Methods and apparatus for detecting cracks in welds

7 downloads 0 Views 741KB Size Report
Aug 19, 2008 - 5975/25; (74) Attorney, Agent, or FirmiArmstrong Teasdale LLP ... US. Patent. Aug. 19, 2008. Sheet 1 015. US 7,412,890 B1. FIG. 1 ...
US007412890B1

(12) United States Patent

(10) Patent N0.2

Johnson et a]. (54)

(45) Date of Patent:

METHODS AND APPARATUS FOR

4,785,816 A *

11/1988 Dow etal. ................ .. 600/446

4,966,746 A

10/1990 Richardson et a1.

(75) Inventors: Paul Johnson, Huntersville, NC (US); -

.



,



a.

5,460,045 A

10/1995

73/644 ........... ..

Clark et al.

10/1996 Richardson et a1.

5,571,968 A *

11/1996

Notice:

Subject to any disclaimer, the term of this patent is extended or adjusted under 35

7/1998 Morlan 6/2000 Levesque et a1.

6,120,452 A *

9/2000

APPI'NO" 10/750’417

73/623

Barthe et al. .............. .. 600/459

1/2001 Collins 12/2001 1011118011

6,865,243 B2 *

_

Buckley .................... ..

5,784,425 A 6,076,407 A 6,169,776 B1 6,332,011 B1

U_S_C_ 154(1)) by 54 days_

3/2005 Paillaman et al. ......... .. 376/245

6,886,407 B1*

5/2005

Fredenberg ..... ..

6,904,817 B2*

6/2005

Davis et a1. .............. .. 73/8658

73/622

7,134,352 B2* 11/2006 Davis etal. .............. .. 73/8658

_

Int. Cl.

oenen e

5,568,527 A

(*)

(51)

c

12/1994 Richardson et a1.

Davlss Charlotte, NC (Us)

Ass1gnee: General Electric Company, Schenectady, NY (US)

Wed‘

lsinl‘llgdlng et E111

5,377,237 A

5,460,179 A * 10/1995 Okunuki et a1. ........... .. 600/444

(73)

(22)

,

Richardson et al. ......... .. 73/621

Hunlersvlnea NC (Us); Trevor James _

.

4/1991

i * 1(7);

_

C13 ms)’

2005/0124889 A1*

De°'31’2003

2005/0288587 A1*

6/2005

Flesch ..... ..

600/445

12/2005 R011 et a1. ................. .. 600/445

* cited by examiner

G01N 29/04

(52)

Aug. 19, 2008

DETECTING CRACKS IN WELDS

5,009,105 A *

(21)

US 7,412,890 B1

(2006.01)

_

us. Cl. ........................ .. 73/618- 622/625- 622/644 _

_

_



(58) Fleld of g3l76sgl2?cgggméos2easrgg

_

_

_

Prlmary Emmmer*HeZr°n E- Wllhams



Assistant Examinerilacques M. Saint-Surin

5975/25;

(74) Attorney, Agent, or FirmiArmstrong Teasdale LLP

See application ?le for complete search history. (56)

References Cited

A method of inspecting a portion of a Weld between at least tWo materials includes mounting at least one ultrasonic

U.S. PATENT DOCUMENTS 3 202 218 A * 8/1965 W 31 166/356 3’ 61 6’ 684 A * U/ 1971 Nsgfijliel ' Jr‘ """"""" " 73/635 3’938’372 A * Z1976 sproule ’ ' " 73/633

phased array probe including at least one transducer having a plurality of elements Within a housing containing a liquid therein, attaching the housing adjacent to an outer surface of the portion of the Weld such that the liquid is adjacent to the

33988392 A * 11/1976 Clark eta1:"Iii.......:::~376/249

OuterSurfaceoftheponionoftheweld,andscanningtheweld

4,368,644 A *

1/ 1983 WentZell et a1. ............. .. 73/634

With the 2111921510119 ultrasonic Phased array Probe

4,455,872 A * 4,641,532 A *

6/1984 Kossoffetal. .. 73/618 2/1987 Rohrer ...................... .. 73/637

16 Claims,5DraWing Sheets

172

US. Patent

Aug. 19, 2008

Sheet 1 015

FIG. 1

US 7,412,890 B1

US. Patent

Aug. 19, 2008

Sheet 2 of5

FIG. 2

US 7,412,890 B1

US. Patent

Aug. 19, 2008

Sheet 3 of5

FIG. 4

US 7,412,890 B1

US. Patent

Aug. 19, 2008

Sheet 4 of5

US 7,412,890 B1

‘____Y—> “

ELEMENT 1

/162‘F /l60 P

ELEMENT 2

—‘L

ELEMENT 3

X

ELEMENT 4

A

~

\162

Q

.

