lxviii convegno sisvet, xi convegno aipvet e xii ...

7 downloads 0 Views 29KB Size Report
Italiano di Tecnologia~ Napoli, [3] Centre of Biotechnologies Cardarelli Hospital. ~ Napoli, [4] Department of ... sign of inflammation. No animals of either group ...
LXVIII  CONVEGNO  SISVET,  XI  CONVEGNO  AIPVET  E  XII  CONVEGNO  SIRA   16   BIOACTIVABLE  SCAFFOLD  FOR  NEOANGIOGENESIS  IN  TISSUE  REGENERATION   De  Gregorio  M.*[4],Vilardi  E.[2],Porzio  M.[1],Castaldo  S.[3],D  Angelo  L.[4],  Rossi   L.  [2],  Attanasio  C.  [2]  ,Netti  P.A.[2][1].     [1]  Interdepartmental  Research    Centre    on    Biomaterials    ~    Napoli,  [2]  Istituto   Italiano  di  Tecnologia~    Napoli,  [3]  Centre    of  Biotechnologies  Cardarelli  Hospital   ~   Napoli,   [4]   Department   of   Veterinary   Medicine   and   Animal   Production   ~   Napoli.       Angiogenesis    is    the    process    through    which    new    blood    vessels    are    formed     from   pre-­‐existing     vessels.     This   process   occurs   physiologically   during   organ   and   tissue  development  and  in  tissues  repair.  Regeneration  of  injured  tissues  is  one   of   the   main   goals   of   tissue   engineering.   Angiogenesis   is   the   process   through   which    new  blood    vessels    are    formed    from    pre-­‐existing    vessels.  This  process   occurs   physiologically   during   organ   and   tissue   development   and   in   tissues   repair.   Regeneration   of   injured   tissues   is   one   of   the   main   goals   of   tissue   engineering   implying   the   recovery   of   lost   biological   functions.   Angiogenesis   represents   a   key   event   triggering  the   formation   of     a     vascular     network     able     to     provide     oxygen     and     nutrients     to     the   neoformed   tissue.   Biocompatible   scaffolds   represent     a     valuable     structural     support,     but     also     as     a     potential     guide    of  regenerative    processes    because    of    mechanical,    topographical    and/or     biochemical    signals.       To    test    our    hypothesis,    both    in    vitro    and    in    vivo    experiments    were    carried     out.     Scaffolds   morphology   and   structures     were     characterized     by     scanning     electron     microscopy     and     micro-­‐computed     tomography     (micro-­‐CT),   while   cell-­‐ material     interaction     was     investigated   seeding     Human     Umbilical   Vein     Endothelial    Cells    in  2D  and    3D    culture    systems.    Cell  viability,  adhesion  and   distribution    within    the    scaffold        were    evaluated    at  different  time-­‐points  by   confocal  microscopy.   An  in  vivo  trial  was    then    performed    to    test    and    compare    biocompatibility,     safety     and     effectiveness   of     the   two     constructs.     Scaffolds   were   implanted   subcutaneously  in    rats    and    retrieved    7    and    21    days    after    the  implant.   PCL   scaffolds   were   perfectly   integrated   in   the   surrounding   tissue   without   any   sign   of   inflammation.   No   animals   of   either   group   received   immunosuppressive   drugs.  PCL  scaffold  neovascularization  after  retrieval  was  evaluated  by  micro-­‐CT   analysis.   In  conclusion,    in    our    models    both    alginate    and    PCL    constructs    showed    a   strong     in     vitro   biocompatibility,   whereas     PCL     revealed     a     better     performance     in    the    in    vivo    study.    On    the    basis    of    this    results    we    plan    to  perform    further     experiments     integrating     angiogenic     factors     into     the     scaffold     to     improve     the     temporal   control   of   neoangiogenesis   and   the   functionality   of   the   neoformed   vascular  network.