Mechanical Properties of Austenitic Stainless Steel ...

1 downloads 0 Views 1MB Size Report
Nov 29, 2013 - 85. 75. 68. B. 12.5. 20. Section B-B. R40. C. 274. 90. 94. 73. C. 9.4. 13.2. Section C-C r =6 mm. Flat coupon. Curved coupon. Corner coupon ...
Mechanical Properties of Austenitic Stainless Steel after Exposure to Elevated Temperatures Zhong Tao, Tian-Yi Song, Lin-Hai Han 29 November 2013

1

Outline of presentation Introduction

Experimental investigation Test results and discussion Stress-strain models Conclusions

2

3

Introduction 800 Stress σ (MPa)

fy=350 MPa

600 400 Stainless steel (20℃) Stainless steel (600℃)

200 0 0

0.1

0.2

0.3

0.4

Strain ε

 models for stainless steel at room temperatures: Rasmussen (2003); Gardner and Nethercot (2004); Quach et al. (2008)

 models for stainless steel under elevated temperatures: Chen and Young (2006); Gardner et al. (2010) 4

Research gap  models for stainless steel at room temperatures: Rasmussen (2003); Gardner and Nethercot (2004); Quach et al. (2008)

 models for stainless steel under elevated temperatures:

 models for

12.5 20 Section A-A

B

C

B 274

75

245

75

245

stainless Asteel after fire exposure

R40

R40

R40 A

12.5 20 Section B-B

C

94

85 68

85 68

90 73

Chen and Young (2006); Gardner et al. (2010)

13.2

9.4 r =6 mm Section C-C 5

Outline of presentation Introduction

Experimental investigation Test results and discussion Stress-strain models Conclusions

6

Experimental investigation

85 68

85 68

20 Section A-A

274

12.5 20 Section B-B

Curved coupon

C

94

C

B

75

245

B

12.5

Flat coupon

R40

R40

R40 A

75

245

A

90 73

Tensile tests were done to study the post-fire mechanical properties of austenitic stainless steel of grade 1.4301 (304). Three types of test coupons, including flat, curved and corner coupons, were fabricated

9.4

13.2

r =6 mm Section C-C

Corner coupon

7

Test program Measured data:

Temperature (C)

ts Cooling stage

T Heat soak stage 20

 Post-fire full-range stress (σ)– strain (ɛ) curves  Modulus of elasticity (E0T)

1 Temperature rising stage

 0.2% proof yield strength

Time (min)

Heating and cooling procedures for coupons

(σ0.2T)  0.01% proof yield strength (σ0.01T)

 Ultimate strength (σuT)  Ultimate strain (ɛuT) corresponding to σuT 8

Outline of presentation Introduction

Experimental investigation Test results and discussion Stress-strain models Conclusions

9

Test results 800 200C 20C 1,000C

400

200

0 0.00

500C

400C

800C (ts=45 min) 700C

A

R40 A

75

20°C 200°C 300°C 400°C 500°C 700°C 800°C 1,000°C

245

Stress  (MPa)

600

85 68

300C

12.5 20 Section A-A

0.10

0.20

0.30

Strain 

0.40

0.50

0.60

Post-fire stressstrain curves for flat coupons 10

Test results 800

500C

85 68

85 68

700C 300C

0.20

0.30

Strain 

0.40

0.50

C

94

20 Section B-B

Section A-A

0.10

274

12.5

20

0 0.00

C

B

75

245

B

20°C 300°C 500°C 700°C 12.5 1,000°C

200

R40

R40

R40 A

75

A 245

Stress  (MPa)

600

400

1,000C

90 73

20C

13.2

9.4 r =6 mm Section C-C

0.60

Post-fire stressstrain curves for corner coupons 11

Test results 800 85 68

700C

1,000C

200

R40 B

75

245

B

12.5 20 Section A-A

274

R40 A 20CA

75

20°C 300°C 500°C 700°C 1,000°C

400

245

Stress  (MPa)

85 68

500C

600

300C

12.5 20 Section B-B

0 0.00

0.10

0.20

0.30 0.40 Strain 

0.50

0.60

Post-fire stressstrain curves for curved coupons 12

Influence of heat-soak time 800

ts=135 min

Stress  (MPa)