/-162 I

ELEMENT N

US. Patent

Aug. 19, 2008

Sheet 5 of5

210 \

US 7,412,890 B1

/ MOUNTING AT LEAST ONE ULTRASONIC PHASED ARRAY PROBE WITHIN A HOUSING

220

\

I

ATTACHING THE HOUSING ADJACENT TO AN OUTER SURFACE OF THE PORTION OF THE WELD 230

I \

SCANNING THE WELD WITH THE AT LEAST ONE ULTRASONIC PHASED ARRAY PROBE

FIG. 7

US 7,412,890 B1 1

2

METHODS AND APPARATUS FOR DETECTING CRACKS IN WELDS

ultrasonic phased array probe includes at least one transducer

having a plurality of elements, and Wherein the housing is

reactors, and more particularly to ultrasonic examination of Welds Within a nuclear reactor pressure vessel (RPV). A typical boiling Water reactor (BWR) includes a RPV containing a nuclear fuel core immersed in circulating cool

con?gured to position at least one ultrasonic phased array probe at a predetermined location on the Weld, attaching the housing adjacent to an outer surface of the at least tWo pipes such that the portion of the Weld to be inspected is positioned therein and the liquid is adjacent to the outer surface of the Weld, and scanning the portion of the Weld With at least one ultrasonic phased array probe, Wherein the probe emits a steerable ultrasonic beam.

ant Water Which removes heat from the nuclear fuel. The Water is boiled to generate steam for driving a steam turbine

BRIEF DESCRIPTION OF THE DRAWINGS

BACKGROUND OF THE INVENTION

This invention relates generally to inspection of nuclear

generator for generating electric poWer. The steam is then condensed and the Water is returned to the pressure vessel in a closed loop system. Piping circuits carry steam to the tur

FIG. 1 is a sectional vieW, With parts cut aWay, of a boiling Water nuclear reactor pressure vessel.

bines and carry re-circulated Water or feed-Water back to the RPV that contains the nuclear fuel. BWRs have numerous

FIG. 2 is a top sectional vieW of the boiling Water nuclear reactor pressure vessel shoWn in FIG. 1. FIG. 3 is a sectional vieW, With parts cut aWay, of a T-box

piping systems, and such piping systems are utiliZed, for example, to transport Water throughout the RPV. For example, core spray piping is used to deliver Water from

assembly and noZZle/ safe end con?guration shoWn in FIG. 2. 20

outside the RPV to core spargers inside the RPV and to cool the core. Typically, the core spray piping is coupled to a thermal sleeve that is Welded to a RPV noZZle and a safe-end is Welded to the noZZle.

Stress corrosion cracking (SCC) is a knoWn phenomenon

25

that may occur in reactor components, such as structural

members, piping, fasteners, and Welds. The reactor compo nents are subject to a variety of stresses associated With, for

example, differences in thermal expansion, the operating pressure needed for the containment of the reactor cooling

30

FIG. 4 is a side vieW ofa SE-NoZ Weld shoWn in FIG. 3. FIG. 5 is a side vieW of an ultrasonic phased array assembly mounted on the surface of the Weld shoWn in FIG. 4 and shoWs a cross-sectional vieW of the pipe in accordance With an embodiment of the present invention. FIG. 6 is a schematic top vieW of an ultrasonic phased array transducer shoWn in FIG. 5. FIG. 7 is a How chart of a method of inspecting a portion of a Weld betWeen at least tWo dissimilar materials in accordance With an embodiment of the present invention.

Water, and other sources such as residual stresses from Weld

DETAILED DESCRIPTION OF THE INVENTION

ing, cold Working and other inhomogeneous metal treat ments. In addition, Water chemistry, Welding, heat treatment and radiation can increase the susceptibility of metal in a component to SCC. Reactor internal piping, such as thermal

35

sleeves and core spray lines, occasionally require replace ment as a result of SCC, the replacement may require Welding a neW pipe member onto an old pipe member.

