 1197

OBSOLETE PACKAGE

1001fb

13

LT1001

U

PACKAGE DESCRIPTION

J8 Package 8-Lead CERDIP (Narrow .300 Inch, Hermetic) (Reference LTC DWG # 05-08-1110)

CORNER LEADS OPTION (4 PLCS)

0.023 – 0.045 (0.584 – 1.143) HALF LEAD OPTION 0.045 – 0.068 (1.143 – 1.727) FULL LEAD OPTION

0.005 (0.127) MIN

0.405 (10.287) MAX 8

7

6

5

0.025 (0.635) RAD TYP

0.220 – 0.310 (5.588 – 7.874)

1 0.300 BSC (0.762 BSC)

2

3

4

0.200 (5.080) MAX 0.015 – 0.060 (0.381 – 1.524)

0.008 – 0.018 (0.203 – 0.457)

0° – 15°

NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS

0.045 – 0.065 (1.143 – 1.651) 0.014 – 0.026 (0.360 – 0.660)

0.100 (2.54) BSC

0.125 3.175 MIN J8 1298

OBSOLETE PACKAGE

1001fb

14

LT1001

U

PACKAGE DESCRIPTION

N8 Package 8-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510)

0.400* (10.160) MAX 8

7

6

5

1

2

3

4

0.255 ± 0.015* (6.477 ± 0.381)

0.300 – 0.325 (7.620 – 8.255)

0.009 – 0.015 (0.229 – 0.381)

(

+0.035 0.325 –0.015 8.255

+0.889 –0.381

)

0.045 – 0.065 (1.143 – 1.651)

0.130 ± 0.005 (3.302 ± 0.127)

0.065 (1.651) TYP

0.100 (2.54) BSC

0.125 (3.175) 0.020 MIN (0.508) MIN 0.018 ± 0.003 (0.457 ± 0.076) N8 1098

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)

1001fb

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

15

LT1001

U

PACKAGE DESCRIPTION

S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610)

0.189 – 0.197* (4.801 – 5.004) 8

7

6

5

0.150 – 0.157** (3.810 – 3.988)

0.228 – 0.244 (5.791 – 6.197)

SO8 1298

1 0.010 – 0.020 × 45° (0.254 – 0.508) 0.008 – 0.010 (0.203 – 0.254)

0.053 – 0.069 (1.346 – 1.752) 0°– 8° TYP

0.016 – 0.050 (0.406 – 1.270)

0.014 – 0.019 (0.355 – 0.483) TYP *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

2

3

4

0.004 – 0.010 (0.101 – 0.254)

0.050 (1.270) BSC

1001fb

16

Linear Technology Corporation

LT/CPI 0102 1.5K REV B • PRINTED IN USA

1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507



www.linear.com

 LINEAR TECHNOLOGY CORPORATION 1983