600 ts=0

ts=90 min

400 ts=45 min

200

Flat coupons, T=800C

0 0.00

0.10

0.20

0.30 0.40 Strain 

0.50

0.60

Post-fire stressstrain curves for flat coupons 13

Ratio of fyT/fy as a function of T 800 200C 300C 20C 1,000C 20°C 200°C 300°C 400°C 500°C 700°C 800°C 1,000°C

400

200

0 0.00

0.10

0.20

0.30

Strain 

500C

400C 800C (ts=45 min) 700C

1.2 1

0.40

0.50

0.60

fyT/fy

Stress  (MPa)

600

Flat coupons

0.8 0.6 Flat coupon

800 300C

Stress  (MPa)

600

500C

0.4

Curved coupon Steel bar (Felicetti et al., 2009)

700C

20°C 300°C 500°C 700°C 1,000°C

400

200

1,000C

20C

0.2 0 0

0 0.00

0.10

0.20

0.30 0.40 Strain 

0.50

0.60

200

400 600 800 Temperature T (°C)

1000

Curved coupons 14

Influence of fire exposure on corner effect 20C

800

500C

700C 300C

400

fuT fuT,c

20°C 300°C 500°C 700°C 1,000°C

200

0.10

0.20

0.30

Strain 

800

0.40

0.50

Corner coupons

0.60

Strength (MPa)

Stress  (MPa)

600

0 0.00

1,000C

600 fyT

fyT,c

400 200

Flat coupon Corner coupon

0 0

200

400 600 800 Temperature T (°C)

1000

15

Influence of fire exposure on corner effect 20C

800

500C

700C 300C

400

20°C 300°C 500°C 700°C 1,000°C

200

0.10

0.20

0.30

Strain 

0.6 0.40

0.50

Corner coupons

0.60

Ultimate strain

Stress  (MPa)

600

0 0.00

1,000C

0.45 0.3 0.15

Flat coupon Corner coupon

0 0

200

400 600 800 Temperature T (°C)

1000

16

Outline of presentation Introduction

Experimental investigation Test results and discussion Stress-strain models Conclusions

17

Rasmussen’s model EsT

Stress σ

1

EyT 1

fuT fyT

εuT

0.002 Strain ε

n      0.002  for   f y    Es  fy    m   f   f   f  y y y   for f y    f u 0 . 002     u   Es Ey  fu  fy  

18

Post-fire model for flat regions n       0.002 f   Es  yT    mT    f yT  f yT   f yT    u 0.002  E  E f f  s yT  u yT  

for   f yT for f yT    f u

Es EyT  1  0.002nEs / f yT

mT  1  3.5

f yT fu 19

Ratio of fyT/fy as a function of T f y,c 1.2

fy

 1  0.05e

900/ f y

1

fyT/fy

0.8 0.6 Flat coupon

0.4

Curved coupon Steel bar (Felicetti et al., 2009)

0.2 0 0

200

400 600 800 Temperature T (°C)

1000

20

Room temperature - model for corner regions Stress  (MPa)

800 600 400 Flat material

200

Corner material

0 0.00

0.10

0.20

0.30

0.40

0.50

Strain 

21

Room temperature - model for corner regions 85 test data, 24 full-range  curves from 15 references.

nc        0.002  f y,c   Es    mc   f   f   f  y,c y,c y,c   0 . 002     u,c    Es Ey,c  f u,c  f y,c  

E y,c 

Es 1  0.002nc Es / f y,c

for   f y,c for f y,c    f u,c

 u,c  1 

f y,c f u,c

22

Room temperature - model for corner regions 2.4

fy,c/fy

1.6 1.2 0.8

Austenitic

0.4

Duplex

f y,c fy

 1  0.05e

900/ f y

0

(fu,c/fy,c)/(fu/fy)

2

1.4

f u,c

1.2

f y,c



 0.56 f y

0.226

 1.4

 ff

u y

1 0.8 0.6 0.4

Austenitic

0.2

Duplex

0

250

350

450

550 fy (MPa)

650

750

250

350

450 550 fy (MPa)

650

750

23

Post-fire model for corner regions Assumptions: 1) With suitable modifications, Rasmussen's model can still be used. 2) The corner effects due to cold forming disappear when T is 1,000C, but the ultimate strain uT,c of post-fire corner material can be taken as 0.89u, where u is the ultimate strain of flat material without fire exposure. 3) When 20  C