Some knoWn methods of inspecting Welds for SCC utiliZe a phased array probe. Known phased arrays include a group of transducer elements used together With relative time, or phase

40

20 surrounds a reactor core 22. Shroud 20 is supported at one

single instrument that can be steered to distinct points in space. Typically, knoWn methods average ten hours to scan a 45

BRIEF DESCRIPTION OF THE INVENTION In one aspect, a method of inspecting a portion of a Weld

betWeen at least tWo materials is provided. The method includes mounting at least one ultrasonic phased array probe including at least one transducer having a plurality of ele

ments Within a housing containing a liquid therein, attaching the housing adjacent to an outer surface of the portion of the Weld such that the liquid is adjacent to the outer surface of the portion of the Weld, and scanning the Weld With at least one

50

55

ultrasonic phased array probe. 60

housing. In a further aspect, a method of inspecting a portion of at least tWo pipes coupled by a Weld Within a nuclear reactor

pressure vehicle is provided. The method includes mounting at least one ultrasonic phased array probe Within a housing partially containing a liquid therein, Wherein at least one

shape, extends betWeen shroud support 24 and RPV side Wall 16. Pump deck 30 includes a plurality of circular openings 32, With each opening housing a jet pump 34. Jet pumps 34 are circumferentially distributed around core shroud 20. An inlet riser pipe 36 is coupled to tWo jet pumps 34 by a transition assembly 38. Each jet pump 34 includes an inlet mixer 40, and a diffuser 42. Inlet riser 36 and tWo connected jet pumps 34 form a jet pump assembly 44. Heat is generated Within core 22, Which includes fuel bundles 46 of ?ssionable material. Water circulated up through core 22 is at least partially converted to steam. Steam separators 48 separate steam from Water, Which is re-circu lated. Steam dryers 50 remove residual Water from the steam. The steam exits RPV 10 through a steam outlet 52 near vessel

In another aspect, an apparatus con?gured to inspect a portion of a Weld betWeen at least tWo materials is provided.

The apparatus includes a housing containing liquid and at least one ultrasonic phased array probe mounted Within said

attached to top ?ange 18. A cylindrically shaped core shroud end by a shroud support 24 and includes a removable shroud head 26 at the other end. An annulus 28 is formed betWeen shroud 20 and side Wall 16. A pump deck 30, Which has a ring

shifts betWeen the elements. The combined elements act as a

thirty-centimeter Weld.

FIG. 1 is a sectional vieW, With parts cut aWay, of a boiling Water nuclear reactor pressure vessel (RPV) 10. RPV 10 has a generally cylindrical shape and is closed at one end by a bottom head 12 and at its other end by a removable top head 14. A side Wall 16 extends from bottom head 12 to top head 14. Side Wall 16 includes a top ?ange 18. Top head 14 is

65

top head 14. The amount of heat generated in core 22 is regulated by inserting and Withdrawing control rods 54 of neutron absorb ing material, such as for example, hafnium. To the extent that control rod 54 is inserted into fuel bundle 46, it absorbs neutrons that Would otherWise be available to promote the chain reaction Which generates heat in core 22. Control rod guide tubes 56 maintain the vertical motion of control rods 54 during insertion and WithdraWal. Control rod drives 58 effect

US 7,412,890 B1 4

3

Each of ?rst Wall 130, second Wall 132, and the pair of side

the insertion and WithdraWal of control rods 54. Control rod drives 58 extend through bottom head 12. Fuel bundles 46 are aligned by a core plate 60 located at the base of core 22. A top guide 62 aligns fuel bundles 46 as they are loWered into core 22. Core plate 60 and top guide 62 are

Walls include a top end 140, a bottom end 142, and a body 144

extending therebetWeen. Housing top end 140 is open such that a liquid 146 may be positioned Within housing cavity 128. Housing bottom end 142 is open such that an ultrasonic beam 148 is not obstructed during emission toWard Weld 100.

supported by core shroud 20. FIG. 2 is a top sectional vieW of RPV 10 including annulus 28 formed betWeen vessel Wall 16 and shroud 20. Space inside annulus 28 is limited With most reactor support piping located inside annulus 28. Cooling Water is delivered to the

Additionally, each housing bottom end 142 is shaped to coop erate With the geometry of the item or material being inspected. In one embodiment, bottom end 142 is substan tially concave. In an alternative embodiment, bottom end 142

is substantially ?at.

reactor core during a loss of coolant accident through core spray distribution header pipes 70 and 72 Which are con

Housing cavity 128 is ?lled With liquid 146. In one embodiment, liquid 146 is Water. In another embodiment,

nected to doWncomer pipes 74 and 76 respectively. DoWn comer pipes 74 and 76 are connected to shroud 20 through loWer T-boxes 78 and 80 respectively, Which are attached to shroud 20 and internal spargers 82. Distribution header pipes 70 and 72 diverge from an upper T-box assembly 84. Particu larly, T-box assembly 84 is coupled to a core spray noZZle 86

liquid 146 is a combination of liquids that facilitate the trans mission and reception of ultrasonic sound beams 148. Housing 128 is releasably attached to outer surface 122 by a seal 152. Housing 128 can be incrementally moved axially

by a thermal sleeve (shoWn in FIG. 3). Core spray noZZle 86

ment, housing 128 is continuously moved axially or circum

is coupled to a safe-end 88. FIG. 3 is a side sectional vieW With parts cut aWay of T-box

or circumferentially along outer surface 122. In one embodi 20

ferentially along surface 122 in predetermined increments. Seal 152 is Water-tight such that liquid 146 cannot drain out of housing cavity 128. In one embodiment, seal 152 is an elas tomer. In another embodiment, seal 152 is a material selected

assembly 84. T-box assembly 84 includes a T-box housing 90 that is Welded to thermal sleeve 92 inside core spray noZZle 86. Core spray noZZle 86 is coupled to safe-end 88 by a Weld

from the group including rubber, silicone, and butyl.

100, sometimes referred to as a core spray safe-end-to-noZZle

FIG. 6 is a schematic top vieW of an array transducer 160

(SE-NoZ) Weld.

shoWn in FIG. 5. Referring to Figures and 5 and 6, probe 126

FIG. 4 is a sectional side vieW With parts cut aWay of SE-NoZ Weld 100 positioned betWeen safe-end 88 and core spray noZZle 86. In another embodiment, Weld 100 is a recir culation noZZle-to-safe-end Weld. In yet another embodi ment, Weld 100 is a safe-end thermal sleeve Weld. Weld 100 is a circumferential Weld. In the exemplary embodiment, SE NoZ Weld 100 couples a neW safe-end 88 manufactured from SS304 to an existing core spray noZZle 86 manufactured from SA508. In one embodiment, Weld 100 is a dissimilar metal Weld. In another embodiment, Weld 100 contains Inconel®

contains at least one array transducer 160 having a plurality of elements 162 that emit ultrasonic beam 148. An important

600 series base materials, alloy 82 and 182 Weld butter. Inconel® is a registered trademark of Special Materials, Hun tington, W. Va. In the exemplary embodiment, Weld 100 includes a neW Inconel® Weld 102, an old Inconel® Weld

104, and a portion of an old Inconel® safe-end Weld 106 all positioned betWeen an Inconel® butter 108. Weld 100 has a Weld Width 114 and a Weld thickness 116. Weld Width 114 is betWeen approximately ?fteen centimeters and seventy cen timeters. Weld thickness 116 is betWeen approximately 1.75 centimeters and 6.25 centimeters.

30

any angle Within the overall beam spread of an individual

element. During operation, beam 148 is created by sequen tially ?ring each element 162 to create a Wave front 166 35

folloWing a desired angle 164. Angle 164 is selected and set

up electronically by control instrumentation (not shoWn) Which controls an actuator 168, and can if necessary be

changed pulse by pulse. This “Virtual Probe” can also be “sWept” through Weld 100 by ?ring groups of elements in a 40

large array. This effect can be used to dynamically focus or

“electrically steer” ultrasonic beam 148 by selecting the probe ?ring order and pulse delays. This can be changed on a

pulse by pulse basis to effectively “sWeep” a focal point through Weld 100. Beam steering and dynamic focusing can 45

be combined to enable resultant beam 148 to be both focused

and angled in predetermined increments. Ultrasonic phased array probes 126 are commercially available from Krau

tkramer Ultrasonic Systems Group of Agfa NDT, Inc., LeWistoWn, Pa.

The Weld location, material, Width 114, and thickness 116 described above are examples of Weld 100. It can be appre

ciated that the instant invention may apply to any Welds

aspect of probe 126 usage is the ability to dynamically syn thesiZe ultrasonic beam 148 and create a “Virtual Probe” of

50

betWeen similar or dissimilar materials, as Well as Weld mate rials that are similar or dissimilar to the materials being

coupled. Additionally, the application applies to Welds of varying thicknesses, Widths, and locations. FIG. 5 is a side vieW of a phased array probe assembly 120 adjacent an outer surface 122 of Weld 100 in accordance With an exemplary embodiment of the present invention. Probe assembly 120 includes a ?xture or housing 124 con?gured to receive and mount a probe 126 therein. Housing 124 is fab

55

ricated from a knoWn Water-impermeable material according

60

Referring to FIG. 6, the basic parameters of transducer 160 are de?ned as frequency, aperture A, element siZe X, element Width Y, pitch P, and number of elements 162. A suitable frequency is 1.0 to 5.0 MHZ for the material type and thick ness 116 of Weld 100. HoWever, other transducer frequencies can be used for pipes and pipe Welds manufactured from other materials.

Element pitch P is determined by calculating the acoustic aperture A needed to focus beam 148 at the required sound

path and dividing this value by the total number of elements

to knoWn techniques. Housing 124 is substantially rectangu

162 and the amount of steering needed to create the desired angles. The siZe X of elements 162 is set as the maximum

lar shaped and surrounds a cavity 128. Housing 124 includes a ?rst Wall 130, a second Wall132, and a pair of side Walls (not

possible pitch. The WidthY of elements 162 is determined by

shoWn) extending substantially perpendicular to and adjacent 134 and length (not shoWn). Additionally, housing Width 134

centimeters to give the smallest beam pro?le in the y-plane. The physical restrictions of the scanning surface must also be considered in determining the basic parameter values of

is siZed greater than Weld Width 114 (shoWn in FIG. 4).

probe 126.

?rst Wall 130 and second Wall 132. Housing 124 has a Width

calculating the effective diameter for a near ?eld of ?fteen 65

US 7,412,890 B1 5

6

FIG. 7 is a ?owchart depicting an exemplary embodiment of a method 200 of inspecting a portion of Weld 100 that includes mounting 210 at least one ultrasonic phased array

2. A method in accordance With claim 1 Wherein the Weld is betWeen at least tWo similar materials. 3. A method in accordance With claim 1 Wherein the Weld is betWeen at least tWo dissimilar materials. 4. A method in accordance With claim 1 Wherein mounting at least one ultrasonic phased array probe Within the probe

probe 126 Within housing 124 containing liquid 146 therein such that at least a portion of probe 126 contacts liquid 146. Probe 126 is con?gured to rotate about a plurality of angles 164 using actuator 168. Attaching 220 housing 124 adjacent to outer surface 122 of Weld 100 facilitates inspection of Weld 100. Liquid 146 is positioned adjacent outer surface 122 of Weld 100 such that a Water-tight seal 152 exists betWeen housing 124 and surface 122. In one embodiment, seal 152 is removably attached. In

housing further comprises rotating the at least one ultrasonic

phased array probe Within the probe housing about a plurality of angles using an actuator. 5. A method in accordance With claim 1 Wherein mounting at least one ultrasonic phased array probe Within the probe

housing comprises positioning at least one ultrasonic phased array probe partially Within the liquid and at a predetermined location along the Weld.

another embodiment, seal 52 is ?xedly attached. Housing 124 is con?gured to be moveably attached to surface 122 such that housing 124 may be rotated circumferentially about Weld 100

incrementally.

6. A method in accordance With claim 1 Wherein the probe housing comprises a seal attached to a bottom edge of the

Probe 126 is con?gured to scan Weld 100 betWeen at least tWo dissimilar materials of noZZle 86 and safe-end 88. In

plurality of sides, and attaching the probe housing to the surface of the Weld comprises releasably attaching the probe

another embodiment, probe 126 is con?gured to scan Weld 100 betWeen at least tWo similar materials. Particularly, attaching 220 housing 124 to outer surface 122 and scanning 230 Weld 100 With probe 126, facilitates an ultrasonic exami nation of materials of noZZle 86 and safe-end 88, for example, an outer surface 170, a body 172, and an inner surface 174, as Well as Weld 100.As shoWn in FIG. 5, the volume 176 ofbeam 148 that is examined includes Weld 100 and noZZle 86 extend ing from outer surface 170 toWards inner surface 174. Just as probe 126 can be oriented in a plurality of angles 164, as discussed above, beam 148 can be oriented or steered in plurality of angles 164. In one embodiment, beam 148 can be steered along a substantially axial path across Weld 100 in a

20

is an elastomer.

7. A method in accordance With claim 1 Wherein scanning the Weld With the at least one ultrasonic phased array probe comprises electrically steering at least one of the elements 25

86 and safe-end 88 permits the inspection With less personnel,

8. A method in accordance With claim 7 Wherein electri cally steering at least one of the transducer elements com 30

9. A method in accordance With claim 7 Wherein electroni

ing at least one of the elements along a substantially axial path across the portion of the Weld in a linear path in predeter 35

tronically steering the emitted ultrasonic beam comprises 40

45

that the invention can be practiced With modi?cation Within the spirit and scope of the claims. What is claimed is: 1. A method of inspecting a portion of a Weld betWeen at 50

elements, and the probe housing is con?gured to posi

55

housing; inspected is positioned therein, the outer surface of the

60

tion of the Weld acts as a bottom end of the housing

cavity;

of the at least tWo pipes acts as a bottom end of the

housing cavity; ?lling at least a portion of the housing cavity With a liquid

?lling at least a portion of the housing cavity With a liquid so that the liquid is in contact With the outer surface of

array probe.

ultrasonic phased array probe pivotable Within the probe attaching the probe housing to an outer surface of the at least tWo pipes such that the portion of the Weld to be

the probe housing;

the portion of the Weld; and

bottom end, the plurality of sides de?ning a housing cavity, the at least one ultrasonic phased array probe tion the at least one ultrasonic phased array probe at a predetermined location on the Weld, the at least one

least one ultrasonic phased array probe pivotable Within

scanning the Weld With the at least one ultrasonic phased

said method comprising: pivotably mounting at least one ultrasonic phased array probe Within a probe housing, the probe housing com

includes at least one transducer having a plurality of

least one transducer having a plurality of elements, the at

attaching the probe housing to an outer surface of the portion of the Weld so that the outer surface of the por

actuating at least one of the elements along a substantially circular path across the portion of the Weld from an outer surface toWard an inner surface. 11. A method of inspecting a portion of at least tWo pipes coupled by a Weld Within a nuclear reactor pressure vehicle,

prising a plurality of sides, an open top end and an open

prising a plurality of sides, an open top end and an open

bottom end, the plurality of sides de?ning a housing cavity, each ultrasonic phased array probe comprising at

mined increments from an outer surface toWard an inner

surface. 10. A method in accordance With claim 7 Wherein elec

inspection results in a more complete and more reliable examination of Welds betWeen dissimilar or similar materials. While the invention has been described in terms of various

least tWo materials, said method comprising: pivotably mounting at least one ultrasonic phased array probe Within a probe housing, the probe housing com

prises actuating and deactuating at least one of the transducer elements along a path in a predetermined order.

cally steering the emitted ultrasonic beam comprises actuat

With less exposure, and With less time. Additionally, the

speci?c embodiments, those skilled in the art Will recogniZe

such that an ultrasonic beam is emitted at a plurality of steer

ing angles.

linear path perpendicular to the orientation of Weld 100. In another embodiment, beam 148 can be steered along a sub stantially axial path across Weld 100 in a linear path perpen dicular to the orientation of Weld 100 in predetermined incre ments. In yet another embodiment, beam 148 can be steered along a substantially circular path across Weld 100. The above described method 200 of inspecting a portion of Weld 100 betWeen at least tWo dissimilar materials of noZZle

housing such that a Water-tight seal exists betWeen the hous ing and the surface of the portion of the Weld, Wherein the seal

65

so that the liquid is in contact With the outer surface of the of the at least tWo pipes; and scanning the portion of the Weld With the at least one

ultrasonic phased array probe, Wherein the probe emits a steerable ultrasonic beam.

US 7,412,890 B1 8

7 12. A method in accordance With claim 11 wherein mount

ing at least one ultrasonic phased array probe Within the probe housing further comprises rotating the at least one ultrasonic

probe comprises electrically steering at least one of the trans ducer elements at a plurality of steering angles. 15. A method in accordance With claim 14 Wherein elec

phased array probe Within the probe housing about a plurality

trically steering further comprises actuating and deactuating

of angles using an actuator. 13. A method in accordance With claim 11 Wherein the probe housing comprises a seal attached to a bottom edge of

at least one of the transducer elements along a substantially axial path across the portion of the Weld in a linear path in a

the plurality of sides, and attaching the probe housing to the surface of the at least tWo pipes comprises releasably attach ing the probe housing such that a Water-tight seal exists betWeen the probe housing and the surface of the portion of the Weld, Wherein the seal is an elastomer. 14. A method in accordance With claim 11 Wherein scan ning the Weld With the at least one ultrasonic phased array

predetermined order from an outer surface toWard an inner

surface. 16. A method in accordance With claim 14 Wherein elec

trically steering further comprises actuating and deactuating at least one of the transducer elements along a substantially circular path across the portion of the Weld from the outer surface toWard the inner surface. *

*

*

*

*